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Abstract. Complementing computational fluid dynamics (CFD) simulations with machine 

learning Algorithms (MLA) is becoming increasingly popular as the combination reduces the 

computational time of the CFD simulations required for classifying, predicting, or optimizing the 

impact of geometrical and physical variables of a specific study. The main target of drug delivery 

studies is indicating the optimum particle diameter for targeting particular locations in the lung to 

achieve a desired therapeutic effect. In addition, the main goal of molecular dynamics studies is to 

investigate particle-lung interaction through given particle properties. Therefore, this study 

combines the two by numerically determining the optimum particle diameter required to obtain an 

ideal striking velocity magnitude (velocity at the time of striking the alveoli, i.e. deposition by 

sedimentation/diffusion) and impact time (time from release until deposition) inside an acinar part 

of the lung. At first, the striking velocity magnitudes and time for impact (two independent 

properties) of three different particle diameters (0.5 𝜇𝑚, 1.5 𝜇𝑚, 5 𝜇𝑚) are computed using CFD 

simulations. Then, machine learning classifiers determine the particle diameter corresponding to 
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these two independent properties. In this study, two cases are compared: A healthy acinus where 

a surfactant layer covers the inner surface of the alveoli providing low air-liquid surface tension 

(LST) values (10 𝑚𝑁/𝑚), and a diseased acinus where only a water layer covers the surface 

causing high surface tension (HST) values (70 𝑚𝑁/𝑚). In this study, the airflow velocity 

throughout the breathing cycle corresponds to a person with a respiratory rate of 13 breaths per 

minute and a volume flow rate of 6 𝑙/𝑚𝑖𝑛. Accurate machine learning (ML) results showed that 

all three particle diameters attain larger velocities and smaller impact times in a diseased acinus 

compared to a healthy one. In both cases, the 0.5 𝜇𝑚 particles acquire the smallest velocities and 

longest impact times, while the 1.5 𝜇𝑚 particles possess the largest velocities and shortest impact 

times. 

Keywords: Computational fluid dynamics (CFD); Machine learning classification; Particle 

striking velocity magnitude; Time for impact; Surface tension; Surfactant 

Introduction 

Pulmonary surfactant is a vital biological barrier residing on the lung’s inner surface. It reduces 

the risk of infection by protecting the lungs from toxic nanoparticles, preserving lung homeostasis, 

and preventing alveolar collapse at the end of exhalation by decreasing the surface tension of the 

air-liquid interface inside the lungs (Chroneos et al. 2010). A pulmonary acinus is a gas-

exchanging lung unit located distal to a single terminal bronchus (Haefeli‐Bleuer and Weibel 

1988), composed of a group of respiratory bronchioles, alveolar ducts, alveolar sacs and alveoli. 

The alveolar surface of the lungs is composed of ultrathin lung tissue that allows maximum gas 

exchange but also poses a threat upon inhaling toxic particles that can easily penetrate through the 

tissue into the bloodstream.  
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Toxic nanoparticles mainly originate from the combustion of fossil fuels, wildfires, biomass 

burning, and industrial emissions (Sonwani et al. 2021). An increased number and concentration 

of inhaled toxic nanoparticles can lead to the emergence of restrictive lung diseases such as acute 

respiratory distress syndrome (ARDS), where the integrity of the pulmonary surfactant is 

threatened by the loss of lung tissue (Veldhuizen et al. 1995). Conversely, nanoparticles can be 

therapeutic, and a significant determinant of the effectiveness of inhaled medications is their ability 

to reach suitable locations inside the lungs to maximize their therapeutic effects. Therefore, 

determining the fate of inhaled particles in the lung is crucial for the drug evaluation (Douafer et 

al. 2020, Francis et al. 2022).  

Artificial Intelligence systems use MLA to predict output values based on inputs given to the 

system. Using a set of training data, the algorithm learns and extracts patterns and correlations 

between variables that enable the prediction of the output for a testing dataset. MLA can categorize 

and cluster data based on certain variables (classification) or find relationships between variables 

using regression algorithms (regression analysis). Other powerful capabilities of ML include being 

automatic, used in various fields such as medicine, education, and engineering, having the ability 

to handle varieties of data, and reducing the computational time of CFD simulations. However, the 

disadvantages of machine learning include the requirement of having a decent amount of data for 

proper training and thus accurate predictions, having the chance of some error in interpreting the 

data where the data may be biased and not correctly representing the entire dataset, and requiring 

program space to store or manage the data. As MLA decreases the computational time of CFD 

simulations, several studies have utilized machine learning schemes and algorithms with CFD to 

investigate fluid dynamics (Uçar et al. 2017, Zhu et al. 2019, Raibaudo et al. 2020, Schmidt et al. 

