Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 107 (2022) 611-616

www.elsevier.convlocate/procedia

55th CIRP Conference on Manufacturing Systems
Early Quality Prediction using Deep Learning on Time Series Sensor Data

Amal Saadallah®, Omar Abdulaaty®, Jan Biischer®, Thorben Panusch®, Katharina Morik?, Jochen
Deuse*

“Artificial Intelligence Group, TU Dortmund University, Otto-Hahn-Str. 12, 44227 Dortmund, Germany
b Institute of Production Systems, TU Dortmund University, Leonhard-Euler-Str. 5, 44227 Dortmund, Germany
“Centre for Advanced Manufacturing, University of Technology Sydney, Sydney, Australia

* Corresponding author. E-mail address: amal.saadallah@cs.tu-dortmund.de, jan.buescher@ips.tu-dortmund.de

Abstract

In manufacturing systems, early quality prediction enables the execution of corrective measures as early as possible in the production chain,
avoiding thus costly rework and waste of resources. The increasing development of Smart Factory Sensors and Industrial Internet of Things has
offered wide opportunities for applying data-driven approaches for early quality prediction in real-time using Machine Learning (ML). With the
multiplication of applications, further requirements on the quality of predictive ML models covering multiple aspects such as accuracy, robustness
and explainability have to be fulfilled to build trustworthy ML-based solutions. In this context, we investigate the task of early quality classification
using a Convolutional Neural Network (CNN) on time series sensor data of an automotive real-world case study. To do so, a gradient-based heat-
mapping explanation method for CNNs is computed to determine the most discriminative time series patterns and localize them in time. These

patterns are subsequently used to achieve quality prediction in real-time as early as possible.

© 2022 The Authors. Published by Elsevier B. V.

This 1s an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the Intemational Programme committee of the 55th CIRP Conference on Manufacturing Systems

Keywords: Early Quality Prediction; Sensor Data; Time Series; Deep Learning; Heat-maps; Automotive Manufacturing.

1. Introduction

In manufacturing systems, quality deviations that are only de-
tected at the end of the production chain, may potentially result
in high amounts of rejected products which require laboriously
and costly rework or need to be scrapped [10]. To prevent such
events, early quality prediction have to be achieved. Hence, cor-
rective actions are expected to have the largest impact if they
are executed as early as possible in the process, avoiding thus
costly rework and waste of resources through further processing
of defective components [6, 13].

A key requirement for early quality prediction is the full cover-
age of the product quality in the early stages of the manufactur-
ing process or within the execution of some stages. Nowadays,
in the context of industry 4.0, the linkage of production envi-
ronment through Information and Communication Technolo-
gies (ICT) to cyber-physical systems with the goal of moni-
toring, controlling and optimizing complex manufacturing sys-
tems, enables real-time capable approaches for process data ac-
quisition, analysis and knowledge discovery [12, 10]. This is
achieved in practice by collecting and analyzing sensor data. As

2212-8271 © 2022 The Authors. Published by Elsevier B.V.

a result, data-driven approaches for predicting process quality
in real-time and deriving adequate process control interventions
in a timely manner, can be developed [9, 6, 3, 5]. Sensors are
able to generate mass quantities of sensor data as responses to
some types of inputs from the physical production environment.
Most often, each of these data points are captured at specific
time stamps, effectively transforming sensor data into time se-
ries data that can be analyzed across this additional dimension
[12, 13].

