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Abstract

This thesis studies a number of combinatorial optimization problems with uncertainty, which
have applications in the fields of maintenance planning. In particulars, the research in Chap-
ter 3 was conducted as part of the project with a major maintenance center, and Chapter 5
considers a maintenance planning problem faced by a French electricity transmission system
operator. The problem was subject of the recent ROADEF/EURO challenge 2020 competi-
tion.

This thesis is comprised of several chapters. Chapters 1 and 2 introduce the thesis topics
and provide the literature survey, respectively. Chapter 3 focuses on developing maintenance
plans for a fleet of passenger trains. The key feature of our model is that it considers
the uncertain duration of maintenance, the center’s engineering restrictions, and the rail
operator’s operational requirements. We propose a Genetic Algorithm, an Iterated Local
Search, and a hybrid two-stage optimization procedure that combines Jensen’s Inequality
based relaxation with Iterated Local Search to solve the problem.

Chapter 4 focuses on improving the utilization of resources when scheduling jobs that share
multiple resources. The motivation for this research comes from scheduling problems that
arise in healthcare and rolling stock maintenance services. The problem is distinct from the
problem in Chapter 3: the processing of each job requires several types of resources; and
the penalty for capacity violation is calculated based on not only the capacity of resource
but also an upper bound on the resource expansion. The solution approaches presented in
Chapter 3 cannot be directly applied to this problem because their performances rely on
having a good-quality initial solution produced by an exact method. We instead propose
a Genetic Algorithm enhanced by local search and present a method for assessing solution
quality based on Sample Average Approximation.
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Chapter 5 is concerned with a large-scale planning problem arising in the maintenance of
power distribution grid. Due to the extreme hazards involved when performing maintenance
operations on the high-voltage lines, individual transmission lines have to be shut down for
the duration of maintenance. The goal is to build intervention schedules that minimize the
impact of planned outages on the reliability of power networks. A unique feature of this
problem is that the duration, resource consumption, and risk value of an intervention depend
on when it starts. Using the problem instances provided by the ROADEF competition,
we demonstrated the effectiveness of the proposed Iterated Local Search with self-adaptive
perturbation and obtained the 2nd prize.
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