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WITH OR WITHOUT REPLACEMENT?

SAMPLING UNCERTAINTY IN SHEPP’S URN SCHEME

KRISTOFFER GLOVER,∗ University of Technology Sydney

Abstract

We introduce a variant of Shepp’s classical urn problem in which the optimal

stopper does not know whether sampling from the urn is done with or without

replacement. By considering the problem’s continuous-time analog, we provide

bounds on the value function and in the case of a balanced urn (with an

equal number of each ball type), an explicit solution is found. Surprisingly,

the optimal strategy for the balanced urn is the same as in the classical urn

problem. However, the expected value upon stopping is lower due to the

additional uncertainty present.
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1. Introduction

Consider the following discrete optimal stopping problem as first described in [32] by

Shepp. An urn initially contains m balls worth −$1 each and p balls worth +$1 each,

where m and p are positive integers known a priori. Balls are randomly sampled (one

at a time and without replacement) and their value is added to a running total. Before

any draw, the optimal stopper can choose to stop sampling and receive the cumulative

sum up to that point. The goal is to find the stopping rule which maximises the

expected payout from a given (m, p)-urn.

The urn scheme described above was originally formulated in relation to the classical

optimal stopping problem of maximising the average value of a sequence of independent
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and identically distributed random variables (see [2, 9, 14], among others). The scheme

has also been considered in relation to numerous other problems considered in the

subsequent literature. For example, in [6], the authors consider an extension in which

the stopper exhibits risk-aversion (modelled as the limited ability to endure negative

fluctuations in the running total). An extension in which the stopper is able to draw

more than one ball at a time is also considered in [11]. Related to the current note,

[7] (and subsequently [24]) consider the urn problem where the composition of balls in

the urn is not known with certainty (i.e., where p+m is known but p is not).

The aim of the present note is to introduce a variant of Shepp’s urn problem in

which the sampling procedure used is not known with certainty. Specifically, while

the result of each draw is observable, we assume that the optimal stopper is uncertain

about whether or not the balls are removed from the urn after sampling. In other

words, whether sampling is done with or without replacement. Since the probability

of sampling a given ball type is different under the two different sampling procedures,

sequentially observing the random draws will reveal statistical information about the

true procedure being used. Hence, we adopt a Bayesian approach and assume the

optimal stopper has a prior belief of π that the samples are not being replaced. They

then, sequentially, update this belief (via Bayes) after each random draw. Since the

goal is to maximise the expected payout upon stopping, any stopping rule must account

for the expected learning that will occur over time.

Shepp demonstrated that the optimal rule for the original problem is of a threshold

type. In particular, denoting by C the set of all urns with a positive expected value

(upon stopping optimally), then C = {(m, p) |m ≤ β(p)}, where β(p) is a sequence

of unique constants dependent on p (which must be computed via recursive methods,

cf. [3]). It is thus optimal to draw a ball if there are sufficiently many p balls relative to

m balls (or sufficiently fewm balls relative to p balls). Intuitively, β(p) > p and hence, a

ball should not be sampled when the current state of the urn satisfies p−m ≤ p−β(p) <

0. Put differently, the optimal stopper should stop sampling when the running total

exceeds some critical (positive) threshold, dependent on the current state of the urn.

Of particularly importance to the current note, Shepp [32, p. 1001] also connects the

urn problem (when the sampling method was known) with the continuous-time problem

of optimally stopping a Brownian bridge. Specifically, via an appropriate scaling, the
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running total (cumulative sum) process was shown to converge to a Brownian bridge

which starts at zero (at t = 0) and pins to some location a (at t = 1). Importantly, the

known constant a depends on the initial values of m and p, with a = m−p√
m+p

. Hence,

the sign of the pinning location depends on the relative abundance of m- and p-balls in

the urn. The continuous-time problem is shown by Shepp [32] to admit a closed-form

solution and the optimal stopping strategy found, once more, to be of threshold type—

being the first time that the Brownian bridge exceeds some time-dependent boundary,

given by a+ α
√
1− t with α ≈ 0.83992.

Given the success and closed-form nature of such continuous-time approximations,

we choose not to tackle the discrete version of our problem directly, instead formulating

and solving the continuous-time analog. In such a setting, uncertainty about the true

sampling procedure manifests itself in uncertainty about the drift of the underlying

(cumulative sum) process. In particular, the process is believed to be either a Brownian

bridge pinning to a (if sampling is done without replacement) or a Brownian motion

with drift a (if sampling is done with replacement), and the optimal stopper must

learn about which it is over time. Despite this additional uncertainty, we find that the

problem has a closed-form solution when a = 0 and, remarkably, the optimal strategy

is found to coincide with the optimal strategy of the classical problem (where the

sampling procedure/drift is known with certainty). The expected payout, however, is

lower due to the additional uncertainty present. When a 6= 0, the problem is more

complicated and a richer solution structure emerges (with multiple optimal stopping

boundaries possible).