Machine Learning (ML) algorithms trained on sensor data are
used to gain knowledge that can be generalized and used to pre-
dict unknown future events, i.e. new data points. Quality predic-
tion that is performed using ML, is referred in Industry 4.0 as
model-based quality prediction [10]. To do so, the description
of the product or process quality and all the related information
should be done at the first step, especially in highly complex dy-
namic production systems with non-linear interactions between
their steps. The second step consists of building and training a
predictive model that maps the available quality-related infor-
mation, e.g, operating states sensor data, process input param-
eters, to the resulting process/product quality [12]. This model
can be used afterwards for predicting the expected quality given

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-ne-nd/4.0)
Peer-review under responsibility of the International Programme committee of the 55th CIRP Conference on Manufacturing Systems

10.1016/j.procir.2022.05.034



612 Amal Saadallah et al. / Procedia CIRP 107 (2022) 611-616

a set of input values. Several industrial applications utilize al-
ready existing ML methods and algorithms to solve actual prob-
lems in manufacturing from an engineering point of view [10].
These applications cover a wide range of industrial fields, in-
cluding electronics [10], metal [6, 13, 5], and process industries
[9, 3]. Likewise, the adopted ML solutions are not limited to
a specific family of models but include amongst others Arti-
ficial Neural Networks (ANNs) [9], Support Vector Machines
(SVMs) [13], and Decision Trees (DTs) [6]. Most of the afore-
mentioned works focused on quality prediction at the end of the
production chain with the goal of reducing the costs of quality
inspection assigned by humans or special machines [10, 6, 13].
However, only few studies have achieved and investigated the
impact of early quality prediction in the very early stages of
multi-staged processes or within the execution of the process
[9.5].

More recently, Deep Neural Networks (DNNs) have been suc-
cessfully applied in the context of process quality prediction
with high accuracy [9]. Their success is mainly due to their
ability to learn new complex enriched features representations
in an automated manner from the input data [14]. Thus, they
achieve a good performance in solving a wide variety of com-
plex tasks such as quality prediction where the expected pro-
cess/product quality is affected by multi-interacting features in
complex manufacturing settings [10, 6]. DNNs are therefore
known to be complex black-box models that mostly give better
accuracy in their predictions, but with very low interpretabil-
ity [8]. However, likewise high prediction accuracy, both inter-
pretability and explainability can be of the same importance and
sometimes even more substantial for quality prediction related
applications [7]. Hence, understanding the model’s predictions,
i.e. “Why” a certain quality label is predicted, and the model’s
dynamics, i.e. which model’s parameters are taking into ac-
count or if the model contains any bias, can be of great help for
subsequent decision-making by process experts on process op-
timization, such as adjusting process parameters, early stopping
of the process if desired quality standards will not be reached,
etc. The explainability of DNNs is an active field of research
and several methods have been presented in the literature [8]
including visualization-based approaches [11].

In this work, we employ a one dimensional Convolutional Neu-
ral Network (1D-CNN) to predict as early as possible the qual-
ity of a screwing process in a real-world automotive industry
use case. The quality of a bolt is described by eight discrete
labels indicating whether it is “defective” or “non-defective”.
In case of “defective”, seven types of defects can be identi-
fied. The quality label is described by a time series feature. The
learning task can formally be described as a multi-class Time
Series Classification (TSC). We devised a training mechanism
such that a 1D-CNN is trained on the training set composed of
the full-length time series features. Then, a heat-mapping-based
explanation method is used to highlight the most important dis-
criminative pattern on the time series on a validation set. These
maps are used not only for providing explanations, but also to
determine where the discriminative patterns can be localized
so that a reliable early quality prediction can be achieved by
means of sampling, i.e. deriving shorter length of the time se-

ries window to be used for early prediction of the quality. The
1D-CNN is retrained using the input time series with the new
length. We demonstrate how this training mechanism can be
used to achieve better prediction accuracy using carefully se-
lected time series subsequences on the described use case. In
the remainder of this paper, we describe the proposed approach
in Section 2. In Section 3, we describe the use case and the ac-
quired data. Section 4 is dedicated to the experimentation part
where the experimental set-up is described and the results are
discussed. The last section concludes the paper.

