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ABSTRACT 
New technological developments are often generated from breakthroughs of fundamental 
research, such as novel materials. A new opportunity that electrical machine designers and 
manufacturers are facing now is the application of another new material – the soft magnetic 
composite (SMC). The major advantage of using SMC material is to be able to manufacture 
SMC cores using the highly matured powder metallurgical technology at a cost much lower 
than that for manufacturing the conventional laminated steel cores. This paper presents the 
extensive studies on the measurement and modeling of magnetic properties of SMC 
materials, novel machine topologies of 3D fluxes, and advanced drive techniques, including 
sensorless brushless DC and direct toque control. 
 

1 INTRODUCTION 

New technological developments are often generated from breakthroughs of fundamental 
research, such as novel materials. The discovery of the NdFeB permanent magnet (PM) is a 
good example. Because of its high remanence and coercivity, electrical machines made of 
NdFeB PM can be much smaller, lighter, and more efficient than the conventional ones. 
Nowadays, PM motors are widely used in various types of drive systems. 

A new opportunity that electrical machine designers and manufacturers are facing now 
is the application of another new material – the soft magnetic composite (SMC). The SMC is 
made of pure iron powders coated with an inorganic insulation layer. SMC components can 
be fabricated by compressing the powders into a mould followed by a thermal curing process. 
The major advantage of using SMC material is to be able to manufacture SMC cores using 
the highly matured powder metallurgical technology at a cost much lower than that for 
manufacturing the conventional laminated steel cores. 

The magnetic properties of SMC, however, are very different from that of the laminated 
SiFe, and therefore, non-conventional design method, machine topologies, and drive 
techniques should be employed for SMC motors. A great amount of research has been 
conducted along this line, and as shown by the experience a comprehensive understanding 
and accurate modeling of the magnetic properties is essential for design optimization of 
SMC motors [1-20]. This paper presents our extensive studies on the measurement and 
modeling of magnetic properties of SMC materials [3-9], novel machine topologies of 3D 
fluxes [10-16], and advanced drive techniques, including sensorless brushless DC and direct 
toque control [17-20]. 
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2 MAGNETIC PROPERTIES OF SMC 

2.1 Microscopic examination 
The magneto-optical imaging (MOI) technique was employed to examine the microscopic 
structure and local magnetization of SMC samples in order to relate the magnetic properties 
to the magnetization mechanisms [7]. Fig.1 illustrates the MOI images of an SMC sample 
excited by a 50 Hz AC magnetic field perpendicular to the sample surface. From the MOI 
images, local magnetic hysteresis loops of the SMC sample can be derived from the 
brightness profile as shown in Fig.2. 
 

Fig.1 – MOI images of SMC sample under sinusoidal excitation 
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Fig.2 – Brightness profile and hysteresis loops of SMC sample 

 

2.2 Vector characterization 

Vector magnetic properties like B-H loci and core losses of SMC samples under various 
types of magnetic excitations, such as alternating and rotational with circular and elliptical 
fluxes, were measured with 2D and 3D magnetic testers [3-6]. Fig.3 presents an example of 
circular B-H loci in the XOY, YOZ, and ZOX planes, and Fig.4 the alternating and 
rotational core losses at different frequencies, where the core loss is calculated by 
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2.3 Vector magnetic property models 

A vector reluctivity tensor model and core loss models were developed and employed in 
SMC motor design optimization [8-9]. When there is a phase difference between B and H,
e.g. B lags H by an angle, the constitutive equation can be expressed as 
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where νij is the reluctivity tensor. Fig.5 illustrates the reluctivity tensor obtained from the 
vector characterization of the SMC sample. 
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Fig.3 – B and H loci of SMC sample excited by rotating fields in different orientations 
 

(a)      (b) 
Fig.4 – (a) Alternating and (b) rotational core losses 

 

(a)      (b) 
Fig.5 – Magnetic reluctivity tensor: (a) diagonal terms, and (b) off-diagonal terms 

 
With an alternating flux, the core loss can be calculated by 

 5.12 )()( fBCfBCfBCP aaea
h

haa ++= (3) 
where Cha=0.1402, h=1.548, Cea=1.233x10-6 and Caa=0.3645x10-3 for the SMC sample. 

