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ABSTRACT
A novel mechanism able to produce increasingly stable paths
for mobile robotic agents travelling over uneven terrain is
proposed in this paper. In doing so, cognitive agents can
focus on higher-level goal planning, with the increased confi-
dence the resulting tasks will be automatically accomplished
via safe and reliable paths within the lower-level skills of
the platform. The strategy proposes the extension of the
Fast Marching level-set method of propagating interfaces in
3D lattices with a metric to reduce robot body instability.
This is particularly relevant for kinematically reconfigurable
platforms which significantly modify their mass distribution
through posture adaptation, such as humanoids or mobile
robots equipped with manipulator arms or varying traction
arrangements. Simulation results of an existing reconfig-
urable mobile rescue robot operating on real scenarios illus-
trate the validity of the proposed strategy.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—autonomous ve-
hicles, kinematics and dynamics

General Terms
Algorithms, Performance

Keywords
Path Planning, Autonomous Agents, Cognitive Robots, Un-
even Terrain

1. INTRODUCTION
For cognitive mobile robots to be safely deployed in the

real world they must be able to deal with a large variety
of scenarios, predominantly characterised by having to op-
erate in terrains which are far from well-known, flat and
homogeneous. The dynamic nature of the environments hu-
mans inhabite also mean agent’s perceptions need to create
a representation of a world around them which is in constant
change, with abundant detailed information in some areas,
and sparse, uncertain observations in others. These are chal-
lenging characteristics on their own which have a strong in-
fluence on the robot’s ability to perform as planned. In this
work, automatic lower-level behaviours are proposed from
robot motion first principles to empower intelligent robotic
agents with the ability to focus on goal-oriented planning at
the higher-level, given the increased certainty the resulting
tasks will be executed via safely and reliable paths within

the constraints of the platform. This, in effect, follows the
abstract model that governs motion in cognitive thinking
where fine motor controls are administered spontaneously
in nature. For the specific case of reconfigurable robots op-
erating in uneven surfaces, it is most relevant the notion
that their kinematic configuration play a crucial factor in
the interaction between vehicle and terrain, and having the
ability to actively assume safer poses that reduce poten-
tial instabilities, such as those leading to vehicle tip-over,
is a desirable feature onto which the proposed behaviours
is based. Various stability criterions have been proposed
in the literature to analyse the qualitative performance of
robot stability, mostly with the aim of real-time short-term
tip-over monitoring, prediction and prevention, or off-line
trajectory optimisation. In this study, a stability measure is
also employed to provide a reliable measure for the stability
about each tip-over axis of the platform. However, based on
this analysis, a novel variational formulation of the classical
Fast Marching Method (FMM) is proposed to enhance the
safe traversability towards a given goal of the resulting path
over irregular terrain. The proposed automatic motion be-
haviours thus combine the remarkable computational prop-
erties of the wavefront propagation proposed by the FMM,
with the non-Euclidean metrics derived from the vehicle sta-
bility constraints, to extract goal-oriented traversable stable
paths for given three-dimensional representations of terrains.

In this work, the proposed planning strategy is illustrated
with the quasi-static model of the multi-tracked iRobot Pack-
Bot platform, mounted with an arm and a pan and tilt
sensor-head unit, as depicted in Figure 1. It is worth noting,
however, that the principles are equally applicable to other
reconfigurable plaforms with similar kino-dynamic constraints,
such as humanoid agents.

The remainder of this paper is organised as follows. Sec-
tion 2 summarises the mathematical framework of the FMM
planner employed in this work. Section 3 reviews the rele-
vant aspects of the proposed stability metric, followed by a
description of the robotic platform used in testing in Sec-
tion 4.Then, the proposed methodology for the solution to
planning stable behaviours is presented in Section 5. Exper-
imental results with simulated and real data are provided in
Section 6, including a discussion of perceived shortcomings.
Finally, Section 7 summarises the contribution of this paper.