2. Methodology
2.1. Notations and Definitions

Let the input data denoted as a multi-set D = (X,Y) =
{(xD, M)} sy which consists of |D| = N input data points
xD and their corresponding label y. Each input data point x”
consists of a univariate time series. A univariate time series is a
sequence of data points, measured typically at successive points
in time spaced at uniform time intervals. Each data point x”
can be denoted by x® = {x(]"),xg), .- ,xff)}, where xfl e Ris
the value of x at the time instant 7. A time series subsequence
can be defined as a sequence of consecutive points which are
extracted from the time series x starting from time instant r and
can be denoted as Sﬁ(x) = {X;, Xpg1s - " s Xpgi—1} » Where [ is the
length of the subsequence.

In general, the common goal of predictive ML models is to ap-
proximate some true function f* : X — Y, where X denotes the
input feature space and Y is the target variable to be predicted.
In our case, the predictive ML model is built to predict a discrete
quality label given an input univariate time series. Therefore,
X = IR? is the input time series feature space, where the dimen-
sion d can be equal to n if the whole recorded time series is used
for training the predictive model or to / if only time series subse-
quences of length / are alternatively used. Y = {c1,¢2,--- , i)
is the target variable that can take k possible values mutually
exclusive. The learning task can be formalized as a multi-class
TSC. The prediction of Y is carried out by the application of a
model fy : X — Y. Usually, a fixed structure of fy is chosen
that is parametrized by some vector 6 € R”. Learning from data
X € X consists then of basically fitting 6 to X, so that f; ~ f*.
Convolutional Neural Networks (CNNs) are a special class of
predictive models. Their name stems from their structure that
is built based on Deep Neural Network (DNNs) structure and
the principle of convolutions. Deep Learning incorporates new
representations of the raw data in X through transformations
¢ : R — R that map the raw features to another space
H(X) = RY, into the learning process, i.e., ¢ = ¢y, fitted to
some data. DNNs learn ¢, in multiple levels of abstraction.
Each level corresponds to one layer of the network. The over-
all DNN can be viewed as nested layer transformations f(x) =
FOFED .. fD(x)) where [ is the depth of the network. Each
layer £ : R - R applies two operations. First, an affine
transformation that consists of a weighted sum or convolution,
is computed. Then, an activation function, e.g., tanh or ReL.U



Amal Saadallah et al. / Procedia CIRP 107 (2022) 611-616 613

activation, is applied. Each layer is parametrized by the weights
used in the affine transformation, while the activation function
is usually fixed. These weights are learnt automatically using
an optimization method that minimizes an objective loss func-
tion. In order to estimate the loss/error of some given weights
values, a differentiable loss function is then defined. The most
common used loss function in DNNs for classification task is
the categorical cross-entropy loss [2]: L(x) = — Z_’;.:l yilog(y¥))
with ¥; denotes the probability of x having the class y equal to
class ¢; out of k classes in the data set, noted y; for simplic-
ity and L the loss of classifying the input time series x. Simi-
larly, we can define the average loss when classifying the whole
training set of D by: J(w) = #Zﬁl LX) with w is the set
of weights to be learned by the network. The loss function is
minimized to learn the weights in w using a gradient descent
method: w = w — a%l‘v’w € w with « is the learning rate of
the optimization algorithm. By subtracting the partial deriva-
tive, the model is actually auto-tuning the parameters w € w in
order to reach a local minimum of J. Since the partial derivative
with respect to certain parameters w € w can not be in most of
the cases computed directly, a chain rule of derivative is em-
ployed using the backpropagation algorithm [4].

A layer that computes a complete weighted sum in the affine
transformation stage has to fit lots of weights because every
neuron in the layer is connected there to every neuron in the
previous layer. The major drawback of such fully connected
layers is their tendency to overfitting. Convolution is used as
an alternative that shares weights across all connections. The
continuous operator defines the convolution of two functions
fig:RES R (F 00 = [ flx - a)gla) da.