2021) and heat transfer phenomena. For example, one study by Rüttgers et al (2022) used machine 
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learning algorithms to conduct respiratory flow simulations for the human nasal cavity and 

pharynx extracted from computer tomography data. Another study by Hanna et al. (2020) used 

machine learning to improve the performance of a CFD simulation with a coarse mesh grid. 

Mohammadpour et al. (2021) used the discrete phase model in a parametric CFD study and a 

hybrid support vector regression-particle swarm optimization technique using machine learning to 

maximize the heat transfer of a nanofluid in a microchannel heat sink. Also, a recent study by 

Ringstad et al. (2021) trained a Gaussian Process Regression machine learning algorithm with data 

extracted from ANSYS FLUENT 2019 R3 to generate databases of high-quality CFD data for a 

two-phase ejector under various ejector operating parameters and geometrical configurations. 

However, to our knowledge, no study has combined CFD and MLA to analyze particle dynamics 

and kinematics inside the lungs/alveoli. 

Without the use of machine learning techniques, an extensive amount of computational studies 

have investigated micron-sized and nano-sized particle trajectories in different scenarios (Ault et 

al. 2016, Mollicone et al. 2019) and their deposition fractions inside the upper region of the lung 

(Ma and Lutchen 2009, Zhang et al. 2009, Walters and Luke 2011, Soni and Aliabadi 2013, Tian 

et al. 2015, Xi et al. 2020). Studies consider different airway models (Ma and Lutchen 2009), 

various particle sources (Deng et al. 2019), diseased lungs (Vinchurkar et al. 2012, Zhao et al. 

2021), and aging effects (Rahman et al. 2021). In addition, a substantial amount of studies has 

examined the particle deposition inside the lower distal alveolar region of the lung (Khajeh-

Hosseini-Dalasm and Longest 2015, Koullapis et al. 2020), considering different alveolar sizes (Xi 

et al. 2020), expanding walls (Sznitman et al. 2007, Harding Jr and Robinson 2010, April Si et al. 

2021), and various breathing conditions (Balásházy et al. 2008, Ciloglu 2020).  
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With the ongoing threat of the SARS-CoV-2 virus, these studies are becoming more vital for 

toxicological, pharmaceutical, and molecular dynamics studies exploring the particle-surfactant 

interaction inside the lung (Muhlfeld et al. 2008, Sachan et al. 2012). This interaction and the 

degree of toxic or medicinal effects depend on the nanoparticles’ concentration number, origin, 

diameter, composition, charge (Hedberg et al. 2012), and hydrophobicity (Hu et al. 2013). 

Nevertheless, the particle velocity striking the surface of the surfactant also plays a role in 

determining the level of nanoparticle interaction with the surfactant. In addition, the time needed 

for a particle to strike the surface of the alveoli is essential for targeting therapeutic drugs in 

specific lung regions. Therefore, the current study offers new insights into these two particle-

intensive properties, the striking velocity magnitude and time for impact. Furthermore, this study 

paves the way for future studies of particle kinematics inside the lungs using machine learning 

techniques. 

2. Methods 

2.1 Acinar model: 

This study utilizes the same physiologically accurate acinar geometry of a single airway path that 

had been developed in a previous study (arXiv:2204.01699 [physics.bio-ph]) starting from two 

respiratory bronchioles in generation 18 to alveolar sacs in generation 23 with a total of 150 alveoli 

and inner bifurcating angles of 30 degrees (Fig. 1a). The duct lengths decrease from 765 µm to 

575 µm (generation 18 to generation 23). Similarly, duct diameters decrease gradually from 330 

µm to 240 µm (Haefeli‐Bleuer and Weibel 1988, Sznitman 2013). The computational mesh was 

generated using ANSYS MESHING (Ansys, Inc.), where 10 µm mesh size with 3.7 million 

tetrahedral volume elements and six boundary layers near the walls were implemented to obtain 
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accurate results (Fig. 1b). A piecewise high-order polynomial realistic inhalation and exhalation 

breathing velocity profile is adopted from the Russo and Khalifa (Russo and Khalifa 2011) and 

scaled-down according to our acinar model. The profile corresponds to a volume flow rate of 6l/min and consists of a complete breathing cycle of 4.75 𝑠, with an inhalation phase of 1.75 𝑠, an 

exhalation phase of 2 s, and a pause of 1 𝑠 (Fig. 1c). 

 

Figure 1: (a) Acinar model with hemispherical alveoli, (b) Computational meshing with 10 µm tetrahedral 

volume elements, (c) Realistic breathing velocity profile with positive velocity values in the inhalation 

phase and negative ones in the exhalation phase 

 

 

 

2.2 Computational Fluid Dynamics Method: 

Computational fluid dynamics simulation is performed considering three phases: Gas (air), liquid 

(surfactant layer or water layer), and solid (particles).  

