
SCHEDULING WITH TWO TYPES OF PENALTIES
UNDER UNCERTAINTY AND ITS APPLICATION TO

MAINTENANCE PLANNING

Hue Chi (Trudy) Lam

Supervisors: Hanyu Gu, Yakov Zinder

A thesis submitted in fulfillment of the requirements for the degree of
Doctor of Philosophy

School of Mathematical and Physical Sciences
Faculty of Science

University of Technology Sydney

November 2022

Certificate of Original Authorship

I, Hue Chi (Trudy) Lam declare that the thesis titled “Scheduling with two types of penalties
under uncertainty and its application to maintenance planning ”, is submitted in fulfillment
of the requirements for the award of Doctor of Philosophy, in the School of Mathematical
and Physical Sciences/Faculty of Science at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition,
I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Name: Hue Chi (Trudy) Lam

Signed:

Date: 12 April 2022

i

Production Note:

Signature removed prior to publication.

Abstract

This thesis studies a number of combinatorial optimization problems with uncertainty, which
have applications in the fields of maintenance planning. In particulars, the research in Chap-
ter 3 was conducted as part of the project with a major maintenance center, and Chapter 5
considers a maintenance planning problem faced by a French electricity transmission system
operator. The problem was subject of the recent ROADEF/EURO challenge 2020 competi-
tion.

This thesis is comprised of several chapters. Chapters 1 and 2 introduce the thesis topics
and provide the literature survey, respectively. Chapter 3 focuses on developing maintenance
plans for a fleet of passenger trains. The key feature of our model is that it considers
the uncertain duration of maintenance, the center’s engineering restrictions, and the rail
operator’s operational requirements. We propose a Genetic Algorithm, an Iterated Local
Search, and a hybrid two-stage optimization procedure that combines Jensen’s Inequality
based relaxation with Iterated Local Search to solve the problem.

Chapter 4 focuses on improving the utilization of resources when scheduling jobs that share
multiple resources. The motivation for this research comes from scheduling problems that
arise in healthcare and rolling stock maintenance services. The problem is distinct from the
problem in Chapter 3: the processing of each job requires several types of resources; and
the penalty for capacity violation is calculated based on not only the capacity of resource
but also an upper bound on the resource expansion. The solution approaches presented in
Chapter 3 cannot be directly applied to this problem because their performances rely on
having a good-quality initial solution produced by an exact method. We instead propose
a Genetic Algorithm enhanced by local search and present a method for assessing solution
quality based on Sample Average Approximation.

ii

iii

Chapter 5 is concerned with a large-scale planning problem arising in the maintenance of
power distribution grid. Due to the extreme hazards involved when performing maintenance
operations on the high-voltage lines, individual transmission lines have to be shut down for
the duration of maintenance. The goal is to build intervention schedules that minimize the
impact of planned outages on the reliability of power networks. A unique feature of this
problem is that the duration, resource consumption, and risk value of an intervention depend
on when it starts. Using the problem instances provided by the ROADEF competition,
we demonstrated the effectiveness of the proposed Iterated Local Search with self-adaptive
perturbation and obtained the 2nd prize.

Acknowledgements

I would like to start by expressing my sincere gratitude to Dr Hanyu Gu for giving me the
opportunity to conduct the research under his supervision. This research would not have
been possible without his guidance and advice, as well as the scholarly discussions that have
sharpened my thinking and enhanced my knowledge in the area of Operations Research.
I would like to thank Professor Yakov Zinder for his advice on my writings and his time
and patience in answering my questions. Conversations with Professor Zinder have always
encouraged me to challenge my ideas and claims and allowed me to think further than what
meets the eyes.

My special thank to the Faculty of Science for providing the HDR fund, which supported
me financially to attend two international conferences. The 9th Manufacturing Modelling,
Management and Control Conference (MIM), which was held in Berlin, Germany, in August
2019. The 6th International Conference on Computer Science, Applied Mathematics, and
Applications (ICCSAMA) was held in Hanoi, Vietnam, in December 2019. During my time
in Hanoi, I have also had the chance to visit the Operations Research Laboratory (ORLab)
at the University of Engineering and Technology, Vietnam National University. I would like
to thank Dr Minh-Hoang Ha for giving me this opportunity and to the members of ORLab
for taking the time to work with me and show me around Hanoi.

I gratefully acknowledge the Computational facilities provided by the UTS eResearch High
Performance Computer Cluster.

I wish to thank my fellow doctoral students for their encouragement and support at various
stages of my graduate study. The shared jokes and occasional drinks after work before
lockdown have made this challenging but rewarding PhD journey less stressful and more
enjoyable. I am indebted to my family, who has supported me through the most challenging

iv

v

time, especially my parents in Vietnam, who constantly assured me that the PhD study is
completely worth it despite not understanding what my research was. It is to my family that
I dedicate this thesis.

Contents

Certificate of Original Authorship i

Abstract ii

Acknowledgements iv

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Planning of Rolling Stock Maintenance . 2

1.2 Scheduling of Jobs Sharing multiple Resources 4

1.3 Planning of Grid Operation-based Outage Maintenance 5

1.4 Contributions . 7

2 Literature Review 11

2.1 Stochastic Programming . 11

2.1.1 Stochastic programs with recourse . 12

2.1.2 Solution methods . 14

2.1.3 Sample Average Approximation . 15

2.2 Metaheuristic . 16

2.2.1 Genetic Algorithm . 17

vi

CONTENTS vii

2.2.2 Iterated Local Search . 19

2.3 Planning of Rolling Stock Maintenance . 20

2.4 Scheduling Jobs Sharing Multiple Resources 23

2.5 Planning of Grid Operation-based Outage Maintenance 26

3 Planning of Rolling Stock Maintenance 29

3.1 Introduction . 29

3.2 Mathematical Programming Formulation . 33

3.2.1 Nonlinear Integer Programming Formulation 37

3.2.2 Evaluation of the Objective Function 37

3.2.3 Integer Linear Programming Relaxation based on Jensen’s Inequality 40

3.3 Genetic Algorithm Approach . 43

3.3.1 The decoding procedure . 45

3.3.2 Evolutionary process . 46

3.4 Genetic Algorithm based Matheuristic . 50

3.5 Hybrid Two-stage optimization Procedure 53

3.5.1 Mixed Integer Linear Program MILP 55

3.5.2 Local Search Subroutines . 56

3.5.3 Iterated Local Search . 62

3.6 Computational Results . 64

3.6.1 Comparison of GA and GA-based matheuristic 66

3.6.2 Comparison of the Performance of MIPM and MILP 69

3.6.3 Comparison of Hybrid ILS and Multi-start ILS 71

3.6.4 Visualization of Quality of Arrival Plan 76

3.7 Summary . 78

4 Scheduling of Jobs Sharing multiple Resources 79

4.1 Introduction . 80

CONTENTS viii

4.2 Mixed integer linear programming formulation 82

4.2.1 Mixed integer linear program . 82

4.2.2 Evaluation of the objective function 85

4.3 Sample Average Approximation . 87

4.4 Hybrid Genetic Algorithm . 89

4.4.1 Representation of chromosome and definition of fitness function . . . 91

4.4.2 Parent selection and crossover . 92

4.4.3 Mutation . 93

4.4.4 Local search method . 93

4.5 Computational Results . 95

4.5.1 Generation of test instances . 96

4.5.2 HGA parameter setting . 97

4.5.3 Comparisons between the proposed HGA and CPLEX on small prob-
lem instances . 97

4.5.4 Performance evaluation of the proposed HGA on large problem instances 99

4.5.5 Sensitivity analysis . 101

4.6 Summary . 105

5 Planning of Grid Operation-based Outage Maintenance 106

5.1 Introduction . 107

5.2 Mathematical programming formulation . 109

5.2.1 Notations . 109

5.2.2 Objective function . 110

5.2.3 Mixed integer linear programming formulation 113

5.3 Approximation of quantile term in objective function and iterative updating
algorithm . 115

5.4 Confidence method approaches . 119

5.5 Iterated local search . 122

5.5.1 Subroutine INITIAL . 125

CONTENTS ix

5.5.2 Subroutine SEARCH . 126

5.5.3 Subroutines PERTURB_SHIFT and PERTURB_SWAP 131

5.6 Computational results . 133

5.6.1 Model MILP vs. Model A-MILP . 135

5.6.2 Evaluation of the IterUpdate algorithm 136

5.6.3 CM-heuristic vs. cs-CM heuristic . 138

5.6.4 Comparison of the ILS with benchmark results 140

5.7 Summary . 144

6 Conclusion 146

6.1 Summary of Work . 146

6.2 Future Work . 150

Bibliography 154

List of Figures

3.1 Random key encoding example. Each train-set is assigned a random number
generated according to the uniform distribution U(0, 1), which determine its
priority in the decoding procedure. Here, train-set 2 has the highest priority,
followed by train-set 1, 5, 3, and train-set 4 will be the last. 45

3.2 Resource-based crossover example. The crossover operator takes the gene
values 0.41 and 0.05 from the father chromosome and places them in the
same position in the child chromosome. The crossover operator fills in the
missing gene values in the remaining places in the order they are defined in
the mother chromosome. A big enough number (i.e., 5000) is then added to
the genes indexed 2 and 3 to give the values 5000.41 and 5000.05. 48

3.3 Two-point crossover example. Two crossover points t1 = 1 and t2 = 4 are
selected. The values of genes 2, 3, and 4 are obtained from the father chro-
mosomes, whereas the values of genes 1 and 5 are obtained from the mother
chromosomes. 49

3.4 Mutation example. For each gene, one random number is generated from
U(0, 1). Since the random number of gene 1 is smaller than mutation_prob
(i.e., 0.04 < 0.05), the corresponding gene value is replaced by a new random
key, i.e. 0.65. 49

3.5 Example of the sequence decoding by train types. 51

3.6 Heat maps displaying the probability of having more than 5 train-sets residing
in the maintenance center for each day across the planning horizon of one year
for cases (a) α = 1, β = 1000; and (b) α = 1, β = 1. 77

x

LIST OF FIGURES xi

(a) . 77

(b) . 77

4.1 Example of the half-uniform crossover. 92

4.2 Change in the objective function value with number of generations of the
hybrid GA on the pilot set of (a) small problems and (b) large problems. . . 97

(a) . 97

(b) . 97

5.1 An example of the interventions having (left) positive and (right) negative
slopes. Given a time t and τ = 0.8, in the left figure, we have Qt

τ = 128 and
Q̂t
τ = Qt

1,τ +Qt
2,τ = 69 + 59 = 128. In the right figure, we have Qt

τ = 128 and
Q̂t
τ = Qt

1,τ +Qt
2,τ = 69 + 59 = 128. 116

5.2 An example of the interventions having both positive and negative slopes.
Given a time t and τ = 0.8, we have Qt

τ = 107 but Q̂t
τ = Qt

1,τ + Qt
2,τ =

59 + 73 = 132. 117

5.3 one-shift evaluation. 129

5.4 two-swap evaluation. 130

5.5 Convergence of the approximate Z2 to the true Z2. 137

List of Tables

3.1 Parameters for the train types. 65

3.2 Parameters of probability distribution for cycle time by train types. 65

3.3 Assignment of α and β for all the cases. 66

3.4 Comparison of the performance of GA and GA-based matheuristic 67

3.5 Analysis of the performance of GA-based matheuristic with Γ ∈ {1, 5, 10},
when the algorithm is run in 1800 seconds. 68

3.6 The number of generations performed to produce the solutions in Table 3.5. 68

3.7 Performance of GA-based matheuristic with Γ ∈ {1, 5, 10} for Case 1, when
the algorithm is run for 40 generations. 68

3.8 Comparison of the performance of MIPM and MILP 69

3.9 Improvements in solution quality of MIPM and MILP by the local search LS1. 70

3.10 Improvements in solution quality of MIPM and MILP by the sequential local
search SLS. 70

3.11 Summary of the eight algorithms used in Section 3.6.3. 72

3.12 Performance of hybrid ILS with LS1 and LS1
′
. 73

3.13 Performance of hybrid ILS with SLS and SLS
′
. 73

3.14 Performance of multi-start ILS with LS1 and LS1
′
. 74

xii

LIST OF TABLES xiii

3.15 Performance of multi-start ILS with SLS and SLS
′
. 74

3.16 Summary of the effects of the different neighborhoods. 75

3.17 Comparison between the performance of all solution approaches. 75

4.1 Comparison of the exact method and the proposed hybrid GA on small instances. 98

4.2 Summary of results for hybrid GA on large instances. 100

4.3 The 95% confidence interval (CI) for the optimality gap at x̂, where x̂ is the
best solution obtained from the hybrid GA. 101

4.4 The 95% confidence interval (CI) for the optimality gap at x̂, where x̂ is the
best solution obtained from the hybrid GA (continue). 102

4.5 Sensitivity analysis on the performance of SAA and HGA with H for instance
80-5-280-S2. 103

4.6 Sensitivity analysis on the performance of SAA and HGA with ψ for instance
80-5-280-S2. 104

4.7 Sensitivity analysis on the performance of HGA with λm and λc for large
instances, in terms of solution quality and time. 104

5.1 Instances characteristics in ROADEF/EURO challenge 2020. 134

5.2 Comparison of models MILP and A-MILP on dataset A instances. 135

5.3 Summary of β0
t , t ∈ T for the IterUpdate algorithm on four datasets. 137

5.4 Results obtained by CM-heuristic and cs-CM heuristics for dataset A. 139

5.5 Results obtained by CM-heuristic and cs-CM heuristics for dataset B. 140

5.6 Results obtained by CM-heuristic and cs-CM heuristics for dataset C. 140

5.7 Results obtained by CM-heuristic and cs-CM heuristics for dataset X. 140

5.8 Performance of ILS on dataset A instances. 141

LIST OF TABLES xiv

5.9 Performance of ILS on dataset B instances. 142

5.10 Performance of ILS on dataset C instances. 142

5.11 Performance of ILS on dataset X instances. 143

Chapter 1

Introduction

This thesis is concerned with a number of combinatorial optimization problems with uncer-

tainty, which have applications in the fields of industrial maintenance planning. The studied

problems have some common inherent challenges: the presence of uncertainty and two types

of penalties. Failure to consider the uncertainty may lead to inadequate decisions and ad-

verse effects, including increased costs and disruptions. This thesis aims to address these

challenges by proposing mathematical models and developing efficient solution approaches

that improve upon existing methods.

The remainder of this chapter is organized as follows. The next section gives a short outline

of the rolling stock high-level heavy maintenance planning problem and an overview of the

research outcomes. In Section 1.2, we provide a synopsis of the problem of scheduling jobs

sharing multiple resources under uncertainty, and draw on the many different applications

of the problem. We then present, in Section 1.3, an overview of the grid operation-based

outage maintenance planning problem, its unique features and difficulties as compared to

previously tackled problems in the area. The last section provides a summary of the detailed

contributions of this thesis.

1

CHAPTER 1. INTRODUCTION 2

1.1 Planning of Rolling Stock Maintenance

The first problem, discussed in Chapter 3, is an investigation into the optimization of a

rolling stock heavy maintenance planning problem at a maintenance center. Classic rolling

stock maintenance planning models and most models currently implemented in the industry

assume the duration of maintenance is known constants. This usually creates an unrealistic

plan that is prone to higher maintenance costs and a higher risk of not having enough trains in

the fleet to support operations. The research in Chapter 3 addresses this gap in knowledge by

proposing a new maintenance planning model that incorporates the uncertainty concerning

the duration of maintenance into the model and studying how to generate maintenance plans

efficiently and effectively.

Over the past 100 years, rail transport has played a vital role in the public transportation

system of many cities. For the safety of passengers and reliable functioning of the railway

system, the rolling stock (or trains), which is the most crucial component of such a system,

must undergo regular maintenance at a specialized maintenance center. According to the

engineering restrictions, the maintenance has a validity period after which another mainte-

nance procedure must take place. A majority of maintenance has validity periods of 12 years,

but a small few last 6 to 8 years.

In general, the maintenance process is comprised of functional inspections, components’

change-out, cosmetic services, electrical and mechanical tests, trial and post-trial checks.

Many large maintenance centers are equipped with an on-site facility for refitting and re-

furbishing components so that fresh ones are readily available for change-out. However, for

older fleet types, the components must be fixed by external clients. Furthermore, some main-

tenance operations are only known after the trains have been disassembled. Late delivery of

components and unplanned maintenance work are the main causes of uncertainty concerning

the duration of maintenance.

Given that the maintenance operations are lengthy procedures, the maintenance center must

CHAPTER 1. INTRODUCTION 3

produce a maintenance plan (a contract) a year in advance, deciding when the maintenance

of each train should commence. This is a long-term decision involved in the negotiation

process between two separate organizations: the rolling stock operators and the maintenance

center. On the one hand, the rolling stock operators wish the maintenance commencement

dates to be close to the expiry dates. On the other, the maintenance center would like to

complete the maintenance work on time to avoid contractual penalties while minimizing its

cost due to subcontractors.

Chapter 3 presents a nonlinear integer programming formulation of the maintenance plan-

ning problem and several optimization procedures, based on metaheuristics, that produce

maintenance plans less susceptible to the maintenance duration variability. The key feature

of our model and methods is that it considers the uncertain duration of maintenance, the

engineering restrictions of the center, and the operational requirements of the rail operator.

At the time of implementation, it was reported that the proposed optimization procedures

improved upon existing practice and reduced the plan development time from several days

to a few hours.

The research in Chapter 3 was presented at the 9th Manufacturing Modeling, Management

and Control Conference (MIM 2019) and the 6th International Conference on Computer

Science, Applied Mathematics, and Applications (ICCSAMA 2019) in Germany and Vietnam,

respectively. The research was included in the refereed conference proceedings as “H. Gu, M.

Joyce, H.C. Lam, M. Woods, and Y. Zinder. A genetic algorithm for assigning train arrival

dates at a maintenance center. In IFAC-PapersOnLine, 2019" [70] and “H. Gu and H.C.

Lam. A genetic algorithm approach for scheduling trains maintenance under uncertainty. In

Advances in Intelligent Systems and Computing, 2020" [71], respectively. The research was

extended and published in the Journal of Industrial & Management Optimization [72].

CHAPTER 1. INTRODUCTION 4

1.2 Scheduling of Jobs Sharing multiple Resources

The second problem, discussed in Chapter 4, considers the scheduling of jobs where each

job requires several types of resources. This problem shares a few common features with the

maintenance planning problem discussed in the previous chapter: (1) there is uncertainty

concerning the processing times (durations) of job (maintenance operation); and (2) it is

possible to acquire extra units of resources at a cost. However, in contrast to the maintenance

planning problem, this problem postulates that the penalty for requiring additional resources

is a piece-wise linear penalty function, described in terms of the capacity and an upper bound

on the resource expansion. Furthermore, during its processing, each job requires several types

of resources. Due to these differences, direct application of existing solution approaches,

presented in the previous chapter, cannot suffice.

The considered problem has an objective function that is comprised of two cost components,

i.e. the scheduling cost concerning the time periods by which the jobs should be completed

and the expansion of resource cost due to requiring additional resources beyond capacity. A

feasible schedule is one where all jobs can start and finish within the length of the planning

horizon. An optimal schedule is one that minimizes the sum of both scheduling and resource

expansion costs.

The considered problem was motivated by the planning of rolling stock maintenance problem

discussed in the previous chapter. In addition, the considered problem is also encountered

in many business and service environments. For example, in surgery scheduling, a hospital

must schedule a set of surgeries over a planning horizon (e.g. a week). Each surgery requires

several significant hospital resources, such as operating rooms, surgeons, anesthesiologists,

nurses, and equipment. Resources are of limited capacity, but additional quantity for some

resource types can be obtained at a cost. For example, one can increase the available labor

resource by allowing the existing personnel to work overtime. The duration of each surgery

is uncertain. The goal is to generate a surgery schedule that maximizes the utilization of

different types of resources and minimizes the operational costs. The tactical berth allocation

CHAPTER 1. INTRODUCTION 5

is another example of the considered problem. Upon arrival at the container terminal, the

ship requires the allocation of a berthing position and different types of resources, such as

quay cranes and port personnel. The number of containers that need to be handled during

loading and unloading for each ship is uncertain, and therefore, the dwell time of the ship

at the port is also uncertain. The port operator would like to satisfy the expected berthing

time of ships given the berthing and quay spaces’ limitations.

Chapter 4 presents a time-indexed zero-one linear programming formulation. This model

uses binary variables that take the value 1 if the job starts in a given time period and 0

otherwise to handle scheduling decisions. This model allows us to use different scheduling

costs without changing the problem structure. To solve the model, we develop a Genetic

Algorithm enhanced by a local search procedure. The key differentiating feature of our

solution method from existing approaches [92] is that we are able to exploit the problem

structure and use an efficient method to compute the value of the objective function. The

proposed method is fast enough that it can be included within the optimization procedure.

We present computational experiments that confirm the effectiveness of our solution approach

over the direct application of mathematical programming for small instances. For large

instances of the considered problem, we assess the quality of the obtained solutions by means

of Sample Average Approximation.

The research in Chapter 4 was submitted to the peer-reviewed journal under the title “A

hybrid genetic algorithm for scheduling jobs sharing multiple resources under uncertainty".

1.3 Planning of Grid Operation-based Outage Mainte-

nance

The third problem, discussed in Chapter 5, is a large-scale scheduling problem arising in the

maintenance of the power distribution grid. Most of the current grid network maintenance

scheduling models postulate that future grid operation is known with certainty when creating

CHAPTER 1. INTRODUCTION 6

the maintenance schedule. The research in Chapter 5 aims to address this gap in knowledge

by proposing mathematical models and solution approaches to deal with the uncertainty in

future grid operations.

Over the last 30 years, there has been tremendous growth in global energy consumption due

to demographic explosion, strong economic growth, and technological progress. According

to the Our World in Data [140], total worldwide electricity consumption has doubled from

11,957 terawatt-hours in 1990 to 25,849 terawatt-hours in 2020. To ensure the reliability of

electricity supply for meeting the demand of all connected customers, the overhead power

lines must be properly maintained. Due to the extreme hazards involved when working on

high-voltage power lines, these lines need to be disconnected from the grid while performing

maintenance operations. The disconnections of some lines (planned outages) put extra load

on the remaining ones and cause the transmission system to be weakened. The impact of a

planned outage on the system reliability can be quantified in terms of risk values. These risk

values are input data to the optimization problem considered in Chapter 5.

We use the term intervention throughout Chapter 5 to refer to maintenance operation on

transmission lines. Owing to the periodic nature of the scheduling, the transmission system

operator is able to produce a maintenance schedule a year in advance, deciding when each

intervention should commence while taking into consideration the constrained resources.

Yet, the operator continue to face various major challenges. The top three challenges for the

operator are (1) integration of renewable energies in the network, (2) changes in consumption

patterns, and (3) aging infrastructure. As a result of these challenges, the planned outages

generated based on the current practices might be infeasible when changes to the grid in the

years ahead are uncertain.

Chapter 5 considers the intervention scheduling problem to minimize the average risk (which

is expressed as a monetary cost) related to performing the interventions and the total cost

for the deviation from the average risk. The problem is formulated as a mixed integer linear

program, that uses binary variables to model scheduling decisions. The linearised model uses

binary variables to model the quantile function. It also uses binary variables that take the

CHAPTER 1. INTRODUCTION 7

value 1 if the intervention starts in a given time period and 0 otherwise to handle scheduling

decisions. Four solution approaches to the problem are presented. The first approach is a

heuristic based on solving a mixed integer linear program, which is developed by approxi-

mating the quantile term in the objective function. The second and third approaches are

based on the idea of confidence approach [95] - a method for solving stochastic optimization

problem having quantile of the distribution of the random variables in the objective function.

The fourth approach is an Iterated Local Search with self-adaptive perturbation, three local

search optimization procedures, and a restart strategy.

The optimization problem, routinely faced by a major electricity transmission system oper-

ator, was proposed for the international competition ROADEF/EURO challenge 2020. The

competition has attracted the participation of 140 academic researchers and non-academic

experts, divided into 72 teams. The competition consists of four separate phases (i.e. Sprint

(optional), Qualification, Semi-final, and Final) and lasted over a span of one year and three

months from April 1st 2020 to June 29th 2021. The proposed Iterated Local Search with

self-adaptive perturbation won the 2nd prize in the final phase of the competition. The re-

search in Chapter 5 was subsequently submitted to the special issue by Journal of Heuristics

under the title “Heuristics and meta-heuristic to solve the ROADEF/EURO challenge 2020

maintenance planning problem”.

1.4 Contributions

Below is a summary of the contributions of the research presented in this thesis:

• For the rolling stock high-level heavy maintenance planning problem, discussed in Chap-

ter 3:

– a new nonlinear programming formulation of the considered planning problem,

which takes into account the uncertain duration of maintenance and the unique

operational constraints imposed by the industry;

CHAPTER 1. INTRODUCTION 8

– a polynomial-time algorithm for evaluating the objective function of the introduced

nonlinear mathematical program for any feasible solution. The algorithm is used

within the optimization procedure;

– a new mixed-integer linear programming relaxation that is based on Jensen’s In-

equality [27] and therefore provides a lower bound to the optimal value of the

objective function for the nonlinear mathematical program and hence allows to

assess the quality of approximate solutions;

– an Iterated Local Search (ILS), and a Genetic Algorithm (GA) metaheuristics

that, in contrast to the previous publications, take into account the uncertain

duration of maintenance;

– an amalgamation of Genetic Algorithm for global search and Sample Average

Approximation (SAA) method for determining the arrival dates of train-sets when

a sequence of train-sets is known;

– a hybrid two-stage optimization procedure that combines Jensen’s Inequality based

relaxation with either a local search subroutine or the presented ILS subroutine;

– by means of computational experiments on real-world data, it is shown that the

hybrid two-stage optimization procedure performed the best, followed by Iterated

Local Search metaheuristic, followed by the amalgamation of GA and SAA. The

GA metaheuristic was the least successful among the four solution approaches.

• For the problem of scheduling jobs sharing multiple resources, discussed in Chapter 4:

– a mixed-integer linear programming formulation of the problem, which takes into

account the uncertain processing time of jobs;

– a polynomial-time algorithm for evaluating the objective function of the considered

problem for any feasible solution. The algorithm is used within the optimization

procedure;

– a lower bound on the optimal value of the considered problem via SAA and hence

allows to assess the quality of approximate solutions;

CHAPTER 1. INTRODUCTION 9

– an amalgamation of the Genetic Algorithm and a local search procedure that, in

contrast to the previous publications, consider the uncertain processing times of

jobs. We refer to this method as the hybrid Genetic Algorithm;

– through computational experiments, it is shown that:

∗ for small problems where only ten jobs have two processing times and the

remaining ones have deterministic processing times, the proposed hybrid Ge-

netic Algorithm outperforms the direct application of Integer Programming;

∗ for large problems where every job has two processing times, the proposed

hybrid Genetic Algorithm produces high-quality solutions in a practically ac-

ceptable time, with a confidence interval on the optimality gap of within 2%

from the upper bound.

• For the grid operation-based outage maintenance planning problem, discussed in Chap-

ter 5:

– a new mixed-integer linear programming (MILP) formulation of the maintenance

planning problem that uses binary variables to model the quantiles and scheduling

decisions;

– a new MILP that is based on approximating the quantile term in the objective

function, and therefore provides approximate solutions to the considered problem;

– four solution approaches are presented:

∗ an approach based on solving the approximation problem by CPLEX and

then applying rules to reduce the estimation error for the quantile term in the

objective function. We refer to this method as IterUpdate heuristic;

∗ two heuristic approaches which utilize the idea of confidence method [95] was

proposed for the qualification phase of the ROADEF/EURO challenge 2020;

∗ an Iterated Local Search metaheuristic with self-adaptive perturbation and a

restart strategy, coupled with a Large Neighborhood Search, was proposed for

the semi-final and final phases. The algorithm was implemented in Cython

for speedup purposes;

CHAPTER 1. INTRODUCTION 10

– the solution approaches are compared by means of computational experimentation

using benchmark instances provided by the competition;

– the proposed Iterated Local Search metaheuristic with self-adaptive perturbation

and a restart strategy, coupled with a Large Neighborhood Search outperformed

the solution approaches of 11/13 qualified teams in the final phase.

Chapter 2

Literature Review

For the purpose of giving a self-contained overview of our study, this chapter discusses the

research that is most relevant to the considered optimization problems in this thesis. First,

this chapter provides, in Section 2.1, a brief introduction of stochastic programming with a

special focus on the stochastic programs with recourse and the solution approaches from the

literature. The formulations and notations in Section 2.1 regarding stochastic programming

have been taken from Birge’s book [30] unless otherwise stated. In Section 2.2, an overview

of Genetic Algorithm and Iterated Local Search is presented. The literature relevant to the

research in Chapters 3, 4, and 5 is discussed in Sections 2.3, 2.4, and 2.5 respectively.

2.1 Stochastic Programming

Uncertainty is inherent in real-world problems and arises in different forms. For example,

future demands for a product depend on future market conditions; processing times for job

depend on the availability of materials and resources, which are random; and travel times for

vehicle depends on unknown weather conditions, among others. Beginning with the seminal

works of Beale [23] and Dantzig [44], there has been a growing interest of the scientific com-

munity in addressing optimization problems that include in their mathematical formulation

11

CHAPTER 2. LITERATURE REVIEW 12

uncertain information. A variety of modeling approaches has been developed, ranging from

recourse-based stochastic programming [30], robust stochastic programming [124], proba-

bilistic (chance-constraint) programming [39, 40], fuzzy programming [191], and stochastic

dynamic programming [25]. While differing in the details of their implementations, these

modeling approaches provide a means for handling the uncertain parameters in optimiza-

tion problems under uncertainty. A discussion of the advantages and shortcomings of each

approach can be found in [147].

In stochastic programming, we assume that probability distributions governing the uncertain

parameters are known or can be estimated and incorporate the probabilistic information into

the models. Randomness usually enters the model in two ways: through the constraint set or

the objective function. This thesis focuses on the latter case where stochasticity is present in

the objective function. In the following sections, stochastic programs with recourse, including

fixed recourse and simple recourse, are briefly described, and the relevant solution methods

are discussed. A detailed explanation on this subject can be found in Birge’s book [30],

Kall and Wallace [90], Prékopa [137], Shapiro et al. [153], as well as the very informative

Stochastic Programming Community Home Page [160].

