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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

The linkage of machines in the context of Industry 4.0 through information and communication technology (ICT) to cyber-physical systems with
the aim of monitoring, controlling, and optimizing complex production systems, enables real-time capable approaches for data acquisition, anal-
ysis, and process knowledge generation. In this context, surface mount technology (SMT) in electronics manufacturing is increasingly enhanced
by digitalizing the process. This allows the collection and analysis of sensor data to predict the process quality in real-time. Process control
interventions can then be derived in a timely manner based on quality predictions. To further support decision-making for process control by
domain experts, explanations for the model-based quality predictions should be supplemented in addition. More specifically, we employ a 1D-
convolutional neural network for quality prediction of well-defined Fields Of Views (FOVs) of Printed Circuit Boards (PCBs). Explanations for
the model’s predictions are provided under various perspectives using a heat-mapping-based technique to highlight the contribution of both local
and global PCBs’ characterizing features to the quality predictions. This helps to reveal the most decisive features for a given quality assignment
and understand which process parts are the most responsible for such decision. Finally, the deployment of the model-based predictive and parts of
the prescriptive analytics supported by the provided explanations, are achieved using Edge Cloud Computing technology.
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1. Introduction

Due to a combination of different effects such as increas-
ing competitive pressure, globalisation and supply shortages re-
sulting from external factors (i.e. lock down in different coun-
tries along the supply chain, chip shortages, etc.), the produc-
tion of zero-defect products is becoming an important com-
petitive factor for modern and successful electronic manufac-
turing companies. In SMT manufacturing, expensive high-end
inspection systems (such as X-ray machines) are usually used
to inspect the quality of high-volume products at the End Of
Line (EOL) to ensure the delivery of zero-defect products [11].
These optical inspection systems provide quality assessments
that subsequently lead to conclusions about corrective actions
to correct or enhance the quality of the product [11]. While

these measurements are necessary to prevent the delivery of
defective products, quality testing is often prone to become
a bottleneck of the production line because of the high time-
consuming inspection process. In the era of industry 4.0, the
linkage of production devices through information and commu-
nication technology to cyber-physical systems in order to mon-
itor and control manufacturing systems, enables real-time ca-
pable approaches for data analysis, predictive quality analytics
and knowledge discovery. In data analytics, three main stages
are differentiated: first descriptive analytics describing ”What
has happened?”, second predictive analytics capturing ”What
will happen?” and third prescriptive analytics answering the
question ”What should be done?” [14]. Recently, through the
use of low-cost sensors and storage devices, extensive amounts
of data have been collected and stored by manufacturers, of-
fering enormous potential not only for real-time process mon-
itoring but also for gaining valuable insights and knowledge
about processes [13]. Consequently, model-based quality pre-2212-8271© 2022 The Authors. Published by Elsevier B.V.
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Abstract

The linkage of machines in the context of Industry 4.0 through information and communication technology (ICT) to cyber-physical systems with
the aim of monitoring, controlling, and optimizing complex production systems, enables real-time capable approaches for data acquisition, anal-
ysis, and process knowledge generation. In this context, surface mount technology (SMT) in electronics manufacturing is increasingly enhanced
by digitalizing the process. This allows the collection and analysis of sensor data to predict the process quality in real-time. Process control
interventions can then be derived in a timely manner based on quality predictions. To further support decision-making for process control by
domain experts, explanations for the model-based quality predictions should be supplemented in addition. More specifically, we employ a 1D-
convolutional neural network for quality prediction of well-defined Fields Of Views (FOVs) of Printed Circuit Boards (PCBs). Explanations for
the model’s predictions are provided under various perspectives using a heat-mapping-based technique to highlight the contribution of both local
and global PCBs’ characterizing features to the quality predictions. This helps to reveal the most decisive features for a given quality assignment
and understand which process parts are the most responsible for such decision. Finally, the deployment of the model-based predictive and parts of
the prescriptive analytics supported by the provided explanations, are achieved using Edge Cloud Computing technology.
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1. Introduction

Due to a combination of different effects such as increas-
ing competitive pressure, globalisation and supply shortages re-
sulting from external factors (i.e. lock down in different coun-
tries along the supply chain, chip shortages, etc.), the produc-
tion of zero-defect products is becoming an important com-
petitive factor for modern and successful electronic manufac-
turing companies. In SMT manufacturing, expensive high-end
inspection systems (such as X-ray machines) are usually used
to inspect the quality of high-volume products at the End Of
Line (EOL) to ensure the delivery of zero-defect products [11].
These optical inspection systems provide quality assessments
that subsequently lead to conclusions about corrective actions
to correct or enhance the quality of the product [11]. While