2. LEVEL SET METHODS FOR PATH PLAN-
NING

The Fast Marching Method (FMM) [23] is an efficient nu-
merical method for solving boundary value partial differen-



Figure 1: The iRobot PackBot tracked robot fitted with the
Explorer arm, and the pan and tilt sensor payload unit.

tial equations in the general context of level set methods
for propagating interfaces. The FMM gives the evolution
of a continuous front wave in an inhomogeneous medium,
whose travel-time is governed by an (approximate) solu-
tion to a well-understood non-linear continuous mathemat-
ical formula known as the Eikonal equation. The minimal
length properties of the resulting geodesic paths have a wide
range of applications, including problems in fluid mechanics,
combustion, computer animation, image processing, or the
structure of snowflakes to name a few.

The extraction of shortest paths has been extensively sur-
veyed in the literature, and it is not the objective of this pa-
per. However, some background is hereby provided, which
is by no means comprehensive but for the benefit of con-
textualising the FMM. Probably the canonical method for
computing shortest paths on graphs or discretised settings
is Dijkstra’s algorithm [4]. To speed up the computations,
some heuristics have been proposed that reduced the search
space, and the A* algorithm is extensively used [14], par-
ticularly when a path from a given start point to a known
goal needs to be calculated in real-time. However, it should
be noted that A* requires different searches for each pair of
start and goal points. Other tree-search strategies, such as
IDA* [9], have also been proposed. For the case of Euclidean
metrics, the exploitation of specific data structures have also
given rise to faster algorithms, such as visibility graphs [21].
Despite saving in processing time, in general terms a notable
constraint of these discrete-computation methods is the need
of “smoothing” operators to produce realistic paths, as the
solutions need to follow existing gridding connections. It is
clear that the breadth-first nature of the FMM search has
an undeniable weakness in the computing overhead when
compared with other methods. In contrast, it also exhibits
a number of strengths which make it rather attractive to ex-
tract geodesics, particularly for three-dimensional data sets :
it can be used with non-Euclidean (and continuous) metrics,
it can find geodesic paths that follow arbitrary directions,
and it is guaranteed to find the optimal paths to each and
every one of the units defining the search space, a particu-
larly precious resource in active exploration.

Alternatives to save processing time by heuristically re-
stricting the FMM front propagation between a given pair
of points have also been proposed [16].

2.1 The Fast Marching Method (FMM)
The following is a brief description of the principal charac-

teristics of the FMM. For a detailed description, the reader
is referred to [23].

The FMM has been typically applied in problems which
deal with evolving fronts, such as seismology. The anal-
ogy with seismic theory is rather effective to understand the
fundamentals of the FMM [20]. Topographic terrains pro-
vide information about elevation of the surface above sea
level by contour lines. Each point on a contour line has the
same elevation, so a contour line represents an equipotential
curve. A set of contour lines tells the trained interpreter
the shape of the terrain: hills are represented by concen-
tric loops, stream valleys by vees, steep slopes have closely
spaced contour lines, gentle slopes have widely spaced con-
tour lines. The contour interval is the elevation difference
between adjacent contour lines. Using an analogy with grav-
itational fields, the contour lines on a topographic map are
lines of constant elevation above sea level and hence of con-
stant gravitational potential energy. If a ball is let free to
roll down a mountain, it will follow a path perpendicular to
the contour lines, i.e., down the steepest descent or nega-
tive gradient. So if contour lines could be measured before
releasing the ball, the path the ball would follow down the
mountain could be predicted, as the downward path is the
curve of steepest slope or negative gradient.

In seismic theory, the travel-time distance surface T (x) is
a function of the spatial terrain coordinates that is analo-
gous to the potential, whereas its contour curve represents
the propagating wavefronts. The gradient vector is perpen-
dicular to the contour curve, and its magnitude indicates
the steepness of the slope. The geodesic curve r(t) traced
out by the seismic energy vector moves in such a manner
that its direction at any point coincides with the direction of
the gradient at that point. The FMM makes use of the fact
that this motion relationship satisfies the non-linear Eikonal
equation, which in scalar form is given by:

‖ ∇T (x) ‖= s(x) (1)

where the left side implies the wavefront of the potential,
and the right side the reciprocal of the seismic velocity, or
slowness, a weighting factor dictated by the given terrain.

Hence, given s(x), the weighted geodesic distance between
two points x0, x1 ∈ R

d can be defined as

d(x0, x1) = min
r

(

Z

1

0

‖ r(t) ‖ s(r(t)) dt) (2)

where r(0) = x0 and r(1) = x1. It is worth noting that
when s = 1, the integral in (2) corresponds to the length
of the curve r(t) and therefore d is the classical Euclidean
distance.