2.1.1 Stochastic programs with recourse

Stochastic programs with recourse are a class of stochastic programs [44, 23] that hedge

against the uncertain future by making decisions based on data available at the time the

decisions are made. In these types of models, an initial decision is made before the realization

of the uncertain data and recourse actions are needed upon disclosure of the uncertainty.

Depending on the nature of the decision-making system, two categories of stochastic programs

with recourse can be defined, namely, two-stage and multi-stage [30]. Two-stage stochastic

programs with recourse make recourse decisions at only one time in the future, while multi-

stage stochastic programs with recourse make recourse decisions at multiple future times.

Below, we provide a review of two-stage stochastic linear program with recourse because

CHAPTER 2. LITERATURE REVIEW 13

the models considered in this thesis are two-stage models. For more details on multi-stage

models, we refer the reader to [29, 146, 148, 11] and a recent publication of [53].

A formal formulation of the two-stage linear stochastic programming problems is as follows:

min cTx+ Q(x)

subject to Ax = b,
x ≥ 0,

(2.1)

where
Q(x) = E[Q(x, ω)] (2.2)

and
Q(x, ω) = min

y
{q(ω)Ty(ω) | W (ω)y(ω) = h(ω)− T (ω)x, y(ω) ≥ 0} (2.3)

where ω denote a scenario, x are the first-stage decision variables, y(ω) are the second-stage

decision variables for each ω, and E is the expectation operator. The q(ω), h(ω) and T (ω)

are parameters of the second-stage problem. In the stochastic programming community, the

matrix W (ω) is known as the recourse matrix and T (ω) is known as the technology matrix.

The objective function is comprised of two parts: the cost of the first-stage decision (cTx)

and the expected cost of the second-stage decision (E[Q(x, ω)]).

The two-stage stochastic programs with recourse can be further distinguished by the feasible

regions and objective values, and they could either be fixed recourse, complete recourse, or

simple recourse [30]. Problem (2.1)-(2.3) is said to have fixed recourse if W (ω) = W for every

ω. It is said to have complete recourse if the second-stage problems are always feasible for

every solution x that satisfies Ax = b. The two-stage stochastic program with simple recourse

is the one in which Q(x) simply involves calculating the linear penalties for the deviations

from a target value [55]. As an example, the news vendor problem where a newsvendor

must decide how many newspapers (x) to buy at a price c per paper from the publisher

every morning, given that demand for the newspaper (ξ) is random. Let q denote the unit

selling price and r denote the unit return price for any unsold newspaper. When the uncertain

demand is revealed, the profit is merely equal to qmin(ξ, x)+rmax(x−ξ, 0). Other examples

CHAPTER 2. LITERATURE REVIEW 14

include knapsack problem under weights and capacity uncertainty [59], resource allocation

problem with uncertain projects’ size [96], employee scheduling with uncertain demand [131],

and network design under traveling times uncertainty [101]. The problems considered in

Chapters 3 and 4 can be viewed as a two-stage stochastic program with simple recourse.

Stochastic mixed integer program is a class of stochastic program in which the first-stage

variables are binary, i.e. x ∈ {0, 1}. The stochastic mixed integer program combines the

challenges from two types of programs: stochastic program and integer program [102]. The

challenge of integer program is having to consider a huge number of discrete variables for

problems of practical size. With stochastic program, the challenge comes from evaluating

the expected cost of the second-stage decision Q(x). For stochastic mixed integer program

with a continuous distribution, evaluating Q(x) for a given first-stage decision x may be

impossible because it involves a multi-dimensional integral of a complicated function Q, and

therefore optimizing over x is even more challenging. For the case with a discrete distribution,

evaluation still requires solving a large number of mixed integer programs.

2.1.2 Solution methods

There have been a growing number of studies concerning the two-stage stochastic program.

Exact solution procedures such as the L-shaped method [172] and Lagrangian relaxation-

based progressive hedging algorithm [142], showed success in solving problems with a finite

number of scenarios. When the total number of scenarios is very large, exact solution pro-

cedures may become computationally demanding, and so approximation and bounding al-

gorithms [28] and sampling-based algorithms [152] are preferred. The approximation and

bounding algorithms calculate and improve the upper and lower bounds on the optimal

objective function value as the algorithm progresses, while the sampling-based algorithms

approximate (2.2) by using Monte Carlo simulation.

For the case where the first-stage decision variables are binary, one of the earliest proposed

methods is the integer L-shaped method [102]. The integer L-shaped method uses a branch-

CHAPTER 2. LITERATURE REVIEW 15

and-bound algorithm to search the space of the first-stage variables for the globally optimal

solution, and the optimality cuts to approximate the second-stage value function Q(x). The

integer L-shaped method has been successfully applied to solve many different stochastic

scheduling problems from production scheduling [92], to project scheduling [35], and operat-

ing room scheduling [48, 49]. However, this method can be slow in practice due to requiring

to solve the master problem which tends to be more difficult as more cuts are added. Strate-

gies to enhance the performance of integer L-shaped method have been proposed in [5] and

applied to solve the traveling salesman problem with drone [173]. Other techniques of using

cutting planes to strengthen the Benders model have also been studied in the literature.

For example, disjunctive programming techniques to convexify the second-stage problems

[150, 151], Fenchel cuts to strengthen the subproblem relaxations [128], as well as Gomory

cuts [62] and scaled cuts [171] to develop finitely convergent algorithm.

2.1.3 Sample Average Approximation

Sample Average Approximation (SAA) approach [96] belongs to the family of sampling-based

algorithms, where the problem (2.1)-(2.3) is replaced with its sampling approximation. The

history of SAA dates back to the 1990s when it was first known by the name “stochastic

counterpart method” [144], and then “sample-path optimization method,” [141, 136]. SAA is

useful in practice, particularly when continuous distributions are present. Given ω1, ω2, ..., ωN

of N sample scenarios of the random vector, the Sample Average Approximation problem

can be formulated as follows:

min zN = cTx+
1

N

N∑
i=1

Q(x, ωi)

subject to Ax = b,

x ≥ 0,

T (ωi)x+W (ωi)y(ωi) = h(ωi), i = 1, ..., N

y(ωi) ≥ 0, i = 1, ..., N

(2.4)

CHAPTER 2. LITERATURE REVIEW 16

Asymptotic results regarding the consistency and validity of SAA estimators have been ex-

tensively studied. For a recent survey see [153]. Approaches to solving (2.4) generally fall

into three categories: (i) solving a single SAA problem with a fixed (possibly large) sample

size [155, 156, 96]; (ii) solving a single SAA problem of a desired sample size N and then

assessing the quality of the approximate solution [109]; and (iii) sequential sampling proce-

dures [21, 22]. Many methods have been developed for assessing the quality of SAA solutions,

for example, those that estimate optimality gaps [109, 19, 20, 18], test optimality conditions

[78, 154], and check the stability of solutions [91].

2.2 Metaheuristic

A metaheuristic is a high-level problem-independent methodology that performs a search for

solving a large class of difficult optimization problems. The term was introduced by Glover

[65] and formed from the Greek word meta, which means beyond, and heuristic, which is

related to the Greek word heuriskein meaning to find. In the first edition of the Handbook

of Metaheuristics [66], metaheuristics are defined as “solution methods that orchestrate an

interaction between local improvement procedures and higher level strategies to create a

process capable of escaping from local optima and performing a robust search of a solution

space”.

Based on how solutions are manipulated, metaheuristics can be categorized into three groups

[67]: (1) those that maintain solutions in a population and combine those solutions into

new ones, known as population-based metaheuristics, (2) those that maintain and iteratively

improve a single solution, known as local search metaheuristics, and (3) those that succes-

sively build solutions from their constituting elements, known as constructive metaheuristics.

These classes of metaheuristics, while are similar in that they utilize exploration to move to

the other regions of the search space and exploitation to find a local optimum, each class dif-

fers from one another in the ways in which the balance between exploration and exploitation

are maintained during the search.

CHAPTER 2. LITERATURE REVIEW 17

Although metaheuristics fail to guarantee the optimality of the obtained solutions, they are

capable of finding sufficiently good solutions in an acceptable time for computationally hard

problems. In addition, unlike exact optimization algorithms, metaheuristics do not require a

mathematical formulation of the optimization problem. In the past two decades, metaheuris-

tics have been successfully applied to many optimization problems with uncertainty ranging

from production scheduling [159, 87] to project scheduling [13, 185] and vehicle routing

[119, 129]. Two well-known metaheuristics, including Genetic Algorithm [80] (a population-

based metaheuristic) and Iterated Local Search [107] (a local search metaheuristic) are briefly

described in the following sections.

2.2.1 Genetic Algorithm

Genetic Algorithm (GA) metaheuristic is a population-based search methodology, inspired

from the Darwinian theory of evolution. GA was first introduced by Holland [80] in the 1970s

to simulate the biological evolution of adaptive natural systems. Later, the idea of using GA

for solving optimization problems was introduced in De Jong [46]. A population of solutions

(individuals) for a given problem evolves towards a high-quality solution through a series of

recombination and mutation operators. The general structure of a GA includes evaluation,

parent selection, recombination (crossover), mutation, and replacement. The pseudocode

given in Algorithm 1 outlines the basic Genetic Algorithm.

Algorithm 1 Pseudocode of the Genetic Algorithm method
1: GenerateInitialPopulation(); // generate initial population of solutions
2: repeat
3: Evaluate(); // calculate fitness of each solution in the population
4: SelectParents(); // select solutions from the population to breed
5: Crossover(); // apply crossover operator with a given probability
6: Mutation(); // apply mutation operator with a given probability
7: Replacement(); // generate new population of solutions
8: until TerminationCriterionSatisfied();
9: return Best generated solution;

Starting from the initial population of solutions, GA repeats those phases until a stopping

CHAPTER 2. LITERATURE REVIEW 18

criterion has been reached. Each cycle is referred to as a generation. First, one of the most

important features of a GA is the representation of a solution because suitable representa-

tions can enhance the efficiency of a search. Depending on the optimization problem and

characteristic of a solution, different types of solution representation exist, for example, bi-

nary coding, permutation encoding, and real-value encoding. Second, the evaluation process

is necessary to assign a fitness value to each individual, thereby ranking its performance. For

deterministic problems, it is common to assign a fitness value which is computed exactly as,

or directly from, the objective function. For problems with uncertainty, the fitness value is

obtained through simulation. Third, parent individuals will be selected from the population,

and they are recombined (via crossover operator) to produce offspring individuals, which are

perturbed (via mutation operator) to ensure genetic diversity in the population. The two

most commonly used selection methods are Roulette-wheel and Tournament operators [63].

Finally, the purpose of the replacement operator is to decide which individuals may perish

and which ones will survive to the next generation.

As with most other metaheuristics, there are several variants of GA, one of which combines

Genetic Algorithm with local search. This idea has appeared in the literature under different

names: in Moscato [120], Moscato and Norman [122], Neri et al. [126], Cotta et al. [42],

Moscato and Cotta [121], Neri and Cotta [125], it is called the memetic algorithm, whereas

in Ulder et al. [167], Kolen and Pesch [97] it is called the genetic local search. The term

“hybrid genetic algorithm” appears to have been used originally to refer to the combination

of GA with other classes of metaheuristics [67]. But it is now widely used to imply the

global-local complementary view of genetic hybrids by the research community, for example,

El-Mihoub et al. [56], Gonçalves et al. [68], just to name a few. The local search procedure,

sometimes called “education procedure” in GA, is often applied after the mutation phase on

the new individuals in the population. It has been known that the performance of GA is

better off in terms of both solution quality and efficiency when incorporating a local search

method within its framework. These benefits result from the fact that local search can reduce

the likelihood of premature convergence and the time needed to reach the global optimum

[56]. Hybrid genetic algorithms have been successfully used in many different problems and

CHAPTER 2. LITERATURE REVIEW 19

were reported to be more efficient than GAs in production scheduling [166, 174], vehicle

routing [83], and engineering design problems [183, 184], among others.

2.2.2 Iterated Local Search

Iterated Local Search (ILS) metaheuristic, as its name suggests, is a method that embeds

a local search heuristic within an iterative process building a sequence of solutions. This

simple idea has a long history and appeared in the literature under different names: iterated

descent [16, 17], large-step Markov chains [113], iterated Lin-Kernighan [88], and chained

local optimization [112]. A single solution for a given optimization problem is perturbed and

improved to obtain a high-quality solution at the end. Perturbation mechanism, local search

techniques, and acceptance criterion are the main components of an ILS. The pseudocode

given in Algorithm 2 outlines an Iterated Local Search algorithm.

Algorithm 2 Pseudocode of the Iterated Local Search method
1: Let S∗ represent the best solution;
2: S0 ← GenerateInitialSolution(); // generate initial solution
3: S∗ ← LocalSearch(S0); // find local optimal solution
4: repeat
5: S

′ ← Perturbation(S∗, history);
6: S∗′ ← LocalSearch(S ′);
7: S∗ ← AcceptanceCriterion(S∗, S∗′ , history);
8: until TerminationCriterionSatisfied();
9: return S∗;

Upon generating an initial solution, a local search is employed to obtain an improved solution.

Then, ILS applies a perturbation to the current local minimum solution, leading to a new

solution. This is followed by the local search, which is applied to the perturbed solution,

leading to an improved solution. An acceptance criterion decides whether the newly found

local minimum solution or the previous solution should be kept for continuing the process.

The repetition of applications of perturbation and local search methods terminates when a

stopping criterion is satisfied.

CHAPTER 2. LITERATURE REVIEW 20

The phases are interrelated, requiring trade-offs between them in order to reach high perfor-

mance with an ILS algorithm. To see that, note that an effective escape from local optima

is dependent on the moves used in perturbation and the changes used in local search, which

in turns depends on the problem and often on the specific problem instances, so how strong

the perturbations should be is usually difficult to determine [107]. Setting the size of the

perturbation to be aggressively large maximizes the exploration ability of the algorithm be-

cause it is unlikely for local search to undo the perturbations. However, the quality and the

structure of the current candidate solution may be destroyed, potentially causing the algo-

rithm to behave as a random restart algorithm, resulting in a much worse local optimum. To

maximize exploitation, the size of the perturbation should be set conservatively small to en-

able repeated search in the current neighborhood of the search space. Adaptive perturbation

modifies the size of the perturbation (i.e., perturbation strength) and adapts it during the

search [107]. Many adaptive schemes have been suggested, for example, those that follow the

ideas of reactive search [15, 14] and of variable neighborhood search [118, 76]. The adaptive

perturbation strategy was used in various ILS algorithms across several problem domains,

like production scheduling [52], workforce scheduling [179], and knapsack [9] problems.

2.3 Planning of Rolling Stock Maintenance

The body of literature on planning the rolling stock maintenance falls into two broad cate-

gories: (i) planning the rolling stock low-level maintenance subject to the trains timetable,

and (ii) planning the rolling stock high-level maintenance for a long planning horizon. The

first category considers only low-level maintenance, such as daily and monthly inspections,

which is often combined with the decisions on the rolling stock utilization. Accordingly, the

low-level maintenance is often considered as constraints in the planning process of rolling

stock utilization (see for example, Zhong et al. [190], Lai et al. [100], Giacco et al. [64]).

The second category is concerned with the high-level maintenance which has a long cycle time.

Among a few publications relevant to the problem considered in Chapter 3, Sriskandarajah

CHAPTER 2. LITERATURE REVIEW 21

et al. [161] is concerned with maintenance scheduling at the Hong Kong Mass Transit Railway

Corporation. The authors of [161] postulate that the duration of maintenance is given.

This simplification allows them to approach the minimisation of the earliness and tardiness

with respect to the completion of maintenance as a deterministic scheduling problem. The

authors of [161] also assume that the given permissible number of trains which can dwell at

the maintenance center simultaneously can not be violated, which may not be possible to

ensure when the duration of maintenance is uncertain. The resultant deterministic scheduling

problem is solved by a genetic algorithm. The authors reported that the proposed approach

produced near optimal solutions for randomly generated instances with linear earliness and

tardiness objective.

As in [161], Doganay and Bohlin [50] assumes that the duration of maintenance is known and

that the limit on the number of trains that can dwell at the maintenance center simultaneously

cannot be violated. In addition, Doganay and Bohlin [50] is concerned with planning under

the condition that the maintenance operations must commence prior to their due dates.

The planning problem was formulated as a mixed integer linear programming model and

was solved using IBM ILOG CPLEX 11.2. The objective function is a weighted sum of the

maintenance cost, the cost of shunting activities, the cost related to the spare parts, and the

penalty for early maintenance. The authors reported that the inclusion of the cost related

to the spare parts positively affected the quality of the plan.

The publication [105] is concerned with planning the heavy maintenance of the electric mul-

tiple units at the Shanghai Railway Bureau. As in [161] and [50], it is assumed that the

duration of maintenance is known and that the limit on the number of trains that can dwell

at the maintenance center simultaneously cannot be violated. In contrast to the above stud-

ies, Lin et al. [105] consider the case where each train has a time window when its maintenance

should commence, and this time window cannot be violated. The problem is formulated as

an integer linear program with the objective of minimizing the total penalty for early main-

tenance. It was reported that small instances can be solved exactly. For large instances, the

authors propose a simulated annealing algorithm and report solving instances with up to 124

CHAPTER 2. LITERATURE REVIEW 22

train-sets and a planning horizon of 607 days.

All three aforementioned papers model the rolling stock maintenance planning problem with

deterministic approach, i.e. the input parameters to the optimization problems are known

with certainty. By describing a real system as deterministic models, many characteristics

of real-world problems are neglected, which can affect the quality of the maintenance plan.

The study in chapter 3 employs a stochastic approach to incorporate the presence of un-

certainty in the problem formulation. That is, we assume the time a train-set spends at

the maintenance center is a random variable with known probability distribution. Applying

stochastic optimization to the maintenance planning of rolling stock is fairly new, for exam-

ple, [123, 116, 45, 187]. Mountakis [123] considers the train maintenance scheduling problem,

in which the durations of maintenance activities are random. The authors present a heuris-

tic procedure in which feasible schedules are obtained by means of solution enumerations

in combination with the statistical static timing analysis (SSTA) technique for evaluating

the objective function. Numerical results using real data from a maintenance facility in

Netherlands show that the proposed heuristic is capable of solving large-scale problem in-

stances with over 600 activities and with durations of maintenance activities exhibiting high

variability. The authors also found out that the use of SSTA to evaluate stochastic-based

objective function provide significant improvement in computation time as compared to the

conventional Monte carlo simulation approach, and therefore increases the effectiveness of

the solution enumeration scheme. The effect is more pronounced for larger variance.

More recently, Mira et al. [116] discuss the problem of scheduling rolling stock maintenance

tasks for a given period, ranging from 1 day to 1 week, for a rail operating company in

Portugal. The authors present a two-step decision support system in which the schedule of

maintenance activities to train units is obtained in the first step. By ignoring uncertainty,

the resulting scheduling problem, which takes into account several practical considerations

such as the timetable of train services, can be formulated as an integer linear programming

model and was solved using FICO® Xpress Solver. Then, in the second step, a reliability

analysis is conducted to access the impact of the uncertain maintenance durations on the

CHAPTER 2. LITERATURE REVIEW 23

feasibility of the obtained maintenance schedule.

2.4 Scheduling Jobs Sharing Multiple Resources

Scheduling problems where jobs require multiple types of resources exist in a large number

of domains, e.g., operating room scheduling (see, e.g., Durán et al. [54]), workforce planning

(see, e.g., Ho and Leung [79]), project scheduling (see, e.g., Valls et al. [170]), train fleet

maintenance planning (see, e.g., Doganay and Bohlin [50]), outage maintenance planning in

power system (see, e.g., Pandz̆ić et al. [130]), to name but a few. For instance, in operating

room scheduling, jobs correspond to different surgeries and resources correspond to doctors,

nurses, and operating rooms. In workforce planning, jobs correspond to different services

and resources correspond to workers with different skill sets. In project management, jobs

correspond to different projects, and resources correspond to manpower, materials, and equip-

ment. In maintenance management, jobs correspond to different maintenance operations and

resources correspond to manpower, materials, and spare parts. In power system maintenance

planning, jobs correspond to different maintenance jobs and resources correspond to mainte-

nance workers and materials. More recently, one can easily find a large collection of studies

that incorporate uncertainty into these scheduling problems. For example, operating room

scheduling with uncertainty in duration of surgical procedures [48, 49, 8]; workforce plan-

ning with uncertainty in demand [77, 10]; project scheduling with uncertainty in activity

durations [38, 35, 41]; rolling stock maintenance scheduling with uncertainty in maintenance

durations [116]; power system maintenance planning with uncertainty coming from renew-

able energy [99, 84]. The problem addressed in Chapter 4 is inspired by the above-mentioned

applications.

The considered stochastic optimization problem is closely related to the Stochastic Resource

Constrained Project Scheduling Problem (SRCPSP) which can be described as follows. Given

a set of activities V = {0, ..., n + 1}, where each activity has to be processed in order to

complete the project. Activities 0 and n + 1 are two dummy activities representing the

CHAPTER 2. LITERATURE REVIEW 24

project start and end, respectively. A set of renewable resources K = {1, ...,m}, each with

finite capacity Rk, k ∈ K and non-negative resource consumption rjk, j ∈ J, k ∈ K.

A set of precedence constraints between different activities within the project E such that

(i, j) ∈ E means that activity j has to start after the completion of activity i. The goal is to

determine a schedule for performing the activities, by minimizing the finish time of the last

activity, while satisfying any precedence relationships among the activities and for resource

availability [162]. The problem studied in Chapter 4 is distinct from SRCPSP in several

ways. Our problem does not consider precedence constraints between different jobs since the

jobs are assumed to be “projects" independent of each other except for the shared resources.

Moreover, our problem allows resource capacity to be exceeded, and there is upper bound

on the amount of temporary resource expansion. To deal with this expansion, our problem

adds penalty for each extra unit of required resource beyond the capacity.

The deterministic RCPSP is known to be NP-hard and their solution approach is computa-

tionally expensive [6]. For this reason, most solution approaches are based on metaheuristics

[47, 170, 85, 89]. In particulars, Valls et al. [170] propose a hybrid Genetic Algorithm, in

which a local search is introduced to enhance the solution quality. In Chapter 4 we also

consider a hybrid Genetic Algorithm which combines genetic algorithm and a local search

procedure, but focus on problems with uncertain processing times. Extensions of the RCPSP,

involving the minimization of the expected makespan of a project with stochastic activity

durations, have been investigated within the stochastic project scheduling literature. Several

models and solution approaches have been suggested for stochastic scheduling and typically

fit into one of two categories: (1) reactive or (2) proactive scheduling. Reactive scheduling

creates a policy to update a solution on an online basis, that determines which activities are

to be started at a certain decision time t given prior knowledge up to t− 1 (see, for example,

Rostami et al. [143], Ballestín [12]). Our line of research falls into the second category of

scheduling strategy - proactive scheduling. In this approach, some knowledge of the uncertain

activities durations is incorporated in the decision-making stage, with the aim to generate a

robust baseline for the project. This important research stream has received outstanding at-

tention in the last years, and various approaches including exact (mathematical programming

CHAPTER 2. LITERATURE REVIEW 25

based) [35, 38], heuristic [34, 7], and metaheuristics [185, 186] have been proposed.

The problem under study in chapter 4 is closely related to [92], in which the problem is

formulated as a two-stage stochastic model with complete recourse. The first-stage decision

is to determine the starting times for jobs based on knowledge about the distribution of the

uncertain processing times. The second-stage recourse cost describes a penalty for the amount

in which the resource capacity is exceeded. This formulation allows for the application of

L-shaped method. To solve large instances, the authors of [92] develop a sequential sampling

procedure. In contrast to [92], our study presents an alternative approach based on Genetic

Algorithm metaheuristic. Furthermore, we exploit the problem structure and uses an efficient

method to compute the value of the objective function. The proposed method is fast enough

that it can be included within the optimization procedure.

One of the key issues when applying Genetic Algorithm to stochastic optimization problems

is the computation of the objective function, which involves expected values. The majority

of work in the literature use simulation methods to approximate the objective function.

One strategy is to evaluate all solutions in all generations of GA with a small number of

scenarios (see, for example, Li and Demeulemeester [104], Gu et al. [75], and Wang et al.

[175]). However, it is possible that the final solution returned by GA as the best solution is of

low-quality with respect to the true objective value [178]. This issue is addressed in [181] and

[82], where a set of good solutions found by GA is re-evaluated with a sample of 105 scenarios

to accurately select the best solution. We also propose a solution approach based on Genetic

Algorithm, but in contrast to the above-mentioned studies, we can compute the objective

function. So, at each generation, our GA can precisely determine whether a solution is better

than another one.

The proposed approach is different from the Genetic Algorithm in our previous studies (see,

Gu et al. [70], Gu and Lam [71]) in several ways. First, Gu et al. [70] and Gu and Lam [71]

use only the standard Genetic Algorithm. As the application of local search methods can

improve solutions and speed up the convergence process [168], the proposed solution method

incorporates local search within the GA procedure. Second, the proposed approach employs

CHAPTER 2. LITERATURE REVIEW 26

SAA for assessing the quality of GA solutions. Third, Gu et al. [70] and Gu and Lam [71] use

the random key encoding scheme, which requires a procedure to transform the chromosome

into a solution. We instead use a solution-based representation, wherein a solution is directly

represented by a chromosome.

The idea to incorporate local search method within a Genetic Algorithm can be traced back at

least to Reeves [138] and has been successfully applied to the permutation flowshop scheduling

problem [166], parallel machines scheduling problem [159], and job shop scheduling problem

[174], among others. Most studies found in the literature design and use the hybrid Genetic

Algorithm for deterministic problems. Under the assumption that parameters are known

constants, it is easy to incorporate the local search method within the genetic algorithm

framework as the evaluation of neighbor solutions does not require much time. However, for

optimization problems where random parameters are present in the objective function, it is

expensive to compute the objective function value for a solution. For this reason, studies that

use genetic algorithm enhanced by local search for solving stochastic optimization problems

is limited. The local search used in this study is designed with the aim that the neighbor

solutions can be evaluated quickly, making it efficient enough to be used in the GA framework.

2.5 Planning of Grid Operation-based Outage Mainte-

nance

Maintenance management is an important function as energy industry organizations are

making an effort to ensure the reliability of the electric power system for meeting demand,

and is therefore a focus of a large number of scheduling studies [60]. Most of these studies

deal with maintenance scheduling of generation units (see, for example [115, 149, 139]), while

some consider finding an optimal outage schedules for both the generation units and the

transmission lines (see, for example [176, 1, 61]). For recent literature review on generation

units maintenance scheduling, see [93]. A thorough review of maintenance scheduling in the

CHAPTER 2. LITERATURE REVIEW 27

electricity industry is provided in [60]. In this section, we focus on articles that tackle only

the transmission-line maintenance scheduling problem.

In [130], the authors present a bi-level outage scheduling model, where the upper-level ob-

jective is to maximize the unused transmission capacity while the lower-level objective is to

minimize the impact on the functioning of the electricity market. Using equilibrium con-

straints, the problem is recast as a mixed integer-linear program and solved with CPLEX.

This approach schedules considered maintenance during time periods in which its effect on

transmission system adequacy is the least. [114] develops a short-term transmission main-

tenance scheduling model that minimizes the transmission line maintenance cost while sat-

isfying hourly line maintenance constraints, line reservations and system reliability. Using

Benders decomposition, the authors decompose the transmission maintenance problem into

a maintenance master problem and two types of sub-problems which include transmission

sub-problems and voltage sub-problems. [108] formulates the short-term transmission main-

tenance scheduling problem as a mixed-integer nonlinear program that aims to minimize

the maintenance cost and the expected cost of lost load. The model considers failures of

transmission components and system reliability as constraints. More recently, [3] proposes

a maintenance scheduling optimization model that minimizes the equipment unavailability

and avoids simultaneous disconnection of equipment that generates insecure conditions for

the operation of the network. The uncertainty in both demand and wind-power generation

for transmission line maintenance in long-term horizon is considered in [99]. They develop

a two-stage stochastic program to minimize the total expected maintenance cost and cost

of lost load of an outage schedule for the transmission lines, under different demand and

wind scenarios. All five above-mentioned papers address the transmission-line maintenance

scheduling problem with the objective of minimizing maintenance costs subject to achiev-

ing a certain required level of reliability, while our study aims at achieving the best level of

reliability subject to constraints on resources.

Models for scheduling planned outages for transmission lines that consider the impact of

a given outage schedule on maintenance costs and system reliability are presented in [43]

CHAPTER 2. LITERATURE REVIEW 28

and [165]. In particulars, the authors of [43] and [165] develop a machine learning tool for

predicting power system operating conditions during the maintenance of grid components.

The supervised learning model helps to identify the time periods during which a mainte-

nance outage can be safely accommodated. The approach of [43] and [165] differs from our

approach in that they use machine learning proxy for contingency analyses, while we focus

on identifying the best outage schedule, considering contingency analyses as a preliminary

stage.

In [86], the authors present a maintenance selection and scheduling approach that considers

the long-term risk caused by equipment failure and outage consequence in term of overload

and voltage security. Similarly, [2] describes a mixed-integer linear formulation for the long-

term maintenance scheduling of distribution overhead lines based on the risk of equipment

failure and its consequences on network reliability. More recently, [111] proposes an outage

scheduling model over mid-term horizon that minimizes the overall risk of carrying out the

maintenance over the set of scenarios of future operating conditions. As in our study, man-

power constraints are hard constraints, which must not be violated for an outage schedule

to be considered feasible. To solve the problem, the authors design a greedy algorithm that

schedules outages one by one, starting from the one with the maximal (negative) impact

on system operation. The impact of an outage on system operation is evaluated by Monte

Carlo simulations. The proposed approach is able to optimally solve a case study with five

interventions and a scheduling horizon of 182 days. In contrast to [111], our study focus on

problems with up to 528 interventions and a planning horizon of 300 days.