these measurements are necessary to prevent the delivery of
defective products, quality testing is often prone to become
a bottleneck of the production line because of the high time-
consuming inspection process. In the era of industry 4.0, the
linkage of production devices through information and commu-
nication technology to cyber-physical systems in order to mon-
itor and control manufacturing systems, enables real-time ca-
pable approaches for data analysis, predictive quality analytics
and knowledge discovery. In data analytics, three main stages
are differentiated: first descriptive analytics describing ”What
has happened?”, second predictive analytics capturing ”What
will happen?” and third prescriptive analytics answering the
question ”What should be done?” [14]. Recently, through the
use of low-cost sensors and storage devices, extensive amounts
of data have been collected and stored by manufacturers, of-
fering enormous potential not only for real-time process mon-
itoring but also for gaining valuable insights and knowledge
about processes [13]. Consequently, model-based quality pre-2212-8271© 2022 The Authors. Published by Elsevier B.V.
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diction using Machine Learning (ML) models trained on sensor
data are employed to replace the offline time-consuming tradi-
tional testing procedures. Thereby, supervised learning models
algorithms are trained on recorded process data to predict the
quality of unseen products [14, 12]. The prediction of the final
product quality in conjunction with sample-based physical test-
ing is then used to derive corrective measurements for quality
control [12]. Thus, a paradigm shift from descriptive (monitor-
ing and summarising process data) to predictive analytics (us-
ing predictive models to forecast possible future quality) has
been observed [13]. The application of model-based quality
prediction combined with an interlinked production environ-
ment leads to real-time capable approaches to resolve quality
deviations through corrective measurements early in the pro-
cess and to improve the overall product quality. Hence, quality
prediction in electronics manufacturing industry is a widely dis-
cussed topic in literature (e.g. [6]), reflecting the wide diffusion
of ML for quality prediction tasks in electronic manufacturing.
By now, it exists huge amounts of different ML models, such
as Support Vector Machine (SVM), Gradient Boosted Trees
(GBT), K-Nearest Neighbors (KNN) and Multi-Layer Percep-
tron (MLP) [12, 9].
In particular, the utilization of Deep Neural Networks (DNNs)
lead to a steady improvement in the accuracy of industrial qual-
ity prediction tasks [10]. DNNs are capable of learning abstract
features from raw data automatically. In the quality prediction
task, these feature represent essentially generalizations of im-
portant class-specific criteria to decide whether a piece is de-
fective or not [11]. However, due to their lack of interpretabil-
ity, DNNs are conceived as black-box models [8]. While ac-
curacy is an important factor for the application, understand-
ing model’s predictions is often equally important. It is often
necessary to establish a sufficient level of trust in the model,
especially when including it in decision-making by domain ex-
perts, e.g. process parameters adjustment or early stopping of
a process. In literature, several approaches for DNNs explain-
ability have been proposed ranging from visualisation-based
approaches, over conceptual explanations to model-based ap-
proaches, a comprehensive overview is given in [5]. In this
work, we employ a one dimensional Convolutional Neural Net-
work (1D-CNN) for quality prediction in SMT manufacturing.
As a baseline we compare the obtained results with conven-
tional methods such as MLPs, Gradient Boosted Trees (GBT)
and Random Forests (RF). However, for explainability we use
the 1D-CNN given the flexibility that it offers with regards to
data reshaping so that a distinction between ”global” and ”lo-
cal” features and their corresponding importance can be eas-
ily made. The task is to map process features of previous pro-
cessing steps to binary quality labels of the EOL-testing, dif-
ferentiating between the ”Ok”- and ”Not-Ok” (NOk) pieces
and can therefore be described as a binary classification. We
use a saliency map-based visualisation technique to make the
decision of the 1D-CNN explainable to the user. As a further
step, the edge cloud computing architecture is described for the
model deployment to give the reader a guideline on how ex-
plainability methods can be applied in industries for process
optimization and recommendation system building.

2. Case Study

The case study is conducted on a SMT production line where
a X-ray inspection system is used for quality control at the
End Of the production Line, i.e., EOL quality testing. Since
the X-ray inspection induces high resource consumption, the
quality control is to be made faster by the application of ML
model-based quality prediction. This use case has been part of
other publications that serve as reference for our experiments
[12, 11]. The SMT assembly process is a process chain consist-
ing of the following consecutive steps: First, a raw printed cir-
cuit board (PCB) is inserted into a printer via a conveyor belt,
then the solder paste is printed onto the PCB. Following this,
solder paste inspection (SPI) is applied in a visual inspection
station to assess the quality of the solder paste position. After-
wards, individual components are automatically placed on the
board and are then transported by conveyor belts to the reflow
soldering process, where the applied solder paste is melted in
various heat zones to connect the components with the PCB.
After the soldering process, the components of the PCBs are
examined by an Automatic Optical Inspection (AOI). Depend-
ing on the product type, subsequent additional X-ray inspection
is carried out. The AOI can be executed in tact time, captur-
ing surface properties. Opposingly, the X-ray inspection, which
is used to detect pins located beneath the surface of the com-
ponents, must be performed in a separate batch process. As a
result, a long inspection time is expected.