The key feature behind the FMM is a careful selection of
the grid points when evaluating the travel time. This order
is based on the causality relationship, which states that the
arrival time t at any point depends only on the neighbours
that have smaller values. During the evolution of the front,
each grid point x is assigned one of the three possible tags:

1. Known: the computed travel time at x will not be
changed later.

2. Narrow-Band (or trial set): the computed travel time
at x may be changed later.

3. Far-Away: the travel time at x is not yet computed
and initially set with infinitely large travel-times.



Figure 2: Update of the wavefront propagation time.

as depicted in Figure 2 for a 2D grid example [5]. The
procedure to update T (x) for a given point xi is based on the
upwind first-order approximation to solve (1), a quadratic
equation given by:

X

j

=

„

T (xi) − T (xj)

∆xij

«2

= s
2(xi) (3)

where j is the (variable) number of neighbouring points
and ∆xij the grid size in the ij direction (depends on the
dimensionality of the problem).

In simple terms, all initial points (one in case of the front
emanating from a single point, some other arbitrary shape
otherwise) are tagged as Known. Then, their nearest neigh-
bours are tagged as Narrow-Band after computing their ar-
rival time by solving (3) and the fact that a grid’s point ar-
rival time gets updated by neighbouring points with smaller
travel-times only. This monotonicity property allows for the
maintenance of a small Narrow-Band of candidate points
around the front representing its outward motion.

As a result of the updating, either a Far-Away point is
marked as Narrow-Band, or a Narrow-Band is assigned a
new value. When all points have been visited (and unlike
other front propagation algorithms each grid point is visited
only once [3]), the geodesic curve can then be computed by
the back-propagation of the steepest gradient descent. Note
that this is a local computation, and only uses the value of
T (x) for a small fraction of the visited grid points, all located
within the Known set at the end of the front propagation
procedure. An example of the evolution of the FMM on a
2D environment with walls and empty rooms is depicted in
Figure 3. It can be observed how the resulting path is not
necessarily the safest but the shortest one.

3. STABILITY METRIC
There have been a number of propositions to address the

issue of stability in mobile robots. Some research has focused
on the analysis of the robot’s Centre of Gravity (CoG) to
find suitable controls to cope with specific scenarios like over-
coming obstacles and small ditches [25] or climbing stairs [1].

Figure 3: Shortest FMM path on a 2D scenario.

A multi tracked robot on a steep slope was examined in [24]
to determine boundaries for the CoG and came up with a
strategy to traverse a given slope. A stability margin mea-
sure was introduced in [18] to estimate the predicted time
until tip-over for large mobile manipulator robots, such as
forestry vehicles. They also recommended stabilising steps
by using certain actuators. A real-time rollover protection
strategy based on whole-body touch sensors that are embed-
ded in the tracks of the robot and an energy stability margin
that serves as an indicator for jeopardised robot configura-
tions have also been developed [8]. Stabilising actions to
protect the robot from rolling over based upon empirical
flipper movement were also proposed.

More general approaches for the stability control of recon-
figurable mobile robots which also take into account other
constraints such as traction optimisation have been pro-
posed [22], [2]. In both works, the original Force-Angle
Stability Margin (FASM) [17] was used. In [22], the perfor-
mance index considered the stability measure for each poten-
tial tip-over axis and the nominal values of the joints. The
minimisation of this performance index provided the most
favourable configuration of the robot. The combination of
the stability measure with an artificial potential field to ob-
tain the demanded actuator values was used in [2]. Both
works are however inadequate for certain robot configura-
tions, or in general for robots with low CoG. The stability
measure employed considers the angle between the vector
through CoG and tip-over axis and the vector of the result-
ing force through the CoG. This may be sufficient for a robot
with relatively high and not significantly changing CoG, but
is not representative for the actual stability in many other
cases, as will be further discussed in Section 3.1.