This note therefore contributes to the literature on both optimally stopping a

Brownian bridge (e.g., [4, 10, 15, 18, 20, 21, 32]) and optimal stopping in the presence

of incomplete information (e.g., [16, 17, 19, 22, 25–27]). We also note that Brownian

bridges have found many applications in the field of finance. For example, they have

been used to model the so-called stock pinning effect (see [1]), and the dynamics of

certain arbitrage opportunities (see [5, 28]). In both settings, the existence of the

underlying economic force (creating the pinning) is more often than not uncertain.

Hence, the additional uncertainty considered in this note may find application in more

realistic modelling of these market dynamics.

The rest of this note is structured as follows: We start in Section 2 by commenting
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further on the connection between the discrete urn problem and the continuous-time

analog. In Section 3, we formulate the continuous-time problem, making clear our in-

formational assumptions. Upper and lower bounds on the value function are presented

in Section 4, along with the explicit solution to the problem in the case where a = 0.

We conclude in Section 5 with a brief discussion of the case where a is nonzero.

2. Connecting the urn problem to Brownian bridges/motion

1. Let ǫi, for i = 1, . . . ,m+p, denote the results of sampling from a given (m, p)-urn,

with ǫi = −1 for an m-ball and ǫi = 1 for a p-ball. The partial sum after n draws is

thus Xn =
∑n

i=1 ǫi, with X0 = 0. It is well known that the discrete process {Xn}m+p
n=0

can be approximated as a continuous-time diffusion process if we let m and p tend

to infinity in an appropriate way. The resulting diffusion, however, will depend on

whether sampling is done with or without replacement. Fixing m and p, we define, for

0 ≤ n ≤ m+ p and n < (m+ p)t ≤ n+ 1,

Xm,p(t) =
Xn√
m+ p

, 0 ≤ t ≤ 1. (2.1)

If sampling is done without replacement then for n = m + p (after all balls have

been sampled) we have

Xm,p(1) =
p−m√
m+ p

=: a. (2.2)

Hence, the final value (at t = 1) is known with certainty to be the constant a. In this

case, it is also clear that the samples ǫi are not iid. However, Shepp demonstrated that,

if a is fixed, the process Xm,p(t) converges in distribution as p → ∞ to a Brownian

bridge process pinning to the point a at t = 1 (see [32, p. 1001]).

2. On the other hand, if sampling is done with replacement, then the samples

ǫi are iid, and the process Xm,p(t) in (2.1) can be seen to converge in distribution

to a Brownian motion (with drift), via Donsker’s theorem. We also note that with

replacement, more than m+ p balls can be sampled. Indeed, sampling could continue

indefinitely if each sampled ball were replaced. However, after m+ p balls have been

sampled the true nature of the sampling procedure will be revealed—since there will

either be no balls left or another sample is produced. In our modified urn problem

we therefore make the natural assumption that stopping must occur before more than
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m+ p balls have been sampled.

Remark. If the optimal stopper were allowed to continue beyond m+p samples, then

the stopper would never stop for p > m (a > 0) in the sampling-with-replacement

scenario (since the cumulative sum is expected to increase indefinitely). It would then

also be optimal never to stop before m + p balls are sampled (for π < 1 at least) due

to the unbounded payoff expected after m + p balls. On the other hand, if p ≤ m

(a ≤ 0), the stopper would stop at m + p balls in all scenarios since the cumulative

sum process after m + p balls is a supermartingale regardless of whether sampling

with or without replacement had been revealed. Thus, the solution to the stopping

problems with restricted and unrestricted stopping times would coincide for the case

where a ≤ 0. To avoid the degeneracy of the problem for a > 0, i.e. to guarantee a

finite value, we chose to restrict the set of admissible stopping times to n ≤ m+ p.

3. To apply Donsker’s theorem, we note that the probability of drawing a given

ball type (with replacement) is constant and given by p/(m+p) for a positive ball and

m/(m + p) for a negative ball. Therefore, E[ǫi] = (p −m)/(m + p) = a/
√
m+ p and

Var(ǫi) = 1− a2/(m+ p). This allows us to rewrite (2.1) as

Xm,p(t) =
an

m+ p
+
√
1− a2

m+p

(∑n

i=1 ǫ̂i√
m+ p

)
, (2.3)

where ǫ̂i are now standardized random variables (with zero mean and unit variance).

Since we are restricting our attention to n ≤ m + p, we can once more fix m and p

and define n < (m + p)t ≤ n + 1. Letting p → ∞, the process Xm,p(t) in (2.3) thus

converges to

Xt = at+Bt, 0 ≤ t ≤ 1, (2.4)

where (Bt)0≤t≤1 is a standard Brownian motion (cf. [12]). Note that the drift in

(2.4) coincides with the pinning point of the Brownian bridge in the case without

replacement.