For the simulation of the gas phase, the flow is known to be subsonic and laminar in submillimeter 

acinar airspaces as the ratio of fluid to sound speed (Mach number), and the Reynolds number are 
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each less than unity. Therefore, the air density is relatively constant, and the flow is considered 

incompressible and laminar. The simulation of airflow motion is achieved by solving the 

conservation of mass and momentum equations for unsteady and incompressible flows using 

ANSYS Fluent 2020 R2 (Canonsburg, PA). For the transient flow, the Pressure-Implicit with 

Splitting Operators (PISO) pressure-velocity coupling scheme is chosen as the algorithm performs 

neighbour and skewness corrections that dramatically decrease the number of iterations required 

for convergence. A second-order body force weighted pressure-based spatial discretisation, a 

second-order momentum-based spatial discretisation, and a modified high-resolution interface 

capturing (HRIC) Volume of Fluid (VOF) spatial discretisation were applied. The realistic human 

breathing profile (Fig. 1c) is employed through a user-defined function at the inlet boundary 

condition.  

For the liquid phase, the Multiphase Homogeneous VOF model integrates the surfactant layer on 

the surface of the alveoli for the first case and the water layer for the second case. The secondary 

phases are patched with a thickness of 1 µm on the alveolar surfaces. The VOF model is applied 

with an implicit formulation, implicit body force, and a sharp interface modeling with interfacial 

anti-diffusion to distinguish air volume from surfactant or water. The primary phase is air with 

isothermal properties at body temperature. The secondary phase is a surfactant with density 𝜌 =
25 𝑘𝑔/m3, dynamic viscosity 𝜇 = 0.000813 kgm .s, or water with 𝜌 = 993.3 kg/m3 and  𝜇 =
0.001003 kgm .s. Surface tension forces modelled the interaction between the two phases with a 

continuum surface force model (Brackbill et al. 1992). The surface tension is set to 10 mN/m and 

70 mN/m for the surfactant and water cases, respectively.  
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For the solid phase, the Discrete Phase Model (DPM) is applied for Lagrangian particle tracking 

(Saidi et al. 2014), which considers the particle's inertia, diffusivity, and near-wall effects while 

tracking the individual particle trajectory before striking the alveoli surface. From the inlet of the 

acinar model, 132 monodispersed particles were injected at 0.05s using face normal direction with 

a total flow rate of 1 × 10−20 𝑘𝑔/𝑠  scaled by face area for a duration of 1.75s. Particles were 

tracked using unsteady particle tracking with one-way coupling considering dilute particle 

suspensions as the volumetric fraction of the discrete phase compared to the continuous phase is 

negligible. For each surfactant and water case, three simulations were performed for three different 

spherically shaped micron-sized particles, 𝑑 = 0.5 𝜇𝑚, 1.5 𝜇𝑚, 5 𝜇𝑚. The walls of the acinar model 

trap the particles striking their surfaces. A particle's position and velocity information are stored 

as soon as it touches the airway wall, and its trajectory calculations are terminated.  

 

2.2.1 VOF model equations 

• The continuity equation for primary phase 1 and secondary phase 2 is the following: 

𝜕𝜌𝜕𝑡 + ∇ . (𝜌𝒖⃗⃗ ) = 𝑆 (1) 

Where 𝜌 = 𝛼1𝜌1 + 𝛼2𝜌2  is the total density with 𝛼 and 𝜌 being the volume fraction and the 

density, respectively, 𝒖⃗⃗ =  1𝜌 (𝛼1𝜌1𝒖⃗⃗ 𝟏 + 𝛼2𝜌2𝒖⃗⃗ 𝟐) is the mixture velocity, and S is a source term. 

Both phases are solved using the same momentum equation, and the resulting velocity field is 

shared between both phases. Based on the local value of the volume fraction, properties and 

variables are assigned to each control volume. 
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• The momentum equation of the mixture is the following: 

𝜕(𝜌𝒖⃗⃗ )𝜕𝑡 + ∇ . (𝜌𝒖⃗⃗ 𝒖⃗⃗ ) = −∇𝑝 + ∇(𝜇(𝛁𝒖⃗⃗ + 𝛁𝒖⃗⃗ 𝑻)) + 𝜌𝒈⃗⃗ + 𝑻⃗⃗ 𝝈 (2) 

 𝑻⃗⃗ 𝝈 is the surface tension force at the interface of the two phases,𝜇 =  𝛼1𝜇1 + 𝛼2𝜇2 is the total 

dynamic viscosity, and 𝑔  is the gravitational force. According to the VOF model, the primary and 

secondary phases are immiscible, so in most computational cells, each phase has a volume fraction 

of either 0 or 1. At the interface between two phases (air and surfactant or water in this case), the 

volume fraction is between 0 and 1, and the interface can be tracked by solving the volume fraction 

equation. 