The case study covers a specific product variant of a connec-
tor PCB and considers the corresponding manufacturing pro-
cess in the SMT line as well as the information from the SPI
and the X-Ray inspection. During the manufacturing process,
the individual PCBs are grouped together by 48 units as one
panel. Depending on the orientation of the pannel, each PCB
has different number of pins, 79 for X1 orientation (Top) and
52 for X2 (Bottom). Since it would take too much time to as-
sess the quality at pin level, the quality information of the pan-
els is aggregated at a field-of-view (FOV) level, which corre-
sponds to the aggregation level of the X-Ray inspection. One
FOV consists of 6 PCB boards and is denoted as ”NOk” if one
PCB is detected as defective, whereas it is declared as ”Ok”
when all PCBs are defect-free. Similarly, Each PCB is labeled
as defective if at least one pin in at least one orientation is de-
fective. Otherwise, the PCB is considered as defect-free. Each
data point corresponds to one pin described by a set of numeri-
cal features from the SPI (see Table 1).

SPI feature Height Shape 2D Shape 3D Surface Volume Offset X Offset Y
Unit % % % % % µm µm

Table 1: Descriptive PCB features on the pin level

For the case study, the dataset covers a period of five produc-
tion months containing a total of 1, 461, 037, 321 data points.
Because decisions on dynamic X-ray inspection or alternative
routings can be made only on higher aggregation levels and be-
cause the supervision of the PCBs on the pin-level is not fea-
sible, the solder pins are aggregated to PCB level leading to a
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high dimensional quality prediction task. Afterwards, decisions
for the quality of FOVs can be derived as explained above.

3. Methodology

3.1. Notations

Let the input data be denoted as a multi-set D = (X, Y) =
{(x(i), y(i))}1≤i≤N which consists of |D| = N input data points
x(i) ∈ Rd and their corresponding label y(i). The data is trans-
formed such that each data point corresponds to one PCB in
a given orientation. Each data point is described by x(i) which
consists of a d-dimensional vector of feature values and a cor-
responding quality label, denoting whether the PCB is ”OK” or
”NOK”. In general, the common goal of predictive ML models
is to approximate some true function f ∗ : X → Y, where X de-
notes the input feature space and Y is the target variable to be
predicted. In our case, the predictive ML model is built to pre-
dict a discrete binary quality label given an input feature vector.
Therefore, X = Rd. Y = {0, 1} is the target variable that can
take two possible values mutually exclusive. If yi = 0, the cor-
responding PCB is considered as ”NOK”. In the opposite case,
it is treated as ”OK”. The learning task can be formalized as a
binary classification task. The prediction of Y is carried out by
the application of a model fθ : X → Y. Usually, a fixed struc-
ture of fθ is chosen that is parametrized by some vector θ ∈ Rp.
Learning from data X ∈ X consists then of basically fitting θ to
X, so that fθ ≈ f ∗. Random Forest (RF) [1], Gradient Boosting
Trees (GBT) [4], Multi-Layer Perceptron (MLP) [2] and Con-
volutional Neural Networks (CNNs) [2], are special classes of
predictive models.

3.2. Model Building

3.2.1. Random Forest
A RF is a collection of tree predictors hθk (X), where k ∈

[1,K] and θk are independent and identically distributed (iid).
For classification problem, the RF prediction is decided by a
majority vote over the predicted class outputs of the ensemble
of trees. Since K → ∞, the Law of Large Numbers ensures

PE∗F = EX,Y

(
Y − h(X)

)2
→ EX,Y

(
Y − Eθhθ(X)

)2
= PE∗t , where

PE∗F is the generalization error of the RF and PE∗t is the average
prediction for an individual tree defined by hθ(X). The conver-
gence in the equation implies that RF does not overfit. Assume
that for all θ, the tree is unbiased, i.e., E(Y) = E(X)hθ(X). Then
PE∗F ≤ ρPE∗t , where ρ is the weighted correlation between the
residuals Y −hθ(X) and Y −hθ′ (X) for independent θ and θ′. The
inequality pinpoints what is required for an accurate RF. Hence,
a low correlation between the residuals of different tree mem-
bers of the forest via randomization and number of covariate se-
lection and a low prediction error via growing individual trees
to maximum depth should be established. In practice, decision
trees are created, which keep partitioning the data recursively
in the classification space until the amount of variation in the
subspace is small. The partition process for RF is greedy and,
as a result, does not generally converge to the globally optimal

tree. To mitigate this issue, an ensemble of locally optimal trees,
where each tree is created by randomly sampling from the orig-
inal subset, is considered. Such procedure is called bagging [1].