Stability Margins have been playing a decisive role in the
history of walking robots. The static stability of a walk-
ing vehicle were examined for the first time in 1968 [11].
It was claimed that the vehicle was stable if the horizon-
tal projection of the CoG lay within the support polygon
that is formed by the contact points between vehicle and
ground. The corresponding Static Stability Margin (SSM)
was defined as the smallest distance between the projected
CoG and the edge of the polygon. The SSM was later
adapted to uneven terrain and slightly modified to reduce
the complexity of calculation [12]. The main disadvantage
of these purely projective-based approaches was the insensi-
tivity to the height of the CoG. The Energy Stability Mar-
gin (ESM) [13] solved this problem by determining the po-
tential energy that was needed to tumble the vehicle and
represents a reliable static stability margin. This measure



was normalised [6] to obtain a more general and meaningful
measure of stability.

Dynamic effects introduced through accelerations of the
whole vehicle or certain components were firstly addressed
in [15]. The author presented an extension of the SSM where
the CoG was projected onto the support polygon along the
vector of the resulting force through the CoG. The resulting
forces included dynamic effects, and the system was stable
as long as the projection lay within the polygon. Other
works referred to this point as the Zero Moment Point [7]
where the resulting moment due to reaction forces and mo-
ments vanishes. The momentum-based Dynamic Stability
Measure [10] was equal to the smallest of all moments about
the edges of the support polygon that prevented the vehicle
from tipping over, calculated on the basis of reaction forces
and moments. The FASM, proposed by Papadopoulos and
Rey [19], also covered dynamical changes in the robot con-
figuration and was subject to external forces and moments,
but had a more simplistic geometric interpretation and thus
could be more easily computed. It constitutes a more suit-
able stability measure for mobile robots/manipulators and is
the metric employed in this work. It was introduced in two
different versions, which are briefly reviewed in Section 3.1
to better understand the influence of the CoG’s height in the
performance of the measure for platforms that can signifi-
cantly reposition their centre of mass to improve stability in
uneven terrains.

3.1 The Force-Angle Stability Margin (FASM)
The FASM measure β was first proposed in 1996 [17] as

β = min(θi‖fi‖) (4)

where fi is the net force (including all static and dynamic
forces, as well as moments) contributing to a potential roll-
over about a particular tip-over axis ai. The tip-over axes ai

are given as the lines between m arbitrary supporting points
pi, i = {1, .., m}

ai = pi+1 − pi, i = {1, .., m − 1} (5)

am = p1 − pm (6)

θi is the angle between fi and the tip-over axis normal
through the tip-over axis and the CoG. Figure 4 illustrates
these parameters in a two dimensional example, where a1

and a3 are perpendicular to the paper representing the tip-
over axes through p1/p2 and p3/p4 respectively.

The revised version of FASM was published in 2000 [19]
and besides fi and θi also included di, the distance between
ai and fi as

β = min(θi ‖di‖ ‖fi‖) (7)

This enables the metric to become sensitive to varying
heights of the CoG. The greater the value of the stability
measure βi, the more stable the vehicle becomes in terms
of tipping over about the given axis. Negative values of the
measure indicate an occurring tip-over instability.

The tip-over axis normal li that intersects the CoG is given
by

li = (I − âiâ
T

i )(pi+1 − pCoG) (8)

where âi is the normalised vector of ai, pCoG is the position
of the CoG and I is the 3 × 3 identity matrix.

Given fr, the net force acting on the CoG which includes
gravitational, external and inertial forces, and nr, the net
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Figure 4: Example FASM in 2D.

moment encompassing all external and inertial moments
about the CoG axis, the effective net force fi that contributes
to a potential tip-over about one specific axis ai can be de-
termined by

fi = (I − âiâ
T

i )fr +
l̂i × ((âiâ

T

i )nr)

‖li‖
(9)

The first term considers the part of the net force perpen-
dicular to the tip-over axis. The second term considers the
moment that participates about the tip-over axis, converted
into an equivalent force couple, where one member of the
couple passes through the CoG and thus can be added to
the net force, whereas the other member passes through the
tip-over axis and hence does not contribute to fi.

The angle θi for each tip-over axis can then be computed
by

θi = σi cos−1(f̂îli) (10)

where

σi =



+1 (f̂i × l̂i)âi > 0
−1 otherwise

(11)

The revised FASM also requires the shortest distance di

between ai and fi, which can be obtained by adding the
projection of li on fi to negative li, i.e.

di = −li + (lTi f̂i) f̂i (12)

For more details on these derivations, the reader is referred
to [19].