• Volume fraction equation for the secondary phases: 

Interface tracking is accomplished by solving a continuity equation based on the volume 

fraction of the secondary phase. This equation has the following form:  

1𝜌𝑞 [ 𝜕𝜕𝑡 (𝛼𝑞𝜌𝑞) + ∇. (𝛼𝑞𝜌𝑞𝒖⃗⃗ 𝒒) = 𝑆𝛼𝑞 + ∑(𝑚̇𝑝𝑞 − 𝑚̇𝑞𝑝)𝑛
𝑝=1 ] (3) 

where 𝑚̇𝑞𝑝 is the mass transfer from phase q to phase p and 𝑚̇𝑞𝑝 is the mass transfer from phase p 

to phase q. By default, the source term on the right-hand side of the equation, 𝑆𝛼𝑞, is zero unless 

specified otherwise. 

• The Implicit Scheme: 
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Implicit schemes compute volume fraction values at the current time step, in contrast to explicit 

methods that require the volume fraction from the previous time step. By solving a scalar transport 

equation at each time step, the secondary phase volume fraction is iteratively calculated. 

𝛼𝑞𝑛+1𝜌𝑞𝑛+1 − 𝛼𝑞 𝑛𝜌𝑞𝑛∆𝑡 𝑉 + ∑(𝜌𝑞𝑛+1𝑈𝑓𝑛+1𝛼𝑞,𝑓𝑛+1) = 𝑓 [𝑆𝛼𝑞 + ∑(𝑚̇𝑝𝑞 − 𝑚̇𝑞𝑝)𝑛
𝑝=1 ] 𝑉 (4) 

Where 𝑛 + 1 is an index for the current time step, 𝑛 is an index for the previous time step, 𝛼𝑞,𝑓𝑛  is 

the face value of the 𝑞𝑡ℎ  volume fraction, computed from the second-order upwind, modified HRIC 

scheme, 𝑉 is the volume of a cell, ∆𝑡 is the time step size, and  𝑈𝑓𝑛 is the volume flux through the 

face based on normal velocity. 

2.2.2 Particle transport 

From Newton's second law, the particle’s inertia equates to the summation of forces acting on the 

particle. Therefore, to predict the trajectory of a discrete phase particle, the following Lagrangian 

conservation of momentum equation is solved: 

𝜕𝑢⃗ 𝑝𝜕𝑡 =  𝐹𝐷(𝑢⃗ − 𝑢⃗ 𝑝) + 𝑔 (𝜌𝑝−𝜌)𝜌𝑝  (5) 

Where 𝐹𝐷(𝑢⃗ − 𝑢⃗ 𝑝) is the drag force per unit particle mass with 𝐹𝐷 = 18𝜇𝑑𝑝 2 𝜌𝑝 × 𝐶𝐷𝑅𝑒24 ,where 𝑅𝑒 =
𝜌𝑑𝑝|𝑢⃗⃗ 𝑝−𝑢⃗⃗ |𝜇  is the relative Reynolds number, 𝑑𝑝 is the particle diameter, 𝐶𝐷 is the drag coefficient,  𝜌𝑝 = 1550 𝑘𝑔/𝑚3 is the particle density, 𝜌 = 1.111 kg/𝑚3 is the air density, and 𝜇 =1.927 × 10−5 kgm .s is the molecular viscosity of the fluid. 
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In addition, Stokes’ drag law is applied to spherical objects with very small Reynolds numbers in 

a viscous fluid. The Stokes’ drag force assumes a no-slip condition which is incorrect for micron-

sized particles (< 15 𝜇𝑚). Therefore, the drag coefficient is divided by the Cunningham correction 

factor (Cunningham 1910): 

Where 𝐶𝑐  is the Cunningham correction to Stokes’ drag law, calculated through the following 

equation: 

𝜆 = 0.067 𝜇𝑚 is the molecular mean free path of air. 

2.3 Machine Learning Method 

Machine learning classifiers identify and assign data to different categories based on the specific 

features/characteristics analyzed from a training data set. The well-known numeric computing 

program “MATLAB” provides different classification algorithms in the MALTAB Classification 

Learner Toolbox: “Decision Trees”, Discriminant Analysis”, “Naïve Bayes”, Support Vector 

Machines”, “K-Nearest Neighbour (KNN)”, and ‘Ensemble Classifiers”. Two independent input 

variables, the striking particle velocity magnitude and time for impact, are used to classify particles 

into three different diameters (output). The objective is to find the optimum diameter matching a 

particular impaction time since its release into the acinus and corresponding to a specific particle 

velocity required for enhanced particle-surfactant interaction. This process is achieved for a 

healthy acinus with low surface tension (case 1) and a diseased acinus with high surface tension 