With this necessary connection in place, we now proceed to formulate the continuous-

time stopping problem corresponding to our variant of Shepp’s urn scheme.
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3. Problem formulation and learning assumptions

1. Let X = (Xt)t≥0 denote an observable stochastic process that is believed by an

optimal stopper to be either a Brownian motion with known drift a, or a Brownian

bridge that pins to a at t = 1. Adopting a Bayesian approach, we also assume that the

optimal stopper has an initial belief of π that the true process is a Brownian bridge

(and hence a belief of 1− π that it is a Brownian motion).

This information structure can be realised on a probability space (Ω,F ,Pπ) where

the probability measure Pπ has the following structure

Pπ = (1− π)P0 + πP1, for π ∈ [0, 1], (3.1)

where P0 is the probability measure under which the process X is the Brownian motion

and P1 is the probability measure under which the process X is the Brownian bridge

(cf. [31, Chapter VI, Section 21]). More formally, we can introduce an unobservable

random variable θ taking values 0 or 1 with probability 1 − π and π under Pπ,

respectively. Thus, the process X solves the following stochastic differential equation

dXt =
[
(1− θ)a+ θ

(
a−Xt

1−t

)]
dt+ dBt, X0 = 0, (3.2)

where B = (Bt)t≥0 is a standard Brownian motion, independent of θ under Pπ.

2. The problem under investigation is to find the optimal stopping strategy that

maximises the expected value of X upon stopping, i.e.

V (π) = sup
0≤τ≤1

Eπ [Xτ ] , for π ∈ [0, 1]. (3.3)

Recall that the time horizon of the optimal stopping problem in (3.3) is set to one,

since the uncertainty about the nature of the process is fully revealed at t = 1 (it either

pins to a or it does not).

If the process was known to be a Brownian bridge then it would be evident from (3.3)

that V ≥ a, since simply waiting until t = 1 would yield a value of a with certainty.

However, uncertainty about θ introduces additional uncertainty in the terminal payoff,

since the value received at t = 1 could be less than a if the true process was actually

a Brownian motion.

Remark. The problem described above is related to the problem studied in [18], in

which the underlying process is known to be a Brownian bridge, but for which the
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location of the pinning point is unknown. Specifically, if the process defined in (3.2)

was a standard Brownian motion then the distribution of its expected location at t = 1

would be normal, i.e. X1 ∼ N (a, 1). On the other hand, if the process was a Brownian

bridge pinning to a at t = 1, then the distribution of its expected location at t = 1

would be a point mass, i.e. X1 ∼ δa (where δa denotes the Dirac delta). Hence, setting

a prior on the location of the pinning point in [18] to µ = πδa + (1 − π)N (a, 1) is

equivalent to the problem formulated in this note.

3. To account for the uncertainty about θ in (3.2), we define the posterior probability

process

Πt := Pπ(θ = 1 | FX
t ), for t ≥ 0, (3.4)

which represents the belief that the process will pin at t = 1 and importantly how it is

continually updated over time through observations of the processX . To determine the

dynamics of the process Π = (Πt)t≥0, we appeal to well-known results from stochastic

filtering theory (see [29, Theorem 9.1] or [26, Section 2]), namely that, for t ≥ 0,

dXt =
[
(1−Πt)a+Πt

(
a−Xt

1−t

)]
dt+ dB̄t, X0 = 0, (3.5)

dΠt = ρ(t,Xt)Πt(1−Πt)dB̄t, Π0 = π, (3.6)

where B̄ = (B̄t)t≥0 is a Pπ-Brownian motion called the innovation process and ρ

denotes the signal-to-noise ratio that is defined as

ρ(t,Xt) :=
a−Xt

1− t
− a. (3.7)

While the payoff in (3.3) is only dependent onX (not Π), the drift ofX in (3.5) contains

Π. Therefore, at first blush, it would appear that the optimal stopping problem is

two-dimensional (in X and Π). However, since both X and Π are driven by the same

Brownian motion (B̄), the problem can, in fact, be reduced to only one spacial variable

(either X or Π) by identifying a (time-dependent) mapping between Xt and Πt. In

what follows we will formulate the problem in terms of the original process X , since

this facilitates a more transparent comparison to the case where the process is known

to pin with certainty.

4. To establish the mapping between Xt and Πt we have the following result.
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Proposition 1. Given the processes X = (Xt)t≥0 and Π = (Πt)t≥0 defined by (3.5)

and (3.6), respectively, the following identity holds,

Πt

1−Πt

=
π

1− π
La(t,Xt), with La(t, x) :=

1√
1− t

exp
(
−1

2
a2 − (x− at)2

2(1− t)

)
, (3.8)

for t ∈ [0, 1).