3.2.2. Gradient Boosting Trees
The GBT enhances a decision tree (DT) using the boosting

algorithm [4], which is based on the idea of aggregating weak
models to form one single strong model. In a DT, the feature
space is firstly classified into sub-regions in order to model the
dependent variables x(i) ∈ Rd, i ∈ [1,N] for each region. Then,
each individual region is further divided into new sub-regions to
model the relative variables. Repeating these processes until all
the completion conditions are met. Within each region, the best
fitness can be achieved by selecting the split point and variables.
Among them, the end node count is defined as the size of a sin-
gle tree. GBT can be built by calculating the classification value
p by training a model H via a least-squares regression. Adding
an estimator further improves the model in a forward stage-wise
strategy: Ht(X) = Ht−1(X)+ηtht(X), where Ht refers to the GBT
model consisting of t DTs, t donates the total number of DTs; ηt

the learning rate; and ht the weak learner. A new DT ht is added
to H at each boosting iteration t. The value of ht can be calcu-
lated for each input data point: Ht(x(i)) = Ht−1(x(i)) + ht(x(i)) =
p(i) and thus ht(x(i)) = p(i)−Ht−1(x(i)), where p(i) is the predicted
class probability of x(i) by Ht. Then, a weighted sum function
Ĥ is applied for approximating the classified ht as given by:
Ĥ(X) =

∑t
i=1 ηihi(X) + const. Let H be a set of differentiable

functions, and ht ∈ H ,∀t ∈ [1, T ] where T is the total number
of DTs. For each DT, the GBT model applies the variables that
contribute most to the reduction of loss function L to minimize
the ultimate L, that is, applying the empirical risk minimisation
principle. The minimisation process can be addressed by the
steepest descent method.

3.2.3. Multi-Layer Perceptron
A MLP is a class of feed-forward Artificial Neural Networks

ANNs. An ANN incorporates new representations of the raw
data in X through transformations φ : Rd → Rd′ that map
the raw features to another space φ(X) = Rd′ , into the learn-
ing process, i.e., φ = φθ, fitted to some data. ANNs learn φθ
in multiple levels of abstraction. Each level corresponds to one
layer of the network. The overall ANN can be viewed as nested
layer transformations f (x) = f (l)( f (l−1)(· · · f (1)(x)) where l is
the depth of the network. Each layer f (i) : Rd(i−1) → Rd(i)

applies
two operations. First, an affine transformation that consists of a
weighted sum or convolution, is computed. Then, an activation
function, e.g., tanh or ReLU activation, is applied. Each layer is
parametrized by the weights used in the affine transformation,
while the activation function is usually fixed. The most common
used loss function in DNNs for classification task is the categor-
ical cross-entropy loss [2]: L(x) = −(y log ŷ+ (1−y) log (1 − ŷ))
with ŷ denotes the probability of x having the class y and L
the loss of classifying the input time series x. Similarly, we can
define the average loss when classifying the whole training set
of D by: J(ω) = 1

N
∑N

i=1 L(x(i)) with ω is the set of weights
to be learned by the network. The loss function is minimized
to learn the weights in ω using a gradient descent method:
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x(i) ∈ Rd and their corresponding label y(i). The data is trans-
formed such that each data point corresponds to one PCB in
a given orientation. Each data point is described by x(i) which
consists of a d-dimensional vector of feature values and a cor-
responding quality label, denoting whether the PCB is ”OK” or
”NOK”. In general, the common goal of predictive ML models
is to approximate some true function f ∗ : X → Y, where X de-
notes the input feature space and Y is the target variable to be
predicted. In our case, the predictive ML model is built to pre-
dict a discrete binary quality label given an input feature vector.
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binary classification task. The prediction of Y is carried out by
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majority vote over the predicted class outputs of the ensemble
of trees. Since K → ∞, the Law of Large Numbers ensures

PE∗F = EX,Y

(
Y − h(X)

)2
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(
Y − Eθhθ(X)

)2
= PE∗t , where

PE∗F is the generalization error of the RF and PE∗t is the average
prediction for an individual tree defined by hθ(X). The conver-
gence in the equation implies that RF does not overfit. Assume
that for all θ, the tree is unbiased, i.e., E(Y) = E(X)hθ(X). Then
PE∗F ≤ ρPE∗t , where ρ is the weighted correlation between the
residuals Y −hθ(X) and Y −hθ′ (X) for independent θ and θ′. The
inequality pinpoints what is required for an accurate RF. Hence,
a low correlation between the residuals of different tree mem-
bers of the forest via randomization and number of covariate se-
lection and a low prediction error via growing individual trees
to maximum depth should be established. In practice, decision
trees are created, which keep partitioning the data recursively
in the classification space until the amount of variation in the
subspace is small. The partition process for RF is greedy and,
as a result, does not generally converge to the globally optimal

tree. To mitigate this issue, an ensemble of locally optimal trees,
where each tree is created by randomly sampling from the orig-
inal subset, is considered. Such procedure is called bagging [1].