𝐹𝐷 = 18𝜇𝑑𝑝 2 𝜌𝑝𝐶𝑐 (6) 

𝐶𝑐 =  1 + 2𝜆𝑑𝑝 (1.257 + 0.4𝑒−(1.1𝑑𝑝2𝜆 )) (7) 
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(case 2). For both cases, all available machine learning classifiers in MATLAB R2020 analyzed 

and classified the training data containing the inputs (striking particle velocity magnitude and time 

for impact) and output (diameter) extracted from ANSYS 2020 R2. Four classifiers: “Fine KNN”, 

“Weighted KNN”, “Subspace KNN”, and “Bagged Trees” predicted 100% accuracy. The 

Ensemble Classifier, “Ensemble Subspace KNN”, and the Nearest neighbour Classifier, 

“Weighted KNN”, were chosen to test additional input data for case 1 and case 2, respectively. 

KNN is a supervised instance-based learning approach that offers a solution for problems of 

unknown distributions (Zhang 2016). This instance-based learning method compares each new 

instance with existing ones using a distance metric function and assigns a class based on the closest 

instance. The KNN function employs Euclidean distance through the following equation 

(Weinberger and Saul 2009):  

𝐷(𝑝, 𝑞) =  √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + ⋯+ (𝑝𝑛 − 𝑞𝑛)2 

Where p and q objects are to be classified according to n characteristics. Objects are classified 

based on a majority vote among their k nearest neighbours. For example, if k = 1 (“Fine KNN”), 

then the object is assigned to the class of a single nearest neighbour. If k = 10 (“Weighted KNN”), 

then the object is assigned to the majority class of the closest ten nearest neighbours. Choosing the 

appropriate value of k is essential for reducing random error and not ignoring small but significant 

patterns simultaneously (Zhang 2014). In addition, the “Subspace KNN” model creates an 

ensemble of several nearest-neighbor classifiers to improve the classification performance (Tian 

and Feng 2021). 

3. Results and Discussion: 

3.1 Example CFD simulation 
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Figure 2 displays the trajectories of 0.5 𝜇𝑚 particles at different instances during the inhalation 

phase of a healthy acinus with LST. At 0.05 s, 132 particles were injected into the inlet of the 18th 

generation with the realistic inlet velocity profile shown previously in Figure 1c. Due to the very 

low Reynolds number in an acinus, particles act as tracer particles, following the airflow 

streamlines with Stokes numbers around 0.15 (Chhabra and Prasad, 2011). Figure 2a demonstrates 

the particle trajectories at 0.6 𝑠, 1 𝑠, and 1.4 𝑠 as they travel into deeper generations by rapid 

diffusion/sedimentation (Dailey and Ghadiali 2007), with different velocity magnitudes ranging 

from 0 to 7 𝑚𝑚/𝑠. Particles are assumed to have an initial zero particle velocity magnitude, 

indicating that a particle’s velocity is solely affected by the flow velocity. The particle residence 

time shown in Figure 2b shows the time a particle enters the acinus to its current time, where it is 

either trapped on the surface or still advancing to further generations. At the end of inhalation 

at 1.75 𝑠, the time required for a particle to strike the alveolar walls and the velocities of the trapped 

particles at the time of impact are extracted from the simulation and used as input to the machine 

learning classifiers. The same procedure is repeated separately for the 1.5 𝜇𝑚 and 5 𝜇𝑚 particles 

in the LST case and for all three-particle sizes in the diseased case with HST.  
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Figure 2: Three instantaneous snapshots of particle trajectories inside the acinus model in the LST case 

coloured according to (a) Particle Striking Velocity Magnitude (𝑚𝑚/𝑠) and (b) Particle Residence 

Time (𝑠) 

 

3.2 Machine Learning Results: 

3.2.1 Case 1: 

In case 1, two Nearest Neighbours Classifiers, “Fine and Weighted k-nearest neighbour (KNN)”, 

and two Ensemble Classifiers, “Subspace KNN and Bagged Trees”, predicted 100% accurate 
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results for 274 training data. The “Ensemble Subspace KNN” model with 30 learners and one 

subspace dimension is selected to assess an additional group of 37 input and output data. Results 

showed a prediction accuracy of 94.6%,with only two misclassifications. The training data, testing 

data, receiver operating characteristic curve (ROC), and confusion matrix are shown in Figures 3a, 

3b, 3c, and 3d, respectively.  

