SCHEDULING WITH TWO TYPES OF PENALTIES UNDER UNCERTAINTY AND ITS APPLICATION TO MAINTENANCE PLANNING

Hue Chi (Trudy) Lam Supervisors: Hanyu Gu, Yakov Zinder

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney

November 2022

Certificate of Original Authorship

I, Hue Chi (Trudy) Lam declare that the thesis titled "Scheduling with two types of penalties under uncertainty and its application to maintenance planning", is submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the School of Mathematical and Physical Sciences/Faculty of Science at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Name: Hue Chi (Trudy) Lam

Production Note: Signed: Signature removed prior to publication.

Date: 12 April 2022

Abstract

This thesis studies a number of combinatorial optimization problems with uncertainty, which have applications in the fields of maintenance planning. In particulars, the research in Chapter 3 was conducted as part of the project with a major maintenance center, and Chapter 5 considers a maintenance planning problem faced by a French electricity transmission system operator. The problem was subject of the recent ROADEF/EURO challenge 2020 competition.

This thesis is comprised of several chapters. Chapters 1 and 2 introduce the thesis topics and provide the literature survey, respectively. Chapter 3 focuses on developing maintenance plans for a fleet of passenger trains. The key feature of our model is that it considers the uncertain duration of maintenance, the center's engineering restrictions, and the rail operator's operational requirements. We propose a Genetic Algorithm, an Iterated Local Search, and a hybrid two-stage optimization procedure that combines Jensen's Inequality based relaxation with Iterated Local Search to solve the problem.

Chapter 4 focuses on improving the utilization of resources when scheduling jobs that share multiple resources. The motivation for this research comes from scheduling problems that arise in healthcare and rolling stock maintenance services. The problem is distinct from the problem in Chapter 3: the processing of each job requires several types of resources; and the penalty for capacity violation is calculated based on not only the capacity of resource but also an upper bound on the resource expansion. The solution approaches presented in Chapter 3 cannot be directly applied to this problem because their performances rely on having a good-quality initial solution produced by an exact method. We instead propose a Genetic Algorithm enhanced by local search and present a method for assessing solution quality based on Sample Average Approximation. Chapter 5 is concerned with a large-scale planning problem arising in the maintenance of power distribution grid. Due to the extreme hazards involved when performing maintenance operations on the high-voltage lines, individual transmission lines have to be shut down for the duration of maintenance. The goal is to build intervention schedules that minimize the impact of planned outages on the reliability of power networks. A unique feature of this problem is that the duration, resource consumption, and risk value of an intervention depend on when it starts. Using the problem instances provided by the ROADEF competition, we demonstrated the effectiveness of the proposed Iterated Local Search with self-adaptive perturbation and obtained the 2nd prize.

Acknowledgements

I would like to start by expressing my sincere gratitude to Dr Hanyu Gu for giving me the opportunity to conduct the research under his supervision. This research would not have been possible without his guidance and advice, as well as the scholarly discussions that have sharpened my thinking and enhanced my knowledge in the area of Operations Research. I would like to thank Professor Yakov Zinder for his advice on my writings and his time and patience in answering my questions. Conversations with Professor Zinder have always encouraged me to challenge my ideas and claims and allowed me to think further than what meets the eyes.

My special thank to the Faculty of Science for providing the HDR fund, which supported me financially to attend two international conferences. The 9^{th} Manufacturing Modelling, Management and Control Conference (MIM), which was held in Berlin, Germany, in August 2019. The 6^{th} International Conference on Computer Science, Applied Mathematics, and Applications (ICCSAMA) was held in Hanoi, Vietnam, in December 2019. During my time in Hanoi, I have also had the chance to visit the Operations Research Laboratory (ORLab) at the University of Engineering and Technology, Vietnam National University. I would like to thank Dr Minh-Hoang Ha for giving me this opportunity and to the members of ORLab for taking the time to work with me and show me around Hanoi.

I gratefully acknowledge the Computational facilities provided by the UTS eResearch High Performance Computer Cluster.

I wish to thank my fellow doctoral students for their encouragement and support at various stages of my graduate study. The shared jokes and occasional drinks after work before lockdown have made this challenging but rewarding PhD journey less stressful and more enjoyable. I am indebted to my family, who has supported me through the most challenging

time, especially my parents in Vietnam, who constantly assured me that the PhD study is completely worth it despite not understanding what my research was. It is to my family that I dedicate this thesis.