3.2 Normalisation
The stability measure for a given configuration is nor-

malised over the most stable robot pose. Normalisation fa-
cilitates the general interpretation of the stability measure
independently of the vehicle type and permits meaningful
comparisons based on the stability measures, for different
vehicles or for different terrains, an important factor in this
work. The normalised measure β̂i is given by:

β̂i =
βi

βnorm

(13)

where βnorm is chosen to be the stability criterion for the ve-
hicle in the horizontal position, with arm and flippers folded
for the case of the PackBot robot.
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Figure 5: Surfaces defined by the contact points used to calculate the robot Centre of Gravity.

4. ROBOT MODEL
The PackBot robot depicted in Figure 1 was the platform

employed to validate the practical aspects of this research. It
consists of a skid-steer vehicle base, equipped with two front
flippers that enable the robot to traverse obstacles and rough
terrain. A manipulator arm attaches to the vehicle base via
a 1 Degree of Freedom (DoF) shoulder joint. It carries a
2-DoF pan-and-tilt unit equipped with several cameras and
lights. An additional sensor head unit is also mounted on top
of the arm head to enhance the Search and Rescue capabili-
ties of the robot in its navigational and victim identification
activities. It incorporates a laser scanner, a 3D time-of-flight
camera and a thermal camera. The robot is battery powered
and features two battery compartments on its left and right
hand side. Communication with the operator control unit is
wireless.

A modelling of the robot serves as the foundation for the
application of the FASM. As expressed in (9), this is cap-
tured via the computation of the CoG based on the robot
posture and the consideration of the dynamic effects that
arise during robot motion. The CoG obtained in the robot
frame is given by:

R
CoG =

Pn

i=1
pmimi

mtot

(14)

where pm,i is the position of the lumped mass mi and mtot

is the total robot mass.
The influence of head panning and tilting on the robot’s

CoG is very small in comparison to the effects that arise from
the position of the arm and flippers, and have therefore been
neglected here. Thus, the arm and the flipper poses are the
key reconfigurable DoFs considered. While the formulation
allows for full dynamic effects to be readily incorporated, as
the rover is operated at very low speeds in Search and Rescue
operations only results with static forces are presented in
this work.

The platform is assumed to make contact with the surface
at four equidistant points. They are assumed to be length-
wise symmetrical, depicting two possible convex quadrilat-
eral contact surface as shown in Figure 5. Two contact
points are always fixed at the robot base rear sprocket. As
flippers operate simultaneously on the PackBot, the other
two contacts are chosen based on the flipper pose. When the
flippers touch the ground the front contact is at the flipper’s

front sprockets, defining an isosceles trapezoid as depicted
in Figure 5b. When the flippers do not interact with the
terrain, the front contact is assumed to be at the robot base
front sprockets, thus describing a rectangular area, as shown
in Figure 5a. The connecting lines between the ground con-
tacts represent the tip-over axes ai, i = {1, .., 4}.

5. THE STABLE FMM ALGORITHM FOR
PLANNING IN 3D LATTICES

Incorporating the computations for the stability of the
robot described by (13) into the FMM path planning frame-
work constitutes the main proposition of this paper. By
encouraging the robot to move along paths of higher stabil-
ity instead of arbitrary metrics, as those illustrated in Fig-
ure 6, the planning stage is shifted towards finding paths
that quantitatively aim to guarantee the stability of the
robot for a given terrain.

This has been accomplished by merging the stability mar-
gins into the FMM potentials through the environmental
slowness factor s(x) in (1). The steps are as follows: the
set of data points that represent the terrain to be traversed
by the robot is first tessellated using Delaunay triangulation
(see, for example, Figure 7a). Among other possible trian-
gulation alternatives, Delaunay is preferred for mesh gen-
eration as it maximises the minimum triangulation angles.
In practice, this means that no data points are contained
in the circles circumscribing each triangle. It is assumed in
this work that each planar tessellate is sufficiently large to
span the robot contact points with the terrain. Having ob-
tained the global virtual slope for each surface in the mesh,
the elevation and bank angles of the robot at an arbitrary
number of possible orientations within can be calculated for
the entire environment, and fed as required to the FASM.
Four orientations aligned with the mesh surface have been
computed in the results presented here, although finer orien-
tations are equally attainable. An example of the resulting
environment potential for the artificial terrain shown in Fig-
ure 7a is depicted in Figure 7c, where colour-coding has been
used to visualize the best of the stability margins for the four
robot poses considered here, or black if the robot is found
to be unstable in the given lattice. Blue equals North, yel-
low represents South, green is East and red represents West.
This terrain representation is then employed by the FMM to
propagate the wavefront and find the optimally stable paths.