 

 

 

Figure 3: Case 1 healthy acinus with LST: (a) Training data predictions using Subspace KNN model for the 

three-particle diameters according to the velocity magnitude (𝑚𝑚/𝑠) and impact time (𝑠), (b) Testing data 

predictions, (c) ROC curve measuring the classification’s success and perfection, (d) Confusion matrix 
displaying the true class versus the predicted class for each of the three-particle sizes 
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Particles inside the alveoli deposit either by diffusion due to a concentration gradient, advection 

due to the movement of air, or sedimentation due to gravitational forces (Dong et al., 2021). The 

combination of drag, gravitational, and diffusion forces imposed on a particle affects its striking 

velocity magnitude and impact time. Smaller-sized particles (0.5 𝜇𝑚) deposit mainly by diffusion 

and advection forces, larger particles deposit mainly by sedimentation (5 𝜇𝑚), and middle-sized 

particles experience a combination of both. Deposition by diffusion of small-sized particles occurs 

at small striking velocity magnitudes, sedimentation of large-sized particles happens with larger 

striking velocity magnitudes, and the combination of both with middle-sized particles produces 

the largest velocity magnitudes. This is shown in Figure 3a, with the striking velocity magnitude 

on the y-axis and the impact time on the x-axis for the three different particle sizes. An adopted 

“Subspace KNN” model correctly classified each particle according to these two variables. The 

particles of the smallest diameter, 0.5 𝜇𝑚, exhibit the lowest striking velocity magnitudes (average 

value is 4.6 𝑚𝑚/𝑠) and the longest impact time from 0.05 𝑠 to 1.63𝑠. The slightly larger particles 

of 1.5 𝜇𝑚 possess much higher velocity magnitudes with an average value of 100 𝑚𝑚/𝑠 and much 

lower impact time with values ranging from 0.05𝑠 to 0.75𝑠 (average value = 0.196 𝑚𝑚/𝑠). The 

largest 5 𝜇𝑚 particles exhibit impact times similar to the 1.5 𝜇𝑚 particles, with a slight decrease 

in the average value (0.161 𝑚𝑚/𝑠), and the average of their velocity magnitudes lies between the 0.5 𝜇𝑚 and 1.5 𝜇𝑚 particle sizes with a value of 31.7 𝑚𝑚/𝑠. The impact time of the three-particle 

sizes agrees with the literature findings that the smaller the particle size, the longer it takes to 

deposit on the surface of the lung (Heyder 2004). However, the pattern for the velocity magnitude 

is not consistent with the particle diameter, as the middle-sized particles (1.5 𝜇𝑚) experience more 

significant values than the largest-sized particles (5 𝜇𝑚). This indicates that these three-particle 

diameters cannot determine the type of correlation (positive or negative) between the particle 
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diameter and the striking velocity magnitude. Therefore, a critical/threshold diameter defining 

their relationship must be identified in future studies by simulating a larger number of particle 

diameters. The testing data in Figure 3b demonstrates similar results for the three-particle 

diameters. However, the “Subspace KNN model” fails to perfectly predict the diameter of every 

particle of the testing data and achieves an accuracy of 94.6%. Figure 3c depicts a receiver 

operating characteristic curve (ROC curve) utilized to evaluate the model’s classification 

performance. The area under the ROC curve is an indicator of the model’s success, where a perfect 

classification obtains an area of 1 with a zero false-positive rate (FPR) (x-axis) and a true positive 

rate (TPR) equal to 1 (y-axis). The studied case exhibits an area under the curve (AUC) of 0.9583 (AUC ≈ 1), where the optimal operating point is FPR =  0.0833 and TPR = 1. This slight 

imperfection is further illustrated in Figure 3d, where a confusion matrix displaying the true class 

and the predicted class for each particle size reveals a misclassification of two 1.5 𝜇𝑚 particles by 

falsely predicting them as 5 𝜇𝑚 particles. 

3.2.2 Case 2: 

In case 2, the same four classification models of case 1 predicted 100% accurate results for 201 

training data. The “Weighted KNN” model is selected to test an additional set of 38 input and 

output data with the following specifications: Ten Nearest Neighbours, Euclidean distance metric, 

and squared inverse distance weighting for interpolating spatial sample data. The outcome is better 

than case 1 as the adopted model exhibits an accuracy of 100% with no misclassifications. The 

training data and testing data, ROC curve, and confusion matrix are shown in Figures 4a, 4b, 4c, 

and 4d, respectively. Figure 4a displays the same trend as case 1 for the three-particle sizes. For 

the striking velocity magnitude, the 5 𝜇𝑚 particles have values between those of the other two 

particle sizes. For the impact time, the smaller the particle, the more time it requires for impact 
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( 𝑡0.5 𝜇𝑚  >  𝑡1.5 𝜇𝑚 > 𝑡5 𝜇𝑚 ). Figure 4b shows the testing data predictions for each particle size 

group. A clear visual distinction between them permits 100% accurate classification by the 

“Weighted KNN” model where the ROC curve (Figure 3c) displays this perfect clustering with FPR = 0, TPR = 1, and AUC = 1 and the confusion matrix (Figure 4d) fits all data inside the 

diagonal showing no misclassifications.  