Contents

\mathbf{C}	ertifi	cate of	f Original Authorship	i
A	bstra	nct		ii
A	ckno	wledge	ements	iv
Li	ist of	Figur	es	ix
Li	ist of	' Table	S	xii
1	Intr	roduct	ion	1
	1.1	Plann	ing of Rolling Stock Maintenance	2
	1.2	Sched	uling of Jobs Sharing multiple Resources	4
	1.3	Plann	ing of Grid Operation-based Outage Maintenance	5
	1.4	Contra	ibutions	7
2	Lite	erature	e Review	11
	2.1	Stocha	astic Programming	11
		2.1.1	Stochastic programs with recourse	12
		2.1.2	Solution methods	14
		2.1.3	Sample Average Approximation	15
	2.2	Metah	neuristic	16
		2.2.1	Genetic Algorithm	17

		2.2.2	Iterated Local Search	19
	2.3	Plann	ing of Rolling Stock Maintenance	20
	2.4	Sched	uling Jobs Sharing Multiple Resources	23
	2.5	Plann	ing of Grid Operation-based Outage Maintenance	26
3	Pla	nning	of Rolling Stock Maintenance	29
	3.1	Introd	luction	29
	3.2	Mathe	ematical Programming Formulation	33
		3.2.1	Nonlinear Integer Programming Formulation	37
		3.2.2	Evaluation of the Objective Function	37
		3.2.3	Integer Linear Programming Relaxation based on Jensen's Inequality	40
	3.3	Genet	ic Algorithm Approach	43
		3.3.1	The decoding procedure	45
		3.3.2	Evolutionary process	46
	3.4	Genet	ic Algorithm based Matheuristic	50
	3.5	Hybri	d Two-stage optimization Procedure	53
		3.5.1	Mixed Integer Linear Program MILP	55
		3.5.2	Local Search Subroutines	56
		3.5.3	Iterated Local Search	62
	3.6	Comp	utational Results	64
		3.6.1	Comparison of GA and GA-based matheuristic	66
		3.6.2	Comparison of the Performance of MIPM and MILP	69
		3.6.3	Comparison of Hybrid ILS and Multi-start ILS	71
		3.6.4	Visualization of Quality of Arrival Plan	76
	3.7	Summ	nary	78
4	Sch	edulin	g of Jobs Sharing multiple Resources	79
	4.1	Introd	luction	80

	4.2	Mixed	l integer linear programming formulation	82
		4.2.1	Mixed integer linear program	82
		4.2.2	Evaluation of the objective function	85
	4.3	Samp	le Average Approximation	87
	4.4	Hybri	d Genetic Algorithm	89
		4.4.1	Representation of chromosome and definition of fitness function	91
		4.4.2	Parent selection and crossover	92
		4.4.3	Mutation	93
		4.4.4	Local search method	93
	4.5	Comp	utational Results	95
		4.5.1	Generation of test instances	96
		4.5.2	HGA parameter setting	97
		4.5.3	Comparisons between the proposed HGA and CPLEX on small prob- lem instances	97
		4.5.4	Performance evaluation of the proposed HGA on large problem instance	es 99
		4.5.5	Sensitivity analysis	101
	4.6	Summ	nary	105
5	Pla	nning	of Grid Operation-based Outage Maintenance	106
	5.1	Introd	luction	107
	5.2	Mathe	ematical programming formulation	109
		5.2.1	Notations	109
		5.2.2	Objective function	110
		5.2.3	Mixed integer linear programming formulation	113
	5.3	Appro algori	eximation of quantile term in objective function and iterative updating thm	115
	5.4	Confid	dence method approaches	119
	5.5	Iterat	ed local search	122
		5.5.1	Subroutine INITIAL	125

Bi	Bibliography 154			
	6.2	Future	Work	150
	6.1	Summ	ary of Work	146
6	Con	Conclusion		146
	5.7	Summ	ary	144
		5.6.4	Comparison of the ILS with benchmark results	140
		5.6.3	CM-heuristic vs. cs-CM heuristic	138
		5.6.2	Evaluation of the IterUpdate algorithm	136
		5.6.1	Model MILP vs. Model A-MILP	135
	5.6	Compu	utational results	133
		5.5.3	Subroutines PERTURB_SHIFT and PERTURB_SWAP	131
		5.5.2	Subroutine SEARCH	126

List of Figures

3.1	Random key encoding example. Each train-set is assigned a random number	
	generated according to the uniform distribution $U(0,1)$, which determine its	
	priority in the decoding procedure. Here, train-set 2 has the highest priority,	
	followed by train-set 1, 5, 3, and train-set 4 will be the last	45

3.2	Resource-based crossover example. The crossover operator takes the gene	
	values 0.41 and 0.05 from the father chromosome and places them in the	
	same position in the child chromosome. The crossover operator fills in the	
	missing gene values in the remaining places in the order they are defined in	
	the mother chromosome. A big enough number (i.e., 5000) is then added to	
	the genes indexed 2 and 3 to give the values 5000.41 and 5000.05	48

3.3 Two-point crossover example. Two crossover points $t_1 = 1$ and $t_2 = 4$ are selected. The values of genes 2, 3, and 4 are obtained from the father chromosomes, whereas the values of genes 1 and 5 are obtained from the mother chromosomes.