Figure 6: FMM paths (in yellow) on the same 3D real scenario with two potentials: traditional shortest topographical path
on the left, and with an arbitrary vertical displacement penalty on the right.

6. RESULTS AND ANALYSIS
A couple of examples are provided to show the proposed

algorithm in operation. Results depicted in Figure 7 have
been artificially created to better illustrate the advantages
of the proposed metric. A ramp has been added to a walled
environment. It can be seen how the standard wavefront
propagation would miss the preferred route, as it is not the
shortest path, jeopardising the balance of the platform over
the wall. A specific potential for this terrain could also be
found that would follow the exit ramp, for instance penalis-
ing large discontinuities. However, this is not necessarily a
measure applicable to all environments. On the other hand,
the proposed methodology is able to exploit robot recon-
figurations along the geodesic path in a generalised way to
confidently derive stable paths.

The algorithm has also been applied to cloud data ob-
tained from the range camera mounted on the Packbot, de-
ployed in traditional search and rescue test scenarios such as
those depicted in Figure 9. Results representative of those
obtained are collected in Figure 8, where it can be seen how
the proposed planner is able to come up with more stable
(if generally longer) paths than those where no stability is
accounted for.

The planning mechanism hereby presented constitutes a
formalisation of a stability metric to supplement geometric
planning. Being intrinsically based on a weighting factor, it
is important to raise awareness about the sensitivity of the
solution to variations in gridding or the choice of stability
scaling, both of which would results in different paths. While
the results are encouraging in that suitable stable geodesic
paths are computed in a practical manner, this is neverthe-
less an issue that needs to be further investigated as there
is no known generalised solution to overcome this limitation
at this stage.

7. CONCLUSIONS AND FUTURE WORK
Motion planning behaviours aimed at improving the safe

deployment of mobile robotic agents when operating in un-
even terrain has been proposed in this work. The ultimate
objective is to be able to reliably relinquish higher-level goal-
oriented cognitive planners of having to account for such low-

(a) Shortest geodesic. (b) Most stable geodesic 3D.

(c) Stability map. (d) Most stable geodesic 2D
view.

Figure 7: Example of stable geodesic paths on a simulated
data set.
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Figure 8: Example of stable geodesic paths on real point cloud.

Figure 9: UTS Urban Search and Rescue (USAR) test arena.

level mobility skills in their motion schedules, effectively fol-
lowing the abstract model of human beings where fine motor
controls are reactive in nature. The methodology is partic-
ular applicable, although not restricted to, reconfigurable
platforms that can actively engage in safer poses to reduce
potential instabilities, such as those leading to vehicle tip-
over. This is for instance the case in humanoids, or the large
variety of smaller HRI robotic agents endowed with manipu-
lator arms for increased dexterous interaction with environ-
ments designed by and for humans. A variational compu-
tation based on the Force-Angle Stability Measure (FASM)
has been proposed in combination with the Fast Marching
level set Method (FMM) to reliably generalise robot instabil-
ities and derive more balanced paths for the robot to follow.
Simulations with real and artificial 3D data sets have been
provided to demonstrate the performance of the algorithm
for a rescue vehicle operating in rough terrain. Future work
includes accounting for full dynamics and the addition of
other parameters known to jeopardise reliable operations,

such as slippage. Integration with a higher-level cognitive
planner for a mobile robotic agent fitted with a manipulator
arm is also underway within the realm of a typical urban
environment where the existence of objects of interest at
varying heights, stairs, ramps, curbs, and the like will hope-
fully demonstrate the effectiveness of the proposed motion
planning strategy for enhanced human robot interactions.
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