2.2. 1D-CNN Architecture

In the case of univariate time series, a convolution can be
viewed as applying and sliding a filter over the time series.
Opposingly to the case of image data, the filters operate only
on one dimension (time) instead of two dimensions (width and
height). The filter can also be considered as a generic non-linear
transformation of the raw time series. A general form of apply-
ing the convolution on the time series x at a centered time stamp
tis given by: C; = f(K = Sf,;(x) + b),¥r € [1,n], with K is a

filter of length /, Siii(x) is the subsequence of the time series

x centred at time 1, b is a bias parameter and f is a non-linear
function such as the Rectified Linear Unit (ReLLU). Several fil-
ters are usually applied to the time series. An intuition behind
applying several filters on an input time series would be to learn
multiple discriminative features useful for the classification task
[2]. In order to learn automatically the values of the filter K, the
convolution should be followed by a discriminative classifier. It
should be noted that some pooling operations such as average
or maximum computation can also be applied after the convo-
lution to reduce the length n of the time series by aggregating
over a sliding window. Batch normalization operation can also
be performed to accelerate the network convergence. In the con-
text of time series, the batch normalization is performed over
each channel. preventing thus the internal covariate shift across

one mini-batch training of time series [15]. The final discrim-
inative layer L takes the new representation of the input time
series, 1.e. resulting from the applied convolutions and give a
probability distribution over the class variables in the data set
Gf(L*”w]wj

noting the probability of x having the class y equal to class ¢;
out of the k classes and w; the set of weights (and the corre-
sponding bias b;) for each class j connected to each previous
activation in layer L — 1.

The architecture of the CNN used in this work is inspired from
[15]. The basic block is composed from a convolutional layer
followed by a batch normalization layer and a ReLLU activation
layer. The convolution operation is fulfilled by 1-D kernels. The
blocks are repeated four times with varying at each time the
number of applied filters and their corresponding length. The
basic convolution block exclude any pooling operation to pre-
vent overfitting. Batch normalization is applied to speed up the
convergence. After the convolution blocks, the features are fed
into a Global Average Pooling (GAP) layer. However, oppos-
ingly to [15], instead of directly connecting the GAP layer to
the final softmax layer, we feed its output to three dense layers.
Even though this strategy would lead to increasing the number
of weights, it results in better generalization [2].

using a softmax operation: y;(x) = with y; de-

2.3. Grad-CAM for Extracting explanations

Heat maps are one of the tools for providing visual explanations
for CNNs, applied widely in computer vision related applica-
tions. Grad-CAM is one of the most popular methods for pro-
ducing heat maps. Grad-CAM is a generalization of Class Acti-
vation Mapping (CAM), a method that does not require a partic-
ular architecture. The "Grad” in Grad-CAM stands for “gradi-
ent”. Grad-CAM is being widely used since it has been proven
to successfully pass commonly used sanity checks, which are
devised to check whether the heat map is truly providing in-
sights into what the model is doing or not. Grad-CAM can be
transferred from the computer vision to time series domain [2].
Grad-CAM is applied to an already-trained neural network after
training is completed and the parameters are fixed. We feed the
time series input into the network to calculate the Grad-CAM
heat-map for that input belonging to a given class of interest.
The output of Grad-CAM is a “class-discriminative localiza-
tion map”, i.e. a heat-map where the hot part corresponds to a
part in the input that is of the most importance for assigning a
particular class to this input by the classifier. For example, in
the case of images, this part corresponds to most important re-
gions in the image for classifying an object within the image.
In our case, it highlights the input time series subsequence that
is of high relevance for deciding the class of the whole time se-
ries. The length and the beginning of the subsequence are then
automatically decided by the Grad-CAM.

In order to obtain this map for any class c¢;,Vj € [1, ], the gra-
dient of y“/ before applying the softmax (i.e. the score of the
class ¢;) with respect to feature maps Ay, Vf € [L, fiuaps] of
the last convolutional layer, is computed. These gradients flow-
ing back are global average-pooled to obtain the neuron impor-