Chapter 3

Planning of Rolling Stock Maintenance

A railway network is an indispensable part of the public transportation system in many

major cities around the world. In order to provide a safe and reliable service, a fleet of pas-

senger trains must undergo regular maintenance. These maintenance operations are lengthy

procedures, which are planned for one year or a longer period. The planning specifies the

dates of trains’ arrival at the maintenance center and should take into account the uncertain

duration of maintenance operations, the periods of validity of the previous maintenance, the

desired number of trains in service, and the capacity of the maintenance center. This chapter

presents a nonlinear programming formulation of the considered problem and several opti-

mization procedures which were compared by computational experiments using real world

data. The results of these experiments indicate that the presented approach is capable to be

used in real world planning process.

3.1 Introduction

Passenger trains provide one of the major means of public transport in many cities around

the world. For example, the suburban passenger rail network in Sydney, Australia connects

central Sydney with northern, southern, western, and eastern suburbs with 174 stations.

29

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 30

The network spans over 813 kilometers of track and delivered about 359.2 million passenger

journeys in 2017/18 [163].

There is a risk of sudden breakdowns or even a derailment if the trains (rolling stock) do

not undergo maintenance regularly. There are several mandatory levels of maintenance that

differ from each other by their scope and periodicity. Readers are referred to Lai et al. [100]

for a detailed description of the various maintenance levels. This chapter focuses on the high-

level heavy maintenance which is the most involved and time consuming procedure and is

performed at a specialized maintenance center. The rolling stock arrives at the maintenance

center in groups. Each group is comprised of several cars coupled together and is referred to

as a set or a train-set [100]. All cars in a train-set undergo maintenance in the maintenance

center simultaneously.

The reliable functioning of a passenger transportation system is not possible without a plan,

specifying the availability of the rolling stock. The dates when the train-sets should be

withdrawn from service and sent to the maintenance center are crucial for the rolling stock

operator as well as for the planning at the maintenance center. Given that the heavy main-

tenance of a train-set is a long process, both, rolling stock operator and maintenance center,

need to specify at least for a year when the heavy maintenance of each train-set should com-

mence [105, 161]. Furthermore, often the transportation of passengers and the rolling stock

heavy maintenance are carried out by two separate organizations which operate on the basis

of a long term contract that specifies for each train-set the precise date of the commencement

of its maintenance.

This chapter is concerned with the development of the plan that specifies the dates when the

train-sets should arrive at the maintenance center. The presented optimization procedures

take into account the specifics of the heavy maintenance procedure, including its uncertain

duration and the restriction on the period between consecutive arrivals of the train-sets at

the maintenance center, as well as the information provided by the rolling stock operator,

including the engineering restrictions on the permissible period between heavy maintenance

procedures and the demand for transportation.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 31

The heavy maintenance has a validity period after which another heavy maintenance pro-

cedure must take place according to the engineering restrictions. Consequently, the rolling

stock operator determines for every train-set a time window within which the maintenance

of this train-set should commence (see, for example, Lin et al. [105]). The length of such

time window depends on the practice of the rolling stock operator and in some cases can be

zero (see, for example, Sriskandarajah et al. [161]). Although it is equally possible to start

maintenance at any point in time within the corresponding time window, for the purpose

of the optimization procedures below, the middle of a time window will be considered as

a preferred date and the time window will be viewed as a specification of the permissible

deviation from this preferred date.

The dates when the train-sets should arrive at the maintenance center, specified by the men-

tioned above plan, may violate the time windows of the train-sets which are dictated only

by the practice of the rolling stock operator and do not take into account the capacity of the

maintenance center, the uncertain duration of maintenance, and the demand for transporta-

tion. Such violation is highly undesirable which often is modeled by introducing a penalty

for the violation of the time windows.

A train-set that arrives at the maintenance center before its time window is referred to as

"early", while a train-set that arrives after its time window is referred to as "tardy". If

despite the penalties for the violation of the time windows the plan still contains some early

and tardy train-sets, this situation is resolved by the consultations between the rolling stock

operator and the maintenance center. Similar to the majority of publications on this topic,

the consultation phase is beyond the scope of this study.

Upon arriving at the maintenance center, a train-set is shunted to the first operation line,

where thorough inspections and replacement of some components and parts such as air-

conditioning units are performed. A train-set can arrive only if the first operation line is not

occupied by the previous train-set. Normally, there are several types of trains and each type

may require different time at the first operation line.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 32

After the first operation line, the train-set undergoes various maintenance operations such as

bogies replacement, system testing, refurbishment, etc. In order to perform these operations,

the train-set has to be shunted between several lines. The duration of each operation depends

on the condition of the train-set; the availability and composition of the workforce; the

availability of spare parts; and many other factors. Consequently, the dwelling time of a

train-set at the maintenance center (also referred to as a cycle time) is uncertain at the time

of planning.

On the arrival at the maintenance center, a train-set is completely withdrawn from service

and must stay at the maintenance center for at least one month. This long cycle time directly

impacts the number of train-sets available in active service. Therefore, as part of the input

data for the heavy maintenance planning, a permissible number of train-sets that can be out

of service simultaneously are specified for each type of train-sets. Furthermore, the capacity

of the maintenance center also imposes the restriction on the number of train-sets which can

undergo maintenance simultaneously. Any violation of all these restrictions causes serious

problems and therefore must be taken into consideration at the planning stage.

The goal of the planning process is to determine an arrival plan, specifying the arrival dates

for all train-sets. The discussion above suggests that it is reasonable to have the objective

function as a weighted sum of two components: the total penalty for the deviation (earliness

and tardiness) from the arrival time windows, and the expected total penalty for violating

the center capacity as well as for violating the permissible number of out-of-service train-sets

of all types.

The remainder of this chapter is organized as follows. In Section 3.2, we present a nonlinear

mathematical programming formulation of the considered problem, an efficient algorithm for

evaluation of the objective function, and a Jensen’s Inequality based mixed integer linear

programming relaxation. Section 3.3 presents the first solution approach, which is based on

Genetic Algorithm. Section 3.4 presents the second approach, which is an amalgamation of

Genetic Algorithm and Integer Programming. In Section 3.5, we present an alternative mixed

integer linear program, local search and iterated local search subroutines, and a fast method

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 33

for the neighborhood evaluation. In Section 3.6, we discuss the results of computational

experiments that use real-world data provided by a major maintenance center in Australia.

The conclusion can be found in Section 3.7.

3.2 Mathematical Programming Formulation

This section presents a Nonlinear Integer Programming Model (NIPM) which is a formula-

tion of the original problem and a Mixed Integer Programming Model (MIPM) that provides

a lower bound for NIPM. The advantage of the lower bound relaxed integer linear pro-

gramming model MIPM is that feasible solutions are significantly easier to find. Therefore,

MIPM is used to provide a high-quality starting solution for the proposed hybrid two-stage

optimization procedure.

The considered planning problem can be stated as follows. A set N = {1, · · · , n} of train-

sets is to undergo maintenance at a maintenance center. The planning period is T days

which are numbered from 0 to T − 1. An arrival plan specifies for each train-set j ∈ N the

day sj of its arrival at the maintenance center. No two train-sets can arrive on the same

day. Furthermore, the train-sets are of m different types and, for each type k, there exists a

restriction when the next train-set can arrive after the arrival of a train-set of type k. This

restriction is given by the number of days τk. If a train-set j of type k arrives on day sj, then,

regardless of the type of the next train-set, it can arrive only on the day sj + τk or later.

It is convenient to consider the partition F 1, ..., Fm of N , where each F k is comprised of all

train-sets of the same type k. Observe that arrival days that satisfy the restriction on the

time between two consecutive arrivals exist if and only if

∑
1≤k≤m

|F k|τk − max
1≤k≤m

τk ≤ T − 1.

In what follows, it is assumed that this inequality holds.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 34

For each j ∈ N , the time that a train-set j spends at the maintenance center (its cycle time)

is a discrete random variable Dj which assumes integer values. All these random variables

are independently distributed and, for each 1 ≤ k ≤ m, the cycle times of all train-sets in

F k are identically distributed between ak - the minimal possible duration of a cycle for a

train-set of type k, and bk - the maximal possible duration of a cycle for a train-set of type

k. For each 1 ≤ k ≤ m, τk < ak.

Each train-set j has the associated time window [θj−∆, θj+∆], where θj is the preferred day

of the commencement of maintenance, i.e. the preferred day of the arrival at the maintenance

center, and ∆ is the permissible deviation from this preferred day of arrival. The penalty for

the violation of time window is defined by the function:

gj(sj) =


λ1(θj − sj)2 if sj < θj −∆

λ2(θj − sj)2 if sj > θj +∆

0 otherwise

(3.1)

where λ1 > 0 and λ2 > 0. For any arrival plan σ = (s1, · · · , sn), the total penalty for the

violation of time windows will be denoted by G1(σ) = G1(s1, · · · , sn):

G1(σ) = G1(s1, · · · , sn) =
∑
j∈N

gj(sj). (3.2)

For any arrival plan σ, any 1 ≤ k ≤ m, and any day t, denote by W k
t (σ) the number of train-

sets in F k that are at the maintenance center on day t. Since all cycle times are random

variables, W k
t (σ) is a random variable. If W k

t (σ) exceeds the given limit Ckt, this attracts the

penalty δkt(W k
t (σ)−Ckt), where δkt > 0. The total number of train-sets at the maintenance

center on day t is

Wt(σ) =
m∑
k=1

W k
t (σ).

If this number exceeds the given limit Ct, this attracts the penalty δt(Wt(σ) − Ct), where

δt > 0. Let σ be an arbitrary arrival plan and G2(σ) be the mathematical expectation of the

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 35

total penalty for the violation of the limits on the number of train-sets that can dwell at the

maintenance center simultaneously. Then

G2(σ) =
T−1∑
t=0

(
E
[
max

{
0, δt

(
Wt(σ)−Ct

)}]
+

m∑
k=1

E
[
max

{
0, δkt

(
W k
t (σ)−Ckt

)}])
, (3.3)

where E[·] is the mathematical expectation. The goal is to minimize

G(σ) = αG1(σ) + βG2(σ) (3.4)

where α and β are two positive weights.

We summarise the notation for this chapter as follows: Sets:

N : set of train-sets, indexed by j;

F k: set of train-sets of type k, indexed by j;

E: set of arcs representing the precedence relations between any two train-sets;

Parameters:

T : number of days;

m: number of train-sets’ types;

Γ: number of scenarios;

τk: minimum days requirement when the next train-set can arrive after the arrival of a
train-set of type k;

Dj: cycle time of train-set j ∈ N ;

Dγ
j : realization of cycle time of train-set j ∈ N in scenario γ;

ak: minimal possible duration of a cycle for a train-set of type k;

bk: maximal possible duration of a cycle for a train-set of type k;

θj: preferred day of the commencement of maintenance of train-set j ∈ N ;

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 36

∆: permissible deviation from the preferred day of the commencement of maintenance;

λ1: earliness cost factor;

λ2: tardiness cost factor;

Ct: limit on the number of train-sets that can dwell at the maintenance center on day t;

Ckt: limit on the number of train-sets of type k that can dwell at the maintenance center on
day t;

δt: daily penalty per train-set for violating Ct;

δkt: daily penalty per train-set of type k for violating Ckt;

α: weight reflecting the relative importance of the first component of the objective function;

β: weight reflecting the relative importance of the second component of the objective function;

Decision Variables:

sj: arrival day of train-set j ∈ N ;

Wt(σ): total number of train-sets at the maintenance center on day t with respect to arrival
plan σ;

W k
t (σ): total number of train-sets of type k at the maintenance center on day t with respect

to arrival plan σ;

wt: additional train-sets beyond that limit Ct on day t;

wkt : additional train-sets of type k beyond the limit Ckt on day t;

wγt : additional train-sets beyond that limit Ct on day t under scenario γ;

wk,γt : additional train-sets of type k beyond the limit Ckt on day t under scenario γ;

xjt ∈ {0, 1}: 1 if train-set j ∈ N arrives on day t, or 0 otherwise.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 37

3.2.1 Nonlinear Integer Programming Formulation

The heavy maintenance planning problem can be formulated as follows.

(NIPM) ZNIPM = minαG1(s1, · · · , sn) + βG2(s1, · · · , sn) (3.5)

subject to
T−1∑
t=0

xjt = 1, ∀j ∈ N (3.6)

m∑
k=1

∑
j∈Fk

t∑
s=max(0,t−τk+1)

xjs ≤ 1, ∀t ∈ {0, ..., T − 1} (3.7)

sj =
T−1∑
t=0

txjt, ∀j ∈ N (3.8)

(3.1), (3.2), (3.3)

xjt ∈ {0, 1}, ∀j ∈ N, ∀t ∈ {0, ..., T − 1} (3.9)

In the above formulation, the objective function (3.5) is the weighted sum of two components:

the total penalty for the violation of time windows; and the expected penalties for the

violation of the limits Ct and Ckt. Constraint set (3.6) ensures that each train-set must

arrive for maintenance within the planning horizon. Constraint set (3.7) enforces that at

most one train-set can occupy the first operation line on any given day. The arrival day

of each train-set can be calculated as (3.8). Constraint set (3.9) states that the decision

variables are binary.

3.2.2 Evaluation of the Objective Function

In this section, we discuss an analytical approach to evaluate the objective function (3.4).

While it is possible to approximate the objective function by using Monte Carlo sampling

[81], this method is not more efficient than the proposed analytical method because it is still

computationally expensive to perform a large number of Monte Carlo evaluations (in return

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 38

for a small error). We must note that in the proposed method, no property particular to the

distributions of cycle times is used and therefore it can be generalized for any distribution.

Given an arrival plan σ = (s1, . . . , sn), let

Yj(sj, t) =

 1 if sj ≤ t and sj +Dj ≥ t+ 1

0 otherwise
(3.10)

which is a Bernoulli random variable that takes value 1 if the train-set j is at the maintenance

center on day t and 0 otherwise. Then, the probability of Yj(sj, t) = 1 can be computed as



Prob(Yj(sj, t) = 1) = Prob(Dj ≥ t− sj + 1)

=

bk∑
i=t−sj+1

Prob(Dj = i),

1 ≤ k ≤ m, j ∈ F k, t ∈ {sj, ..., T − 1}

Prob(Yj(sj, t) = 1) = 0, j ∈ N, t ∈ {0, ..., sj − 1}

(3.11)

For any arrival plan σ, and any day t, Wt(σ) =
∑

j∈N Yj(sj, t) is a sum of Bernoulli random

variables with success probabilities according to (3.11). Therefore, Wt(σ) is a random variable

that follows Poisson Binomial distribution [31]. For any arrival plan σ = (s1, · · · , sn), any

1 ≤ i ≤ n, and any day t, denote pi = Prob(Yi(si, t) = 1). Let Prob(Wt(σ
l) = i) be

the probability that i train-sets from the partial arrival plan σl = (s1, . . . , sl) dwell at the

maintenance center on day t. Then,

Prob(Wt(σ
1) = 1) = p1 and Prob(Wt(σ

1) = 0) = 1− p1

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 39

and for all 1 ≤ l < n

Prob(Wt(σ
l+1) = 0) = (1− pl+1)Prob(Wt(σ

l) = 0)

Prob(Wt(σ
l+1) = i) = (1− pl+1)Prob(Wt(σ

l) = i)

+ pl+1Prob(Wt(σ
l) = i− 1), 1 ≤ i ≤ l

Prob(Wt(σ
l+1) = l + 1) = pl+1Prob(Wt(σ

l) = l)

. (3.12)

Let PMF be the probability mass function of the Poisson binomial distributed variable. The

entire procedure is outlined in Algorithm 3 [31].

Algorithm 3 Direct Convolution (DC)
1: Input: total number of Bernoulli random variables n; success probability pi of the i-th

random variable
2: Output: PMF
3: procedure DC(p1, · · · , pn)
4: PMF (0) = 1− p1, PMF (1) = p1
5: for i from 2 to n do
6: j = 1
7: new_PMF (0) = (1− pi) PMF (0)
8: while j < i do
9: new_PMF (j) = pi PMF (j − 1) + (1− pi) PMF (j)

10: end while
11: new_PMF (i) = pi PMF (i− 1)
12: PMF = new_PMF
13: end for
14: return PMF
15: end procedure

Similarly, for any arrival plan σ, any 1 ≤ k ≤ m, and any day t, W k
t (σ) =

∑
j∈Fk Yj(sj, t) is

a sum of Bernoulli random variables with success probabilities according to (3.11). Then, all

probabilities Prob(W k
t (σ)) can be obtained using Algorithm 3.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 40

As a result, the objective function (3.4) can be computed as

αG1(σ) + βG2(σ) = αG1(σ)+

β

T−1∑
t=0

[|N |∑
w=Ct+1

δt(w − Ct)Prob(Wt(σ) = w)+

m∑
k=1

|Fk|∑
w=Ckt+1

δkt(w − Ckt)Prob(W k
t (σ) = w)

]
.

(3.13)

3.2.3 Integer Linear Programming Relaxation based on Jensen’s In-

equality

For a two-stage stochastic program, under certain convexity properties, lower bounds on the

optimal objective value of a stochastic program are typically based on Jensen’s inequality

(see e.g., [90, 135]). The Jensen’s inequality lower bound is obtained by replacing all of the

random variables with their expected values. An important advantage of this approach is

that it requires only one function evaluation for each element of the partition. While other

methods to compute lower bounds have been studied, i.e. Monte Carlo lower bound [109],

improved Jensen’s lower bound [164] and second-order lower bound [51], Jensen’s lower bound

typically requires less effort to compute.

As in (3.3), denoting the mathematical expectation by E[·], the right-hand side in (3.13) can

be written as

αG1(σ) + β
T−1∑
t=0

(
δtE[max{0,Wt(σ)− Ct}] +

m∑
k=1

δktE[max{0,W k
t (σ)− Ckt}]

)

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 41

and, taking into account that max{0, ·} is convex, by Jensen’s Inequality [27],

≥ αG1(σ) + β

T−1∑
t=0

(
δtmax{0,E[Wt(σ)− Ct]}+

m∑
k=1

δktmax{0,E[W k
t (σ)− Ckt]}

)
= αG1(σ) + β

T−1∑
t=0

(
δtmax{0,E[Wt(σ)]− Ct}+

m∑
k=1

δktmax{0,E[W k
t (σ)]− Ckt}

)

Denote

G′
2(σ) =

T−1∑
t=0

(
δtmax{0,E[Wt(σ)]− Ct}+

m∑
k=1

δktmax{0,E[W k
t (σ)]− Ckt}

)

Then,

αG1(σ) + βG2(σ) ≥ αG1(σ) + βG′
2(σ). (3.14)

Using the variables xjt, for any t ∈ {0, ..., T − 1},

E[Wt(σ)] = E
[m∑
k=1

∑
j∈Fk

Yj(sj, t)
]
=

m∑
k=1

∑
j∈Fk

Prob
(
Yj(sj, t) = 1

)

=
m∑
k=1

∑
j∈Fk

t∑
s=0

bk∑
i=t−s+1

Prob(Dj = i)xjs, (3.15)

and, for any t ∈ {0, ..., T − 1} and any 1 ≤ k ≤ m,

E[W k
t (σ)] = E

[∑
j∈Fk

Yj(sj, t)
]
=
∑
j∈Fk

Prob(Yj(sj, t) = 1)

=
∑
j∈Fk

t∑
s=0

bk∑
i=t−s+1

Prob(Dj = i)xjs. (3.16)

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 42

This leads to the following Mixed Integer Programming Model (MIPM):

(MIPM) ZMIPM = minα
∑
j∈N

(
λ1

θj−∆−1∑
t=0

(θj − t)2xjt + λ2

T−1∑
t=θj+∆+1

(t− θj)2xjt
)

+ β
T−1∑
t=0

(
δt wt +

m∑
k=1

δktw
k
t

)
(3.17)

subject to (3.6), (3.7), (3.9)
m∑
k=1

∑
j∈Fk

t∑
s=0

bk∑
i=t−s+1

Prob(Dj = i)xjs ≤ Ct + wt,

∀t ∈ {0, ..., T − 1} (3.18)∑
j∈Fk

t∑
s=0

bk∑
i=t−s+1

Prob(Dj = i)xjs ≤ Ckt + wkt ,

1 ≤ k ≤ m, ∀t ∈ {0, ..., T − 1} (3.19)

wt ≥ 0, wkt ≥ 0, 1 ≤ k ≤ m, ∀t ∈ {0, ..., T − 1}. (3.20)

The nonlinear programming problem NIPM and the mixed integer linear programming prob-

lem MIPM use the same variables xjt, that satisfy the same set of constraints (3.6), (3.7),

(3.9). Therefore, for any arrival plan σ = (s1, ..., sn) that is feasible for NIPM, there ex-

ists a feasible solution for MIPM with variables xjt, wt and wkt satisfying, for all j ∈ N ,

t ∈ {0, ..., T − 1} and 1 ≤ k ≤ m,

sj =
T−1∑
t=0

txj,t

wt = max

0,
m∑
k=1

∑
j∈Fk

t∑
s=0

bk∑
i=t−s+1

Prob(Dj = i)xjs − Ct


wkt = max

0,
∑
j∈Fk

t∑
s=0

bk∑
i=t−s+1

Prob(Dj = i)xjs − Ckt

 .

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 43

or, by taking into account (3.15) and (3.16),

wt = max{0, E[Wt(σ)]− Ct}

wkt = max{0, E[W k
t (σ)]− Ckt}.

In other words, for any arrival plan σ = (s1, ..., sn) that is feasible for NIPM, there exists

a solution for the mixed integer linear programming problem MIPM which variables xjt, wt

and wkt satisfy

αG1(σ) + βG′
2(σ) = α

∑
j∈N

(
λ1

θj−∆−1∑
t=0

(θj − t)2xjt + λ2

T−1∑
t=θj+∆+1

(t− θj)2xjt
)

+ β
T−1∑
t=0

(
δt wt +

m∑
k=1

δktw
k
t

)
.

This, by virtue of (3.14), implies that the optimal value ZMIPM of the objective function for

MIPM is a lower bound on the optimal value ZNIPM of the objective function for NIPM.

3.3 Genetic Algorithm Approach

Since the considered problem involves the uncertainty of cycle times, we may expect that

it can be very difficult to obtain exact solutions to problem instances beyond a certain size

in a reasonable time. Correspondingly, we decided that approximation solutions of good

quality should suffice and propose a Genetic Algorithm (GA) based metaheuristic. GA is a

population-based search methodology combining principles of natural evolution and genetics

for problem solving [46]. The underlying foundation of GA is related to the Darwinian theory

of natural selection that fittest individuals have higher chances of surviving and breeding and

that the fitness of an individual depends on the characteristics of its genes.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 44

Li and Demeulemeester [104] proposed a genetic algorithm for the resource leveling problem in

which the activity durations are random. The results presented in [104] indicate that GA is an

effective metaheuristic for the stochastic optimisation problems. Here, we build upon the GA

of [104] in two ways. First and foremost, at each generation, our GA can precisely determine

whether a solution is better than another one by computing the objective function, instead

of evaluating the solutions with a small number of scenarios. Second, our GA incorporates

a migration phase that randomly generates some chromosomes before the offspring selection

phase. The purpose of the migration phase is to prevent premature convergence.

In the considered problem, a solution is an arrival plan σ = (s1, · · · , sn) that specifies the

arrival days for all train-sets. In our implementation of GA, starting with an initial population

of POP different chromosomes, a decoding procedure transforms each chromosome into a

feasible arrival plan (see Section 3.3.1). Next, the fitness value of each arrival plan of the

initial population is computed by evaluating the objective function as described in Section

3.2.2. The plan with the smallest value on the objective function is the current best plan σ∗,

and its corresponding objective value is the current best objective G∗. In each generation of

the GA, the chromosomes in the current population are evolved to new chromosomes that

enter the new population. The evolutionary process is comprised of four main components:

parents selection, crossover, mutation, and offspring selection (see Section 3.3.2). The GA

procedure stops when the total number of generations equal to GENmax. Algorithm 4 outlines

our complete GA implementation.

In our implementation of GA, each arrival plan is encoded as a chromosome whose size is

equal to the number of train-sets. Each gene j in the chromosome is a random number

generated according to the uniform distribution U(0, 1) which determines the priority of a

train-set j ∈ N (see Figure 3.1 for an example). The benefit of using the random key to

encode the solution is that we do not directly deal with the train-set indexes. Hence, all

offspring chromosomes generated by crossover and mutation are guaranteed to be decoded

into feasible arrival plans.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 45

Algorithm 4 Genetic Algorithm
1: Initialise population by generating POP different chromosomes randomly.
2: Set the current best objective G∗, and the current best plan σ∗

3: Set i = 1
4: while i ≤ GENmax do
5: Select a pool of parent chromosomes
6: Generate POP/2 offspring chromosomes (resource-based crossover and two-point

crossover)
7: Diversify offspring chromosomes (mutation)
8: Obtain a new population of POP chromosomes from the union set of parent chromo-

somes, offspring chromosomes, and some randomly generated chromosomes.
9: Decode chromosomes into feasible arrival plans and evaluate their fitness.

10: if (new best plan is found) then
11: Update G∗, σ∗

12: end if
13: Set i = i+ 1
14: end while
15: return σ∗

Figure 3.1: Random key encoding example. Each train-set is assigned a random number
generated according to the uniform distribution U(0, 1), which determine its priority in the
decoding procedure. Here, train-set 2 has the highest priority, followed by train-set 1, 5, 3,
and train-set 4 will be the last.

3.3.1 The decoding procedure

The decoding procedure transforms a chromosome into a feasible arrival plan. The decoding

procedure is inspired by Li and Demeulemeester [104] and is detailed in Algorithm 5. In

this pseudocode, N ′ is the set of planned train-sets, Wt(N
′) is the total number of train-sets,

residing in the maintenance center on the day t, and W k
t (N

′) denote the total number of

train-sets of family F k, residing in the maintenance center on the day t. The mean cycle

time for the train-sets in F k (denoted by q̄k) is used in the decoding procedure because of

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 46

the following reasons. First, the decoding procedure must be computationally efficient since

it is frequently invoked in the GA. Second, by using the mean cycle time of the train-sets,

some levels of uncertainty have been taken into consideration.

The decoding procedure starts with an empty set of planned train-sets (i.e. N ′ = ∅). In each

iteration of the decoding procedure, a train-set j ∈ N , whose gene value is the smallest, is

selected. From all feasible days within the planning horizon, the arrival day of train-set j is

chosen such that it gives the smallest value on the performance measure. If a train-set j of

type k arrives on the day sj, the performance measure can be computed as

PM =

sj+q̄k−1∑
t=sj

(
δt

(
Wt(N

′) + 1
)
+ δkt

(
W k
t (N

′) + 1
))

(3.21)

We do not use the objective function G = αG1+βG2 as the performance measure for deciding

the best arrival day for a train-set because violation of the limits is always equal to zero at

the early stages of the decoding procedure. The procedure is repeated until the arrival days

of all the train-sets have been determined.

3.3.2 Evolutionary process

The evolutionary process evolves the current generation towards a better successive gener-

ation. It includes parent selection, resource-based crossover, two-point crossover, mutation,

and offspring selection. The evolutionary process, inspired by Li and Demeulemeester [104],

is described in the subsequent paragraphs.

The parent selection phase selects the top POP/2 best chromosomes in the current population

as the father chromosomes. The remaining chromosomes form a pool of candidates from

which two chromosomes are randomly chosen each time. The one with a smaller fitness

value is nominated as the mother chromosome. The process is repeated until POP/2 mother

chromosomes are obtained. Given the list of father chromosomes and the list of mother

chromosomes, to form a pair of parent chromosomes, we pick one chromosome from the

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 47

Algorithm 5 Decoding Procedure
1: Input: A chromosome
2: Output: An arrival plan σ = (s1, · · · , sn)
3: procedure
4: Set N ′ = ∅, Wt(N

′) = 0, W k
t (N

′) = 0, for t = 0, ..., T − 1
5: while N \N ′ ̸= ∅ do
6: CB =∞
7: Select a train-set j from N \N ′ with the smallest gene value
8: for ψ from 0 to T − 1 do
9: if ψ satisfies the restriction on the time between two consecutive arrivals then

10: PM = 0
11: for t from ψ to ψ + q̄k − 1 do
12: PM = PM + δ

(
Wt(N

′
) + 1

)
+ δkt

(
W k
t (N

′
) + 1

)
13: end for
14: PM = PM2 + gj(sj)
15: if PM < CB then
16: CB = PM , sj = ψ
17: end if
18: else continue
19: end if
20: end for
21: N

′ ← N
′∪ j

22: end while
23: return σ = (s1, · · · , sn)
24: end procedure

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 48

father list and one chromosome from the mother list. As a result, we have POP/2 pairs of

parent chromosomes in total.

The crossover phase operates on the POP/2 pairs of parent chromosomes to produce POP/2

offspring chromosomes. Following the idea of Li and Demeulemeester [104], the crossover

phase includes a resource-based crossover operator, which is applied to the parent chromo-

somes with the top POP/4 best father chromosomes, and a two-point crossover operator,

which is applied to the remaining parent chromosomes. The details of these two crossover

operators are given below. In the resource-based crossover operator, for a father chromo-

some and its corresponding arrival plan σ, a partial plan of length ε is randomly chosen in

[0.25T, 0.75T], a crossover point t is selected such that G2(σ) is minimized for the interval

[t, t + ε]. Then, for the train-sets whose arrival days fall within the interval [t, t + ε], the

value of the corresponding gene is added by a big enough number (i.e., 5000) and given to

the child chromosome. Here, we can choose any arbitrary number to be added to the gene

value as long as it is much larger than 1. This is to ensure that the corresponding train-set

will have the least priority in the decoding procedure at the next generation. The number

5000 is chosen in this study as recommended in [104]. The values of other genes are obtained

from the mother chromosome (see Figure 3.2 for an example).

Figure 3.2: Resource-based crossover example. The crossover operator takes the gene values
0.41 and 0.05 from the father chromosome and places them in the same position in the child
chromosome. The crossover operator fills in the missing gene values in the remaining places
in the order they are defined in the mother chromosome. A big enough number (i.e., 5000)
is then added to the genes indexed 2 and 3 to give the values 5000.41 and 5000.05.