49

	(a)	77
	(b)	77
4.1	Example of the half-uniform crossover.	92
4.2	Change in the objective function value with number of generations of the hybrid GA on the pilot set of (a) small problems and (b) large problems	97
	(a)	97
	(b)	97
5.1	An example of the interventions having (left) positive and (right) negative slopes. Given a time t and $\tau = 0.8$, in the left figure, we have $Q_{\tau}^t = 128$ and $\hat{Q}_{\tau}^t = Q_{1,\tau}^t + Q_{2,\tau}^t = 69 + 59 = 128$. In the right figure, we have $Q_{\tau}^t = 128$ and $\hat{Q}_{\tau}^t = Q_{1,\tau}^t + Q_{2,\tau}^t = 69 + 59 = 128$	116
5.2	An example of the interventions having both positive and negative slopes. Given a time t and $\tau = 0.8$, we have $Q_{\tau}^t = 107$ but $\hat{Q}_{\tau}^t = Q_{1,\tau}^t + Q_{2,\tau}^t = 59 + 73 = 132$.	117
5.3	one-shift evaluation.	129
5.4	two-swap evaluation.	130
5.5	Convergence of the approximate Z_2 to the true Z_2	137

List of Tables

3.1	Parameters for the train types	65
3.2	Parameters of probability distribution for cycle time by train types	65
3.3	Assignment of α and β for all the cases	66
3.4	Comparison of the performance of GA and GA-based matheuristic	67
3.5	Analysis of the performance of GA-based matheuristic with $\Gamma \in \{1, 5, 10\}$, when the algorithm is run in 1800 seconds.	68
3.6	The number of generations performed to produce the solutions in Table 3.5.	68
3.7	Performance of GA-based matheuristic with $\Gamma \in \{1, 5, 10\}$ for Case 1, when the algorithm is run for 40 generations	68
3.8	Comparison of the performance of MIPM and MILP $\ldots \ldots \ldots \ldots$	69
3.9	Improvements in solution quality of MIPM and MILP by the local search LS1.	70
3.10	Improvements in solution quality of MIPM and MILP by the sequential local search SLS	70
3.11	Summary of the eight algorithms used in Section 3.6.3	72
3.12	Performance of hybrid ILS with LS1 and $LS1'$	73
3.13	Performance of hybrid ILS with SLS and SLS'	73
3.14	Performance of multi-start ILS with LS1 and LS1 [']	74

3.15	Performance of multi-start ILS with SLS and SLS'. \ldots \ldots \ldots \ldots \ldots	74
3.16	Summary of the effects of the different neighborhoods.	75
3.17	Comparison between the performance of all solution approaches	75
4.1	Comparison of the exact method and the proposed hybrid GA on small instances	. 98
4.2	Summary of results for hybrid GA on large instances.	100
4.3	The 95% confidence interval (CI) for the optimality gap at $\hat{\mathbf{x}}$, where $\hat{\mathbf{x}}$ is the best solution obtained from the hybrid GA.	101
4.4	The 95% confidence interval (CI) for the optimality gap at $\hat{\mathbf{x}}$, where $\hat{\mathbf{x}}$ is the best solution obtained from the hybrid GA (continue).	102
4.5	Sensitivity analysis on the performance of SAA and HGA with H for instance 80-5-2 ⁸⁰ -S2.	103
4.6	Sensitivity analysis on the performance of SAA and HGA with ψ for instance 80-5-2 ⁸⁰ -S2.	104
4.7	Sensitivity analysis on the performance of HGA with λ_m and λ_c for large instances, in terms of solution quality and time.	104
5.1	Instances characteristics in ROADEF/EURO challenge 2020	134
5.2	Comparison of models MILP and A-MILP on dataset A instances	135
5.3	Summary of $\beta_t^0, t \in T$ for the IterUpdate algorithm on four datasets	137
5.4	Results obtained by CM-heuristic and cs-CM heuristics for dataset A	139
5.5	Results obtained by CM-heuristic and cs-CM heuristics for dataset B	140
5.6	Results obtained by CM-heuristic and cs-CM heuristics for dataset C	140
5.7	Results obtained by CM-heuristic and cs-CM heuristics for dataset X	140
5.8	Performance of ILS on dataset A instances	141

5.9	Performance of ILS on dataset B instances	142
5.10	Performance of ILS on dataset C instances	142
5.11	Performance of ILS on dataset X instances	143