614 Amal Saadallah et al. / Procedia CIRP 107 (2022) 611-616

Ly o
Z uu DAY
units « in Ay. Note that in the 2D case, the activation unit u
has 2D coordinates {i, j}. In our case, it has only 1D dimen-
sion corresponding to the time dimension. This weight oz;,’ rep-
resents a partial linearization of the deep network downstream
from Ay, and depicts the importance of this feature map for the

class ¢;. Afterwards, a weighted combination of a forward ac-
C

tivation maps is c-omputed: LgmLCAM = ReLU(.Z:;T:’I” crf’z.é_f-).
The ReLLU is applied to remove the negative contributions since
we are mainly interested in the input part that have a positive
influence on the class of interest ¢;. i.e, in the case of images,
pixels whose intensity should be increased in order to increase
the distinguishability of c¢;. Without this ReLU, localization
maps sometimes highlight more than just the desired class and
achieve lower localization performance [11]. Lgmd—CAM is used
to find the subsequence in the input time series that have mainly

contributed to the decision of the network for the class ¢;.

tance weights a;’ = where Z is the total number of

2.4. Important Time Series Subsequences Identification

The produced heat maps by the Grad-CAM can be used to iden-
tify the length and the temporal location of the most discrimina-
tive subsequences within the input time series. This would help
also to check whether a reliable decision on performing early
quality prediction can be made or not. In other words, these
maps can be used to decide if the early subsequences in the in-
put time series are on average the most important subsequences
for correctly assigning the time series to its true class. To do so,
we split D into two sets, Dyygin and Dyyp. Dypgiy 18 used to train
the 1D-CNN. D,,; where the class labels for each time series
are assumed to be known, is used for producing the heat maps.
Note that by means of random data shuffling, the data split and
the |D-CNN training are repeated until we ensure the condition
Cy corresponding to the two following points:

e All the classes ¢,V j € [1, k] are represented in D,.
o At least one time series sample from each class is cor-
rectly classified by the 1D-CNN.

Then, we select time series samples from D, that are correctly
classified by 1D-CNN, i.e. time series samples x € Xy, that
fulfill the condition Cs: )A(xfl = ¥, Denote with X all the the
series x'¥) € X, , fulfilling C;.

For each selected time series x® € X with y(“') = ¢}, we com-
pute Lgm d-cay to highlight the most important subsequence
Sﬁl(x(“')) of length / starting at time #;, for assigning the correct
class membership to x**. Then, we compute the average length
[ of all the computed subsequences starting from f; = 7y, where
fo is the initial instant of the process time series generation. Fi-
nally, we compare /, to the average length /,, of the original in-
put time series in Xp: [, = %erxﬂlmgrh(x). We verify after-
wards if the condition Cj is fulfilled: /; < [,,andl,,—[; > T where
7 is the admissible time duration required to perform process
optimization, e.g. corrective measures, process parameters ad-
justment. 7 is a user-defined hyperparameter as it is application-
dependent and an interaction with domain experts is required to

Parameters: Data set: 9; Admissible time duration for
process adaption: 7.
1: Repeat D split into D, and D, and the ID-CNN
training until Cy is fulfilled.
2: Select time series samples from D, that fulfill C, and put
them in X,

3: for X € X do

4:  We compute L%;(':;:;)_C 4y to highlight Sﬁ(_(x(”).

5:  Setup all the 7; to 1.

6:  Calculate the lengths of the subsequences starting from
fo including the computed si, (x4,

7: end for

8: Compute the average length /; over the computed above

lengths.
9: Verify the validity of C3: [y < [ and l,, = [; < T
10: If Cy is fulfilled, the 1D-CNN is retrained on the input
time series subsequences of Dy, of length /.
Algorithm 1: Important Time Series Subsequences
Identification: ITSSI

set up its value. If the condition C3 is fulfilled, it is possible then
to reliably perform early quality prediction before the termina-
tion of the process. The 1D-CNN is then retrained on the input
time series subsequences of D,,,;, of length /;. This operation
can be viewed as an input feature selection where only /; input
time series points are fed to the ID-CNN. The above steps are
summarized in Algorithm 1.