3.2.2. Gradient Boosting Trees
The GBT enhances a decision tree (DT) using the boosting

algorithm [4], which is based on the idea of aggregating weak
models to form one single strong model. In a DT, the feature
space is firstly classified into sub-regions in order to model the
dependent variables x(i) ∈ Rd, i ∈ [1,N] for each region. Then,
each individual region is further divided into new sub-regions to
model the relative variables. Repeating these processes until all
the completion conditions are met. Within each region, the best
fitness can be achieved by selecting the split point and variables.
Among them, the end node count is defined as the size of a sin-
gle tree. GBT can be built by calculating the classification value
p by training a model H via a least-squares regression. Adding
an estimator further improves the model in a forward stage-wise
strategy: Ht(X) = Ht−1(X)+ηtht(X), where Ht refers to the GBT
model consisting of t DTs, t donates the total number of DTs; ηt

the learning rate; and ht the weak learner. A new DT ht is added
to H at each boosting iteration t. The value of ht can be calcu-
lated for each input data point: Ht(x(i)) = Ht−1(x(i)) + ht(x(i)) =
p(i) and thus ht(x(i)) = p(i)−Ht−1(x(i)), where p(i) is the predicted
class probability of x(i) by Ht. Then, a weighted sum function
Ĥ is applied for approximating the classified ht as given by:
Ĥ(X) =

∑t
i=1 ηihi(X) + const. Let H be a set of differentiable

functions, and ht ∈ H ,∀t ∈ [1, T ] where T is the total number
of DTs. For each DT, the GBT model applies the variables that
contribute most to the reduction of loss function L to minimize
the ultimate L, that is, applying the empirical risk minimisation
principle. The minimisation process can be addressed by the
steepest descent method.

3.2.3. Multi-Layer Perceptron
A MLP is a class of feed-forward Artificial Neural Networks

ANNs. An ANN incorporates new representations of the raw
data in X through transformations φ : Rd → Rd′ that map
the raw features to another space φ(X) = Rd′ , into the learn-
ing process, i.e., φ = φθ, fitted to some data. ANNs learn φθ
in multiple levels of abstraction. Each level corresponds to one
layer of the network. The overall ANN can be viewed as nested
layer transformations f (x) = f (l)( f (l−1)(· · · f (1)(x)) where l is
the depth of the network. Each layer f (i) : Rd(i−1) → Rd(i)

applies
two operations. First, an affine transformation that consists of a
weighted sum or convolution, is computed. Then, an activation
function, e.g., tanh or ReLU activation, is applied. Each layer is
parametrized by the weights used in the affine transformation,
while the activation function is usually fixed. The most common
used loss function in DNNs for classification task is the categor-
ical cross-entropy loss [2]: L(x) = −(y log ŷ+ (1−y) log (1 − ŷ))
with ŷ denotes the probability of x having the class y and L
the loss of classifying the input time series x. Similarly, we can
define the average loss when classifying the whole training set
of D by: J(ω) = 1

N
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i=1 L(x(i)) with ω is the set of weights
to be learned by the network. The loss function is minimized
to learn the weights in ω using a gradient descent method:
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w = w − α ∂L
∂w |∀w ∈ ω with α is the learning rate of the op-

timization algorithm. By subtracting the partial derivative, the
model is actually auto-tuning the parameters w ∈ ω in order to
reach a local minimum of J. Since the partial derivative with
respect to certain parameters w ∈ ω can not be in most of the
cases computed directly, a chain rule of derivative is employed
using the backpropagation algorithm [7].

In a MLP, the data flows forward to the output continuously
without any feedback and is typically composed of several lay-
ers of nodes. The first or the lowest layer is an input layer. The
last layer is an output layer where the problem solution is ob-
tained. The input and output layers are separated by one or more
intermediate layers called the hidden layers.

3.2.4. 1D-Convolutional Neural Network
As their name indicates, CNNs are based on ANNs struc-

ture and the principle of convolutions. Convolution is used
as an alternative to layers that compute a complete weighted
sum in the affine transformation stage where every neuron in
the layer is connected to every neuron in the previous layer.
Convolution shares weights across all connections. For exam-
ple, in the discrete one-dimensional (1D) case: (d ∗ K)(x) =∑

a
∑

b I(x − a)K(a) is a convolution of a data sample d with
the kernel (or filter) K. The scalars x and a are the coordi-
nates in the output and the kernel. CNN consists usually of two
blocks: convolutional and fully connected [3]. In this work, the
convolutional block consists of several convolution layers fol-
lowed by dropout layer, then a pooling layer and a flatten layer.
Dropout is a technique used to prevent the model from overfit-
ting. Dropout works by randomly setting the outgoing edges of
hidden units (neurons that make up hidden layers) to 0 at each
update of the training phase. The pooling layer performs a pool-
ing operation like average or maximum to each of the received
feature map from the convolutional layers. After the convolu-
tion blocks, the features are fed into a Max Average Pooling
(MAP) layer. Then, flattening is applied to convert the data into
a 1-dimensional (1-D) array for inputting it to the next layer.
The second block is a fully-connected (FC) block that includes
the concatenation layer for merged features of the convolutional
block using two dense layers and and an output layer with 1
neuron with softmax activation function to output a class prob-
ability.