 

 

Figure 4: Case 2 diseased acinus with HST: (a) Training data predictions using Weighted KNN model (b) 

Testing data predictions, (c) ROC curve (d) Confusion matrix 
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3.3 Comparison between the LST case and HST case: 

The average striking velocity magnitude and average impact time of each particle size 

group (0.5 𝜇𝑚, 1.5 𝜇𝑚, 5 𝜇𝑚) for the LST and HST cases are given in Table 1.  

  

Table I: Comparison between case 1 (LST) and case 2 (HST) based on the average striking 

velocities and impact times of three-particle sizes. 

 

It was shown in our previous study (arXiv:2204.01699 [physics.bio-ph]) that a higher surface 

tension value produces more vortices (curl of the velocity), and larger airflow velocity magnitudes 

in the acinus. As the kinematic properties of the flow affect that of the particles, the flow’s higher 

momentum and unsteady recirculating streamlines, due to the high surface tension, lead to larger 

particle velocity magnitudes and faster striking times. In other words, the drag forces acting on the 

particle increase, and thus the particle’s inertia and striking velocity also increase. In addition, as 

the drag force is inversely proportional to the square of the particle’s size, the smallest particle 

 LST HST 

0.5 𝜇𝑚 1.5 𝜇𝑚 5 𝜇𝑚 0.5 𝜇𝑚 1.5 𝜇𝑚 5 𝜇𝑚 

Average Striking Velocity 

Magnitude (mm/s) 

4.60 100 31.7 126 692 176 

Variance  0.183 0.000900 0.534 0.341 0.408 0.0042 

Average Impact Time (s) 0.400 0.196 0.161 0.120 0.0750 0.0700 

Variance  0.00290 0.0192 0.0000 0.0326 0.00100 0.00560 
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diameter experiences the largest inertia as the surface tension increases and the largest particle 

diameter experiences the smallest inertia. Also, the impact time decreases with increased inertia as 

the particle reaches the alveolar surfaces faster with higher velocity. Table I demonstrates that the 

HST case has larger average particle velocity magnitudes and smaller average impact times than 

the LST case for each particle size group. From the LST to the HST case, the average striking 

velocity magnitudes increase by a factor of 27.45 for the 0.5 𝜇𝑚 particles, by a factor of 6.92 for 

the 1.5 𝜇𝑚 particles, and by a factor of 5.57 for the 5 𝜇𝑚 particles. Meanwhile, the average impact 

times decrease by a factor of 3.33 for the 0.5 𝜇𝑚 particles, by a factor of 2.61 for the 1.5 𝜇𝑚 particles, and by a factor of 2.3 for the 5 𝜇𝑚 particles.  

The variance S2, the deviation from the average/mean, was obtained from MATLAB R2020 for 

each set of data. The variance is calculated through the following formula: 𝑆2  =  ∑ (𝑥𝑖−𝑥̅)2𝑛𝑖=1𝑛−1   where 𝑥𝑖 is each value in the dataset,  𝑥̅ is the mean of all values in the dataset, and 𝑛 is the number of 

values in the dataset. For the average striking velocity magnitude and the impact time, the variance 

is significantly less than unity, meaning that the data points are close to the mean. Therefore, the 

averaged data can be used for interpreting the results. 

Figures 5a and 5b present two “Parallel Coordinates Plots” for the LST and HST cases, 

respectively. The striking velocity magnitudes and impact times for each particle size group are 

arranged on vertical parallel axes to demonstrate the correlation between these two independent 

properties. The two figures are shown with diagonal lines that indicate an inversely proportional 

relationship between velocity magnitude and impact time. Figure 5a shows that 0.5 𝜇𝑚 particles 

have the highest impact times (reaching 1.6 𝑠) and the lowest velocity magnitudes and that 1.5 𝜇𝑚 particles have the shortest impact times and the highest velocity magnitudes (around 
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1100 𝑚𝑚/𝑠). This trend is also evident in Figure 5b, which illustrates a more apparent distinction 

between the particle sizes. Figures 5c and 5d display two boxplots comparing each particle size 

group from the HST case to that from the LST case according to their velocity magnitudes and 

times for impact, respectively. Similar to previous results, the two figures show that the HST values 

for the three-particle size groups have larger velocity magnitude values (higher medians in Figure 

5c) and smaller impact times (lower medians in Figure 5d) compared to the LST case. 
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Figure 5: (a) Parallel Coordinates Plot for the LST case and (b) HST case, (c) Boxplot comparing each 

particle size group between the LST and HST cases according to the velocity magnitudes (𝑚𝑚/𝑠) and (d) 

the time for impact (𝑠) 