3. Case Study

Bolted connections are commonly used mechanical connec-
tions in industrial products. The non-linear tightening process
of the bolts is generally distributed into four different zones that
can be visualized using the torque diagram, which is a com-
monly used monitoring tool for the quality of bolted connec-
tions in industry. The four zones are the rundown, alignment,
elastic clamping and post yield zone. By strengthening and
plastic deformation of the bolts, a clamping force is generated
between the connected parts. However, under realistic process
conditions many different complex factors influence the quality
of the part connections: e.g. connected parts might move during
the screwing, the equipment condition might be deficient, or the
quality of the bolts might differ leading to quality problems in
the final product. When the occurrence and cause of the fault in
the bolt connection is detected at an early stage in the process,
countermeasures can be taken by the worker so that potential
quality problems can ideally be avoided. However, monitoring
methods are mainly based on the comparison of the torque with
a preset standard value, ignoring the analysis of the torque di-
agram. As a result, however, various errors remain hidden. For
this reason, the use of more sophisticated methods such as data
mining is desirable to achieve an improvement of the analysis
quality within the bolting process. A historical data set cov-
ering 233138 industrial screwing cases representing torque se-
quences from the same workplace and product type is used as a



Amal Saadallah et al. / Procedia CIRP 107 (2022) 611-616 615

case study. The data set consists of eight different classes, with
one class representing the “non-defective” cases while the re-
maining depict seven different types of defects. Only 338 cases
are labelled as “defective” which induces a highly class imbal-
anced multi-class classification problem. The sensory data is
described by a univariate time series feature of the normalized
torque that is measured during the screwing process.

4. Experiments
4.1. Experimental set-up

The available data set is split in 75% for training and 25% for
testing. The 75% are split between 75% for D4 and 25%
for Dy 10-folds cross validation procedure is employed for
the evaluation of our method. The reported results are the aver-
aged metrics values over all the folds. Since the data set reveals
high imbalance ratios towards some classes, both random over-
sampling and under-sampling are employed to mitigate this is-
sue [1]. More precisely, we under-sampled the “non-defective”
class and over-sampled the seven different defect classes. In ad-
dition, the time series of the data have different lengths, zero-
padding is employed to bring the input time series to the same
length. For the |D-CNN, all convolutions have a stride equal to
1 with a zero padding to preserve the exact length of the time
series after the convolution. The first convolution contains 128
filters with a filter length equal to 10, followed by a second con-
volution of 128 filters with a filter length equal to 8, then a third
convolution of 256 filters with a filter length equal to 5 which
in turn is fed to a fourth and final convolutional layer composed
of 128 filters, each one with a length equal to 3. The three dense
layers are composed of 500, 300, and 100 neurons, respectively,
each one using ReL.U activation function. The number of neu-
rons in the final softmax classifier is equal to 8, i.e. the number
of classes in the data. The model’s weights are learnt using a
variant of Stochastic Gradient Descent (SGD), namely Adam.
The number of training epochs is set to 2000.

4.2. Evaluation Metrics

To evaluate the achieved results, the confusion matrix is uti-
lized. This matrix represents all prediction results of a given
model for multi-class as follows: The Recall metric calculates

Predicted Value

E Class A | Class B | Class C
S [ Class A | Aa Ab Ac
§ Class B | Ba Bb Be
g Class C | Ca Cb Cc

Table 1: Confusion Matrix

the proportion of actual positives that were correctly identified.
For example, for class A:

_ TruePredictedA _ Aa
REC(IH(A) T TowalTrueA ~ Aa+Ab+Ac

The Precision describes what proportion of positive identifica-
tions are actually correct. The FI-score represents the trade-off

between Precision and Recall. They are calculated as follows
for class A:

TruePredictedA  _ Aa
TotalPredictedAsA ~— Aa+Ba+Ca

Precision(A) =

_ . Precision+Recall
Fl = score =2x Precision+Recall

The metrics are calculated per class. There are two ways to
compute their average: Macro Average (M.Avg), which is a sim-
ple arithmetic mean of the metrics per class, and Weighted Av-
erage (W.Avg), which is a weighted mean based on the number
of samples per class. For example:

, _ ¥ RecallPerClass _ Recall(A)+Recall(B)+Recall(C)
M.AvgRecall = 3

TotalNumberO fClasses —

. _ YA(RecallPerClass=NumberO fSamplesPerClass)
WA VgRe(’a” - TotalNumberOfS amples

The Micro Average (Mi.Avg) is a metric that is used to calculate
the metric for the whole model. For example:

. . _ Y. TruePredictedPerClass
M"AngE('a” ¥ TotalTruePerClass

Following the same idea, the macro, weighted and micro av-
erages definitions can be extended to Precision and F1-Score.
However, in the case of micro average, it should be noted that
based on the definition, the following equation is valid:

Accuracy = Mi.AvgRecall = Mi.AvgPrecision =
. _ TotalT ruePrediction
MiA VgF 1-Score = TotalNumberO fS amples

4.3. Results and Discussion

The results are presented over two different perspectives: (1)
Table 2 encloses descriptive statistics of the results on the pre-
diction performance of the 1D-CNNs trained on the full length
time series data and on the identified subsequences by Al-
gorithm 1, denoted CNNyy; and CNN/rss;. respectively. The
length of the input time series for the CNNy,; is 727 time steps.
However, the average length /; derived following the proce-
dure explained in Algorithm 1 is 250 time steps. So, CNNrgs;
is trained on the input subsequence of length /;; (2) Figure |
shows the localization of some examples of the identified subse-
quences for different classes and the differences between them.

} Metric Precision Recall Fl-score
CNNgy | CNNypssi | CNNyy | CNNyrssy | CNNpuy | CNNipgsg
M.Avg 58% 66% T7% T7% 63% 68%
W.Avg 99% 98% 94% 97 % 96% 97 %
Mi.Avg - - - — 94% 97 %

Table 2: Average Performance Comparison of CNNyrssy VS. CNN gy

Following Table 2, it can be seen that feeding the most im-
portant, i.e, discriminative time series patterns to the 1D-CNN
improves its predictive performance. Since the data is highly
imbalanced, the micro and the weighted average measures are
biased towards the majority classes that are more accurately
predicted by the classifier and much more represented in the
data set. Better overview of the performance on the minority
classes can be seen using the macro measures that reflect the av-
eraged measures independently from their representation in the



616 Amal Saadallah et al. / Procedia CIRP 107 (2022) 611-616

/ "
, L )

4__,/’ - 74_//
)

@ ™

¥ ; o

/ L [ 7

(c) (d)

Fig. 1: Examples of heat-maps produced by the Grad-CAM: (a-b) Two exam-
ples of input time series for the "non-defective™ class. (c-d) Two examples be-
longing to two different "defect” classes. The x-axis is the time, while the y-axis
is the recorded torque value as the time series value. Red color is used for high-
lighting the most important subsequences and the blue for less important parts.

data. A clear improvement in the Precision is achieved by the
CNNjrss;, while preserving similar Recall. This results in an
increase of 8% in the F1-score compared to the CNNy,y. With
respect to the CNN;rgs;. the prediction accuracy is improved
using shorter time series inputs (i.e. lower dimensionality). The
dimension is reduced up to 65% from 727 time points to 250.
Therefore, our method can also be viewed as input feature se-
lection (i.e. particular time series points selection), which also
helps in reducing the general resources consumption required
for model training.

From practice point of view, relying only on the first 250 time
steps to make the decision within the execution of the process
enables to save resources of further processing of products that
are not expected to reach the standard quality requirements (i.e.
containing some types of defects). In addition, if C3 is fulfilled
with /,, = 500 and /; = 250, process optimization and interven-
tion can happen to adjust the process so that expected quality
deviations can be corrected.