3.3. Explanations Generation

We are mainly interested in predicting and understanding
the resulting quality of the FOVs for each orientation of panel,
namely X1 and X2. Each orientation has a different number of
pins where each pin is described by the 7 various physical quan-
tities in Table 1. As a result, the two orientations have differ-
ent number of features. Therefore, we train a specific machine
learning model for each orientation. We refer to these phys-
ical quantities in Table 1 that describe all the pins as global
features and to the set of pins describing each PCB in a given
orientation with their corresponding physical quantities as lo-
cal features. It is interesting and more practical to explain the

models’ decisions from the perspective of both global and lo-
cal features, so that engineers can understand which physical
quantities needs to be considered more closely and which pins
are more prone to contain defects (i.e. which process parts are
responsible for such pins). Feature importance analysis can be
considered as a tool to provide these explanations [8]. Some
models like RF and GBT are equipped with feature importance
measures. However, they provide such measures only for the in-
put features. Since the features describing the PCBs are the set
of local features, we can get feature importance only on the pin
level. Also, due to the high number of features, it is very diffi-
cult to assess their importance with quick analysis using stan-
dard feature importance analysis and visualization, like SHAP
Feature Importance [8]. Opposingly, the 1D-CNN can provide
different overviews of the input data by allowing the convolu-
tions either along the physical quantities or the pins for each
orientation. This would results in two 1D CNNs for each orien-
tation. Afterwards, a visualization-based explanation methods
is used for each model to highlight the most important features
for each class. In this way, feature importance analysis can be
conducted for both global and local features. In addition, visu-
alization based approaches are much easier to investigate and
interpret. The employed visualization method in this work uses
the concept of heat-mapping.

Grad-CAM is one of the most popular methods for produc-
ing heat maps. Grad-CAM is a generalization of Class Activa-
tion Mapping (CAM), a method that does not require a partic-
ular architecture. The ”Grad” in Grad-CAM stands for ”gradi-
ent”. Grad-CAM is applied to an already-trained neural network
after training is completed and the parameters are fixed. We
feed the input features into the network to calculate the Grad-
CAM heat-map for that input belonging to a given class of inter-
est. The output of Grad-CAM is a ”class-discriminative local-
ization map”, i.e. a heat-map where the hot part corresponds to
a local region in the input that is of most importance for assign-
ing a particular class to this input by the classifier. In order to
obtain this map for any class y ∈ Y, the gradient of y before ap-
plying the softmax (i.e. the score of the class y) with respect to
feature maps A f ,∀ f ∈ [1, fmaps] of the last convolutional layer,
is computed. These gradients flowing back are global average-
pooled to obtain the neuron importance weights αy

f =
1
Z
∑

u
∂y
∂Au

f
,

where Z is the total number of units u in Af . This weight αy
f rep-

resents a partial linearization of the deep network downstream
from Af , and depicts the importance of this feature map for the
class y. Afterwards, a weighted combination of a forward ac-
tivation maps is computed: Ly

Grad−CAM = ReLU(
∑ fmaps

f=1 α
y
f A f ).

The ReLU is applied to remove the negative contributions since
we are mainly interested in the input part that has a positive
influence on the class of interest y.

3.4. Model Deployment

The technical details of the deployment for this particular
use case are already described in [12]. We therefore focus on
the conceptual details and briefly summarize the architecture.
We then discuss the extension part that is necessary for the
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use of the explainable predictive quality inspection. The over-
all architecture is illustrated in Figure 1. Model management,
i.e. training, updating and storing the machine learning model,
takes place on a computing cluster, which in this case is a Spark
cluster, while storage of the data is handled in a datalake or
datawarehouse. The SPI features are transmitted directly from
the visual inspection machine to the edge device, which in this
case is an industrial PC. The three components, i.e. datalake
or datawarehouse, computing cluster and edge device, are con-
nected via a network layer. To reduce latency and bandwidth-
related issues, the model is stored on the edge device. The ma-
chine learning model classifies the PCBs of the FOV level to en-
able rerouting of the product. If the classifier detects that a PCB
is defective, the graphical user interface visualises two perspec-
tives, i.e. the local as well as the global features providing an
explanation by depicting the location of the defective pin areas
and the deviating SPI features.