With a circular rotating flux, the core loss can be calculated by 
 5.12 )()( fBCfBCPP arerhrr ++= (4) 
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and Cer=2.3x10-4, Car=0, a1=6.814, a2=1.054, a3=1.445, and Bs=2.13 T for the SMC sample. 
With an elliptical rotating flux, the core loss can be calculated by 

 ( ) aBrBer PRPRP 21−+= (5) 
where RB=Bmin/Bmaj.

3 SMC MOTORS 

In order to develop low cost SMC motors with performance comparable to the conventional 
motor made of silicon steel sheets, various motor topologies were investigated [10-16]. 
Table 1 presents the parameters, topologies, and measured performance of a three phase 
claw pole SMC motor and a three phase transverse flux SMC motor driven by the brushless 
DC (BLDC) scheme (section 4) [10-14]. Fig.6 shows the photos of a high speed three phase 
claw pole motor operated at 20,000 rev/min [15-16]. We also developed a linear SMC motor. 
Restricted by our industry partner, we cannot present the topology in this paper. 
 
Table 1. Three phase claw pole and transverse flux SMC motors 

Three Phase Claw Pole BLDC Motor Three Phase Transverse Flux BLDC Motor
Rated frequency 300 Hz Rated frequency 300 Hz 
Number of poles 20 Number of poles 20 
Rated power 560 W Rated power 640 W 
Rated voltage 50 V Rated voltage 80 V 
Rated current 5.5 A Rated current 5.5 A 
Rated efficiency 80% Rated efficiency 80% 
Permanent magnet NdFeB Permanent magnet NdFeB 
Stator core material SOMALOYTM 500 Stator core material SOMALOYTM 500 
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Fig.6 – High speed SMC motor 

4 DRIVE TECHNIQUES 

4.1 Brushless DC drive 

The SMC motors presented in section 3 are drive by a sensorless brushless DC drive scheme. 
Fig.7 shows the block diagram and a photo of the controller prototype. The rotor position is 
obtained from the back emf signal. A special issue with the SMC motors is the high 
inductance of the stator windings. If the conventional back emf zero crossing switching 
technique is employed, the overall motor performance would be affected. In order to 
maintain the performance, the voltage drop across the stator winding inductance should be 
compensated. Low cost is a major objective for SMC motor drives. To achieve this goal, the 
PWM inverter has been dramatically simplified and a special switching algorithm is 
composed to avoid the performance deterioration [18]. 
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Fig.7 – Sensorless brushless DC drive 

4.2  Direct torque control 

Direct torque control (DTC) can yield excellent steady state and dynamic performance. Two 
typical problems that are currently in the way of commercial application of the DTC scheme 
are large torque ripples and requirement of initial rotor position for starting with load. To 
solve the former problem, a refined switching table by the fuzzy logic and a space vector 
modulation techniques were investigated [17]. Both the simulation and experimental test 
show satisfactory results. 

The latter is much more difficult for the SMC motors as they have far smaller structural 
saliency than those made of conventional silicon steels. To effectively study possible 
techniques for initial rotor position detection, a special permanent magnet motor model 
incorporating both structural and saturation saliencies was developed. Because of the very 
small structural saliency, the initial rotor position detection mainly relies on the saturation 
detection, which requires high current excitation. Fig.8 illustrates a method for detection 
initial rotor position using high voltage pulses, and the results of the estimated rotor 
positions versus the actual rotor position. In order to avoid the rotation of the rotor caused by 
the high currents, a negative voltage pulse is applied right after the application of the positive 
voltage pulse [19-20]. 
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Fig.8 – (a) High voltage pulses, (b) peak current 
versus rotor position with high voltage pulses, and (c) 
Estimated and actual initial rotor positions. 

 

5 CONCLUSION 

As presented above, a comprehensive understanding and accurate modeling of the material is 
crucial for SMC motor design optimization, and the goal for low cost high performance can 
only be achieved through joint efforts on novel motor design, simplified power electronic 
converter hardware, and advanced control algorithms. Through the past years of hard work 
on the SMC material characterization and modeling, SMC motor design optimization, high 
performance drive techniques suitable for SMC motors, the technology development has 
finally reached the stage for commercial applications. 
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