Proof. To establish the mapping we take advantage of the fact that both processes

are driven by the same Brownian motion and define the process (cf. Proposition 4 in

[27])

Ut = ln
( Πt

1− Πt

)
+ aXt −

aXt

1− t
+

X2
t

2(1− t)
, (3.9)

which, after applying Itô’s formula, is seen to be of bounded variation with dynamics

dUt =
1

2

[
a2 − a2

(1− t)2
+

1

1− t

]
dt, with U0 = ln (π/(1− π)) . (3.10)

Thus, Ut can be solved explicitly as

Ut = ln (π/(1− π)) +
a2

2
t− a2

2(1− t)
− ln

√
1− t, (3.11)

and after combining (3.9) and (3.11), we obtain the desired result. �

5. To solve the optimal stopping problem in (3.3), we will exploit various changes

of measure. In particular from Pπ to P0 (under which the process X is a standard

Brownian motion with drift a) and then from P0 to P1 (under which X is a Brownian

bridge pinning to a). In order to perform these measure changes, we have the following

result that establishes the necessary Radon-Nikodym derivatives (cf. Lemma 1 in [26]).

Proposition 2. Let Pπ,τ be the restriction of the measure Pπ to FX
τ for π ∈ [0, 1].

We thus have the following:

(i)
dPπ,τ

dP1,τ
=

π

Πτ

, (ii)
dPπ,τ

dP0,τ
=

1− π

1−Πτ

(3.12)

and

(iii)
dP1,τ

dP0,τ
=

1− π

π

Πτ

1−Πτ

= La(τ,Xτ ), (3.13)

for all stopping times τ of X, where La is given in (3.8). The process in (3.13) is often

referred to as the likelihood ratio process.
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Proof. A standard rule for Radon-Nikodym derivatives under (3.1) gives

Πτ = Pπ(θ = 1 | FX
τ )

= (1− π)P0(θ = 1 | FX
τ )

dP0,τ

dPπ,τ

+ πP1(θ = 1 | FX
τ )

dP1,τ

dPπ,τ

= π
dP1,τ

dPπ,τ

(3.14)

for any τ and π, yielding identity (i). Similar arguments show that

1−Πτ = Pπ(θ = 0 | FX
τ )

= (1− π)P0(θ = 0 | FX
τ )

dP0,τ

dPπ,τ

+ πP1(θ = 0 | FX
τ )

dP1,τ

dPπ,τ

= (1− π)
dP0,τ

dPπ,τ

, (3.15)

yielding (ii). Using (3.14) and (3.15) together, and noting (3.8), yield (iii). �

6. Next, we embed (3.3) into a Markovian framework where the process X starts at

time t with value x. However, in doing so, we cannot forget that the optimal stopper’s

learning about the true nature of the underlying process started at time 0 with an

initial belief of π and with X0 = 0. To incorporate this information, we will exploit

the mapping in (3.8) to calculate the stopper’s updated belief should the process reach

x at time t. In other words, in our Markovian embedding, we must assume that the

‘initial’ belief at time t is not π but Πt (which depends on t and x). More formally,

the embedded optimal stopping problem becomes

V (t, x, π) = sup
0≤τ≤1−t

Eπ

[
Xt,x

t+τ

]
, (3.16)

where the processes X = Xt,x and Π are defined by




dXt+s =
(
a+Πt+sρ(t+ s,Xt+s)

)
ds+ dB̄t+s, 0 ≤ s < 1− t,

Xt = x, x ∈ R,
(3.17)

and




dΠt+s = ρ(t+ s,Xt+s)Πt+s(1−Πt+s)dB̄t+s, 0 ≤ s < 1− t,

Πt =
π

1−π
La(t, x)/

(
1 + π

1−π
La(t, x)

)
=: Π(t, x, π),

(3.18)

respectively. Note that the function La is defined as in (3.8) and, with a slight abuse

of notation, we have defined the function Π(t, x, π) to be the ‘initial’ value of Π in the
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embedding (dependent on t, x, and π). Note further that, since we are able to replace

any dependence on Πt+s (for s > 0) via the mapping in (3.8), we no longer need to

consider the dynamics for Π in what follows (only the initial point Πt).