4. Experiments

4.1. Experimental set-up

The available dataset D is split into 75% for training and
25% for testing. A 10 folds cross-validation procedure is em-
ployed to evaluate the models. The reported results are the
average metric values over the folds. The dataset reveals a
high class-imbalance ratio, therefore, random over- and under-
sampling strategies are combined and applied to the training
data. For the GBT, RF, we use grid-search procedure to tune
their hyper-parameters. For the MLP, we use five hidden lay-
ers. The MLP’s weights are learnt using a variant of Stochastic
Gradient Descent (SGD), namely Adam. The number of train-
ing epochs is set to 1000. For the 1D-CNN, depending on the
orientation and whether we perform the convolution along the
pins or the SPI (global) feature, the first convolution contains
filters with number equal to the pins with a filter length equal to
7 (number of the SPI features) or the way around. The size and
lengths of the filters of the following layers depend on the ori-
entation (X1 or X2) and the convolution direction (pins or SPI

features). The number of neurons in the final softmax classifier
is equal to 1 outputting a class membership probability. Simi-
larly to MLP, The model’s weights are learnt using Adam with
2000 training epochs.

4.2. Evaluation Metrics

The commonly used metrics for evaluating a classification
task are derived using the confusion matrix with the true pre-
dicted values T P = TruePositive, T N = TrueNegative and
the false predicted values FalsePositive and FalseNegative. In
this notation, the positive class corresponds to the non-defective
class and the negative class to the defective class.

The most commonly used metric for classification tasks is
the accuracy: Accuracy = TruePredictedClasses

TotalPredictions = T P+T N
T P+FP+T N+FN .

However, the accuracy is insensitive to class imbalance and
therefore misleading. Therefore, the recall measures the par-
tition of correct prediction to the total amount of true val-
ues per class is also reported: Recall = TruePredictedValues

TotalTrueValues ,
Recall(NOk) = T N

T N+FP and Recall(Ok) = T P
T P+FN . The recall of

the ”NOK” class is of a high importance since the manufacturer
can not tolerate ”NOK” being classified as ”OK”.

4.3. Results and Discussion

The results are presented in Table 2 and are averaged over the
X1 and the X2 direction. The Table encloses descriptive statistics
trained per PCB, so that in X1 direction one data point consists
of 79 ∗ 7 = 553 features and in X2 direction of 52 ∗ 7 = 364
features. The results of the prediction are then aggregated to
the FOV. Referring to Table 2, it can be seen that the Recall

Metric Recall(NOk) Recall(Ok) Accuracy
RF 69.83% 53.76% 73.46%

GBT 73.98% 39.70% 43.26%
MLP 16.08% 95.13% 80.15%

1D −CNNglobal 66.92% 42.78% 65.12%
1D −CNNlocal 75.4% 43.85% 74.71%

GBT [12] 7.6% 29.4% 29.63%

Table 2: Average Performance Comparison of the different classifiers

on ”NOK” class has the highest value for the 1D-CNN trained
using convolution over the pins. It also maintains a relatively
good recall on the ”OK” class. The reshaping of the data to
highlight the global physical SPI feature has slightly worse per-
formance since aggregation of these features over all the pins
is performed. However, a good trade-off of the recall of both
classes is maintained. Traditional baselines like RF and GBT
have comparable performance. The difference in performance
between our GBT and the GBT in [12] is explained by the ap-
plication of class re-balancing strategy on the training data be-
fore training the ML models, which seems to be necessary since
a high-imbalance ratio introduces a high bias towards the ma-
jority class. MLP has a higher recall compared to the remaining
methods on the ”OK” class but lower recall (except for GBT
[12]) on the class of interest ”NOK”. From a practical perspec-
tive, it is possible to decrease the average testing volume by
around 75% when the 1D-CNN is applied, which corresponds
to the amount of parts correctly detected by the classifier. Based
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or datawarehouse, computing cluster and edge device, are con-
nected via a network layer. To reduce latency and bandwidth-
related issues, the model is stored on the edge device. The ma-
chine learning model classifies the PCBs of the FOV level to en-
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tives, i.e. the local as well as the global features providing an
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and the deviating SPI features.
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25% for testing. A 10 folds cross-validation procedure is em-
ployed to evaluate the models. The reported results are the
average metric values over the folds. The dataset reveals a
high class-imbalance ratio, therefore, random over- and under-
sampling strategies are combined and applied to the training
data. For the GBT, RF, we use grid-search procedure to tune
their hyper-parameters. For the MLP, we use five hidden lay-
ers. The MLP’s weights are learnt using a variant of Stochastic
Gradient Descent (SGD), namely Adam. The number of train-
ing epochs is set to 1000. For the 1D-CNN, depending on the
orientation and whether we perform the convolution along the
pins or the SPI (global) feature, the first convolution contains
filters with number equal to the pins with a filter length equal to
7 (number of the SPI features) or the way around. The size and
lengths of the filters of the following layers depend on the ori-
entation (X1 or X2) and the convolution direction (pins or SPI

features). The number of neurons in the final softmax classifier
is equal to 1 outputting a class membership probability. Simi-
larly to MLP, The model’s weights are learnt using Adam with
2000 training epochs.