In the two-point crossover operator, two crossover points t1 and t2 are randomly selected.

The genes between t1 and t2 of the child chromosome are set equal to the corresponding

genes in the father chromosome while the values of other genes are obtained from the mother

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 49

chromosome (see Figure 3.3 for an example).

Figure 3.3: Two-point crossover example. Two crossover points t1 = 1 and t2 = 4 are selected.
The values of genes 2, 3, and 4 are obtained from the father chromosomes, whereas the values
of genes 1 and 5 are obtained from the mother chromosomes.

The mutation phase attempts to replace the values of some genes in the child chromosome.

For each gene in the child chromosome, a random number is generated according to the

uniform distribution U(0, 1). Suppose this random number is less than mutation_prob. In

that case, the corresponding gene value is replaced by a new random key generated according

to the uniform distribution U(0, 1) (see Figure 3.4 for an example).

Figure 3.4: Mutation example. For each gene, one random number is generated from U(0, 1).
Since the random number of gene 1 is smaller than mutation_prob (i.e., 0.04 < 0.05), the
corresponding gene value is replaced by a new random key, i.e. 0.65.

Before the process of offspring selection, a migration phase is performed in which new chro-

mosomes are randomly generated. The number of newly generated chromosomes is set equal

to a proportion mig_prob of the population size. This step is added to the GA to prevent

premature convergence [169]. Finally, the top POP best chromosomes from the union set

of parent chromosomes, offspring chromosomes, and the newly generated chromosomes are

selected as the candidates of the new population.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 50

3.4 Genetic Algorithm based Matheuristic

The Genetic Algorithm presented in Section 3.3 transforms a sequence into a feasible arrival

plan by means of a simple greedy heuristic. In doing so, the GA may suffer from poor

performance as the idle time inserted between train-sets is not optimal. This observation

leads to the development of an algorithm based on the idea of the amalgamation of GA and

Integer Programming. The algorithm consists of a genetic algorithm for global search and

an exact method to determine the arrival dates of train-sets when a sequence of train-sets is

known.

Although both the Genetic Algorithm based Matheuristic and the GA presented in Section

3.3 are based on GA, the implementation of GA in these two algorithms is quite different:

1. The decoding procedure in Section 3.3 has been redesigned

• by implementing a new method of choosing the priority of train-sets, i.e. the

sequence of train-sets;

• by changing the procedure that transforms a sequence into a feasible arrival plan.

2. The evolution model in Section 3.3 is a steady-state GA, where new chromosomes are

added to, and unfit chromosomes are removed from the population. On the other

hand, the GA in this section applies the generational with elitism strategy, where the

most fitting individuals from the current population are artificially inserted in the new

population.

In the developed version of GA, the arrival plans in the initial population (of size POP) are

generated using a four-step procedure. First, we initialize the chromosomes using the random

key encoding as described in Section 3.3, i.e., each gene in the chromosome corresponds to

a train-set, and the gene value is a random number generated from the uniform distribution

U(0, 1). Second, we decide the priority of train types by sorting the list of train types by

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 51

Figure 3.5: Example of the sequence decoding by train types.

their gene values in non-decreasing order. Third, we decide the sequence of train-sets by

sorting the train-sets in the same train family based on their preferred arrival time windows.

This process of decoding a chromosome into a sequence of train-sets is illustrated in Figure

3.5. Once a sequence is known, we determine the dates when the train-sets should arrive

at the maintenance center by solving a mixed-integer linear program. This is achieved by

using the Sample Average Approximation (SAA) method - an approach for solving stochastic

optimization problems by using Monte Carlo simulation [155, 96, 109]. The SAA, as its name

suggests, is an approach of replacing the original problem with its sampling approximation.

The implementation of SAA is as follows. Let E be a set of arcs representing the precedence

relations obtained from the sequence. Let Dγ
j denote the realization of cycle time of train-set

j ∈ N in scenario γ. Given a sample γ1, γ2, ..., γΓ of Γ scenarios, we can then estimate the

expected total penalty for violating the limits Ct and Ckt in (3.3) by the average total penalty

over all scenarios. The resulting SAA problem is a large mixed integer program. An optimal

solution to the SAA problem gives an optimal arrival plan with respect to the given sequence.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 52

(SAA) ZSAA = min α
∑
j∈N

(
λ1

θj−∆−1∑
t=0

(θj − t)2xjt + λ2

T−1∑
t=θj+∆+1

(t− θj)2xjt
)

+ β
1

Γ

Γ∑
i=1

T−1∑
t=0

(
δt w

γi

t +
m∑
k=1

δktw
k,γi

t

)
(3.22)

subject to (3.6), (3.7), (3.9)

T−1∑
t=0

t xjt ≤
T−1∑
t=0

t xj′t, ∀(j, j′) ∈ E (3.23)

∑
j∈N

t∑
s=max(t−Dγi

j +1,0)

xjs ≤ Ct + wγ
i

t , 1 ≤ i ≤ Γ, t ∈ {0, ..., T − 1} (3.24)

∑
j∈Fk

t∑
s=max(t−Dγi

j +1,0)

xjs ≤ Ckt + wk,γ
i

t , (3.25)

1 ≤ i ≤ Γ, 1 ≤ k ≤ m, t ∈ {0, ..., T − 1} (3.26)

wγ
i

t ≥ 0, 1 ≤ i ≤ Γ, t ∈ {0, ..., T − 1} (3.27)

wk,γ
i

t ≥ 0, 1 ≤ i ≤ Γ, 1 ≤ k ≤ m, t ∈ {0, ..., T − 1} (3.28)

The constraints (3.23) enforce the precedence relations among train-sets according to the

given sequence. Constraints (3.24) calculate the additional train-sets (wγ
i

t) beyond the limit

Ct on day t under scenario γi, and likewise Constraints (3.26) calculate the additional train-

sets of a particular type k (wk,γ
i

t) beyond the limit Ckt on day t under scenario γi. Constraints

(3.27) and (3.28) describe the domains for wγ
i

t and wk,γ
i

t , respectively.

For Γ = 5, the instances of (SAA) can be solved quickly. In particulars, CPLEX solved

(SAA) model in less than 10 seconds, roughly 22 times shorter than that required to solve

(SAA) model without Constraint (3.23).

The next population of POP chromosomes is produced through elite selection, crossover,

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 53

and mutation. In the elite selection phase, the best fitting individuals of current population

will continue to exist in the new population. The number of surviving individuals is equal

to POPelite. In the crossover phase, we use the two-point crossover, as discussed in Section

3.3.2. Two parent chromosomes are picked at random from a pool of chromosomes. This pool

consists of the POPelite best fitting individuals of current population and POP − POPelite
individuals randomly selected from Roulette Wheel. In the mutation phase, some gene values

in the offspring chromosomes will be replaced according to the mutation operator discussed

in Section 3.3.2.

The Algorithm 6 below outlines the GA-based matheuristic.

Algorithm 6 GA-based Matheuristic
1: Initialise population by generating POP different chromosomes randomly.
2: Set the current best objective G∗, and the current best plan σ∗

3: Set i = 1
4: while i ≤ GENmax do
5: Select POPelite best fitting individuals from current population
6: for j = 1 to POP − POPelite do
7: Pick 2 parent chromosomes
8: Generate 1 offspring chromosome (two-point crossover)
9: Diversify offspring chromosome (mutation)

10: end for
11: Decode chromosomes into sequences of train-sets, obtain arrival plans by solving

(SAA) model, and evaluate their fitness
12: if (new best plan is found) then
13: Update G∗ and σ∗

14: end if
15: Set i = i+ 1
16: end while
17: return σ∗

3.5 Hybrid Two-stage optimization Procedure

As has been discussed in Section 3.1, the existing literature often ignores the stochastic

nature of cycle times and focuses on the optimization procedures that construct arrival plans

assuming that the duration of maintenance is known. This also reflects the practice often

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 54

encountered in industry. Under the assumption of deterministic cycle times, the arrival

plan is constructed either by solving a mathematical programming problem [105, 50] or by

some metaheuristic [105, 161]. The Mixed Integer Linear Programming Problem (MILP)

below also assumes that the cycle times are known constants, but in contrast to the previous

publications the resulting arrival plan is evaluated as described in Section 3.2.2.

As far as metaheuristics are concerned, this study presents an Iterated Local Search (ILS)

algorithm which is embedded into the multi-start framework. In contrast to the previous

publications, the presented ILS does not assume that the cycle times are deterministic and

evaluates each element in a neighborhood taking into account the stochastic nature of cycle

times.

Furthermore, this study presents a hybrid optimization procedure which generates a starting

solution by solving either the mixed integer linear programming problem MILP or the mixed

integer linear programming problem MIPM and then enhances the obtained solution using the

mentioned above ILS algorithm. As has been discussed above, when the hybrid optimization

procedure generates the starting solution using the mixed integer linear programming problem

MIPM, the optimal value of the objective function is a lower bound on the optimal value of

the original nonlinear programming problem.

Section 3.6 reports the results of computational experiments which were aimed at the com-

parison of the quality of the solutions produced by the presented optimization procedures

and the times needed to generate these solutions. Since the considered optimization problem

is a component of the complex planning process which normally involves a lot of negotiations

between the rolling stock operator and the maintenance center, both characteristics, quality

and time, are important.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 55

3.5.1 Mixed Integer Linear Program MILP

It is reasonable to model random cycle times using a beta-PERT distribution [110], which is

commonly used in project management [133]. In this case, the constant duration is chosen

as the most likely value of the cycle time according to the beta-PERT distribution. This

approach is adopted in the computational experiments below. Let qk be the most likely value

of the cycle time for the train-sets in F k. Then, the arrival day for each train-set j can be

determined by

sj =
T−1∑
t=0

txjt

where variables xjt are obtained by solving the following mixed integer linear program

(MILP) ZMILP = min α
∑
j∈N

(
λ1

θj−∆−1∑
t=0

(θj − t)2xjt + λ2

T−1∑
t=θj+∆+1

(t− θj)2xjt
)

β
T−1∑
t=0

(
δt wt +

m∑
k=1

δktw
k
t

)
(3.29)

subject to

(3.6), (3.7), (3.9)
m∑
k=1

∑
j∈Fk

t∑
s=max(0,t−qk+1)

xjs ≤ Ct + wt, t ∈ {0, ..., T − 1} (3.30)

∑
j∈Fk

t∑
s=max(0,t−qk+1)

xjs ≤ Ckt + wkt ,

1 ≤ k ≤ m, ∀t ∈ {0, ..., T − 1} (3.31)

wt ≥ 0, wkt ≥ 0, 1 ≤ k ≤ m, ∀t ∈ {0, ..., T − 1}. (3.32)

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 56

3.5.2 Local Search Subroutines

As has been discussed above, the considered planning problem can be solved either by some

local search based metaheuristic or by a hybrid algorithm that produces a starting solution by

solving one of the two mixed integer linear programs, MIPM or MILP, and then enhances this

solution by some local search based optimization procedure. Four neighborhood operators,

N1, N2, N
′
1, and N ′

2, as described below, will be used for this purpose.

Neighborhood operators

Consider an arbitrary arrival plan σ = [s1, ..., sn] and a sequence t1, ..., tn of arrival days

which are listed in a nondecreasing order and which are obtained by changing a single arrival

day in σ, say by changing the arrival day sg of some train-set g. For each 1 ≤ j ≤ n, let n(j)

be the train-set that arrives at tj, and let k(j) be the type of n(j). Let ti be the new arrival

day assigned to the train-set g. The replacement of sg by ti results in a new feasible arrival

plan if

(p1) i = 1 and t1 + τk(1) ≤ t2;

(p2) 1 < i < n, ti−1 + τk(i−1) ≤ ti and ti + τk(i) ≤ ti+1;

(p3) i = n and tn−1 + τk(n−1) ≤ tn.

The neighborhood explored by the operator N1 is comprised of all feasible arrival plans

(solutions) that can be obtained from the input arrival plan σ by assigning a different arrival

day to a single train-set. In other words, the neighborhood explored by the operator N1 is

comprised of all arrival plans that are obtained when the change of a single arrival day in

σ results either in (p1), or (p2), or (p3). The benefit of using N1 is in the fast evaluation

of each solution in the neighborhood because each solution is obtained by changing only a

single arrival day and this change does not affect any other arrival days. The operator N2

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 57

explores all solutions that can be obtained by changing any two arrival days of the input

arrival plan. Similar to N1, these two changes must not affect any other arrival days in the

input arrival plan.

Other two operators N ′
1 and N ′

2 are similar to N1 and N2 but their neighborhoods are

constructed without the restriction that the change of an arrival day in σ does not affect any

unchanged days in σ. More specifically, the operator N ′
1 explores the neighborhood comprised

of the solutions that result from a change of a single arrival day in the input arrival plan, but

in contrast to N1, this change is allowed to violate all three feasibility conditions (p1), (p2),

and (p3). In such case, the set of arrival days is transformed into a feasible arrival plan by the

algorithm TRANSFORMATION and its two subroutines LEFT and RIGHT. Similarly, the

operator N ′
2 explores all solutions that can be obtained by changing any two arrival days in

the input arrival plan, but in contrast to N2, these two changes may affect some other arrival

days in the input solution. In such case, analogously to N ′
1, the resultant set of arrival days

is transformed into a feasible arrival plan using the same algorithm TRANSFORMATION.

Algorithm 7 TRANSFORMATION
1: if ti < sg then
2: LEFT(i, t1, ..., tn) ▷ Algorithms 8
3: else
4: RIGHT(i, t1, ..., tn) ▷ Algorithm 9
5: end if
6: for j = 1; j ≤ n; j++ do
7: sn(j) = tj
8: end for
9: return [s1, ..., sn]

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 58

Algorithm 8 LEFT

1: t
′
i = ti

2: if i > 1 then
3: for j = i− 1; j > 0; j– do
4: t

′
j = min{tj , t

′
j+1 − τk(j)}

5: end for
6: if t

′
1 < 0 then

7: t1 = 0
8: for j = 2; j ≤ i; j++ do
9: tj = tj−1 + τk(j−1)

10: end for
11: else
12: for j = 1; j ≤ i; j++ do
13: tj = t

′
j

14: end for
15: end if
16: end if
17: if i < n then
18: for j = i; j < n; j++ do
19: tj+1 = max{tj + τk(j), tj+1}
20: end for
21: end if
22: return [t1, ..., tn]

Algorithm 9 RIGHT
1: t

′

i = ti
2: if i < n then
3: for j = i; j < n; j++ do
4: t

′

j+1 = max{tj+1, t
′

j + τk(j)}
5: end for
6: if t

′

n > T − 1 then
7: tn = T − 1
8: for j = n− 1; j ≥ i; j– do
9: tj = tj+1 − τk(j)

10: end for
11: else
12: for j = i+ 1; j ≤ n; j++ do
13: tj = t

′

j

14: end for
15: end if
16: end if
17: if i > 1 then
18: for j = i; j > 1; j– do
19: tj−1 = min{tj − τk(j−1), tj−1}
20: end for
21: end if
22: return [t1, ..., tn]

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 59

Let N be one of the four operators, N1, or N ′
1, or N2, or N ′

2. For each solution σ̃ = [s̃1, ..., s̃n]

in the neighborhood of an input arrival plan σ, the operator N computes the value of the

objective function

αG1(σ̃) + βG2(σ̃) = α
∑

1≤j≤n

gj(s̃j) + β
T−1∑
t=0

(
E [max{0, δt(Wt(σ̃)− Ct)}]

+
m∑
k=1

E
[
max{0, δkt(W k

t (σ̃)− Ckt)}
])
.

(3.33)

Let σ̂ be a solution in the neighborhood of σ with the smallest value of the objective function.

Denote by N(σ) the output solution produced by the operator N. Then

N(σ) =

 σ if αG1(σ) + βG2(σ) ≤ αG1(σ̂) + βG2(σ̂)

σ̂ otherwise
(3.34)

The Algorithm 10 below outlines the local search procedure for an input arrival plan σ. If

N is Ni, where i ∈ {1, 2}, then this procedure will be referred to as LSi. If N is N ′
i , where

i ∈ {1, 2}, this procedure will be referred to as LSi
′
.

Algorithm 10 Local Search
1: repeat
2: σ̄ = σ
3: σ = N(σ)
4: until αG1(σ) + βG2(σ) == αG1(σ̄) + βG2(σ̄)
5: return σ̄

The four search operators, mentioned above, can be combined in different ways. In this study,

four options are considered: (1) LS1 is a local search that uses only the operator N1; (2) LS1
′

is a local search that uses only the operator N ′
1; (3) Sequential Local Search (SLS) applies

LS1 to the input arrival plan and when LS1 terminates applies LS2 to the output of LS1;

and (4) SLS
′
applies LS1

′
to the input arrival plan and when LS1

′
terminates applies LS2

′

to the output of LS1
′
. Each option has its own merit as demonstrated in the computational

study.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 60

Evaluation of solutions in a neighborhood

The main computational burden in many local search algorithms is the evaluation of the

elements constituting a neighborhood. The local search procedures LS1, LS2, LS1
′
and LS2

′

are no exception. Therefore, an algorithm for computing (3.33) for each element of the

neighborhood of an input solution is the key factor that determines the efficiency of these

optimization procedures.

As (3.13) indicates, in order to recompute (3.33) efficiently, one requires a fast algorithm

for recomputing the probability mass functions of the random variables Wt, W k
t for all t ∈

{0, ..., T − 1} and 1 ≤ k ≤ m. All these random variables have the same nature - they are

sums of Bernoulli random variables. Given the structure of neighborhoods explored by the

operators N1 and N2, each element in the neighborhood of the input arrival plan can be

obtained by changing the arrival day of one or two trains-sets in this input solution. For

each such train-set, the change in the arrival day results in the change of one of the Bernoulli

random variables in the sums defining the random variables Wt, W k
t for all t ∈ {0, ..., T − 1}

and 1 ≤ k ≤ m. This replacement can be viewed as the elimination of one of the Bernoulli

random variables from the sum followed by the addition of another Bernoulli random variable

to the result of the elimination. The Algorithm 11 and Algorithm 12 below do this efficiently

for any probability mass function of a random variable that is a sum of Bernoulli random

variables, and therefore, are used for recomputing probability mass functions of the random

variables Wt, W k
t for all t ∈ {0, ..., T − 1} and 1 ≤ k ≤ m.

Let p be the success probability of the Bernoulli random variable that is to be eliminated,

PMF be the original probability mass function, and new_PMF be the probability mass

function resulted from the elimination of this Bernoulli random variable. The probability

mass function new_PMF is defined for all integers 0 ≤ i ≤ n − 1, whereas the prob-

ability mass function PMF is defined for all integers 0 ≤ i ≤ n. For each i from the

domain of new_PMF , if p = 0, then new_PMF (i) = PMF (i), whereas if p = 1, then

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 61

new_PMF (i) = PMF (i+ 1). If 0 < p < 1, then

PMF (0) = (1− p) new_PMF (0)

and, for 1 ≤ i ≤ n− 1,

PMF (i) = p new_PMF (i− 1) + (1− p) new_PMF (i)

This observations lead to the Algorithm 11 below.

Algorithm 11 Single Train-set Removal (STR)
1: if 0 < p < 1 then
2: new_PMF (0) = PMF (0) / (1− p)
3: for i from 1 to n - 1 do
4: new_PMF (i) = [PMF (i)− new_PMF (i− 1) ∗ p] / (1− p)
5: end for
6: else
7: for i from 0 to n - 1 do
8: if p = 1 then
9: new_PMF (i) = PMF (i+ 1)

10: else
11: new_PMF (i) = PMF (i)
12: end if
13: end for
14: end if
15: return new_PMF

Let p be the success probability of the Bernoulli random variable that is to be added to

a sum of Bernoulli random variables which has the probability mass function PMF . Let

new_PMF be the probability mass function of the sum after this addition. The probability

mass function new_PMF is defined for all integers 0 ≤ i ≤ n, whereas the probability mass

function PMF is defined for all integers 0 ≤ i ≤ n− 1. The reasoning similar to the above

lead to the Algorithm 12.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 62

Algorithm 12 Single Train-set Addition (STA)
1: if 0 < p < 1 then
2: new_PMF (0) = PMF (0) ∗ (1− p)
3: for i from 1 to n− 1 do
4: new_PMF (i) = PMF (i) ∗ (1− p) + PMF (i− 1) ∗ p
5: end for
6: new_PMF (n) = PMF (n− 1) ∗ p
7: end if
8: if p = 0 then
9: new_PMF (n) = 0

10: for i from 0 to n− 1 do
11: new_PMF (i) = PMF (i)
12: end for
13: end if
14: if p = 1 then
15: new_PMF (0) = 0
16: for i from 1 to n do
17: new_PMF (i) = PMF (i− 1)
18: end for
19: end if
20: return new_PMF

3.5.3 Iterated Local Search

Iterated local search (ILS) is one of the commonly used metaheuristics which was successful

in solving a wide range of optimization problems [107]. The Algorithm 13 below outlines this

metaheuristic as it was implemented and used in the computational experiments, the results

of which are reported in Section 3.6. In this pseudocode, G is the objective function (3.4)

and the parameter U specifies the maximum permissible number of consecutive unsuccessful

attempts to improve the current best known arrival plan σ∗.

The Algorithm 13 interchangeably invokes two subroutines, SEARCH and PERTURB. In

some computational experiments, reported in Section 3.6, the subroutine SEARCH is a local

search procedure LS1 or LS1
′

(see Algorithm 10), whereas in the others, the subroutine

SEARCH is the sequential local search SLS or SLS
′
. The subroutine PERTURB randomly

chooses three train-sets and one by one assigns to them new arrival days without violating

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 63

the feasibility (that is, without violating the restrictions on the duration of time intervals

between any two consecutive arrivals of train-sets). In the process of assigning the arrival

days to the three selected train-sets, the subroutine PERTURB does not take into account the

new value of the objective function G. In what follows, for any arrival plan σ̃, SEARCH(σ̃)

and PERTURB(σ̃) denote the output of SEARCH and PERTURB, respectively, resulted

from their application to σ̃. The arrival plan σ in SEARCH(σ) in line 1 is a feasible (in terms

of the time between the consecutive arrivals) input solution.

Algorithm 13 Iterated Local Search
1: σ∗ = SEARCH(σ)
2: u = 0
3: while u ≤ U do
4: σ = PERTURB (σ∗)
5: σ = SEARCH (σ)
6: if G(σ∗) > G(σ) then
7: σ∗ = σ
8: u = 0
9: else

10: u = u+ 1
11: end if
12: end while
13: return σ∗

An input arrival plan for the ILS is generated either by solving one of the two mixed integer

linear programs, MIPM or MILP, or by the heuristic INITIAL described below. The heuristic

INITIAL chooses randomly n different arrival days t1 < ... < tn and associates randomly with

each ti one of m types of train-sets in such a manner that each type 1 ≤ k ≤ m receives |F k|

arrival days. Denote by k(ti) the type associated with ti. If, for each 1 ≤ i < n,

ti + τk(ti) ≤ ti+1,

then the arrival days are feasible. If they are not feasible, then the heuristic INITIAL

transforms the generated arrival days into feasible arrival days, using the Algorithm 14 below.

After obtaining feasible arrival days, the heuristic INITIAL generates an arrival plan by

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 64

assigning the days associated with each type of train-sets to the train-sets of this type in the

increasing order of their preferred days θj.

Algorithm 14 Arrivals Adjustment
1: for i from n− 1 to 1 do
2: ti = min[ti, ti+1 − τk(ti)]
3: end for
4: if t1 < 0 then
5: t1 = 0
6: for i from 2 to n do
7: ti = max[ti, ti−1 + τk(ti−1)]
8: end for
9: end if

10: return t1, ..., tn

3.6 Computational Results

The proposed solution approaches are tested and evaluated on data provided by one of the

leading maintenance centers in Australia. The planning horizon is one year. There are 35

train-sets of 3 different types. The parameters of train-sets in F k, 1 ≤ k ≤ 3 are given

in Table 3.1. The column ‘|F k|’ reports the total number of train-sets of the same type

k; the column ‘τk’ gives the number of days a train-set of the corresponding type spends

on the first operation line. Since an increase in transport demand is often expected during

public holidays, the number of train-sets of type k which can dwell at the maintenance center

simultaneously during these days is normally less than that on any other days of the year.

The out-of-service limit ‘Ckt’ for type k on day t is reported in column ‘non-PH’ if day t is not

a public holiday, and in column ‘PH’ if day t is a public holiday, where PH is an abbreviation

of public holiday.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 65

Table 3.1: Parameters for the train types.

Train type k |F k| τk
Ckt

non-PH PH
1 25 4 3 1
2 5 5 2 1
3 5 5 1 1

For any day t, the capacity of the maintenance center imposes a limit Ct = 5, and the daily

penalty factor δt is fixed at 1. For any 1 ≤ k ≤ 3, and any day t, the daily penalty factor δkt

= 1 if t is not a public holiday, and δkt = 10 if t is a public holiday. A larger penalty is applied

for public holidays because it is more undesirable to violate the given limit Ckt during these

periods. With a larger penalty factor δkt, the violation of the permissible number of train-sets

of type k that can dwell at the maintenance center simultaneously on public holidays is still

possible in the optimal solution.

The permissible deviation from the preferred day of the commencement of maintenance is 14

days, i.e. ∆ = 14. The penalty factors for the violation of time windows are chosen as λ1 =

λ2 = 1.

As has been discussed in Section 3.5.1, the random cycle times are modelled using beta-

PERT distribution with the minimum, most likely, and maximum values as given in Table

3.2 for each train type k. Note that the beta-PERT distribution is a continuous probability

distribution. So for the computational experiments, beta-PERT distribution is discretized

into days.

Table 3.2: Parameters of probability distribution for cycle time by train types.

Train type Minimum Most likely Maximum Distribution
1 20 25 40 beta-PERT
2 27 30 46 beta-PERT
3 29 30 52 beta-PERT

Extensive experiments were performed on numerous settings for the weights α and β. The

choice of values presented in Table 3.3 corresponds to the appropriate weight coefficients

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 66

that can generate solutions representing typical scenarios. For case 1, a large relative weight

is assigned to the second component of the objective function G2(σ), and the optimization

procedures aim at minimizing the expected penalties for the violation of the limits Ct and

Ckt. The importance of the objective G1(σ) increases when proceeding from case 1 to case 9.

Table 3.3: Assignment of α and β for all the cases.

Case α β Case α β
1 1 1000 6 1 100
2 1 300 7 1 50
3 1 200 8 1 10
4 1 180 9 1 1
5 1 150

All algorithms are implemented in Python 2.7. The mixed integer linear programs are solved

with IBM ILOG CPLEX 12.7 via the mathematical programming modeling language PuLP

[117]. All tests are run on a computer with Intel i5-6300U 2.4GHz processor and 8GB of

RAM.

3.6.1 Comparison of GA and GA-based matheuristic

Table 3.4 shows the performance of Genetic Algorithm (GA) and GA-based matheuristic

(GA-M) with Γ = 10 in terms of solution quality and time. For each case, i.e., for each choice

of the parameters α and β, we ran the algorithms 10 times. Because both algorithms start

with a randomly generated initial population, we report the average value of the objective

function of the best solution found in initial population (In. Obj.) and the average value

of the objective function of the best solution found when the algorithm terminates (Obj.).

The column ‘Time’ displays the average computation time in seconds. For all cases, the

objective values of the solutions are computed as described in Section 3.2.2. We have fixed the

parameter values as follows: POP = 20, POPelite = 2, GENmax = 40, mutation_prob = 0.05,

and mig_prob = 0.05.

The performance of GA-M (Γ = 10) is consistently better than GA irrespective of the assign-

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 67

Table 3.4: Comparison of the performance of GA and GA-based matheuristic

Case GA GA-M (Γ = 10)

In. Obj. Obj. Time In. Obj. Obj. Time

1 417,581 341,962 960 332,519 233,634 11878

2 150,158 132,345 600 123,468 87,171 10937

3 111,955 99,165 600 95,445 68,758 8300

4 104,314 92,363 1200 78,083 64,514 11355

5 92,853 72,170 2460 71,392 58,163 11041

6 73,752 59,084 2400 63,792 41,351 10565

7 52,509 35,868 1380 33,754 29,228 10370

8 34,363 27,959 600 24,696 11,979 10103

9 30,280 22,235 900 28,127 7,772 10074

Average 118,641 98,128 1233 94,586 66,952 10514

ment of α and β. Using GA-M (Γ = 10) results in final solutions with objective values that

are, on average, 35% better than GA. The percentage relative improvement in the objective

function value over the best solution of the initial population is 33% for GA-M (Γ = 10) and

19% for GA. It can be observed that the proposed GA-based matheuristic produced superior

solutions but at the cost of longer computation time. The GA-M (Γ = 10) took between 138

and 198 minutes, with an average of 8 times longer than the time required by GA.

From Table 3.4, for all 9 cases, it is observed that the best solutions found by GA are always

worse than the best solution found in the initial population of GA-M. Hence, even if the

same amount of time is given to both GA and GA-M, the latter will continue to be better.

GA-M is better than GA because of the inclusion of CPLEX that is able to determine the

optimal idle time to be inserted between train-sets when a sequence of arrival is given.

Table 3.5 presents the analysis on the performance of the GA-based matheuristic with Γ ∈

{1, 5, 10}. We find in our preliminary experiments that, the time required to solve the problem

(3.22) - (3.28) grows rapidly as Γ increases. Therefore, as a good trade-off between solution

quality and computation time, we set Γ = 1, 5, 10. In all cases, the algorithm was permitted

to run for 1800 seconds. Using Γ = 10 results in initial solutions with objective values that

are, on average, 4% better than Γ = 5 and 9% better than Γ = 1. This result is not surprising

since the solution quality of the approximation of the objective function (3.22) by its sample

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 68

Table 3.5: Analysis of the performance of GA-based matheuristic with Γ ∈ {1, 5, 10}, when
the algorithm is run in 1800 seconds.

Case GA-M (Γ = 1) GA-M (Γ = 5) GA-M (Γ = 10)

In. Obj. Obj. In. Obj. Obj. In. Obj. Obj.