7. Since its value will be used in our subsequent analysis, we conclude this section

by reviewing the solution to the classical Brownian bridge problem which is known to

pin to a (at t = 1) with certainty (i.e., when π = 1). In this case, the stopping problem

in (3.16) has an explicit solution (cf. [20, p. 175]) given by

V a
1 (t, x) :=





a+
√
2π(1− t)(1− α2) exp

(
(x−a)2

2(1−t)

)
Φ
(

x−a√
1−t

)
, x < b(t),

x, x ≥ b(t),
(3.19)

for t < 1 and V a
1 (1, a) = a. The function Φ(y) denotes the standard cumulative normal

distribution function and b(t) := a+α
√
1− t with α being the unique positive solution

to
√
2π(1− α2)e

1
2
α2

Φ(α) = α, (3.20)

which is approximately 0.839924. (Note that π in (3.19) and (3.20) denotes the

universal constant and not the initial belief.) Further, the optimal stopping strategy

in this case is given by

τb = inf{s ≥ 0 |Xt+s ≥ b(t+ s)}, for all t < 1. (3.21)

4. Bounds on the value function and solution when a = 0

1. As may be expected, the solution to (3.16) depends crucially on the value of a. In

fact, we find below that the problem is completely solvable in closed form when a = 0

(corresponding to m = p). For a nonzero value of a, the problem is more complicated

and a richer solution structure emerges. However, we are able to provide the following

useful bounds on the value function in (3.16) for an arbitrary a. Moreover, these

bounds can be seen to coincide when a = 0, yielding the explicit solution in this case.

Proposition 3. (Upper bound). The value function defined in (3.16) satisfies

V (t, x, π) ≤
(
1−Π(t, x, π)

)(
x+max(a, 0)

)
+Π(t, x, π)V a

1 (t, x), (4.1)

where V a
1 is as given in (3.19) and the function Π is the updated belief conditional on

the process reaching x at time t, defined in (3.18).
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Proof. To establish the upper bound, we consider a situation in which the true

nature of the process (i.e., θ) was revealed to the optimal stopper immediately after

starting, i.e. at time t+. In this situation, the optimal stopper would subsequently

be able to employ the optimal stopping strategy for the problem given full knowledge

of the nature of the underlying process. Specifically, if the process was revealed as a

Brownian bridge, then using τb, as defined in (3.21), would be optimal, generating an

expected value (at t = t+) of V a
1 (t, x). On the other hand, if the process was revealed

as a Brownian motion with drift a, then the optimal strategy would be different. In

the case where a < 0, it would be optimal to stop immediately and receive the value

x, and in the case where a > 0 it would be optimal to wait until t = 1 and receive the

expected value E0[X1] = x + a. When a = 0, however, any stopping rule would yield

an expected value of x, due to the martingality of the process X in this case.

Considering now the value function at t = t−. Acknowledging that the true nature

of the process will be immanently revealed, the expected payout is given by (1−Πt)(x+

max(a, 0)) +ΠtV
a
1 (t, x), upon noting that Πt = Π(t, x, π) represents the current belief

about the true value of θ. Finally, recognizing that the set of stopping times in (3.16)

is a subset of the stopping times used in the situation described above (where θ is

revealed at t+), the stated inequality is clear. �

Proposition 4. (Lower bound). The value function defined in (3.16) satisfies

V (t, x, π) ≥
(
1−Π(t, x, π)

)
E0[X(t+τb)∧1] + Π(t, x, π)V a

1 (t, x), (4.2)

where V a
1 is as given in (3.19) and τb denotes the optimal strategy for the known pinning

case described in (3.21). Moreover, the function Π is the updated belief conditional on

the process reaching x at time t, defined in (3.18).

Proof. The desired bound can be established by employing the optimal strategy for

the known pinning case, defined in (3.21), in the stopping problem in (3.16), for π < 1.
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In detail, letting X = Xt,x for ease of notation, we have

V (t, x, π) = sup
0≤τ≤1−t

Eπ

[
Xt+τ

]
= sup

0≤τ≤1−t

{
(1−Πt)E0

[
Xt+τ

1−Πt+τ

]}

= sup
0≤τ≤1−t

{
(1−Πt)E0[Xt+τ

(
1 + Πt+τ

1−Πt+τ

)]}

= sup
0≤τ≤1−t

{
(1−Πt)E0[Xt+τ ] + ΠtE1[Xt+τ ]

}
,

where we have applied the measure change from Pπ to P0, via (3.12), in the second

equality, and the measure change from P0 to P1, via (3.13), in the last equality.

Furthermore, employing the stopping rule τb from (3.21) (which may or may not be

optimal) yields

V (t, x, π) ≥ (1−Πt)E0[X(t+τb)∧1]+ΠtE1[Xt+τb ] = (1−Πt)E0[X(t+τb)∧1]+ΠtV
a
1 (t, x),

upon noting the definition of V a
1 , and where we have ensured that stopping under P0

happens at or before t = 1 (since the boundary b is not guaranteed to be hit by a

Brownian motion with drift, unlike the Brownian bridge). �

Computation of E0[X(t+τb)∧1] is difficult in general, being the expected hitting level

of a Brownian motion with drift to a square-root boundary. Alternatively, we have

E0[X(t+τb)∧1] = x + aE0[τb ∧ (1 − t)] + E0[B(t+τb)∧1] = x + aE0[τb ∧ (1 − t)], with the

first-passage time τb = inf{s ≥ 0 |Bs ≥ c(s)}, where c(s) := a(1−s)−x+α
√
1− t− s.