 

3.4 Benefit of using ML: 

The computational time used to classify particle diameters in MATLAB machine learning was 

283.9s for the first LST case and 381.7s for the second HST case. On the other hand, the 

computational time for particle deposition in ANSYS FLUENT (using LINUX system with 2 CPU 

socks and 32 computing nodes) was 57.36 hours for the first case and 62.11 hours for the second 

case. The very high discrepancy between machine learning and ANSYS FLUENT computational 

times proves the benefit of combining CFD and MLA to save computational time. Therefore, 

extracting sample results from CFD and training the data with MLA to perform 

classifications/predictions/optimization is more efficient than performing simulations in CFD 

alone. 

4. Conclusion: 

A comprehensive CFD study was performed to determine the striking velocity magnitudes and 

impact times of three different sized particles (0.5 𝜇𝑚, 1.5 𝜇𝑚, and 5 𝜇𝑚) in a healthy LST acinus 

and a diseased HST acinus. 

Each particle size group exhibited diverse values, enabling machine learning models “Subspace 

KNN” and “Weighted KNN” to classify the particles according to two independent variables. The 

findings are summarized as follows: 

• For the LST case, the “Subspace KNN” obtained a 94.6% accuracy with 0.5 𝜇𝑚 particles 

having the lowest velocities and the longest impact times. The 1.5 𝜇𝑚 particles experience 
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the highest striking velocities and the lowest impact times. The 5 𝜇𝑚 particles have values 

in between. 

• For the HST case, the particles show the same trend as in the LST case. However, a 

comparison between the two cases showed that particles have higher striking velocities and 

lower impact times in the HST case due to the erratic and irregular flow with vortices 

propelling the particles toward the alveolar walls. 

The findings of this study are crucial to molecular dynamics computations studying inhaled drugs 

and their interaction with the surfactant layer/alveolar surfaces. The striking velocity magnitude 

for three micron-sized particles (0.5 𝜇𝑚, 1.5 𝜇𝑚, and 5 𝜇𝑚) can be taken and inserted as an input 

affecting the particle/alveolar surface interaction. In pharmaceutical and medical studies, if the 

case (healthy or diseased lung) requires a certain striking velocity magnitude and impact time, then 

the values can be inserted into our testing data, and the optimal particle diameter is determined. 

Few limitations and assumptions include an idealised acinar model with rigid walls, zero initial 

particle velocity entering the 18th generation of the acinus, one particle density, and two extreme 

surface tension cases that are not physiologically accurate. In addition, one major limitation of this 

study is generating particle velocity and impact time using only an acinus part of the lung. Drug 

delivery systems require particles traveling from the nose/mouth to the alveoli. The two mentioned 

particle properties would be different in this case. However, this study only indicates the 

applicability of such a method, and future studies will include the whole lung geometry. In 

particular, the initial particle velocity magnitude entering the acinus (generation 18) will be 

computed by conducting flow and particle simulations using a realistic lung geometry of 17 

generations with a realistic inhalation breathing profile. A particle’s velocity striking the outlet of 

the 17th generation will serve as the initial velocity of the particle entering the acinar model. 
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Therefore, a particle’s velocity will be affected by both its initial velocity and the flow’s velocity. 

The impact time will also be realistically calculated for the whole lung. Additional studies will 

analyze other micro- and nanoparticle diameters with moving acinar walls (fluid-structure 

interaction) and physiologically-accurate surface tension values. The aim is to relate a wide range 

of particle diameters to specific striking velocity magnitudes and impact times and identify critical 

particle diameters that define the correlation between the striking velocity and particle diameter. 
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Appendix 

Nomenclature  

CFD computational fluid dynamics 

MLA machine learning algorithms 

LST low surface tension 

HST high surface tension 

VOF volume of fluid 

DPM discrete phase model 

KNN k-nearest neighbour 

ROC receiver operating characteristic curve 

AUC area under the curve 

TPR true positive rate 

FPR false positive rate 

 

 

Symbols 

ρ density (kg/m3) 

µ dynamic viscosity (kg/m.s) 

t time (s) 

𝑑𝑝 particle diameter (µm) 
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𝑚̇ mass transfer (kg) 

𝑇⃗  surface tension force (N) 

𝐹𝐷 drag force (N) 

D Euclidean distance (m) 

𝛼 volume fraction 

𝑔  gravitational force (N) 

𝑆 source term 

𝑉 volume of cell (m3) 

 ∆𝑡  time step size (s) 

𝑅𝑒 Reynolds number 

𝐶𝐷  drag coefficient 

𝐶𝑐   Cunningham correction 
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