4.2. Evaluation Metrics

The commonly used metrics for evaluating a classification
task are derived using the confusion matrix with the true pre-
dicted values T P = TruePositive, T N = TrueNegative and
the false predicted values FalsePositive and FalseNegative. In
this notation, the positive class corresponds to the non-defective
class and the negative class to the defective class.

The most commonly used metric for classification tasks is
the accuracy: Accuracy = TruePredictedClasses

TotalPredictions = T P+T N
T P+FP+T N+FN .

However, the accuracy is insensitive to class imbalance and
therefore misleading. Therefore, the recall measures the par-
tition of correct prediction to the total amount of true val-
ues per class is also reported: Recall = TruePredictedValues

TotalTrueValues ,
Recall(NOk) = T N

T N+FP and Recall(Ok) = T P
T P+FN . The recall of

the ”NOK” class is of a high importance since the manufacturer
can not tolerate ”NOK” being classified as ”OK”.

4.3. Results and Discussion

The results are presented in Table 2 and are averaged over the
X1 and the X2 direction. The Table encloses descriptive statistics
trained per PCB, so that in X1 direction one data point consists
of 79 ∗ 7 = 553 features and in X2 direction of 52 ∗ 7 = 364
features. The results of the prediction are then aggregated to
the FOV. Referring to Table 2, it can be seen that the Recall
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RF 69.83% 53.76% 73.46%

GBT 73.98% 39.70% 43.26%
MLP 16.08% 95.13% 80.15%

1D −CNNglobal 66.92% 42.78% 65.12%
1D −CNNlocal 75.4% 43.85% 74.71%

GBT [12] 7.6% 29.4% 29.63%

Table 2: Average Performance Comparison of the different classifiers

on ”NOK” class has the highest value for the 1D-CNN trained
using convolution over the pins. It also maintains a relatively
good recall on the ”OK” class. The reshaping of the data to
highlight the global physical SPI feature has slightly worse per-
formance since aggregation of these features over all the pins
is performed. However, a good trade-off of the recall of both
classes is maintained. Traditional baselines like RF and GBT
have comparable performance. The difference in performance
between our GBT and the GBT in [12] is explained by the ap-
plication of class re-balancing strategy on the training data be-
fore training the ML models, which seems to be necessary since
a high-imbalance ratio introduces a high bias towards the ma-
jority class. MLP has a higher recall compared to the remaining
methods on the ”OK” class but lower recall (except for GBT
[12]) on the class of interest ”NOK”. From a practical perspec-
tive, it is possible to decrease the average testing volume by
around 75% when the 1D-CNN is applied, which corresponds
to the amount of parts correctly detected by the classifier. Based
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on the performance of both 1D-CNNs on the ”NOK” class, we
make the argument, that they can be used to provide insights to
the user which physical quantities (global features) and which
specific pins (local features) influence the most the quality pre-
diction. To do so, we collect samples that are correctly classified
by both 1D-CNNs per class and we compute the Grad-CAM
values and average them over all the samples for each class.
Computing the maps in an averaged manner over many sam-
ples leads to conclusions about process optimization or prod-
uct specific measurements that can be taken by domain experts.
Heat-maps for both classes for both CNNs are shown in Figure
2. As it can be seen in Figure 2, a user can locate and infer the
most discriminative features for each class allowing to better
understand the importance of global physical SPI features and
localize the main influencing pins (i.e. global features). It can
be seen that different global and local features are highlighted
for each class. Most importantly, for correctly predicting the
”NOK” class the focus of the 1D-CNN is mainly on the SPI
features ”DX” and ”DY”, a little less on ”DVolume” and ”DSur-
face”. The remaining features seem to be irrelevant for making
the decision towards assigning on average the ”NOK” pieces
correctly to the ”NOK” class. This may give some hints to do-
main experts to investigate further ”DX” and ”DY” signals and
more importantly to discover the causes of deviations between
these signals for the ”OK” and ”NOK” classes in the manufac-
turing environment. Looking also to the pin-level, it can be seen
that the model’s focus is on some particular pins, namely from
1 t0 5 and 15 to 25. This shows that some pins are more prone to
contain defects. This may also give domain experts some hints
on investigating which process parts or machines are most of-
ten responsible for these particular pins and need to be tracked
back.

5. Concluding Remarks

An explainable model-based quality prediction in SMT man-
ufacturing is presented. This is achieved using 1D-CNN net-
works and a heat-mapping based approach, namely Grad-CAM.
First, the predictive model demonstrates a satisfactory per-
formance for the detection of quality deviations. Second, the
heat-mapping based method is used to reveal the causes of
quality deviations yielding prescriptive measurements to en-
hance the quality. Lastly, the deployment within an edge cloud
computing-based architecture is described.
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