1 355,145 240,559 345,911 278,635 301,782 255,545
2 131,396 101,181 128,202 98,163 122,936 90,590
3 88,170 59,281 78,966 68,635 95,427 82,762
4 97,717 64,695 85,242 77,847 90,411 75,436
5 92,109 62,948 81,867 70,249 69,464 69,464
6 56,825 44,869 70,249 48,164 56,888 50,456
7 45,398 26,176 42,503 28,164 45,152 31,035
8 26,238 15,480 24,466 13,836 32,462 19,477
9 27,809 8,081 19,992 9,411 25,265 11,727

Average 102,312 69,252 97,489 77,012 93,310 76,277

average increases with increasing number of scenarios. The average relative improvement in

the objective function value over the best solution of the initial population is approximately

37%, 27%, 23%, respectively, for 1, 5, and 10 scenarios. The small relative improvement of

GA-M (Γ = 10) is due to the amount of time required for solving the (SAA) model. As

a result, only a few generations are explored (see Table 3.6) and the search capability of

Genetic Algorithm is not fully employed. The comparison of the different GA-M variants for

Case 1 considering number of generations, i.e., 40 generations, is reported in Table 3.7.

Table 3.6: The number of generations performed to produce the solutions in Table 3.5.

Case GA-M (Γ = 1) GA-M (Γ = 5) GA-M (Γ = 10)

1 35 12 6
2 33 12 5
3 28 13 6
4 27 11 5
5 30 8 6
6 28 10 6
7 26 13 6
8 25 13 7
9 25 13 7

Average 29 12 6

Table 3.7: Performance of GA-based matheuristic with Γ ∈ {1, 5, 10} for Case 1, when the
algorithm is run for 40 generations.

Case GA-M (Γ = 1) GA-M (Γ = 5) GA-M (Γ = 10)

In. Obj. Obj. Time (s) In. Obj. Obj. Time (s) In. Obj. Obj. Time (s)

1 345,745 270,301 1973 337,906 240,495 5845 332,519 233,634 10514

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 69

3.6.2 Comparison of the Performance of MIPM and MILP

Table 3.8 compares the results of the two mixed integer linear programs. As has been

discussed in Section 3.2.3, solving the MIPM produces a lower bound which is reported

under the column titled ‘LB’. The column ‘Time’ gives the running time (in seconds) by

CPLEX to obtain an optimal solution. For all cases, the objective values of the solutions

are computed as described in Section 3.2.2 and reported under the column titled ‘Obj.’. The

relative gap is calculated as %Rel = (Obj.− LB)/LB× 100.

The results in Table 3.8 shows that the MILP can be solved in short computation time, yet

the MIPM has the advantage of providing a lower bound. It is observed that the MIPM gives

better solutions in 6 out of 9 cases, and on average 0.54% better than the MILP. For all cases,

CPLEX obtains an optimal solution to MILP in less than 11 seconds, whereas more time is

needed to solve the MIPM to optimality. By investigating the output of CPLEX in case 1

which takes the longest time, it was found that the optimal solution in fact was obtained in

less than 2 minutes. The remaining time was taken by CPLEX for proving optimality, which

is a common behavior of this software. As the relative weight of β decreases, the computation

time of MIPM reduces substantially. This observation suggests that the second component

of the objective function is harder to optimize for the MIPM.

Table 3.8: Comparison of the performance of MIPM and MILP

Case LB MIPM MILP

Time Obj. %Rel Time Obj. %Rel

1 156,744 2,078 206,060 31.46 7 201,203 28.36
2 62,612 235 77,764 24.20 7 80,353 28.33
3 48,629 68 59,178 21.69 8 59,103 21.54
4 45,768 100 55,368 20.98 8 56,322 23.06
5 40,190 54 48,447 20.54 11 49,369 22.84
6 30,789 46 36,245 17.72 8 36,572 18.78
7 20,940 41 23,624 12.82 8 23,337 11.45
8 10,594 39 10,753 1.50 8 10,818 2.11
9 6,706 38 6,725 0.28 8 6,748 0.63

Average 46,997 300 58,240 16.80 8 58,203 17.46

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 70

Table 3.9: Improvements in solution quality of MIPM and MILP by the local search LS1.

Case MIPM-LS1 MILP-LS1

LS Time Obj. %Rel LS Time Obj. %Rel

1 46.32 189,551 20.93 19.59 192,637 22.90
2 44.29 72,584 15.93 32.72 75,368 20.37
3 36.11 56,483 16.15 46.72 55,102 13.31
4 28.95 53,125 16.07 60.71 51,999 13.61
5 67.76 42,884 6.70 46.84 44,547 10.84
6 22.06 32,971 7.09 13.01 35,356 14.83
7 7.44 22,948 9.59 26.11 22,905 9.38
8 10.56 10,752 1.49 15.11 10,793 1.88
9 6.89 6,724 0.27 6.85 6,732 0.39

Average 30.04 54,225 10.47 29.74 55,049 11.95

Table 3.10: Improvements in solution quality of MIPM and MILP by the sequential local
search SLS.

Case MIPM-SLS MILP-SLS

LS Time Obj. %Rel LS Time Obj. %Rel

1 879 189,551 20.93 2,366 190,584 21.59
2 871 72,584 15.93 3,593 72,868 16.38
3 884 56,483 16.15 931 54,766 12.62
4 802 53,125 16.07 3,245 51,208 11.89
5 862 42,884 6.70 3,589 44,173 9.91
6 838 32,971 7.09 3,592 34,911 13.39
7 3,196 22,631 8.08 899 22,905 9.38
8 699 10,752 1.49 687 10,793 1.88
9 708 6,724 0.27 749 6,732 0.39

Average 1,082 54,189 10.30 2,183 54,327 10.82

The improvements in solution quality by the hybrid two-stage optimization procedure that

combines the mixed integer linear program with the local search LS1 and the Sequential

Local Search (SLS) are reported in Tables 3.9 and 3.10, respectively. In both tables, the

column ‘LS Time’ gives the computation time (in seconds) of the local search procedure.

Results in Table 3.9 show that the local search LS1 is effective in improving the solutions of

both models for all cases. On average, the relative gap is reduced by 30.56% for MIPM and

29.71% for MILP. The behavior of the local search is consistent for both models: the best

performance is achieved in case 5 with a change in the objective value of 11.48% for MIPM,

and 11.76% for MILP; whereas the worst performance is observed in case 8 at 0.004% and

0.23%, respectively. The MIPM with LS1 performs better than the MILP with LS1. The

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 71

former produces solutions that are, on average, 1.48% better than the latter, with the same

average time of 30 seconds. Moreover, the local search applied to a better initial solution

does not necessarily produce a better local optimum, as demonstrated by the result of case

1.

If the SLS is used to enhance the starting solutions of MIPM and MILP, results in Table 3.10

show that the MIPM with SLS yields better solutions in shorter running times. For MIPM,

the search in the neighborhood explored by the operator N2 finds better solution in only one

of the nine cases, i.e. case 7. For MILP, the SLS is seen to be especially useful on cases with

large relative weight β. Since the MIPM produces better results over the MILP for most

cases, MIPM is used in the remainder of the computational experiments.

3.6.3 Comparison of Hybrid ILS and Multi-start ILS

In this section, eight algorithms, namely hybrid ILS with LS1, hybrid ILS with LS1
′
, hy-

brid ILS with SLS, hybrid ILS with SLS
′
, multi-start ILS with LS1, multi-start ILS with

LS1
′
, multi-start ILS with SLS, and multi-start ILS with SLS

′
, are compared by means of

computational experiments. A summary of the algorithms can be found in Table 3.11.

For all eight algorithms, a maximum permissible number of iterations without improvement

U = 20 is used. The computational results are reported in Tables 3.12 - 3.15. In the

preliminary testing, performing an exhaustive search on the neighborhood by N2 and N ′
2

is too time consuming, which significantly reduces the number of perturbation in the ILS

procedure due to the time limit of 1 hour. As a result, the ability of ILS to escape the local

optimum is severely impaired. Therefore instead of allowing the arrival days of two train-sets

to be changed to any feasible days from {0, ..., T − 1}, the newly assigned arrival day t of

each such train-set j is selected from the range sj − 36 ≤ t ≤ sj + 36, where sj is obtained

from the input arrival plan σ. Such restriction substantially reduces the size of the search

space so that the neighborhood can be explored in a reasonable time. The reduced structure

of neighborhood explored by N2 and N ′
2 is employed in the computational experiments of

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 72

Table 3.11: Summary of the eight algorithms used in Section 3.6.3.

Algorithm Description of the algorithm
Hybrid ILS with LS1 hybrid algorithm that produces a starting solution by solving MIPM and then

enhances this solution by a local search that uses only the operator N1.
Hybrid ILS with LS1

′
hybrid algorithm that produces a starting solution by solving MIPM and then
enhances this solution by a local search that uses only the operator N ′

1.
Hybrid ILS with SLS hybrid algorithm that produces a starting solution by solving MIPM and then

enhances this solution by a sequential local search utilising LS1 and LS2.
Hybrid ILS with SLS

′
hybrid algorithm that produces a starting solution by solving MIPM and then
enhances this solution by a sequential local search utilising LS1

′
and LS2

′
.

Multi-start ILS with LS1 application of the Algorithm 18 to five different initial solutions generated by
the heuristic INITIAL and then enhances these solutions by a local search that
uses only the operator N1.

Multi-start ILS with LS1
′

application of the Algorithm 18 to five different initial solutions generated by
the heuristic INITIAL and then enhances these solutions by a local search that
uses only the operator N ′

1.
Multi-start ILS with SLS application of the Algorithm 18 to five different initial solutions generated by

the heuristic INITIAL and then enhances these solutions by a sequential local
search utilising LS1 and LS2.

Multi-start ILS with SLS
′

application of the Algorithm 18 to five different initial solutions generated by
the heuristic INITIAL and then enhances these solutions by a sequential local
search utilising LS1

′
and LS2

′
.

hybrid ILS with SLS, hybrid ILS with SLS
′
, multi-start ILS with SLS, and multi-start ILS

with SLS
′
. We will discuss the results of hybrid ILS first.

The hybrid ILS is implemented by solving the MIPM, which provides an input arrival plan

to the iterated local search in Algorithm 13. Because of the faster evaluation of solutions in

a neighborhood and the smaller neighborhood size, the versions of the hybrid iterated local

search with the operators N1 and N2 are faster than their counterparts with the operators

N ′
1 and N ′

2 often at a cost of inferior solution quality. The computational experiments took

this into account and ran versions with the operators N1 and N2 with one hour limit on the

permissible computation time, recorded for each such optimization procedure the average of

the actual computation times for ten runs, and then set this recorded average time as the

limit on the computation time for the version with the corresponding operators N ′
1 and/or

N ′
2.

For each case, i.e. for each choice of the parameters α and β, Tables 3.12 and 3.13 present

the average computation time in seconds (Time), the average value of the objective function

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 73

Table 3.12: Performance of hybrid ILS with LS1 and LS1
′
.

Case In. Obj. Time Hybrid ILS with LS1 Hybrid ILS with LS1
′

Obj. %Rel Obj. %Rel
1 206,060 2,685 189,487 20.89 180,530 15.17
2 77,764 864 71,715 14.54 67,092 7.16
3 59,178 581 55,624 14.38 51,344 5.58
4 55,368 932 50,780 10.95 47,803 4.45
5 48,447 805 42,416 5.54 41,666 3.67
6 36,245 472 32,828 6.62 32,371 5.14
7 23,624 817 22,494 7.42 22,948 9.59
8 10,753 483 10,752 1.49 10,752 1.49
9 6,725 355 6,724 0.27 6,724 0.27

Average 58,240 888 53,647 9.12 51,248 5.84

Table 3.13: Performance of hybrid ILS with SLS and SLS
′
.

Case In. Obj. Time hybrid ILS with SLS hybrid ILS with SLS
′

Obj. %Rel Obj. %Rel
1 206,060 3,600 187,992 19.94 179,847 14.74
2 77,764 2,482 70,845 13.15 66,967 6.96
3 59,178 1,640 55,100 13.31 51,324 5.54
4 55,368 2,281 51,459 12.43 47,785 4.41
5 48,447 2,496 42,193 4.98 41,432 3.09
6 36,245 1,634 32,968 7.08 32,371 5.14
7 23,624 1,413 22,613 7.99 22,948 9.59
8 10,753 1,191 10,752 1.49 10,752 1.49
9 6,725 1,078 6,724 0.27 6,724 0.27

Average 58,240 1,979 53,405 8.96 51,128 5.69

(Obj.), and the average relative gap (%Rel) obtained for ten runs of the hybrid ILS. The

column In. Obj. displays the value of the objective function obtained by solving the MIPM.

Table 3.12 indicates that the version with N ′
1 obtains better quality solutions in six of the

nine cases, with the average relative gap improving from 9.12% to 5.84%. Table 3.13 also

indicates the superior performance of the version with N ′
1 and N ′

2 in comparison with the

version with N1 and N2.

The output of the multi-start ILS is the best output obtained by the application of the

Algorithm 13 to five different input arrival plans generated by the heuristic INITIAL. These

five applications of the Algorithm 13 constitute one run of the multi-start ILS. In the course

of the computational experiments, the duration of each run of the multi-start ILS was limited

by one hour. For each case, i.e. for each choice of the parameters α and β, Tables 3.14 and

3.15 present the average required time (Time), average value of the objective function (Obj.),

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 74

Table 3.14: Performance of multi-start ILS with LS1 and LS1
′
.

Case multi-start ILS with LS1 multi-start ILS with LS1
′

Time In. Obj. Obj. %Rel Time In. Obj. Obj. %Rel
1 2,904 731,900 200,646 28.01 3,600 701,192 221,792 41.50
2 3,206 246,939 76,713 22.52 3,600 228,459 82,564 31.87
3 3,525 205,225 56,717 16.63 3,600 161,630 62,662 28.86
4 3,101 157,225 52,039 13.70 3,600 141,340 57,548 25.74
5 2,946 155,164 46,623 16.01 3,600 115,812 48,889 21.65
6 2,996 110,872 35,309 14.68 3,600 97,424 39,585 28.57
7 2,736 80,850 23,722 13.29 3,600 60,620 29,355 40.19
8 2,548 50,200 11,109 4.86 3,600 29,562 14,635 38.15
9 2,386 40,485 6,917 3.14 3,600 30,494 11,311 68.67

Average 2,928 197,651 56,644 14.76 3,600 174,059 63,149 36.13

Table 3.15: Performance of multi-start ILS with SLS and SLS
′
.

Case multi-start ILS with SLS multi-start ILS with SLS
′

Time In. Obj. Obj. %Rel Time In. Obj. Obj. %Rel
1 3,600 704,669 207,738 32.53 3,600 792,732 229,339 46.31
2 3,600 234,564 76,228 21.75 3,600 242,8870 80,410 28.43
3 3,600 176,729 55,596 14.33 3,600 149,560 61,766 27.01
4 3,600 165,457 52,054 13.73 3,600 139,882 56,795 24.09
5 3,600 141,360 45,025 12.03 3,600 112,386 50,796 26.39
6 3,600 112,397 35,946 16.75 3,600 109,447 43,065 39.87
7 3,600 78,051 23,870 13.99 3,600 59,009 29,110 39.02
8 3,600 57,798 11,192 5.64 3,600 30,803 15,081 42.35
9 3,600 35,437 6,903 2.93 3,600 28,582 9,512 41.85

Average 3,600 189,607 57,173 14.85 3,600 185,030 63,986 35.04

and average relative gap (%Rel) obtained for ten runs of the multi-start ILS. The column

In. Obj. contains the average value of the objective function for the input arrival plans that

resulted in the output of the multi-start ILS.

In Table 3.14, the multi-start ILS with LS1 is superior to the multi-start ILS with LS1
′
in

both time and solution quality. The same observation can be seen in Table 3.15, in which

the multi-start ILS with SLS showing better performance over the version with SLS
′
. It is

worth noting that although the multi-start ILS algorithms begin with poor initial solutions,

significantly better results are achieved after the local search based enhancement procedures,

with the best reported average improvement of 72% observed in the multi-start ILS with

LS1.

In summary, the comparison of the eight optimization procedures indicates that the best

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 75

Table 3.16: Summary of the effects of the different neighborhoods.

Tables N N ′ EQUAL Winner

3.7 1 6 2 MIPM + ILS + N ′
1

3.8 1 6 2 MIPM + ILS + N ′
1+ N ′

2

3.9 9 0 0 multi-start ILS + N1

3.10 9 0 0 multi-start ILS + N1 + N2

solution quality is obtained by the combination of the mixed integer linear program MIPM

and the iterated local search with the operators N ′
1 and N ′

2. The comparison of the different

neighborhoods is summarized in Table 3.16. The column Tables contains references to the

tables that present the results of computational experiments. The column N contain the

number of cases for which the neighborhood structure that does not require the subroutine

TRANSFORMATION yields a better solution quality. The column N ′ contain the number

of cases for which the neighborhood structure obtained, using the subroutine TRANSFOR-

MATION, yields a better solution quality. The column EQUAL contains the number of cases

when both neighborhood types produced the same solution quality.

Table 3.17 provides a summary of the results for all solution approaches. If all algorithms have

the same time, the conclusion that hybrid ILS is best is still correct because of the following

reasons: (1) the starting solution of hybrid ILS is already better than the best solution found

by the other algorithms, and (2) the time required to find the starting solution is less than

the time used by the other algorithms.

Table 3.17: Comparison between the performance of all solution approaches.

Case GA GA-M Hybrid ILS Multi-start ILS

LS1 LS1
′

SLS SLS
′

LS1 LS1
′

SLS SLS
′

1 341,962 233,634 189,487 180,530 187,992 179,847 200,646 221,792 207,738 229,339
2 132,345 87,171 71,715 67,092 70,845 66,967 76,713 82,564 76,228 80,410
3 99,165 68,758 55,624 51,344 55,100 51,324 56,717 62,662 55,596 61,766
4 92,363 64,514 50,780 47,803 51,459 47,785 52,039 57,548 52,054 56,795
5 72,170 58,163 42,416 41,666 42,193 41,432 46,623 48,889 45,025 50,796
6 59,084 41,351 32,828 32,371 32,968 32,371 35,309 39,585 35,946 43,065
7 35,868 29,228 22,494 22,948 22,613 22,948 23,722 29,355 23,870 29,110
8 27,959 11,979 10,752 10,752 10,752 10,752 11,109 14,635 11,192 15,081
9 22,235 7,772 6,724 6,724 6,724 6,724 6,917 11,311 6,903 9,512

Average 98,128 66,952 53,647 51,248 53,405 51,128 56,644 63,149 57,173 63,986

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 76

3.6.4 Visualization of Quality of Arrival Plan

During the negotiations between the rolling stock operator and the maintenance center, it is

useful to have information about the risk of violating the center capacity which may occur as

a result of the uncertain duration of maintenance. For this reason, a powerful visualization

tool, based on the idea of heat map [177], is developed to provide insights into the risk over the

planning horizon. Figures 3.6(a) and 3.6(b) show examples of the risk heat map associated

with the arrival plans of cases 1 and 9, respectively. The horizontal axis indicates the month

and year (for example, 2018-06 stands for June 2018), while the vertical axis indicates the

day of the month. Each cell of the heat map corresponds to a particular day in the planning

horizon, and the probability of violating the limit is clearly stated in each cell. The color

intensity reflects the level of risk whereby the darker the color, the higher the risk.

The resulting heat map in Figures 3.6(a) and 3.6(b) show a trade-off example in which the

constructed arrival plan must prioritize either the technological restrictions of the mainte-

nance center or the arrival time windows. Figure 3.6(a) considers the perspective of the

maintenance center who is more concerned about keeping the number of train-sets below the

capacity of the maintenance center. As a result, the total penalty for the violation of the

capacity limitation is insignificant and it can be seen on Figure 3.6(a) that there are few days

which have high probability of exceeding the center capacity. However, the total penalty for

the violation of time windows, G1(σ), is 23,487. On the other hand, the heat map in Figure

3.6(b) is associated with an arrival plan σ′ that is constructed considering the perspective of

the rolling stock operator, the main concern of whom is to satisfy the arrival time windows.

In this case, the total penalty G1(σ
′
) is only 6,218 but the maintenance center has a high

risk of violating the capacity, i.e. it is harder to have an efficient operational plan.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 77

(a)

(b)

Figure 3.6: Heat maps displaying the probability of having more than 5 train-sets residing
in the maintenance center for each day across the planning horizon of one year for cases (a)
α = 1, β = 1000; and (b) α = 1, β = 1.

CHAPTER 3. PLANNING OF ROLLING STOCK MAINTENANCE 78

3.7 Summary

This chapter contributes to the existing body of literature on train maintenance by intro-

ducing a nonlinear programming problem that determines the arrival days of train-sets to

a maintenance center, taking into account the uncertain duration of maintenance and the

requirements specified by the rolling stock operator as well as the technological restrictions

of the maintenance center.

A fast method of evaluation of the objective function for any feasible solution of the non-

linear program is presented together with a mixed integer programming relaxation based

on Jensen’s inequality. This relaxation provides a lower bound on the optimal value of the

objective function of the nonlinear program and generates approximate solutions. Four dif-

ferent solution approaches were developed. The first is based on Genetic Algorithm. The

second is an amalgamation of Genetic Algorithm for global search and Integer Programming

for determining the optimal arrival dates when a sequence of arrival is fixed. The third is an

Iterated Local Search algorithm. The fourth is a hybrid two-stage optimization procedure

that combines Jensen’s inequality based relaxation with either a local search subroutine or

the presented ILS subroutine.

By means of computational experiments on real-world data, it is shown that the hybrid

two-stage optimization procedure performed the best, followed by Iterated Local Search

metaheuristic, followed by the amalgamation of GA and SAA. The GA metaheuristic was

the least successful among the four solution approaches.

Further research should be focused on the operational level of the maintenance planning for

a shorter planning horizon and more detailed information about maintenance procedures.

Chapter 4

Scheduling of Jobs Sharing multiple

Resources

In this chapter, we study the scheduling problem where every job requires several types of

resources. At every point in time, the capacity of resources is limited. When necessary, the

capacity can be increased at a cost. Each job has a due date and the processing times of jobs

are random variables with a known probability distribution. The considered problem is to

determine a schedule that minimizes the total cost, which consists of the cost incurred due to

the violation of resource limits and the total tardiness of jobs. A genetic algorithm enhanced

by local search is proposed. The sample average approximation method is used to construct

a confidence interval for the optimality gap of the obtained solutions. Computational study

on the application of the sample average approximation method and genetic algorithm are

presented. It is revealed that the proposed method is capable of providing high quality

solutions to large instances in reasonable time.

79

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 80

4.1 Introduction

This study is concerned with the problem of scheduling the set of jobs J = {1, ...,J } where

each job requires several types of resources. The planning horizon is discretised into a number

of time periods of equal length indexed 1, ..., H and the set of all time periods is denoted by

T = {1, ..., H}. The processing time of each job j is a discrete random variable pj which

assumes integer values and 0 ≤ pmin
j ≤ pj ≤ pmax

j ≤ H, for all j ∈ J , where pmin
j and pmax

j

are the minimal and maximal possible processing times of job j, respectively. All random

variables pj are independently distributed.

All jobs are available for processing from period t = 1 and have to be executed without

preemption, i.e. once the processing of a job starts, no interruption is allowed until its

completion. A schedule s specifies for each job j the period sj when its processing starts.

Each job j is given a period dj and it is desired to complete this job at period dj or earlier.

The tardiness of any job j is max{sj + p′j − dj − 1, 0}, where p′j is a realization of pj, i.e. an

element of the set {pmin
j , ..., pmax

j }. A realization of the job’s processing times is referred to

as a scenario. For any schedule s = [s1, ..., sJ], the expected total tardiness is

G1(s) = G1(s1, ..., sJ) =
∑
j∈J

∑
p′j∈{pmin

j ,...,pmax
j }

Pr(pj = p′j)max{sj + p′j − dj − 1, 0} (4.1)

where Pr(pj = p′j) is the probability that the processing time of job j is p′j.

The processing of each job requires K types of renewable resources. The set of resources

is denoted by K = {1, ...,K}. In each period t, it is desired that the total consumption of

resource k should not exceed a certain non-negative integer Rtk, which will be referred to as

the capacity of resource k in period t. If the capacity Rtk is exceeded, this attracts a certain

penalty. During its processing, at each period, a job j ∈ J consumes rjk units of resource

k, where rjk is a non-negative integer. Given a schedule s, for any k ∈ K and any period t,

denote by Ctk(s) the total amount of resource k consumed in period t. Since all processing

times are random variables, Ctk(s) is a random variable. The penalty for the violation of the

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 81

limit, imposed by the capacity Rtk, is calculated using the three given parameters Utk, αtk

and βtk, where βtk > αtk > 0 and Utk is a positive integer. Each extra unit of resource k in

the range [Rtk, Rtk +Utk] increases the penalty by αtk, whereas each extra unit of resource k

in addition to Rtk+Utk increases the penalty by βtk. In other words, the penalty is calculated

as follows:

ftk(Ctk(s)) =


αtk(Ctk(s)−Rtk) if Rtk < Ctk(s) ≤ Rtk + Utk

(αtk − βtk)Utk + βtk(Ctk(s)−Rtk) if Ctk(s) > Rtk + Utk

0 otherwise

. (4.2)

For any schedule s, denote by G2(s) the expected total penalty for violating the resource

capacity in s, i.e.

G2(s) = G2(s1, ..., sJ) =
∑
t∈T

∑
k∈K

E
[
ftk(Ctk(s))

]
(4.3)

where E is the expectation operator. The goal is to minimize

G(s) = G1(s) +G2(s). (4.4)

The problem stated above can also be viewed as a two-stage stochastic program with simple

recourse [30], where the first stage requires to determine the starting time of each job (vari-

ables sj), whereas the second stage is concerned with the expansion of the capacity of each

resource.

The considered scheduling problem has been motivated by a project with a rolling stock

maintenance center. This maintenance center is responsible for the heavy maintenance of

passenger trains. Each of these trains has a desired time window within which the mainte-

nance of this train should commence. This time window is determined by the rolling stock

operator, and is based on the validity period of the heavy maintenance that was previously

performed. Due to the limited capacity at the maintenance center, it may not be possible

for all the trains to arrive at the center within the desired time windows. If the capacity is

exceeded, this attracts a certain penalty. The dwell time of the trains at the maintenance

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 82

center is uncertain at the time a decision must be made. This is because the number of

maintenance activities that need to be performed on a train vary depending on the actual

condition when it arrives at the center. Research on the planning of rolling stock mainte-

nance, undertaken by the authors of this study, has been published in [71], [70] and [72],

where Genetic Algorithm was used in [71] and [70].

The similarity between the considered problem with the maintenance planning problem pre-

sented in Chapter 3 is that temporary resource capacity expansion for a penalty is allowed

and the processing time (duration) of jobs (train-sets) is uncertain. However, the considered

problem has two distinguished features: (1) the processing of each job requires several types

of resources; (2) the penalty for capacity violation is calculated based on not only the capacity

of resource but also an upper bound on the resource expansion.

The remainder of this chapter is organized as follows. Section 4.2 presents a mixed integer

linear programming formulation of the considered problem, and an efficient algorithm for

computing the value of the objective function. The sample average approximation approach

for assessing solution quality is described in Section 4.3. In section 4.4, a genetic algorithm

enhanced by local search is proposed for solving the stochastic programming problem. This

is followed in Section 4.5 by the results of computational experiments. Conclusions and

directions for further research are given in Section 4.6.

4.2 Mixed integer linear programming formulation

4.2.1 Mixed integer linear program

In order to rewrite the objective function in a more convenient form, let Ω denote the set

of all scenarios, πω denote the probability of a scenario ω ∈ Ω, and (pω1 , ..., p
ω
J) denote

the realization of processing times in scenario ω. Also, let ytkω and otkω be the variables

corresponding to the expansion of resource k in period t in the range [Rtk, Rtk + Utk] and in

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 83

addition to Rtk +Utk, respectively, given the realization of processing times under a scenario

ω ∈ Ω. The objective function can be written as

G1(s) +G2(s) =
∑
ω∈Ω

πω

{∑
j∈J

max{sj + pωj − dj − 1, 0}+
∑
t∈T

∑
k∈K

(αtkytkω + βtkotkω)

}
, (4.5)

To guarantee job j can complete within the planning horizon under all scenarios, the latest

time to start j is restricted to tmax
j = H − pmax

j +1. Therefore, job j can start in any periods

in Tj = {1, ..., tmax
j }. For any job j, any period t, and any scenario ω, let

Sωjt = {τ | τ + pωj − 1 ≥ t, τ ≤ t} ∩ Tj (4.6)

denote the set of starting times which makes job j to be processed during time period t.

Then, the starting time for each job j can be determined by

sj =
∑
t∈Tj

txjt

where variables xjt ∈ {0, 1} are obtained by solving the problem (4.7) - (4.12). We summarise
the notation for this chapter as follows:

Sets:

J = {1, ...,J }: set of jobs, indexed by j;

T = {1, ...,H}: set of time periods, indexed by t;

K = {1, ...,K}: set of renewable resources, indexed by k;

Ω: set of scenarios;

Sω
jt: set of starting times which makes job j ∈ J to be processed during time period t ∈ T under scenario

ω ∈ Ω;

Tj = {1, ..., tmax
j }: set of allowed starting times of job j ∈ J ;

Parameters:

tmax
j : latest time to start job j ∈ J ;

pj : processing time of job j ∈ J ;

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 84

pωj : realization of processing time of job j ∈ J in scenario ω ∈ Ω;

πω: probability of scenario ω ∈ Ω;

pmin
j : minimal possible processing times of job j ∈ J ;

pmax
j : maximal possible processing times of job j ∈ J ;

dj : due date of job j ∈ J ;

Rtk: capacity of resource k ∈ K in period t ∈ T ;

Utk: upper limit on temporary expansion of resource k ∈ K in period t ∈ T ;

rjk: amount of resource k ∈ K consumed by job j ∈ J at each time period;

αtk: penalty per extra unit of resource k ∈ K in the range [Rtk, Rtk + Utk];

βtk: penalty per unit of resource k ∈ K exceeding Rtk + Utk;

Decision Variables:

sj : starting time for job j ∈ J ;

ytkω: amount of expansion of resource k ∈ K in period t ∈ T in the range [Rtk, Rtk + Utk];

otkω: amount of expansion of resource k ∈ K in period t ∈ T beyond Rtk + Utk;

xjt ∈ {0, 1}: 1 if job j ∈ J starts in period t ∈ Tj , or 0 otherwise.