Hence, the computation reduces to the problem of finding the mean first-passage time

of a driftless Brownian motion (started at zero) to a time-dependent boundary (which

is a mixture of a linear and square-root function). While no explicit expression for

E0[τb ∧ (1− t)] exists, there are numerous numerical approximations available—see, for

example, [13], or more recently [23]. When a = 0, it is clear that E0[X(t+τb)∧1] = x, a

result which we will exploit below.

2. Given Propositions 3 and 4, the following result is evident, and constitutes the

main result of this note.

Theorem 1. When a = 0, the value function in (3.16) is given by

V (t, x, π) =
(
1−Π(t, x, π)

)
x+Π(t, x, π)V 0

1 (t, x), for π ∈ [0, 1], (4.3)

where Π is defined in (3.18) and V 0
1 is defined in (3.19) (upon setting a = 0). Further,
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the optimal stopping strategy in (3.16) is given by τ∗ = τb ∧ (1 − t). This stopping

strategy is the same for all π ∈ [0, 1].

Proof. The result is evident given the fact that the upper bound defined in (4.1)

and the lower bound defined in (4.2) coincide when a = 0. Specifically, we observe that

E0[X(t+τb)∧1] = x in (4.2) since X is a P0-martingale when a = 0. Moreover, since the

process is not guaranteed to pin at t = 1, we specify explicitly that the stopper must

stop at t = 1 should the boundary b not be hit. �

Note that the optimality of the solution presented in (4.3) does not need to be verified

since it follows directly from the proven identity in (4.3) and the existing verification

arguments establishing the optimality of V 0
1 (provided in [20], for example).

The equality found in (4.3) also demonstrates that (when a = 0) there is no loss in

value due to the optimal stopper using a sub-optimal stopping strategy for the ‘true’

drift. The optimal stopping strategy for a Brownian bridge also achieves the maximum

possible value for the Brownian motion (due to martingality), hence using τ∗ will

achieve the maximum possible value regardless of the true nature of the underlying

process. For a 6= 0, it would not be possible to achieve the maximum value in both

drift scenarios simultaneously through a single optimal stopping rule. Hence there

would be loss in value due to this, as indicated by the inequality in Proposition 3.

Remark. It is also worth noting that the arguments in the proof of Theorem 1 would

carry over to a more general setting in which the process is believed to be either a

martingale M or a diffusion X (with an initial probability π of being X). In this case,

similar arguments to Proposition 3 will show that V (t, x, π) ≤ (1 −Πt)x +ΠtV1(t, x),

where V1 denotes the solution to the associated stopping problem for the diffusion X .

Under P0, all stopping rules generate the expected value of x, due to M being a P0-

martingale. Moreover, similar arguments to Proposition 4 will show that V (t, x, π) ≥
(1−Πt)x+ΠtV1(t, x), upon using the optimal strategy for the optimal stopping problem

under P1, and noting again that E0[Xt+τ ] = x, for any stopping rule. Finally, we must

note that the function Πt would need to be found on a case-by-case basis via a mapping

similar to (3.8). In general, however, this mapping could also include path-dependent

functionals of the process over [0, t], in addition to the values of t and x (cf. [26,

Proposition 4]).
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3. Next, Theorem 1 also implies the following result.

Corollary 1. When a = 0, we have x ≤ V (t, x, π) ≤ V 0
1 (t, x) and π 7→ V (t, x, π) is

increasing, with V (t, x, 0) = x and V (t, x, 1) = V 0
1 (t, x).

Proof. From (4.3) we have that V −V 0
1 = (1−Π)(x−V 0

1 ) ≤ 0 where the inequality

is due to the fact that Π ≤ 1 and V 0
1 ≥ x, from (3.19). Direct differentiation of (4.3),

upon noting (3.18), also shows that ∂V
∂π

= L0(V 0
1 − x)/[(1 − π)(1 + π

1−π
L0)]2 ≥ 0,

proving the second claim. �

Corollary 1 reveals that, while the optimal stopping strategy is the same with pinning

certainty or uncertainty when a = 0, the value function with uncertainty is lower than

that if the pinning was certain/known. In other words, when sampling from a balanced

urn with uncertainty about replacement, the optimal stopping strategy is the same as

with replacement, but the expected payout is lower. To illustrate this, Figure 1 plots

the value function V in (4.3) in comparison to V 0
1 as defined in (3.19). We confirm

that a larger π (hence a stronger belief that the process is indeed a Brownian bridge)

corresponds to a larger value of V .