Figure 1 shows some examples of the produced heat-maps by
the Grad-CAM for different classes. The most important sub-
sequences are highlighted in red, while the least important are
present in dark blue. It can be seen that the “non-defective”
class presents some regularity in the patterns. The most im-
portant subsequences are almost localized in the beginning of
the process. Clear different patterns can be distinguished in the
highlighted subsequences for the “defective” classes. Their lo-
calization in average confirms also the validity of the derived
length /; = 250 by the ITSSI Algorithm 1. The most impor-
tant subsequence localization can be further optimized by tun-
ing also #; instead of setting it to #p and by ensuring equal length
sequences to be fed to the 1D-CNN using zero padding.

5. Concluding Remarks

In this paper, a novel approach for important time series sub-
sequences identification for time series classification is pre-
sented. This is achieved using a CNN network and a gradient
based heat-mapping approach, namely Grad-CAM. The method
demonstrates a satisfactory performance not only in improving
the classification accuracy, but also in achieving early quality
prediction in a real-world use case in the automotive industry.

Acknowledgements

This work is supported by Deutsche Forschungsgemeinschaft
(DFG) within the Collaborative Research Center SEB 876 “Pro-
viding Information by Resource-Constrained Analysis”, and
the Federal Ministry of Education and Research of Germany

as part of the competence center for machine learning ML2R
(01—S18038A).

References

[1] Chawla, N.V., 2009. Data mining for imbalanced datasets: An overview.
Data mining and knowledge discovery handbook , 875-886.

[2] Fawaz, H.I.. Forestier, G., Weber, J., [doumghar, L., Muller, P.A., 2019.
Deep learning for time series classification: a review. Data Mining and
Knowledge Discovery 33, 917-963.

[3] Finkeldey, F.. Saadallah, A., Wiederkehr, P., Morik, K., 2020. Real-time
prediction of process forces in milling operations using synchronized data
fusion of simulation and sensor data. Engineering Applications of Artificial
Intelligence 94, 103753.

[4] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE 86, 2278—
2324,

[5] Lieber, D., Konrad, B., Deuse, I, Stolpe, M., Morik, K., 2012. Sustainable
interlinked manufacturing processes through real-time quality prediction,
in: Leveraging Technology for a Sustainable World. Springer, pp. 393-398.

[6] Lieber, D., Stolpe, M., Konrad, B., Deuse, J., Morik, K., 2013. Quality
prediction in interlinked manufacturing processes based on supervised &
unsupervised machine learning. Procedia Cirp 7, 193-198.

[71 Lv,Z., Han,Y., Singh, A.K., Manogaran, G., Lv, H., 2020. Trustworthiness
in industrial iot systems based on artificial intelligence. IEEE Transactions
on Industrial Informatics 17, 1496-1504.

[8] Molnar, C., 2020. Interpretable machine learning. Lulu. com.

[9] Saadallah, A., Finkeldey, F., Morik, K., Wiederkehr, P, 2018. Stability
prediction in milling processes using a simulation-based machine learning
approach. Procedia CIRP 72, 1493-1498.

[10] Schmitt, J., Bonig, J., Borggrife, T., Beitinger, G., Deuse, J., 2020. Predic-
tive model-based quality inspection using machine learning and edge cloud
computing. Advanced engineering informatics 45, 101101.

[11] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra,
D., 2017. Grad-cam: Visual explanations from deep networks via gradient-
based localization, in: Proceedings of the IEEE international conference on
computer vision, pp. 618-626.

[12] Stolpe, M., 2016. The Internet of Things: Opportunities and challenges for
distributed data analysis. SIGKDD Explorations 18, 15-34.

[13] Stolpe, M., Blom, H., Morik, K., 2016. Sustainable industrial processes
by embedded real-time quality prediction, in: Computational sustainability.
Springer, pp. 201-243.

[14] Utgoft, P.E., Stracuzzi, D.J., 2002. Many-layered learning. Neural compu-
tation 14, 2497-2529.

[15] Wang, Z., Yan, W., Oates, T., 2017. Time series classification from scratch
with deep neural networks: A strong baseline, in: 2017 International joint
conference on neural networks (IJCNN), IEEE. pp. 1578-1585.