The considered scheduling problem can be formulated as follows.

(MILP) z∗ = min
∑
ω∈Ω

πω

{∑
j∈J

∑
t∈Tj

max{t+ pωj − dj − 1, 0} xjt

+
∑
t∈T

∑
k∈K

(αtkytkω + βtkotkω)

}
(4.7)

s.t.
∑
t∈Tj

xjt = 1, j ∈ J (4.8)

∑
j∈J

∑
s∈Sω

jt

rjkxjs − ytkω − otkω ≤ Rtk, ω ∈ Ω, t ∈ T, k ∈ K (4.9)

0 ≤ ytkω ≤ Utk, ω ∈ Ω, t ∈ T, k ∈ K (4.10)

otkω ≥ 0, ω ∈ Ω, t ∈ T, k ∈ K (4.11)

xjt ∈ {0, 1}, j ∈ J, t ∈ Tj (4.12)

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 85

The objective function (4.7) is a weighted sum of two components: the expected total tardi-

ness and the expected total penalty for violating the capacity, which we wish to minimize.

Constraint (4.8) ensures that all jobs are completed by the end of planning horizon. Con-

straint (4.9) calculates the additional units of resource k required beyond the capacity Rtk in

period t under scenario ω. Constraints (4.10) - (4.11) describes the domain for ytkω and otkω,

respectively. Constraint (4.12) states the integrality restriction on the decision variable xjt.

4.2.2 Evaluation of the objective function

In this section, we discuss the evaluation of the objective function (4.4). We first present

a method to find, for a given schedule, the probability distribution of Ctk(s) in (4.2), k ∈

K, t ∈ T . Then, we show how the objective function can be computed.

Let yj(u) denote the probability that the processing time of job j is u. For any time period

t and any resource k, job j requires rjk if it is being processed in period t. Given a schedule

s = [s1, ..., sJ], the probability that job j is still being processed in period t, denoted by

ejt(s), can be computed as follow.

ejt(s) =


∑pmax

j

u=t−sj+1 yj(u), t ∈ {sj, ..., H}

0, t ∈ {1, ..., sj − 1}
. (4.13)

For any job j ∈ J , any period t ∈ T , and any resource k ∈ K, let

Ejtk(s) =

 rjk with probability ejt(s)

0 with probability 1− ejt(s)
. (4.14)

The total resource consumption of resource k in period t, resulting from the schedule s,

is the sum Ctk(s) =
∑

j∈J Ejtk(s). For a specific period t, the random variables Ejtk(s) are

independently distributed. Therefore, Ctk(s) is a random variable that follows the Generalized

Poisson-Binomial (GPB) distribution [188].

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 86

In the following, we propose to compute Ctk(s), k ∈ K, t ∈ T by means of convolutions. Such

a method was presented in [72] to calculate the exact distribution of the number of trains

residing at a maintenance center on a particularly day, which is a random variable that follows

Poisson Binomial distribution. We extend this method to the case of Generalized Poisson

Binomial distributed random variables. The method is outlined in Algorithm 15. To simplify

notation, we suppress dependence on the given schedule s in Algorithm 15, and simply use

ejt instead of ejt(s), Ejtk instead of Ejtk(s) and Ctk instead of Ctk(s). Furthermore, we apply

Algorithm 15 for each period t and each resource k. If it is clear which period and resource

are considered, the subscript t and k can be dropped and the notation ej, Ej, and C can be

used instead of ejt, Ejtk, and Ctk, respectively.

Algorithm 15 Direct convolution
1: Input: The set of two-point random variable Ej, which takes the value 0 with probability

1− ej, and rj with probability ej, j ∈ {1, ...,J }
2: Output: The probability mass function of the sum C =

∑J
j=1 Ej

3: procedure
4: Pr(C1 = 0) = 1− e1, Pr(C1 = r1) = e1
5: Pr(C1 = c) = 0, for c = 1, ..., r1 − 1
6: Set ℓ = 1
7: for j from 2 to J do
8: Pr(Cℓ+1 = 0) = (1− ej) · Pr(Cℓ = 0)
9: R =

∑j
i=1 ri

10: for i from 1 to R− 1 do
11: Pr(Cℓ+1 = i) = ej · Pr(Cℓ = i− rj) + (1− ej) · Pr(Cℓ = i)
12: end for
13: Pr(Cℓ+1 = R) = ej · Pr(Cℓ = R− rj)
14: Set ℓ = ℓ+ 1
15: end for
16: Pr(C = c) = Pr(Cℓ = c), for c = 0, ...,

∑N
j=1 rj

17: return the probability mass function of C
18: end procedure

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 87

As a result, let Cmax
k =

∑
j∈J rjk, the objective function (4.4) can be computed as

G1(s) +G2(s) = G1(s)

+
∑
t∈T

∑
k∈K

Rtk+Utk∑
c=Rtk+1

αtk(c−Rtk)Pr(Ctk(s) = c)

+
∑
t∈T

∑
k∈K

Cmax
k∑

c=Rtk+Utk+1

βtk(c−Rkt − Utk)Pr(Ctk(s) = c)

(4.15)

4.3 Sample Average Approximation

The Sample Average Approximation (SAA), as its name suggests, is an approach of replacing

the original problem with its sampling approximation. In this section, we use the SAA

approach to obtain a statistical estimate for a lower bound on the optimal value z∗ of the

objective function for the considered stochastic optimization problem (also called the true

problem). Then, the optimality gap and statistical confidence intervals on the quality of the

approximate solutions are constructed.

The implementation of SAA is as follows. Given a sample ω1, ω2, ..., ωN of N scenarios, we

can estimate the expected total tardiness in (4.1) and the expected total penalty for capacity

violation in (4.3) by the average total tardiness and average total penalty over all scenarios,

respectively. The resulting SAA problem is a large mixed integer program. The SAA problem

is given below:

z∗N = min
1

N

N∑
i=1

{∑
j∈J

∑
t∈Tj

max{t+ pω
i

j − dj − 1, 0} xjt

+
∑
t∈T

∑
k∈K

(αtkytkωi + βtkotkωi)

}
(4.16)

subject to (4.8), (4.12)

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 88

∑
j∈J

∑
s∈Sωi

jt

rjkxjs − ytkωi − otkωi ≤ Rtk, 1 ≤ i ≤ N, t ∈ T, k ∈ K (4.17)

0 ≤ ytkωi ≤ Utk, 1 ≤ i ≤ N, t ∈ T, k ∈ K (4.18)

otkωi ≥ 0, 1 ≤ i ≤ N, t ∈ T, k ∈ K (4.19)

Let x be a vector of decision variables xjt, ∀j ∈ J, ∀t ∈ Tj. The SAA method provides a

mean to obtain estimate of lower bound and the optimality gap. It consists of generating M

independent random samples, each of size N , and solving the resulting SAA problems. The

optimal objective value is denoted by zmN , m = 1, ...,M , and the optimal solution is denoted

by xmN . The average of the optimal objective values of the M SAA problems

z̄N =
1

M

M∑
m=1

zmN (4.20)

is a statistical estimate for a lower bound on z∗ ([109], [127]). The sample variance can be

estimated by

σ2
z∗N

=
1

(M − 1)

M∑
m=1

(zmN − z̄N)2 (4.21)

Given a solution x̂, it is clear that the objective value G(x̂) is an upper bound for z∗. This

upper bound can be computed as described in Section 4.2.2. The quality of the solution x̂

can be determined by computing the optimality gap estimate

G(x̂)− z̄N , (4.22)

The solution x̂ can be obtained as x̂ ∈ argmin{G(xmN) : m = 1, ...,M} or from the method

proposed in Section 4.4. Given a small non-negative number α, let tM,α denote the (1-α)

quantile of the Student’s t-distribution [103, 98] with M degrees of freedom. we use

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 89

P

(
G(x̂)− z∗ ≤ G(x̂)− z̄N +

tM−1,α σz∗N√
M

)
≈ 1− α, (4.23)

to construct the one-sided confidence interval of the level (1 − α) for the optimality gap at

x̂. That is, [
0, G(x̂)− z̄N +

tM−1,α σz∗N√
M

]
(4.24)

Instead of developing a confidence interval for the optimality gap by computing G(x̂), we

may develop a confidence interval for the optimality gap by the upper-bound estimator. An

estimate of the upper bound for z∗ can be obtained by evaluating the solution x̂ using a

sample ω1, ω2, ..., ωN
′ of N ′ scenarios, where N ′ > N [96]. Let ẑN ′(x̂) denote the standard

sample mean estimator of G(x̂) and σ2
ẑN′ (x̂)

denote the standard sample variance estimator.

An approximate (1− 2α)-level confidence interval for the optimality gap at x̂ is

[
0, ẑN ′(x̂)− z̄N +

tM−1,α σz∗N√
M

+
tN ′−1,α σẑN′ (x̂)√

N ′

]
(4.25)

The above procedure for determining solution quality in stochastic programs was suggested

in [127] and developed in [109].

4.4 Hybrid Genetic Algorithm

The mixed integer linear program, presented in Section 4.2, can only be solved within reason-

able computation time for small instances. For large instances of the considered problem, a

Genetic Algorithm enhanced by local search is developed. We refer to the proposed method

as the Hybrid Genetic Algorithm (HGA). The motivation for using HGA comes from Chapter

3, whereby it was shown that the iterated local search is sensitive to the initial solution. On

the other hand, GA’s parallel search mechanism has the ability to maintain the diversity of

population, making it less sensitive to the initial population.

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 90

Genetic Algorithm (GA) is a population-based search algorithm that can generates high-

quality solution for many mathematical optimisation problems. GA has been successfully

used in many different applications of stochastic optimization as reported in the literature.

For example, [37] propose a two-stage GA for solving a stochastic parallel machine scheduling

problem; [26] propose a biased random-key GA for the two-stage capacitated facility location

problem; [189] develop a GA for solving large-scale instances of the two-stage stochastic

programming for single yard crane scheduling problem. In a recent review paper, [69] report

that out of 100 papers about flow-shop scheduling problems under uncertainty published from

2001 to 2016, Genetic Algorithm was the most used metaheuristics method and constituted

the largest proportion (42%) of the total study papers (53 papers).

Our hybrid GA utilises genetic algorithm for global search and an efficient local search method

for intensification purpose. Algorithm 16 presents the pseudocode for the hybrid GA. The

input is comprised of the population size (P), crossover probability (λc), mutation proba-

bility (λm), and maximum number of generations (GENmax). First, the initial population,

consisting of P chromosomes, is created randomly (line 3). Then, the main loop (lines 4 to

11) performs the half-uniform crossover, uniform mutation, and local search on the current

population until the maximum number of generations (GENmax) is reached. The inner loop

(lines 5 to 9) uses the binary tournament operator [134] to pick two parents for reproduc-

tion. A new offspring is created by applying the half-uniform crossover operator on the two

parents with probability λc, and applying the uniform mutation operator according to the

probability λm. The population of the next generation is formed by applying the local search

procedure on the children chromosomes (line 10), where it takes a chromosome µ as an input

and returns a chromosome in the neighborhood of µ with the smallest value of the objective

function.

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 91

Algorithm 16 Hybrid genetic algorithm
1: Input: population size (P), crossover probability (λc), mutation probability (λm), ter-

mination condition (GENmax)
2: procedure
3: Initialize population consisting of P randomly generated chromosomes
4: while GENmax is not satisfied do
5: for i from 1 to P do
6: Use the binary tournament to select two parents from the population
7: Create a new offspring by applying the half-uniform crossover with probability
λc on the selected parents

8: With probability λm, apply the uniform mutation operator.
9: end for

10: Use local search to educate each chromosome in the population
11: end while
12: return the best solution found
13: end procedure

4.4.1 Representation of chromosome and definition of fitness func-

tion

In GA, the chromosome representation of a solution is important so that it is not only sus-

ceptible of the required genetic operators but also fully characterize the solution. In our

implementation of GA, we have chosen the solution-based representation, in which a sched-

ule s of jobs is directly represented by a chromosome. The rationale behind this chromosome

representation is that no further decoding procedure is needed since each gene of a chromo-

some corresponds to the starting period of the job. Solution-based representation is widely

used in the permutation flow shop scheduling problem [166], and the job-shop problem [180]

where the chromosome denotes the order in which jobs are processed. In the remainder of

this study, chromosome, solution, and schedule have the same meaning. The three terms

are used interchangeably. The fitness of a chromosome is calculated as the inverse of the

objective function value, which is computed as described in Section 4.2.2. The chromosome

with smaller value of the objective function will have higher fitness.

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 92

4.4.2 Parent selection and crossover

The purpose of the selection operator is to decide which solutions will be selected from

the population to generate offspring. In our implementation of GA, we have chosen the

binary tournament operator [134]. The binary tournament operator picks two randomly

selected individuals from the population and the one with a better fitness is selected for

reproduction. Two rounds of tournament are executed to get two parent chromosomes from

which an offspring will be generated.

The purpose of the crossover operator is to take pair of chromosomes and combine them to

produce an offspring. The selected parent chromosomes will undergo crossover according to

the crossover probability λc. In our implementation of GA, we have chosen to use the half-

uniform crossover operator [58, 63, 132]. The half-uniform crossover operator compares the

genes from the two parent chromosomes, copies the matching genes, and places them in the

same position in the offspring partial solution. Then, the Hamming distance, i.e. the number

of non-matching genes, is calculated. The offspring inherits exactly half of the non-matching

genes (at random) from the first parent, and the remaining from the second parent. Figure

4.1 shows an example of the half-uniform crossover operator. The half-uniform crossover

is suitable for the solution based representation because it is able to promote the level of

diversification that our HGA needs. The half-uniform crossover is much less likely than the

traditional one- or two-point crossover to produce the same offspring twice from the same

parents [58]. The half-uniform crossover with solution based representation had been used

in [182] to solve the job scheduling problem in grid computing.

Figure 4.1: Example of the half-uniform crossover.

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 93

4.4.3 Mutation

The purpose of the mutation operator is to maintain genetic diversity in the population. In

our implementation of GA, uniform mutation is applied at gene level to retain population

diversity. Each gene in the child chromosome is assigned a random number sampled from the

uniform distribution U(0, 1). If this random number is not greater than λm, the corresponding

gene value is replaced by an integer randomly drawn from 1 to H − pmax
j + 1, where j

corresponds to the index of the chosen gene in the chromosome.

4.4.4 Local search method

The purpose of the local search is to find a better solution within the neighbourhood of a

given solution. The idea to incorporate local search method within a Genetic Algorithm

can be traced back at least to [138], and has been successfully applied to the permutation

flowshop scheduling problem [166], parallel machines scheduling problem [159], and job shop

scheduling problem [174], among others. The above mentioned studies, as well as most

studies found in the literature, design and use the hybrid GA for deterministic problems.

Under the assumption that parameters are known constants, it is easy to incorporate the

local search method within the genetic algorithm framework as the evaluation of neighbour

solutions does not require much time. However, for optimization problems where random

parameters are present in the objective function, it is expensive to compute the objective

function value for a solution. For this reason, studies that use genetic algorithm enhanced

by local search for solving stochastic optimization problems is limited. The local search used

in this study is designed with the aim that the neighbour solutions can be evaluated quickly,

making it efficient enough to be used in the GA framework.

For a given schedule s, the local search procedure defines a neighbourhood constituting a

set of all solutions that can be reached by applying some search operator to s. This study

proposes the operator shift(τ, τ ′) which shifts the starting period from τ to τ ′ for a given

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 94

job. The procedure Shift Search is described in the following. In this procedure, a solution

s = [s1, ...sJ] represents a chromosome, and G(s) represents the objective function value of

s (inverse of G(s) gives the fitness of s).

Procedure Shift Search (s, G(s))

Step 1. Job list JL← {1, 2, ..., ,J }

Step 2. If JL is not empty, choose a job j in JL, remove j from JL, and go to

step 3. Otherwise, stop and return s and G(s).

Step 3. Execute operator shift(τ, τ ′) on s for τ = sj and τ ′ = {1, ...,H − pmax
j +

1} \ τ . Compute the objective function value after each shift operator had been

applied and choose the best one. If the objective function value of the best

solution is better than G(s), let s be the best solution and G(s) be the objective

function value of the best solution, then go to Step 2.

In step 3 of the above procedure, when a shift is performed, the chosen job j is first removed

from the current solution s, and the distribution of resource consumption is updated for all

periods that are affected by this removal, i.e. ∀t ∈ {τ, ..., τ + pmax
j − 1}. Let PMF be the

resultant probability mass function. After assigning a new starting period τ ′ to job j, the

distribution is again updated by convolving PMF with the distribution of job j for all the

impacted periods, i.e. ∀t ∈ {τ ′, ..., τ ′ + pmax
j − 1}. The fitness of a solution resulting from a

shift can be computed quickly since the distribution of resource consumption is updated by

considering one job at a time, leaving all other jobs and all unaffected periods unchanged.

In the following, we discuss the relationship between the features of the problem instances

and the performance of the proposed local search method. For a solution s consisting of J

jobs, as many as J × (H − 1) shift operators can be applied to this solution, where H is the

planning horizon. For each operator, the total number of operations to compute the value of

the objective function is K ×H, where K is the number of resources. Thus, the complexity

of the procedure Shift Search is O(J × K × H2). The total run time grows linearly with

increases in the number of jobs and resources, but quadratically with increase in planning

horizon.

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 95

However, it is noted that not all J × (H − 1) shift operators can improve the solution s.

This observation leads to the development of a dominance rule which reduces the size of

the neighbourhood. The dominance rule is described as follow. Consider a solution s whose

value of the objective function is G(s). Let s′ be a solution obtained by applying a specific

operator shift(τ, τ ′) to a given job j. If the sum of G1(s
′) and G2(s \ j) is greater than or

equal to G(s), then the solution s′ is dominated and the operation shift(τ, τ ′) can be ignored,

since it is better to start job j on period τ than τ ′. Applying the dominance rule described

above to the procedure Shift Search can significantly reduce the run time of HGA because

only the dominant solutions are considered during the local search process, i.e. the size of

the search space is reduced. In our implementation of the hybrid GA, the dominance rule is

used in the local search procedure.

4.5 Computational Results

In this section, we report the computational results of the proposed hybrid GA on 24 ran-

domly generated problem instances. We first validate the performance of the hybrid GA

against the exact solutions on the set of small problems. Then, we run the hybrid GA on

the set of large problems, report the computational results, and present the 95% confidence

interval for the optimality gap at the best solution returned by HGA. Finally, sensitivity

analysis on the performance of the proposed hybrid GA and SAA methods is studied.

The proposed hybrid genetic algorithm was implemented in cython [24]. The testing system

was a cluster with Intel Xeon Gold 6150 2.7GHz 8 cores CPU with 180GB RAM, running

Red Hat Enterprise Linux. The computational facilities were provided by the UTS eResearch

High Performance Computer Cluster.

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 96

4.5.1 Generation of test instances

The length of the planning horizon is 50 time periods. In this study, we consider 4 classes

of instances: 20 jobs & 5 resources, 40 jobs & 5 resources, 60 jobs & 5 resources, and 80

jobs & 5 resources. For the random processing time of jobs (i.e. pj), they are assumed to

have two possible values with equal probability. The first value is generated from a uniform

distribution on the integers 1, .., 50. The second value is set to the first value plus ψ if the

resulting sum is not larger than H. Otherwise the second value is set to the first value minus

ψ. The value of ψ is chosen to be ψ = 5.

For job j, the parameter dj is generated from a uniform distribution on the integers 1, ..., 10,

i.e. dj ∼ U(1, 10). The amount of resource k consumed by job j (i.e. rjk) is generated

from a uniform distribution on the integers 1, ..., 5, i.e. rjk ∼ U(1, 5). It is assumed that the

amount of resource available does not change significantly over the planning horizon, thus

we set Rtk = Rk, ∀t ∈ T . For the same reason, we set Utk = Uk, ∀t ∈ T . For resource k, the

parameter Rk is generated from a uniform distribution on the integers between p̄r̄kJ /H and

p̄r̄kJ /(0.6H), where p̄ = 1/J
∑J

j=1 pj and r̄k = 1/J
∑J

j=1 rjk. For resource k, the parameter

Uk is set to the greatest integer less than or equal to 10% of Rk, i.e. Uk =
⌈
0.1Rk

⌉
.

For the penalty rates (i.e. αtk and βtk), it is assumed that they do not vary drastically

over the planning horizon, thus we set αtk = αk, βtk = βk, ∀t ∈ T . The parameter αk is

generated from a uniform distribution on the integers 1, ..., 10, i.e. αk ∼ U(1, 10), whereas

βk is calculated as max{2αk, 10}. The setting on the above parameters follows the setting in

the study by [92].

To test the performance of the proposed solution approaches on problem instances of varying

number of scenarios, we consider two cases:

• Small problem instance where only ten jobs have two processing times, the remaining

jobs have deterministic processing times. The total number of scenario is 210 = 1024

scenarios.

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 97

• Large problem instance where every job has two processing times resulting in a total

of 2J scenarios, where J is number of jobs.

4.5.2 HGA parameter setting

For the hybrid GA, we set the values P = 20, λc = 0.9, λm = 0.01 for all the instances. The

stopping criterion of the proposed hybrid GA were determined using a small pilot set of six

problem instances included in the test instances described above. For each instance, 10 runs

of the algorithm were performed. The results of the experiments is displayed in Figure 4.2.

The horizontal axis indicates the generation, while the vertical axis indicates the value of the

objective function corresponding to the best solution found. From Figure 4.2, the algorithm

converges rapidly in less than 50 generations. Therefore, GENmax = 50 is used.

(a) (b)

Figure 4.2: Change in the objective function value with number of generations of the hybrid
GA on the pilot set of (a) small problems and (b) large problems.

4.5.3 Comparisons between the proposed HGA and CPLEX on

small problem instances

As has been discussed in Section 4.2.1, the stochastic programming problem can be formu-

lated as the model MILP. Solving the model MILP by CPLEX gives an exact solution to the

stochastic programming problem. Table 4.1 presents results of the proposed hybrid GA and

the CPLEX solver for the small problem instances. For all the instances, CPLEX stopped af-

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 98

Table 4.1: Comparison of the exact method and the proposed hybrid GA on small instances.

Instance CPLEX Hybrid GA

Time Obj AvgTime MinObj AvgObj MaxObj Std Gap(%)

20-5-1024-S1 912 1156 4 1156 1156 1156 0.00 0.00%

20-5-1024-S2 2264 1885 5 1885 1885 1885 0.00 0.00%

20-5-1024-S3 6363 585 8 585 588 591 1.85 0.51%

40-5-1024-S1 3244 1093 33 1093 1096 1105 4.69 0.27%

40-5-1024-S2 2333 1412 28 1412 1413 1417 1.80 0.07%

40-5-1024-S3 3386 2056 25 2056 2061 2068 4.40 0.24%

60-5-1024-S1 13455 1553 129 1557 1563 1574 6.35 0.64%

60-5-1024-S2 2496 1388 112 1391 1394 1397 1.66 0.43%

60-5-1024-S3 4298 4014 70 4014 4024 4043 9.01 0.25%

80-5-1024-S1 5449 1821 197 1822 1823 1825 0.92 0.11%

80-5-1024-S2 16106 1996 234 1999 2001 2005 2.12 0.25%

80-5-1024-S3 4921 2818 208 2819 2840 2878 18.01 0.78%

Notes: Instance ‘20-5-1024-S1’ means 20 jobs, 5 resources, and 1024 scenarios;
‘S1’ means first instance for the jobs-resources-scenarios combination.

ter reaching a 5-hour limit or when an optimal solution was found. The column “Time" gives

the solve time (in seconds) used by CPLEX to obtain the optimal solution (column “Obj").

For each instance, Table 4.1 also shows the average running time in seconds (AvgTime),

the minimum, average, and maximum values of the objective function (MinObj, AvgObj,

MaxObj), and the standard deviation (Std) obtained for ten runs of the proposed hybrid

GA. Solution quality of the hybrid GA is measured by the percentage relative difference

Gap(%) = (AvgObj−Obj)/Obj× 100, and is reported under the column titled “Gap(%)".

The results in Table 4.1 show that the hybrid GA can find high quality solutions with low

running time in comparison with the optimal solutions by CPLEX. When J ≤ 40, the

algorithm obtains optimal solutions in all 6 instances (column “MinObj"). When J ≥ 60,

the gaps between HGA and CPLEX increase but are not significant. The average percentage

relative difference are about 0.44% and 0.38% for the instances with 60 jobs and 80 jobs,

respectively. In terms of the running times of the methods, the proposed hybrid GA can solve

all the instances with J ≤ 40 in less than 40 seconds. For the instances with 80 jobs, HGA

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 99

takes less than 4 minutes, whereas CPLEX requires as much as 1 hour to solve the problems

to within 1% optimality, and significantly more time to prove optimality. This shows the

limitation of CPLEX and the strength of the proposed hybrid GA for the considered problem.

Furthermore, the running times of the proposed HGA do not vary between instances of the

same jobs-resources-scenarios combination, and only increase with problem scale, whereas

the solve time by CPLEX vary significantly between instances of the same jobs-resources-

scenarios combination.

4.5.4 Performance evaluation of the proposed HGA on large prob-

lem instances

We further analyze the performance of the hybrid GA by running the algorithm on 12 large

problem instances where every job has two processing times. Table 4.2 provides a summary

of results. As mentioned in Section 4.3, solving the SAA problems (by CPLEX) repeatedly

produces a statistical estimate for a lower bound on the optimal value of the objective function

for the true problem. The parameters for solving the SAA problems are: M = 30 andN = 50.

We report the statistical lower bound under the column titled ‘z̄N ’. For all the instances,

CPLEX stopped after reaching a 1-hour time limit or when an optimal solution was found.

For the method SAA, we report the average solve time by CPLEX (in seconds) over 30 SAA

problems under the column titled ‘AvgTime’; and the standard deviation under the column

titled ‘Std’. For each SAA problem, the solution obtained from SAA is evaluated as described

in Section 4.2.2. The average objective value of the solutions, over the 30 SAA problems, is

reported under the column titled ‘AvgObj’. As such, z̄N is different from AvgObj. For the

method HGA, we report the average running time in seconds (AvgTime), the average value

of the objective function (AvgObj), and the standard deviation (Std) over all ten runs. For

both methods, the deviation of the average objective value from z̄N is reported under the

columns titled “Gap(%)", and is calculated by Gap(%) = (AvgObj− z̄N)/z̄N × 100.

The results in Table 4.2 show that the proposed HGA outperform the SAA method. Over all

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 100

Table 4.2: Summary of results for hybrid GA on large instances.

Instance z̄N
SAA Hybrid GA

AvgTime AvgObj Std Gap(%) AvgTime AvgObj Std Gap(%)

20-5-220-S1 854 18 869 4.44 1.88% 6 865 1.64 1.29%

20-5-220-S2 1322 17 1356 7.60 2.88% 6 1348 0.87 1.97%

20-5-220-S3 472 23 474 1.43 0.42% 9 473 0.95 0.21%

40-5-240-S1 4453 69 4593 33.66 3.14% 32 4541 11.18 1.98%

40-5-240-S2 7117 39 7294 25.96 2.52% 24 7244 14.55 1.78%

40-5-240-S3 2460 46 2520 18.24 2.52% 28 2492 2.73 1.30%

60-5-260-S1 4626 108 4832 25.62 4.45% 83 4770 15.40 3.11%

60-5-260-S2 2051 88 2060 10.87 0.83% 78 2051 1.23 0.00%

60-5-260-S3 3216 1440 3320 19.67 3.23% 95 3286 5.76 2.18%

80-5-280-S1 4982 105 5126 18.71 2.89% 174 5077 7.62 1.91%

80-5-280-S2 3266 3186 3359 16.57 2.85% 228 3323 6.44 1.75%

80-5-280-S3 3387 546 3507 17.01 3.54% 185 3470 9.94 2.45%

Notes: Instance ‘20-5-220-S1’ means 20 jobs, 5 resources, and 220 scenarios;
‘S1’ means first instance for the jobs-resources-scenarios combination.

the 12 problem instances, the hybrid GA not only obtains better solutions in all of them but

also achieved more stable results across the different runs of the algorithm. The average gap

to z̄N is about 1.74% for the hybrid GA, whereas it is about 2.60% for the SAA method. The

results suggest that the proposed hybrid GA is capable of obtaining high quality solutions for

large instances of the considered problem. From the experiment, we observe that SAA with

N = 100 produces superior solution quality than SAA with N = 50 at a cost of significantly

longer running time. For the running time of the methods, the average time required by

HGA was 79 seconds, and the increase in running time between the test cases with (20 jobs,

220 scenarios) and with (80 jobs, 280 scenarios) is moderate. On the other hand, although all

the SAA problems can be solved to optimality, the average solve time of CPLEX was 474

seconds, which is about 6 times more than HGA.

Tables 4.3 and 4.4 present the 95% confidence interval (CI) for the optimality gap at x̂,

where x̂ is the best solution found after ten runs of the hybrid GA for each instance. We

report the test results for developing the CI based on G(x̂) according to (4.24) and based on

the upper-bound estimator ẑN ′(x̂) according to (4.25) (see Section 4.3). The upper-bound

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 101

Table 4.3: The 95% confidence interval (CI) for the optimality gap at x̂, where x̂ is the best
solution obtained from the hybrid GA.