-2.0 -1.5 -1.0 -0.5 0.5 1.0

-2.0

-1.5

-1.0

-0.5

0.5

1.0

x

V

Figure 1: The solution to the problem in (3.16) when the process is believed to be a Brownian

bridge (pinning to a = 0) with probability π or a (driftless) Brownian motion with probability

1 − π. Solid lines = V (0, x, π) from (4.3) for π = {0.1, 0.5, 0.9} (higher lines correspond to

larger π); dashed line = V 0

1 (0, x) from (3.19); and dotted line = x.

Figure 1 also highlights the fact that the value function in (3.16) can be negative,

since pinning to zero is not guaranteed (and hence stopping at t = 1 does not guarantee

a minimum payoff of zero). For example, if π = 0.5 (i.e., sampling with or without
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replacement were both initially thought to be equally likely), then the value function

in (4.3) would be negative for all x < −0.286. This does not mean, however, that

it would be optimal to stop once the running payoff drops below this value, since an

immediate negative payoff would be received, compared to the zero expected payoff

from continuing and stopping according to τ∗.

5. The case where a is nonzero

1. If the urn is not balanced, meaning that m 6= p, then a nonzero drift and a

nonzero pinning point are introduced into the process X . This asymmetry complicates

the problem considerably and, while the bounds in (4.1) and (4.2) are still valid, a

closed-form solution to (3.16) is no longer available. Attempting to provide a detailed

analytical investigation of this case is beyond the scope of this note. However, numerical

investigation of the variational inequality associated with (3.16) suggests that a rich

solution structure emerges, particularly in the case where a > 0, when multiple

stopping boundaries can arise. We therefore conclude this note by exposing some

of this structure to pique the reader’s interest.

Remark. It should be noted that if the drift of the Brownian motion was zero, but

the Brownian bridge had a nonzero pinning level, then the results of Theorem 1 would

still hold (due to the martingality of X under P0). However, this situation does not

correspond to the urn problem described in Section 2, in which both the drift and the

pinning point must be the same.

2. To shed some light on the optimal stopping strategy for a nonzero a, it is useful

to reformulate the problem in (3.16) under the measure P0 as follows:

V (t, x, π) = sup
0≤τ≤1−t

Eπ

[
Xt+τ

]
= (1 −Πt) sup

0≤τ≤1−t

E0

[ Xt+τ

1−Πt+τ

]

=
(
1−Π(t, x, π)

)
sup

0≤τ≤1−t

E0

[
Xt+τ

(
1 + π

1−π
La(t+ τ,Xt+τ )

)]

=
(
1−Π(t, x, π)

)
sup

0≤τ≤1−t

E0[G
π,a(t+ τ,Xt+τ )]

=
(
1−Π(t, x, π)

)
Ṽ π,a(t, x),

where we have used (3.12) in the second equality (to change measure) and the mapping

from (3.8) in the third equality (to eliminate Πt+τ ). We have also defined the auxiliary
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optimal stoping problem

Ṽ π,a(t, x) := sup
0≤τ≤1−t

E0[G
π,a(t+ τ,Xt+τ )], (5.1)

and the payoff function

Gπ,a(t, x) := x
(
1 + π

1−π
La(t, x)

)
, (5.2)

where La is given in (3.8), which importantly is dependent on the parameter a.

3. Next, defining the infinitesimal generator associated withX as LX := 1
2

∂2

∂x2 +a ∂
∂x

,

then Itô’s formula and an application of the optional sampling theorem for any given

τ yield

E0[G
π,a(t+ τ,Xt+τ )] = Gπ,a(t, x) + E0

∫ τ

0

H(t+ s,Xt+s)ds, (5.3)

where

H(t, x) :=
(

∂
∂t

+ LX

)
Gπ,a(t, x) = a− π(x − a)

(1− π)(1 − t)
La(t, x). (5.4)

Hence, from (5.3) it is clear that it would never be optimal to stop at a point (t, x) for

which H(t, x) > 0. For a = 0, this region corresponds to x < 0. However, the shape

of this region is qualitatively different for nonzero a. To illustrate this, Figure 2 plots

the behaviour of H for both positive and negative values of a.
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Figure 2: The behaviour of the function H (for π = 0.5 and at various times) for a = −1

(on the left) and a = 1 (on the right). The solid line represents the value at t = 0 and the

dashed lines represent it at t = {0.2, 0.4, 0.6, 0.8}.

Considering the case where a < 0, Figure 2 reveals that H is strictly negative

for all x before some critical time (calculated to be 0.536 for the a = −1 example).

Furthermore, when the function does become positive, it only does so in a rather
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narrow interval (below a). This suggests that the incentive to stop is rather strong

when a < 0, as one might expect. However, little more can be gleaned from the

function H in this case. For a > 0, however, the function H is more informative

about the optimal stopping strategy. Here, we find that H is strictly positive for all

x before some critical time (again found to be 0.536 for a = 1). This indicates that

when a > 0, it would never be optimal to stop before this critical time. Moreover,

since limx→∞ H(t, x) = a, we also observe that any stopping region must be contained

in a finite interval (above a). This suggests the existence of a disjoint continuation

region and the presence of two separate optimal stopping boundaries. Indeed, these

predictions are confirmed numerically below. This richer structure is also consistent

with the results in [18], whose authors found similar disjoint continuation regions in a

situation where the location of the pinning point of a Brownian bridge was uncertain.