Instance 20-5-220-S1 20-5-220-S2 20-5-220-S3 40-5-240-S1 40-5-240-S2 40-5-240-S3

z̄N 852.83 1317.85 472.06 4453.38 7115.35 2457.71

σz∗
N

12.83 29.73 1.63 61.97 93.28 36.44

CI construction using (4.24)
G(x̂) 863.75 1347.88 473.00 4527.02 7214.22 2490.35

tM−1,0.05 σz∗
N√

M
3.98 9.22 0.50 19.22 28.94 11.30

95% CI [0, 14.90] [0, 39.25] [0, 1.45] [0, 92.87] [0, 127.81] [0, 43.94]

CI construction using (4.25)
ẑN′ (x̂) 864.43 1357.54 481.00 4521.60 7210.75 2490.75

σẑN′ (x̂) 128.12 235.70 3.91 481.66 602.93 253.79
tM−1,0.025 σz∗

N√
M

4.79 11.10 0.61 23.14 34.83 13.61
tN′−1,0.025 σẑ

N′ (x̂)
√
N′ 2.51 4.62 0.08 9.45 11.83 4.98

95% CI [0, 18.90] [0, 55.42] [0, 9.63] [0, 100.81] [0, 142.06] [0, 51.63]

estimator ẑN ′(x̂) is obtained using N ′ = 104. From Table 4.3, it can be observed that tighter

confidence interval on the optimality gap can be obtained using the CI construction based on

G(x̂) rather than ẑN ′(x̂). Indeed, the latter yields confidence interval widths that are within

2.78% and 2.09% from the upper bound G(x̂), roughly 1.68 and 1.12 times larger than that

obtained from the former, for the instances with 20 and 40 jobs, respectively. This is expected

since the random CI width in (4.25) consists of not only the sampling error from estimating

the lower bound but also that from the upper-bound estimator. The same observation can

be seen in Table 4.4, in which constructing the CI using (4.24) results in sufficiently tight

confidence intervals.

4.5.5 Sensitivity analysis

The results in Table 4.2 indicate that instance 80-5-280-S2 is harder to solve than the other

instances. The reason could be that there is a well-balanced share between the expected

total tardiness of jobs and expected total penalty for violating the resource capacity, which

results in both SAA and HGA spending substantial amount of time in an attempt to find

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 102

Table 4.4: The 95% confidence interval (CI) for the optimality gap at x̂, where x̂ is the best
solution obtained from the hybrid GA (continue).

Instance 60-5-220-S1 60-5-220-S2 60-5-220-S3 80-5-240-S1 80-5-240-S2 80-5-240-S3

z̄N 4625.95 2042.61 3215.88 4982.28 3266.44 3386.94

σz∗
N

57.47 15.18 46.31 44.95 47.61 50.98

CI construction using (4.24)
G(x̂) 4749.98 2050.58 3280.43 5068.31 3314.92 3460.76

tM−1,0.05 σz∗
N√

M
17.83 4.71 14.37 13.94 14.77 15.81

95% CI [0, 141.86] [0, 12.68] [0, 78.91] [0, 99.97] [0, 63.25] [0, 89.63]

CI construction using (4.25)
ẑN′ (x̂) 4753.09 2057.37 3277.23 5079.33 3334.72 3475.48

σẑN′ (x̂) 505.62 122.74 292.91 389.73 284.11 342.30
tM−1,0.025 σz∗

N√
M

21.46 5.67 17.29 16.78 17.77 19.03
tN′−1,0.025 σẑ

N′ (x̂)
√
N′ 9.92 2.41 5.75 7.65 5.57 6.72

95% CI [0, 158.52] [0, 22.84] [0, 84.39] [0, 121.48] [0, 91.62] [0, 114.29]

the solution that minimizes the total cost. In this section, using the large instance 80-5-280-

S2, we first analyze the performance of SAA and HGA with the variation of two problem

parameters: H and ψ. Because the time required by the proposed HGA to solve the instance

is at most 30 minutes, we impose a 30-minute time limit for CPLEX. This ensures a fair

comparison. Next, using the large instances, the performance of HGA is analyzed with the

variation of two GA parameters: λm and λc.

Table 4.5 presents the analysis on the performance of SAA and HGA with H ∈ {50, 60, 70, 80, 90, 100}

when the remaining problem parameters stay unchanged. In this table, the average optimal-

ity gap reported by CPLEX across 10 runs is reported under the column titled “AvgMIP-

gap(%)". It is observed that the required computation time by HGA increases when H

increases. This is expected since increasing H will inevitably increase the number of moves

in the local search procedure which is the most time consuming component in the proposed

HGA. Indeed, the HGA took, on average, 6.67 times longer to solve instance 80-5-280-S2

with H = 100 than with H = 50. When looking at the average objective value when H is

increased from 50 to 60, we note that the AvgObj is improved since the penalty incurred for

exceeding the capacity of resources is reduced. As H continues to be increased from 70 to

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 103

Table 4.5: Sensitivity analysis on the performance of SAA and HGA with H for instance
80-5-280-S2.

Instance H
SAA Hybrid GA

AvgTime AvgObj Std AvgMIP-gap(%) AvgTime AvgObj Std

80-5-280-S2 50 1800 3360.70 19.17 0.60% 228 3323.29 6.44

60 1800 2115.50 3.32 0.11% 430 2109.48 0.59

70 1800 2108.32 2.73 0.19% 655 2104.69 0.57

80 1800 2109.44 2.41 0.21% 906 2104.90 0.54

90 1800 2107.40 2.05 0.18% 1244 2104.69 0.43

100 1819 2108.45 2.20 0.24% 1521 2104.31 0.21

100, there is little difference in the AvgObj because resource capacity is always sufficient, and

the cost incurred due to the violation of resource limits are dominated by the total tardiness

of jobs. For SAA method, it is observed that CPLEX fails to solve the SAA problems to

optimality before the 30-minute time limit is reached. The lowest average optimality gap

reported by CPLEX was 0.11% when H = 60.

Table 4.6 presents the analysis on the performance of SAA and HGA with ψ ∈ {5, 10, 15, 20}

when the remaining problem parameters stay unchanged. It is observed that an increase

in ψ leads to an increase in the objective value due to violation of the resource limits, but

has little impact on the solution time of HGA. Also, increasing ψ makes the SAA problems

become substantially easier to solve. This is due to the fact that the total tardiness of jobs is

negligible when ψ is large. Indeed, the ratios of the expected total penalty for violating the

resource capacity to the total tardiness of jobs were 0.48, 2.13, 3.47, and 4.21, respectively,

for the four settings of ψ.

Table 4.7 presents the analysis on the performance of HGA using a combination of λm ∈

{0.01, 0.05} and λc ∈ {0.85, 0.9, 0.95} when P = 20 and GENmax = 50. In this table, the

instances are grouped according to the number of jobs. The first four columns are as follows:

the instance group (Group), the average objective value (AvgObj), the standard deviation

(Std), the average time taken by HGA to terminate (AvgTime), across the 10 runs of the

HGA with λm = 0.01 and λc = 0.85. In this table, all the percentage differences are relative

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 104

Table 4.6: Sensitivity analysis on the performance of SAA and HGA with ψ for instance
80-5-280-S2.

Instance ψ
SAA Hybrid GA

AvgTime AvgObj Std AvgMIP-gap(%) AvgTime AvgObj Std

80-5-280-S2 5 1800 3360.70 19.17 0.600% 228 3323 6.44

10 1420 8002.33 24.79 0.170% 207 7884 14.34

15 460 11211.83 88.86 0.008% 216 10990 14.79

20 269 12384.08 108.30 0.009% 213 12198 0.00

Table 4.7: Sensitivity analysis on the performance of HGA with λm and λc for large instances,
in terms of solution quality and time.

Group
λm = 0.01 λm = 0.05

λc = 0.85 λc = 0.9 λc = 0.95 λc = 0.85 λc = 0.9 λc = 0.95

AvgObj Std AvgTime %O %S %T %O %S %T %O %S %T %O %S %T %O %S %T

20 jobs 896 1.29 7 -0.03% -22% 1% -0.01% -12% 2% 0.01% -11% 44% -0.06% -45% 46% -0.05% -36% 46%

40 jobs 4763 10.05 28 -0.12% -12% 1% -0.10% -2% 2% -0.10% -18% 56% -0.13% -30% 61% -0.12% -32% 62%

60 jobs 3372 8.29 84 -0.11% -21% 2% -0.06% -5% 2% -0.11% -25% 80% -0.20% -27% 81% -0.17% -16% 80%

80 jobs 3959 6.61 186 -0.11% -17% 4% -0.07% -1% 5% -0.12% -16% 86% -0.17% -17% 89% -0.14% -17% 93%

Average 3247 6.56 76 -0.09% -18% 2% -0.06% -5% 3% -0.08% -17% 66% -0.14% -30% 69% -0.12% -25% 70%

to the corresponding results obtained by the HGA with λm = 0.01 and λc = 0.85. It can be

clearly seen that the solution quality improves at the cost of longer computation time when

λm increases. This is essentially because more genes in the chromosomes would likely be

perturbed when λm is large. As a result of the differences between the original chromosomes

and the mutated chromosomes, more iterations of local search would likely be required to

explore the search space. Indeed, the HGA with λm = 0.05 consistently obtains a better

solution than the HGA with λm = 0.01. However, the former takes on average 1.7 times

longer than the latter. The parameter λc controls how diversified the chromosomes in a

population are. Based on the results in Table 4.7, increasing or decreasing λc relative to

λc = 0.9 can slightly reduce the solution quality. Since the half-uniform crossover operator

gives us a highly disruptive crossover [63], using a large crossover probability (λc = 0.95)

may decrease the likelihood that better solutions will be kept in the population.

CHAPTER 4. SCHEDULING OF JOBS SHARING MULTIPLE RESOURCES 105

4.6 Summary

In this chapter, we examine the problem of scheduling jobs where each job requires several

types of resources with uncertain job’ processing times. A method for calculating the exact

distributions of resource consumption resulting from a given schedule was presented. Knowing

the distribution enables us to compute the value of the expected cost incurred from exceeding

the resource capacity. A genetic algorithm enhanced by local search was then proposed to find

a schedule that minimizes costs. The hybrid GA incorporates the “standard" implementation

of the GA as the global search scheme and a simple but effective shift search procedure as the

local search scheme. The computational results on small problem instances show that the

proposed hybrid GA yields high quality solutions with low computation time. Although it is

possible to solve these small test problems to optimality by using commercial MIP solvers,

the running times grows rapidly as the number of scenarios increases. For large applications,

computational results show that the hybrid GA outperforms the SAA strategy and that

changes in ψ have negligible effect on the computation time with this method. However, the

influence of planning horizon on the performance of hybrid GA is, due to the embedded local

search procedure, more prominent.

Further studies should consider other modeling extensions. For example, one could include a

metric to deal with severe uncertainty of job processing times. In particular, the model can

be adjusted to determine the required capacity of the resource types to ensure that capacity

will not be exceeded with a certain probability. Other metaheuristics can be developed or

the hybrid GA proposed in this study can be adapted to solve this new problem.

Chapter 5

Planning of Grid Operation-based

Outage Maintenance

This chapter considers the planning problem arising in the maintenance of a power distribu-

tion grid. Maintenance works require the corresponding parts of the grid to be shut down for

the entire duration of maintenance which could range from one day to several weeks. The

planning specifies the starting times of the required outages for maintenance and should take

into account the constrained resources as well as the uncertainty involved in the maintenance

works which is characterized by the risk values provided by the grid operator. The prob-

lem was presented by the French company Réseau de Transport d’Électricité for the 2020

ROADEF/EURO challenge. Several approaches were developed during the competition and

all approaches are reported in this chapter. We evaluate our approaches on the bench-

mark instances proposed for the competition. It is reported that the iterated local search

metaheuristic with self-adaptive perturbation and restart strategy, coupled with a Large

Neighborhood Search performed the best and has won the 2nd place in the competition.

106

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 107

5.1 Introduction

This chapter is concerned with the grid operation-based maintenance planning problem in-

troduced during the 2020 ROADEF/EURO challenge by the French company Réseau de

Transport d’Électricité (also known as RTE). The challenge consists of four separate phases,

i.e. sprint, qualification, semi-final, and final. The first set of instances (set A) was released

at the beginning of the challenge (April 1, 2020) for the sprint and qualification phases. The

second set of instances (set B) was published on January 15, 2021 for the semi-final phase.

For the ranking of the qualified teams in the final phase, two sets of instances were used,

namely sets C (published) and X (hidden). Set C was made available to the participants on

April 6, 2021 while the hidden instances (set X) were published after the challenge ended.

RTE, Europe’s largest electricity transmission system operator, is responsible for operat-

ing, maintaining and developing the electricity transmission system that spans over 105,000

kilometers of lines. The voltages on RTE’s electricity network range from 63kV to 400kV

[158]. Due to the extreme hazards involved when performing maintenance operations on the

high-voltages lines, individual transmission lines have to be shut down for the duration of

maintenance. Given that RTE has to handle hundreds of maintenance operations a year and

that the maintenance of a transmission line is a long process, it is among the operator’s high-

est priorities to carefully schedule the required outages due to maintenance. In the context

of this chapter, maintenance work and intervention have the same meaning. The two terms

are used interchangeably.

Interventions are carried out by some workforce which is split into teams (or resources),

each of which has different sizes and skill sets. The skilled workers are not available during

weekends and public holidays. For this reason, resources are not available all the time.

Consequently, the duration of an intervention is variable and depends on the time when

it starts. Furthermore, resources, e.g. equipment and materials, must be brought to the

maintenance site when the intervention commences and removed when it finishes. For this

reason, it is expected that the amount of resources required at the beginning and the end

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 108

of the intervention are higher. Therefore, the resource workload of an intervention is also

time-dependent. For every time period, the total consumption of a resource is bounded from

below and above.

Certain transmission lines are too close to each other and the corresponding interventions

should not take place at the same time. This is because the system is unable to handle the

electricity demand if an unexpected outage occurs on another close line during the interven-

tions.

Because the transmission lines must remain switched off for the entire duration of mainte-

nance which could range from one day to several weeks, this causes the electricity system

to be weakened and implies a certain risk for RTE. For each intervention and each scenario

of grid operation, RTE can compute the risk. According to the energy usage in France, the

risk values are dependent on time, because it is less risky to perform interventions in summer

(when the demand for electricity is low) than in winter.

The goal of the planning process is to determine a schedule that specifies the starting times of

all interventions. The presented optimization procedures take into account the characteristics

of the considered problem, including the limitation of resources, and the parameters provided

by RTE which reflect the risk associated with maintenance works. RTE conducted studies

and decided that the objective function is a weighted sum of two components: the average

risk (which is expressed as a monetary cost) related to performing the interventions and the

total cost for the deviation from the average risk.

The considered problem is similar to the problem presented in Chapter 3 in that they both

have applications in the fields of maintenance planning. On the other hand, the similarity

between the considered problem with the scheduling problem presented in Chapter 4 is that

the processing of each job requires several types of resources. However, the considered prob-

lem is distinguished from them in a number of important ways. First, the resource capacity

constraint must not be violated for a solution to be considered feasible. Second, the pres-

ence of exclusion constraints that enforces pairs of maintenance tasks cannot be concurrently

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 109

performed.

The contributions of this research can be summarized as follows: (1) a new mixed integer

linear programming (MILP) formulation of the grid maintenance planning problem, that

takes into consideration the risk associated with maintenance works; (2) a new MILP that is

based on approximating the quantile term in the objective function; and (3) several solution

approaches are developed and compared by means of computational experimentation using

instances provided by the competition.

The remainder of this chapter is organized as follows. Section 5.2 presents a mixed integer

linear programming formulation of the considered problem. In Section 5.3, we discuss an

approximation of the quantile term in the objective function and derive a mixed integer

linear programming formulation. In Sections 5.4 and 5.5, several heuristic and metaheuristic

algorithms are developed to solve the considered problem. Section 5.6 presents computational

comparisons for the various proposed algorithms using benchmark instances provided by the

ROADEF/EURO challenge 2020. Finally, our conclusions are given in Section 5.7.

5.2 Mathematical programming formulation

In this section, we first introduce the notations and describe the objective function. Next, we

present a mixed integer linear programming model to find a schedule of interventions, subject

to available resources, non-overlapping restrictions between some pairs of intervention, and

risk associated with the maintenance works.

5.2.1 Notations

Planning horizon: The schedule has to be established over a one-year period. The planning

horizon is partitioned into intervals of equal length indexed 1, ..., H and the set of all time

periods is denoted by T = {1, ..., H}. Depending on the required precision of the schedule,

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 110

the time step of a schedule can be either a day or a week.

Interventions: Consider a set of N interventions: I = {1, ..., N}, that have to be planned

in the coming year. Each intervention i has a duration (∆i,d) which assumes integer values

and depends on the period d at which it starts. During its processing, at each period t, an

intervention i ∈ I consumes rk,ti,d units of resource k if it starts in period d, where rk,ti,d is a

non-negative integer and will be referred to as the resource workload. For each intervention

i, the earliest starting period is 1 and the latest is tmax
i . Denote by Ti = {1, ..., tmax

i } the list

of allowed starting periods of intervention i. For any intervention i, any period t, let

Di,t = {d : d+∆i,d ≥ t+ 1, d ≤ t} ∩ Ti

denote the set of starting periods which makes intervention i to be processed during period

t. The restriction on which interventions can be carried out simultaneously is given by the

set of exclusions, denoted by E. It is a set of triplets (i, j, t) designate that i and j cannot

be concurrently performed in period t, where i, j ∈ I and t ∈ T .

Resources: The processing of each intervention requires M types of resources with different

sizes. The set of resources is denoted by K = {1, ...,M}. In each period t, the total

consumption of resource k ∈ K should be at least lkt and should not exceed ukt , where

both lkt and ukt are non-negative integers.

5.2.2 Objective function

According to RTE, the objective function is a weighted sum of two components: the average

risk (which is expressed as a monetary cost) related to performing the interventions, and the

total cost for the deviation from the average risk. Both criteria are quantified in Euros.

For each intervention, the grid operator characterized the risk related to performing the

intervention by some risk values. These values are positive real numbers and are given as

input data. For each period t, we are given a set Ωt of grid operation scenarios. Let riskω,ti,d

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 111

denote the risk value for period t, scenario ω, and intervention i when it starts at d. Also,

let xi,d ∈ {0, 1} to be 1 if i ∈ I starts at d ∈ Ti, and 0 otherwise. Then, the first component

of the objective function, denoted by Z1, can be expressed as follows:

riskω,t =
∑
i∈I

∑
d∈Di,t

riskω,ti,d xi,d, ω ∈ Ωt, t ∈ T (5.1)

riskt =
1

|Ωt|
∑
ω∈Ωt

riskω,t, t ∈ T (5.2)

Z1 =
1

H

H∑
t=1

riskt (5.3)

Alternatively, one could choose to express Z1 based on Ti, i ∈ I:

riski,d =

d+∆i,d−1∑
t=d

1

|Ωt|
∑
ω∈Ωt

riskω,ti,d , i ∈ I, d ∈ Ti (5.4)

Z1 =
1

H

∑
i∈I

∑
d∈Ti

riski,d xi,d (5.5)

For each period t, let Rt = {riskω,t, ω ∈ Ωt}, where riskω,t is a sum of risk values in scenario

ω of the interventions that are in process in period t, and can be obtained according to (5.1).

Then, the τ -quantile is given by

Qt
τ = min{q ∈ R : ∃R ⊆ Rt, |R| ≥ τ ∗ |Rt| and for r ∈ R, r ≤ q}, t ∈ T (5.6)

The second component of the objective function, denoted by Z2, can be expressed as follows:

Z2 =
1

H

H∑
t=1

max{0, Qt
τ − riskt} (5.7)

Let α ∈ [0, 1] denote the weight. The goal is to minimize

Z = αZ1 + (1− α)Z2 (5.8)

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 112

We summarise the notation for this chapter as follows:

Sets:

I = {1, ..., N}: set of interventions, indexed by i;

T = {1, ...,H}: set of time periods, indexed by t and d;

K = {1, ...,M}: set of resources, indexed by k;

Ωt: set of grid operation scenarios;

E: set of exclusions, where (i, j, t) ∈ E for i, j ∈ I, i ̸= j, t ∈ T ;

Di,t: set of starting periods which makes intervention i ∈ I to be processed during period t ∈ T ;

Ti = {1, ..., tmax
i }: set of allowed starting periods of intervention i ∈ I;

Ut: set of all maximal cliques of Gt = (I, E) in period t ∈ T ;

Parameters:

tmax
i : starting time to start intervention i ∈ I;

∆i,d: duration of intervention i ∈ I if it starts in period d ∈ Ti;

lkt : minimum workload of resource k ∈ K in period t ∈ T ;

uk
t : capacity of resource kinK in period t ∈ T ;

rk,ti,d : amount of resource k ∈ K consumed by intervention i ∈ I in period t ∈ T if i starts in period d ∈ Ti;

riskω,t
i,d : risk value for period t ∈ T , scenario ω ∈ Ωt, and intervention i ∈ I when it starts at d ∈ Ti;

Mt: a sufficiently large constant (big-M);

Decision Variables:

qω,t ∈ {0, 1}: 1 if riskω,t is larger than Qt
τ , or 0 otherwise;

xi,d ∈ {0, 1}: 1 if intervention i ∈ I starts at d ∈ Ti, or 0 otherwise;

Auxiliary Variables:

riski,d: average risk value for intervention i ∈ I when it starts at d ∈ Ti;

riskω,t: sum of risk values in scenario ω of the interventions that are in process in period t;

riskt: average risk value in period t ∈ T ;

Qt
τ : the τ -quantile;

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 113

yt: the positive difference between Qt
τ and riskt.

5.2.3 Mixed integer linear programming formulation

We can eliminate (5.6) by introducing binary variables qω,t, auxiliary variables yt, together

with Constraints (5.13) - (5.16) to give the mixed integer linear program MILP. The resulting

formulation is given as below.

(MILP)min : α× 1

H

∑
i∈I

∑
d∈Ti

riski,d xi,d + (1− α)× 1

H

H∑
t=1

yt (5.9)

s.t. (5.1), (5.2), (5.4)∑
d∈Ti

xi,d = 1, i ∈ I (5.10)

lkt ≤
∑
i∈I

∑
d∈Di,t

rk,ti,d xi,d ≤ ukt , k ∈ K, t ∈ T (5.11)

∑
d∈Di,t

xi,d +
∑
d∈Dj,t

xj,d ≤ 1, (i, j, t) ∈ E, Di,t ̸= ∅, Dj,t ̸= ∅ (5.12)

riskω,t −Qt
τ ≤Mtq

ω,t, ω ∈ Ωt, t ∈ T (5.13)∑
ω∈Ωt

(1− qω,t) ≥ ⌈τ × |Ωt|⌉, t ∈ T (5.14)

Qt
τ − riskt ≤ yt, t ∈ T (5.15)

yt ≥ 0, t ∈ T (5.16)

qω,t ∈ {0, 1}, ω ∈ Ωt, t ∈ T (5.17)

xi,d ∈ {0, 1}, i ∈ I, d ∈ Ti (5.18)

The objective function (5.9) is the weighted sum of two components: the average cost for

performing the interventions and the total cost for the difference between the τ -quantile

and the average risk. Constraint (5.10) ensures that each intervention must start within

the planning horizon. Constraint (5.11) expresses the requirement that the total resource

consumption must be between the limits lkt and ukt . Constraint (5.12) enforces that the

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 114

pairwise exclusive interventions cannot be concurrently performed. Constraints (5.13) - (5.16)

define the τ -quantile, where Mt is a large number and ⌈a⌉ denotes the smallest integer greater

than or equal to a. In particulars, for any period t and scenario ω, if riskω,t is larger than

Qt
τ , Constraint (5.13) ensures that qω,t is 1, but arbitrary otherwise. By Constraint (5.14),

the total number of scenarios that have risks below Qt
τ must be at least ⌈τ × |Ωt|⌉. The

term max{0, Qt
τ − riskt} in (5.7) is substituted by a new decision variable (yt) together with

Constraints (5.15) and (5.16). Constraints (5.17) and (5.18) state the integrality restriction

on the variables qω,t and xi,d, respectively.

The exclusion representation in the form (5.12) is widely used in the scheduling domain [57].

However, as the planning horizon and number of interventions grow very large, the existence

of a large number of exclusion constraints may render the solution to the MILP model in-

efficient. By observing the triplets in E, it is not uncommon to have several interventions

that are pair-wise exclusive. The exclusion constraints (5.12) can be accordingly modified to

exclude these exclusions together, which reduces the number of exclusion constraints signifi-

cantly. Formally, the set of pairwise exclusive interventions can be represented as a maximal

clique on a undirected conflict graph Gt = (I, E), where each vertex corresponds to one

intervention in I and each edge between vertices i and j, i.e. (i, j, t) ∈ E, corresponds to the

pairwise conflict relationship between interventions i and j in period t. We denote the set of

all maximal cliques of Gt by Ut = {U : U is a maximal clique of Gt}. With the cliques-based

constraint, an alternative is to replace Constraint (5.12) with (5.19) below.

∑
i∈U

∑
d∈Di,t

xi,d ≤ 1, U ∈ Ut, t ∈ T (5.19)

Our experience with the instances proposed by the competition indicates that the resulting

problem with cliques-based constraint (5.19) has fewer constraints.

Solving MILP is not an easy task due to the combinatorial structure of mixed integer pro-

grams. However, tightening the big-M constants for each constraint can make the formula-

tion substantially stronger than if big-Ms are assigned arbitrarily large values. We propose

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 115

the below method to determine tightened but sufficiently large big-Ms, that is the risk and

resources information.

Proposition 1. Let riskt∗i,d = maxω∈Ωt risk
ω,t
i,d , i ∈ I, t ∈ T, d ∈ Di,t is the largest value in

the risk profile at time t for intervention i starting at d. Let riskt∗i = maxd∈Di,t
riskt

∗

i,d, i ∈

I, t ∈ T is the largest risk value of intervention i at time t among all possible starting times.

Let Nt be the maximum number of interventions that can be carried out simultaneously at t

without violating the resource capacity. Consider any time t, if B1, B2, ..., BN is the sequence

of the values of riskt∗i which are listed in a non-increasing order, then Mt =
∑Nt

i=1Bi is a

valid value of big-Ms for MILP.

5.3 Approximation of quantile term in objective function

and iterative updating algorithm

Although the MILP formulation is compact, solving it presents a formidable computational

challenge. During the development of solution methods for the qualification phase, we con-

ducted experiments on the MILP formulation and observed that even for a small test instance

with 12 scenarios (179 interventions, 9 resources, and 90 time periods), it cannot be solved

to optimality by CPLEX in a 2-hour time limit.

Since the team rankings were determined based on the solution values obtained within fifteen

minutes execution (with weight 0.8) and one hour and a half execution (with weight 0.2) per

instance on the organizers’ computer, it is critical that we develop an approximation of the

the grid operation-based outage maintenance planning problem that enables it to be solved

in a relatively short period of time (e.g. fifteen minutes). With this in mind, we propose

a new mixed-integer linear programming relaxation, denoted as A-MILP. The key idea is

to approximate the τ -quantile Qt
τ by the sum of τ -quantile of the individual interventions’

risk. The A-MILP can be solved to provide an initial feasible solution for the heuristic and

metaheuristic approaches in this chapter.

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 116

For each intervention i that starts in d, and for any period t, denote by Qt
i,d,τ the τ -quantile

of the risk values in period t when i starts in d. The parameter Qt
i,d,τ can be precalculated

from the data. Then, for each period t, the approximation of the τ -quantile Qt
τ is given by

Q̂t
τ =

∑
i∈I

∑
d∈Di,t

Qt
i,d,τ xi,d, t ∈ T (5.20)

A plot of the risk value versus scenario can help to visualize the relationship between Qt
τ and

Q̂t
τ . Consider the simple case with two interventions whose risk values are a linear function

of scenarios (see Figure 5.1). The horizontal axis represents scenarios, and the vertical axis

represents the risk values. The total risk values (green line) is the sum of the individual risk

values for the ten scenarios. When both interventions have positive (negative) slopes, the

τ -quantile of the total risk and the sum of the τ -quantile of the individual risk are the same,

i.e. Qt
τ and Q̂t

τ (= Qt
1,τ + Qt

2,τ) are the same. However, for the combination of interventions

with both positive and negative slopes (see Figure 5.2), the value of Q̂t
τ will likely be an

overestimation or underestimation of Qt
τ .

Figure 5.1: An example of the interventions having (left) positive and (right) negative slopes.
Given a time t and τ = 0.8, in the left figure, we have Qt

τ = 128 and Q̂t
τ = Qt

1,τ + Qt
2,τ =

69+ 59 = 128. In the right figure, we have Qt
τ = 128 and Q̂t

τ = Qt
1,τ +Qt

2,τ = 69+ 59 = 128.

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 117

Figure 5.2: An example
of the interventions having
both positive and negative
slopes. Given a time t and
τ = 0.8, we have Qt

τ = 107

but Q̂t
τ = Qt

1,τ + Qt
2,τ =

59 + 73 = 132.

With the above illustrations and discussions, consider a positive scaling factor βt, t ∈ T ,

as the parameter compensating for the difference between Qt
τ and Q̂t

τ . This leads to the

following approximation of Z2 in (5.8)

1

H

H∑
t=1

max{0, βtQ̂t
τ − riskt} (5.21)

With this approximation and a linearisation of (5.21) in the same way as with (5.7), we

introduce formulation A-MILP as follows:

(A-MILP)min : α× 1

H

∑
i∈I

∑
d∈Ti

riski,d xi,d + (1− α)× 1

H

H∑
t=1

yt (5.22)

subject to (5.1), (5.2), (5.4), (5.10)− (5.12), (5.20)

βtQ̂
t
τ − riskt ≤ yt, t ∈ T (5.23)

yt ≥ 0, t ∈ T (5.24)

xi,d ∈ {0, 1}, i ∈ I, d ∈ Ti (5.25)

For problem with only one scenario, model A-MILP with βt = 1, t ∈ T is equivalent to the

original model MILP. In other words, solving A-MILP to optimality leads to the optimal

solution to the considered problem. For problem with more than one scenario, an optimal

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 118

solution to A-MILP given some vector β = (β1, ...βH) is a feasible solution to the original

model MILP. The advantage of having A-MILP is that optimal solution is significantly easier

to find as the omission of binary variables qω,t and constraints (5.13) and (5.14) leads to a

model containing fewer variables and constraints.