4. To investigate the solution to (5.1), and hence (3.16), numerically, we employ

finite difference techniques applied to an associated variational inequality. The con-

nection between optimal stopping problems and variational inequalities has long been

established (see, for example, [30, Section 10.4]). Specifically, it can be seen that

a candidate solution to (5.1) can be obtained by solving the following variational

inequality, expressed as a linear complementarity problem (see [33, Section 2.5.5] for a

general formulation)





[
∂Ṽ π,a

∂t
(t, x) + LX Ṽ π,a(t, x)

][
Ṽ π,a(t, x)−Gπ,a(t, x)

]
= 0

∂Ṽ π,a

∂t
(t, x) + LX Ṽ π,a(t, x) ≤ 0

Ṽ π,a(t, x)−Gπ,a(t, x) ≥ 0

Ṽ π,a(1, x) = Gπ,a(1, x).

(5.5)

We have stated the problem as a linear complementarity problem (as opposed to

a free-boundary problem with smooth-pasting applied at the unknown boundaries),

since the structure of the continuation and stopping regions in (t, x) is not known

a priori for (5.1). As can be seen from (5.5), the location of the optimal stopping

boundaries do not appear explicitly in the problem formulation, instead being implicitly

defined by the condition Ṽ π,a ≥ Gπ,a(t, x). Once problem (5.5) has been solved (or

numerically approximated), the optimal stopping boundaries can simply be read off

from the solution by identifying where the function Ṽ π,a − Gπ,a switches from being
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positive to zero. The implicit treatment of the optimal stopping boundaries in (5.5)

means that any complex structure of the continuation and stopping regions will be

revealed as part of the solution. Indeed, this is exactly what we see below when a > 0,

where multiple stopping boundaries are identified.

To approximate the solution to (5.5) numerically, we discretise the problem using the

Crank-Nicolson differencing scheme and then solve the resulting system of equations

using the Projected Successive Over Relaxation (PSOR) algorithm. A more detailed

description of the PSOR method, along with proofs of convergence, can be found in

[8]. More details about the discretisation and implementation of the algorithm can

also be made available from the author upon request. Figure 3 shows the optimal

stopping boundaries obtained from our numerical procedure for various values of a

(both negative and positive).
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Figure 3: The optimal stopping boundaries (found numerically) for various a. On the left:

a = {−2.0, −1.0, −0.5} (solid lines) and α
√
1− t (dashed line). On the right: a = {0.2, 0.5,

1.0} (solid lines) and a+ α
√
1− t (dashed lines).

Let us first discuss the case where a > 0. As predicted, Figure 3 reveals that it

would never be optimal to stop before some critical time (for large enough a or small

enough π at least). Recalling that the optimal strategy for a Brownian motion with

positive drift is to wait until t = 1, it would appear that waiting to learn more about

the true nature of the process is optimal (at least initially). In addition, beyond some

critical time, we observe two disjoint continuation regions. Indicating that, depending

on the sample path experienced, it can be optimal to stop either after an increase in X

(i.e., after a p-ball has been drawn) or after a decrease in X (i.e., after an m-ball has

been drawn). Based on the terminology introduced in [18], we can interpret the former
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boundary as a too-good-to-persist boundary and the latter as a stop-loss boundary.

The emergence of an endogenous stop-loss boundary in the optimal stopping strategy

is a unique feature of the problem with uncertain pinning. Finally, we also observe that

both stopping boundaries lie above the corresponding boundary if pinning was certain

(given by a+ α
√
1− t). Indicating that when a > 0, stopping will happen later in the

presence of pinning uncertainty.

For the case where a < 0, we have the following remarks. Firstly, numerical

investigations suggest that it is never optimal to stop when x < 0, despite the negative

drift. Secondly, the optimal stopping strategy appears to be of the form τ = inf{s ≥
0 |Xt+s ≥ b̂(t+s)}∧(1−t) for some time-dependent boundary b̂. Further, b̂(t) appears

to converge to zero at t = 1, although it does not do so monotonically for all parameters.

Moreover, the boundary itself is not monotone in the parameter a, i.e. a 7→ b̂(t) is not

monotone. This behaviour is most likely due to the differing effects of a on the linear

drift of the Brownian motion and the pinning behaviour of the Brownian bridge.

Due to the existence of multiple stopping boundaries, and their observed non-

monotonic behaviour, further analytical investigation of the problem for a 6= 0 would

be challenging and is left for the subject of future research.
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