A question of interest is, which values of βt, t ∈ T in (5.23) should we use to have a good

approximation of the τ -quantile. To answer this question, an iterative procedure is proposed

to update β iteratively. Assume β = βη at the η iteration and σ is the schedule obtained by

solving A-MILP with βη. Given σ, for each period t, we can calculate Qt
τ and Q̂t

τ . Based

on the difference between βηt Q̂
t
τ and riskt, and the difference between Qt

τ and riskt, β is

updated according to (5.26)

βη+1
t =



βηt if βηt Q̂t
τ ≤ riskt, and Qt

τ ≤ riskt

riskt/Q̂t
τ if βηt Q̂t

τ > riskt, and Qt
τ ≤ riskt

(1− γ)βηt + γQt
τ/Q̂

t
τ if βηt Q̂t

τ ≤ riskt, and Qt
τ > riskt

Qt
τ/Q̂

t
τ if βηt Q̂t

τ ≥ Qt
τ > riskt

(1− γ)βηt + γQt
τ/Q̂

t
τ if Qt

τ > βηt Q̂
t
τ > riskt,

(5.26)

For any iteration η and any period t, when both Qt
τ and βηt Q̂

t
τ are less than riskt (line 1 in

(5.26)), both max{0, Qt
τ − riskt} and max{0, βtQ̂t

τ − riskt} are equal to 0, and it is therefore

not necessary to adjust the value of βηt . When βηt Q̂t
τ is an overestimation of Qt

τ (lines 2 and 4

in (5.26)), the value of βηt must be reduced. When βηt Q̂t
τ is an underestimate of Qt

τ (lines 3 and

5 in (5.26)), βηt must be increased. A new value at the (η + 1)th iteration can be obtained

by βη+1
t = (1 − γ)βηt + γQt

τ/Q̂
t
τ , where γ ∈ (0, 1]. Given the values of βη+1

1 , ..., βη+1
H , the

resulting A-MILP model is solved to produce a feasible solution. We terminate the updating

procedure when the estimation error (∆η) drops below a threshold ϵ ≥ 0. That is,

∆η = max
t∈T
{|βη+1

t − βηt |} ≤ ϵ (5.27)

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 119

The proposed iterative updating approach, which will be referred to as IterUpdate, does not

guarantee to yield an optimal solution to the considered problem since the updating rule for

βt, t ∈ T in (5.26) only considers the estimation errors for the quantile term in the objective

function. In other words, the solution with the smallest estimation error does not necessarily

be the solution with the smallest value of the objective function. However, the IterUpdate

algorithm (see Algorithm 17) will always yield a feasible solution to the considered problem.

Algorithm 17 Iterative Updating Algorithm (IterUpdate)
1: Input: A problem instance
2: Output: A feasible schedule σ
3: Step 1: Select the initial values for β0

t , ∀t ∈ T
4: Step 2: Solve A-MILP using β0

t , ∀t ∈ T , resulting in a solution σ.
5: Set η = 1
6: while stopping criterion (5.27) is not satisfied and η < maximum number of iterations

do
7: Update βηt , t ∈ T according to (5.26)
8: Solve A-MILP using βηt , t ∈ T
9: Set η = η + 1

10: end while
11: return the best feasible schedule σ

5.4 Confidence method approaches

The guaranteeing (confidence) approach [95] is a method for solving stochastic optimization

problem in which the quantile of the distribution of an objective function is the criterion

to be optimized. The problem is known by the name “Quantile Optimization Problem" in

the literature. In this section, we develop two heuristic approaches which utilize the idea of

confidence approach. The heuristics will be referred to as confidence-method heuristic and

critical-scenario confidence-method heuristic, respectively.

In the confidence-method heuristic, we determine which values will be assigned to the binary

variables qω,t, ω ∈ Ωt, t ∈ T in the original model MILP, using information from an initial

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 120

solution, which can be obtained using the IterUpdate algorithm described in Section 5.3.

For any solution σ, denote by Ct,τ (σ) = {ω : riskω,t ≤ Qt
τ , ω ∈ Ωt} the confidence set in

period t. Then, the corresponding qω,t variable in (5.13) is set to 0 if the scenario belongs to

Ct,τ (σ), and to 1 otherwise. The process of finding the confidence sets is applied iteratively.

When the confidence-method heuristic reaches the time limit or when it cannot find an im-

proved solution after a maximal permissible number of consecutive iterations, the procedure

is terminated and the solution from the last iteration is returned. To simplify notation, we

suppress dependence on the given solution σ and simply use Ct,τ instead of Ct,τ (σ). The

MILP model, subject to the imposed confidence sets, is as follows:

(C-MILP)min : α× 1

H

∑
i∈I

∑
d∈Ti

riski,d xi,d + (1− α)× 1

H

H∑
t=1

yt (5.28)

subject to (5.1), (5.2), (5.4), (5.10)− (5.12),

riskω,t ≤ Qt
τ , ω ∈ Ct,τ , t ∈ T (5.29)

Qt
τ − riskt ≤ yt, t ∈ T (5.30)

yt ≥ 0, t ∈ T (5.31)

xi,d ∈ {0, 1}, i ∈ I, d ∈ Ti (5.32)

where (5.29) imposes the requirements that the risk values corresponding to the scenarios in

Ct,τ must be less than or equal to the τ -quantile. For each period t, the set Ωt is split into

two sets Ct,τ and Ωt \ Ct,τ and the Constraint (5.13) is replaced by (5.29). At each iteration

of the confidence-method heuristic, we solve the subproblem C-MILP. Since the solution at

iteration η is feasible at iteration η+1, it can be provided to the IP solver as a “warm start".

Naturally, each iteration therefore results in a solution no worse than the previous. The

confidence-method heuristic is summarized below.

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 121

Confidence-method heuristic

Step 0. (Initialization) Generate an initial solution σ by the IterUpdate algorithm described

in Section 5.3.

Step 1. Set η = 1, construct the confidence sets C η
t,τ (σ), t ∈ T for the initial solution σ.

Step 2. Using Ct,τ = C η
t,τ (σ), t ∈ T , solve the C-MILP to obtain a new solution σ′.

Step 3. If stopping criterion is satisfied, then go to Step 5.

Step 4. Set η = η + 1 and σ = σ′, construct the confidence sets C η
t,τ (σ), t ∈ T and return

Step 2.

Step 5. Output solution σ′.

Another heuristic based on the confidence approach is the critical-scenario confidence-method

heuristic. In the critical-scenario confidence-method heuristic, inequality in the form of (5.29)

is only added to the problem when it is necessary. The reason is because having too many

variables fixed as with the confidence-method heuristic, the opportunity for finding an im-

proved solution can be low. Moreover, the resulting C-MILP model is still too large to be

solved to optimality in a reasonable time given the large instances.

Given an initial solution σ, one can find the confidence sets Ct,τ (σ), t ∈ T . The scenario

in the confidence set with largest riskω,t value will be used to generate a constraint (5.29)

that is added to the reduced problem. We refer to this scenario as critical scenario. The

process of finding the critical scenarios is applied iteratively. The constraints in (5.29) are

incrementally added based on critical scenario at each iteration in an attempt to improve the

lower approximation to the τ -quantile Qt
τ . Let riskω

η
t ,t denote the risk value for period t and

critical scenario ωηt at iteration η, the reduced problem can be written as

(reduced-MILP)

min : α× 1

H

∑
i∈I

∑
d∈Ti

riski,d xi,d + (1− α)× 1

H

H∑
t=1

yt (5.33)

subject to (5.1), (5.2), (5.4), (5.10)− (5.12), (5.30), (5.31), (5.32)

riskω
i
t,t ≤ Qt

τ , i = 1, ...η, t ∈ T (5.34)

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 122

The critical-scenario confidence-method heuristic is summarized below.

Critical-scenario confidence-method heuristic

Step 0. (Initialization) Generate an initial solution σ by the IterUpdate algorithm described

in Section 5.3.

Step 1. Set η = 1, construct the confidence sets C η
t,τ (σ), t ∈ T for the initial solution σ,

and find the critical scenarios ωηt , t ∈ T .

Step 2. Solve the reduced-MILP to obtain a new solution σ′.

Step 3. If stopping criterion is satisfied, then go to Step 5.

Step 4. Set η = η + 1 and σ = σ′, construct the confidence sets C η
t,τ (σ), t ∈ T , find the

critical scenarios ωηt , t ∈ T and return to Step 2.

Step 5. Output solution σ′.

Both the CM and cs-CM algorithms are vulnerable to becoming stuck in a local optimum.

It is possible to overcome such an issue by considering perturbations. For example, one can

perturb the best currently found solution by randomly choosing some interventions and one

by one assigning to them new starting times. It is not strictly necessary to take into account

the resource and exclusion constraints during perturbation since the purpose of perturbation

is to yield a different confidence set. Moreover, allowing infeasible solutions may lead to the

confidence sets that render a desired solution for the original problem.

5.5 Iterated local search

Iterated Local Search (ILS) [107] has been widely applied to solve a variety of combi-

natorial optimization problems and has delivered high-quality solutions (see, for example,

[33, 4, 72, 94]). In this section, we propose an ILS algorithm for the grid operation-based

outage maintenance planning problem. The key idea of the proposed ILS is the self adaptive

perturbation strategy, which dynamically modifies the perturbation strength based on the

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 123

evaluation of the neighborhoods around the local optimum. Failure to improve the local

optimum after a certain number of iterations is an indication that the perturbation strength

should be amplified. Additionally, a restart strategy is incorporated into the ILS framework,

which permits the algorithm to restart the search from the current best solution. This restart

strategy can prevent the algorithm from spending too much time in an unpromising region

of the search space and help find better solutions for some hard instances. In what follows,

whenever this restart strategy is invoked, a new “path" is created.

The motivation for using iterated local search is as follows. The problem in this chapter

was put forward for the ROADEF/EURO challenge 2020 and the iterated local search (ILS)

method was developed during our participation in the competition. The teams were evaluated

by executing (only once) the submitted computer programs on the organizer’s computer with

a time limit of 15 minutes and another one of 1.5 hours. Therefore, in order to achieve high

score in the competition, our solution method must produce high-quality solutions in a short

time. For this reason, we decided to use ILS because it is more time-efficient than GA.

The general framework of the proposed ILS is outlined in Algorithm 18. In this pseudocode,

Z is the objective function (5.8), and λ and λbig are the notations for perturbation strength.

Additionally, the parameter W is the time limit imposed on the algorithm, Y specifies the

maximum permissible number of consecutive unsuccessful attempts to improve the current

best solution σ̂∗, and Λ is the upper bound for the perturbation strength.

The proposed ILS starts with the subroutine INITIAL (line 1) which generates a high-quality

feasible solution to the original problem. This initial solution is considered as the current

best solution. In the pseudocode below, the current best solution of a particular path and

over all paths is denoted by σ̂∗ and σ∗, respectively.

The parameter W (line 8) specifies the time limit for the ILS procedure to find a better

solution with respect to the value of the objective function (5.9) (WHILE loop lines 8 -

33). Each iteration of the WHILE loop starts with a solution σ obtained by applying a

perturbation on either σ̂∗ or σ∗. The perturbed solutions are always produced by a sequential

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 124

Algorithm 18 Iterated local search
1: σ ← INITIAL()
2: σ∗ ← σ ▷ σ∗ is the global optimum
3: σ̂∗ ← σ ▷ σ̂∗ is the local optimum
4: λ, λbig ← λ0

5: i← 0
6: σ ← PERTURB_SHIFT(σ∗, 1

3
λ)

7: σ ← PERTURB_SWAP(σ, 1
3
λ)

8: while time < W do
9: σ ← SEARCH(σ)

10: if Z(σ) < Z(σ̂∗) then
11: σ̂∗ ← σ
12: end if
13: if Z(σ) < Z(σ∗) then
14: σ∗, σ̂∗ ← σ
15: i← 0
16: λ, λbig ← λ0

17: σ ← PERTURB_SHIFT(σ∗, 1
3
λ)

18: σ ← PERTURB_SWAP(σ, 1
3
λ)

19: else
20: if i > Y then
21: λ← γλ ▷ increase perturbation strength
22: end if
23: if λ > Λ then
24: σ ← PERTURB_SWAP(σ∗, λbig) ▷ start a new “path"
25: λ← λ0

26: λbig ← λbig + 1
27: else
28: σ ← PERTURB_SHIFT(σ̂∗, 1

3
λ)

29: σ ← PERTURB_SWAP(σ, 1
3
λ)

30: end if
31: end if
32: i← i+ 1
33: end while
34: return σ∗

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 125

application of two types of perturbation moves (a call of the subroutines PERTURB_SHIFT

and PERTURB_SWAP). If, however, a new “path" is invoked as the perturbation strength

exceeds the given permissible number Λ, then the perturbed solution is produced by the

subroutine PERTURB_SWAP (line 24) only.

Given the perturbed solution, the ILS algorithm attempts to find a better solution using the

subroutine SEARCH, which is a sequence of local search procedures. Three neighborhood

operators will be used for this purpose: one-shift, two-swap, and clique based large neighbor-

hood search (C-LNS). Each iteration of the selected operator performs an exhaustive search

in the corresponding neighborhood, and selects the solution with the smallest value of the

objective function (5.8).

5.5.1 Subroutine INITIAL

The subroutine INITIAL for constructing an initial solution required in step 1 of Algorithms

18 includes the following steps. First, a feasible solution is obtained by solving the MILP

model or the A-MILP model. The former is always used, except if the problem has a max-

imum number of scenarios (maxt∈T Ωt) more than six. If this happens, the feasible solution

is obtained using the A-MILP model. Next, the quality of the solution should be improved

whenever possible before entering the ILS procedure. For this reason, the confidence method

described in Section 5.4 is used, followed by a further improvement from applying the local

search with one-shift and two-swap.

In our implementation of the subroutine INITIAL, we solve the A-MILP model in two stages.

The first stage aims to find a feasible solution with high probability in a short time. This

can be achieved by solving the model without an objective function. In the second stage, the

populate function of CPLEX is used to generate a pool of solutions. Each solution in the

pool is examined and the one with the smallest value of the objective function (5.8) will be

selected.

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 126

5.5.2 Subroutine SEARCH

The big challenge for applying local search idea to the considered problem is the extensive

computational effort for assessing the quality of candidate solutions with a large number

of scenarios. This is due to the quantile term in the objective function. We tested the

sample average approximation method commonly used in the literature, but found that it

is not competitive in terms of solution quality. We believe it is important for the local

search operators that we can efficiently calculate for a given solution the exact objective

function value. Therefore, we propose three simple local search operators: (i) clique based

large neighborhood search (C-LNS), (ii) one-shift, and (iii) two-swap.

Clique based large neighborhood search (C-LNS) - The basic idea of large neighborhood

search is to explore a complex neighborhood, aiming to travel across promising search path

and find better solutions at each iteration [157]. In the case of C-LNS, a move consists of

deleting some non-overlapping interventions from the current solution σ̃ and then finding the

new starting times for these interventions by solving an integer program where the starting

times of the remaining interventions are fixed. CPLEX might be able to find better solution

than σ̃, and if this happens, the move is immediately executed and the search goes on. We

discuss how to formulate the integer programming model below.

Let σ̃ be the current solution. Denote by U the list of selected non-overlapping interventions.

The starting time of the remaining interventions will be fixed, i.e. xi,t = x̃i,t, ∀i ∈ I \U . The

resources consumed by this fixed partial solution is

r̃kt =
∑
i∈I\U

∑
d∈Di,t

rk,ti,d × x̃i,d, k ∈ K, t ∈ T (5.35)

Given that the interventions in U are non-overlapping, i.e. cannot be processed concurrently,

one can determine the set of allowed starting times T̃i, i ∈ U such that the resource con-

straints and disjunctive constraints are satisfied with respect to the fixed partial solution.

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 127

That is,

T̃i ={d ∈ Ti | t ∈ [d, d+∆i,d − 1], k ∈ K, r̃kt + rk,ti,d ≤ ukt ,

(i, j, t) ∈ E, j ̸∈ U, t ∈ [d, d+∆i,d − 1],

j does not overlap with [d, d+∆i,d − 1]}

(5.36)

Let D̃i,t = {d ∈ T̃i : d+∆i,d−1 ≥ t, d ≤ t}, for i ∈ U . The cumulative planning risk riskω,tfixed

of the fixed partial solution can be computed as:

riskω,tfixed =
∑
i∈I\U

∑
d∈D̃i,t

risks,ti,d × x̃i,d (5.37)

The mean cumulative planning risk at t of the fixed partial solution will be:

risktfixed =
1

|Ωt|
∑
ω∈Ωt

riskω,tfixed (5.38)

The τ quantile of the risk profile of the fixed partial solution at t, denoted by Qt
τ,fixed,

is computed according to (5.6). The objective value at t resulting from the fixed partial

solution is:

f tfixed = α risktfixed + (1− α)max{0, Qt
τ,fixed − risktfixed} (5.39)

Assigning intervention i ∈ U to a starting time d ∈ T̃i leads to changes in the values of

risktfixed, Qt
τ,fixed, and therefore f tfixed. Equation (5.40) calculates the change in the objective

value, denoted by γi,d, for starting intervention i at time d ∈ T̃i.

γi,d =

d+∆i,d−1∑
t=d

(f tfixed+i − f tfixed), (5.40)

where f tfixed+i denote the objective value at t as a result of including i to the fixed partial

solution. The discussion above leads to the following integer programming model:

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 128

Model (LNS-IP) :

min
∑
i∈U

∑
d∈T̃i

γi,d xi,d (5.41)

subject to (5.35), (5.36)∑
t∈T̃i

xi,t = 1, i ∈ U (5.42)

lkt ≤
∑
i∈U

∑
d∈D̃i,t

rk,ti,d xi,d + r̃kt , k ∈ K, t ∈ T (5.43)

∑
i∈U

∑
d∈D̃i,t

xi,d ≤ 1, t ∈ T (5.44)

xi,t ∈ {0, 1}, i ∈ U, t ∈ T̃i (5.45)

At each iteration of (C-LNS), our procedure for selecting the interventions to free includes

the following steps. First, the current list (I) of interventions contains all interventions and

the list (U) of selected non-overlapping interventions is empty. One intervention from I will

be chosen at random and inserted to U . Then, the procedure scans the list I and attempts to

remove the interventions which overlap with the intervention just added to U . This procedure

terminates when list I becomes empty, i.e. each intervention is either added to U or removed

from I (because it overlaps with some interventions in U), or when the list U reaches the

required size.

As might be expected, the more interventions whose starting times are fixed, the faster the

(LNS-IP) model can be solved, but it is more likely that no improvement could be made

in term of the objective function value. On the other hand, the fewer interventions whose

starting times are fixed, there is greater opportunity for finding a solution with an improved

value of the objective function, but significantly more computational effort might be required

for solving the (LNS-IP) model. We propose not to impose a restriction on the size of U so

that we can free as many non-overlapping interventions as possible. At the beginning of the

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 129

first iteration of (C-LNS), the input solution can be provided to the IP solver as a “warm

start". In the subsequent iterations, the current best solution can be provided to the IP

solver as a “warm start".

One-shift - The neighborhood explored by the operator one-shift is comprised of all feasible

solutions that can be obtained from a solution σ by assigning a different starting time to a

single intervention. A total of n(H − 1) possible solutions can be produced. The benefit of

using one-shift is in the fast evaluation of each solution in the neighborhood. For example,

we change the starting time of intervention 3 from time 6 to 1 in Figure 5.3. The objective

value of the time periods marked in the boxes are the same, so we just need to consider the

changed objective value for the affected periods, i.e. 1, 2, 3, 6, 7, and 8.

Figure 5.3: one-shift evaluation.

Two-swap - The two-swap is motivated by the classic 2-Opt approach known from the

traveling salesman literature [106]. It consists of exchanging the starting times of two in-

terventions i and j, which generates a total of n(n− 1)/2 possible solutions, where n is the

number of interventions. As in one-shift, each neighbor solution obtained by two-swap can

be evaluated efficiently. For example, we swap the starting times of interventions 1 and 5 in

Figure 5.4. The objective value of the time periods marked in the boxes are the same, so we

just need to consider the changed objective value for the affected periods, i.e. 1, 2, 3, 9, 10,

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 130

and 11.

Figure 5.4: two-swap evaluation.

Let N0, N1, N2 denote the three operators C-LNS, one-shift, two-swap, respectively. For a

current solution σ, let Ni(σ) denote the output solution produced by the operator Ni, i =

0, 1, 2. Let σ̂ be a solution in the neighborhood of σ with the smallest value of the objective

function, then σ̂ = Ni(σ). If such a solution does not exist in the current neighborhood, then

σ = Ni(σ). The algorithm 19 below outlines the subroutine SEARCH for an input solution

σ.

The subroutine SEARCH starts with an iterative local search optimization procedure with

operator N0 (REPEAT loop lines 1 - 4). This loop repeats until the permissible number of

iterations is reached. The local optimum found by the local search with operator N0 is used

as an input to the composite local search with operators N1 and N2 (REPEAT loop lines 5

- 13). When the local search with the operator N1 (REPEAT loop lines 8 - 11) finds a local

minimum, this local minimum is used as an input to the local search with operator N2. The

subroutine SEARCH terminates if the composite local search algorithm is unable to improve

the solution.

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 131

Algorithm 19 SEARCH(σ)
1: repeat
2: σ̄ = σ
3: σ = N0(σ)
4: until termination condition met
5: repeat
6: σ̄ = σ
7: for i from 1 to 2 do
8: repeat
9: σ̂ = σ

10: σ = Ni(σ)
11: until Z(σ) = Z(σ̂)
12: end for
13: until Z(σ) = Z(σ̄)
14: return σ̄

5.5.3 Subroutines PERTURB_SHIFT and PERTURB_SWAP

The perturbation mechanism is responsible for providing a new starting solution for the next

iteration of the subroutine SEARCH. It is a crucial component of the ILS procedure as it

controls the diversification aspect of ILS. If the amount of perturbation is too large, the

algorithm may behave as a random restart method, resulting in much worse local optimal

solutions. Conversely, if the perturbations are too small, it may prevent the algorithm to

escape from the local optimum. For this reason, the characteristics of the perturbation

operator and perturbation strength (i.e. the number of components that are modified in

a solution) must be carefully controlled in order to avoid over-disturbance and/or under-

disturbance. In this work, we propose an adaptive perturbation mechanism that changes the

perturbation strength as the algorithm progresses, and two types of perturbation operators.

The adaptive perturbation mechanism dynamically tunes the perturbation strength using the

information about the quality of the neighbor solutions. In the case that the local optimum

sits among many good possible solutions and the subroutine SEARCH can progressively find

solution with an improved value of the objective function, then the perturbation strength λ

remains unchanged to allow for more detailed exploration of the current neighborhood of the

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 132

search space. In the case that the subroutine SEARCH fails to improve the local optimum

after a certain number of consecutive iterations (specified by the parameter Y in line 20

of Algorithm 18), then the perturbation strength λ is increased to γλ, where γ ≥ 1. This

increment will enable new areas of the search space to be explored. When the value of λ

reaches the upper bound Λ, further searches becomes unnecessary, so the restart strategy is

invoked to replace the current best solution σ∗ by a new “path". This “path" concept can

enlarge the search space and help find better solution for some hard instances.

The subroutine PERTURB_SHIFT uses the one-shift operator, which randomly selects an

intervention i, determines all feasible starting times for this intervention in the existing

solution, and randomly chooses from this list a new starting time to assign to i. If there

are no feasible starting times available, then no change will be made to intervention i. The

subroutine PERTURB_SHIFT is terminated when the total number of operations equals to
1
3
λ, where λ is the perturbation strength.

The subroutine PERTURB_SWAP uses the two-swap operator, which randomly selects a

pair of interventions, and examines whether the two may overlap with one another. If they

are non-overlapping and swapping the starting times of these two interventions results in a

feasible solution, then the swap is applied. The number of swaps depends on the perturbation

strength. When the total number of swaps equals to 1
3
λ, the subroutine PERTURB_SWAP

is terminated.

In the proposed ILS, whenever a new path is created (line 24 in Algorithm 18), the per-

turbed solution is produced by the subroutine PERTURB_SWAP. Otherwise, the pertur-

bation mechanism consists of the subroutine PERTURB_SHIFT, followed by subroutine

PERTURB_SWAP. The perturbation with one-shift operator is not as strong as the per-

turbation with two-swap operator. It is evident that a combination of these two types of

perturbations introduces increasingly larger degrees of diversification to the search space.

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 133

5.6 Computational results

In this section, we apply the developed heuristic and metaheuristic algorithms to the four

sets of instances used during the ROADEF/EURO challenge 2020. Each set includes 15 test

instances. These instances can be downloaded from the Github repository of the competi-

tion https://github.com/rte-france/challenge-roadef-2020/. The Roadef 2020 also

provided a solution checker - developed in Python3 - that allows the participants to check

whether or not a solution is feasible. More about the format of the instances and solution

checker can be found on [145].

For each instance, we ran each algorithm one time. The code is implemented in cython [24]

with C++ STL. IBM ILOG CPLEX 12.10.0 was used to solve the mathematical programming

models. The testing system was a cluster with Intel Xeon E-2288G 3.7GHz 8 cores CPU with

64GB RAM, running Red Hat Enterprise Linux.

Table 5.1 summarizes the main characteristics of the 60 instances. In Table 5.1, N is the

number of interventions, M is the number of resources, H is the length of planning horizon,

avg. Ω is the average number of scenarios, E is the number of exclusions, avg. ∆ is the

average duration of interventions in all allowed starting times, τ is the quantile level for

the planning risk, and α is the weight of the first objective (Z1). avg. Ω is calculated as

1/H
∑H

t=1|Ωt|, while avg. ∆ is calculated as 1/N
∑N

i=1(1/t
max
i

∑tmax
i
t=1 ∆i,t).

For the parameter Mt, t ∈ T in (5.13), a choice of very large M can lead to slow progress

in solving the MILP due to weak relaxation. On the other hand, if M is too small, a valid

choice of riskω,t may violate the constraint even when qω,t = 1. With this in mind, in our

implementation, we use one M parameter for each time t and compute the values using the

data for risk and resources.

https://github.com/rte-france/challenge-roadef-2020/

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 134

Table 5.1: Instances characteristics in ROADEF/EURO challenge 2020.

Instance N M H avg. Ω E avg. ∆ τ α
Sprint and Qualification phases

A_01 181 9 90 1 81 5.5 0.95 0.5
A_02 89 9 90 120 32 4.6 0.95 0.5
A_03 91 10 90 1 12 4.6 0.95 0.5
A_04 706 9 365 1 1377 8.6 0.95 0.5
A_05 180 9 182 120 87 4.9 0.95 0.5
A_06 180 10 182 1 87 4.9 0.95 0.5
A_07 36 9 17 6 3 1.4 0.50 0.5
A_08 18 9 17 646 4 1.2 0.95 0.5
A_09 18 10 17 6 0 1.8 0.50 0.5
A_10 108 9 53 6 40 1.8 0.50 0.5
A_11 54 9 53 640 4 1.2 0.95 0.5
A_12 54 10 53 6 0 1.1 0.50 0.5
A_13 179 9 90 12 136 5.2 0.50 0.5
A_14 108 10 53 160 22 1.7 0.95 0.5
A_15 108 10 53 320 22 1.7 0.95 0.5

Semi-final phase
B_01 100 9 53 191 26 10.6 0.90 0.5
B_02 100 9 53 191 19 11.7 0.90 0.5
B_03 706 9 53 63 1192 11.0 0.90 0.5
B_04 706 9 53 63 1192 11.0 0.90 0.5
B_05 706 9 53 63 1377 1.7 0.90 0.5
B_06 100 9 53 255 19 11.7 0.90 0.5
B_07 250 9 53 191 186 10.8 0.80 0.5
B_08 119 9 42 254 37 8.8 0.95 0.5
B_09 120 9 42 127 44 7.5 0.95 0.5
B_10 398 9 25 192 344 5.1 0.80 0.5
B_11 100 9 53 191 34 11.1 0.90 0.5
B_12 495 9 102 63 570 24.8 0.95 0.5
B_13 99 9 102 159 4 24.6 0.90 0.5
B_14 297 9 191 95 207 47.1 0.80 0.5
B_15 495 9 250 63 665 52.2 0.80 0.5

Final phases
C_01 120 9 53 191 54 11.1 0.95 0.5
C_02 120 9 53 191 43 11.4 0.80 0.5
C_03 706 9 53 63 1223 10.9 0.85 0.5
C_04 706 9 53 63 1194 11.0 0.90 0.5
C_05 706 9 53 63 1377 1.7 0.95 0.5
C_06 280 9 53 191 183 11.1 0.80 0.5
C_07 120 9 42 126 38 7.7 0.95 0.5
C_08 426 9 25 192 340 5.0 0.80 0.5
C_09 110 9 53 191 38 11.7 0.90 0.5
C_10 522 9 102 63 705 24.9 0.95 0.5
C_11 89 9 102 191 35 27.0 0.90 0.5
C_12 298 9 191 95 195 47.0 0.80 0.5
C_13 505 9 230 63 53 58.9 0.95 0.5
C_14 465 9 220 95 620 54.5 0.85 0.5
C_15 528 9 300 51 624 74.7 0.95 0.5
X_01 120 9 53 191 48 10.9 0.80 0.5
X_02 706 9 53 63 1234 11.0 0.85 0.5
X_03 280 9 53 191 162 10.7 0.80 0.5
X_04 426 9 25 188 490 5.1 0.80 0.5
X_05 467 9 220 95 604 55.3 0.85 0.5
X_06 528 9 300 50 703 77.7 0.95 0.5
X_07 209 9 300 63 80 74.9 0.90 0.5
X_08 209 9 300 63 57 75.0 0.90 0.5
X_09 548 9 30 156 820 6.5 0.80 0.5
X_10 460 9 35 159 527 7.3 0.95 0.5
X_11 521 9 131 63 725 32.4 0.95 0.5
X_12 522 9 131 63 723 33.1 0.95 0.5
X_13 336 9 212 95 248 54.7 0.90 0.5
X_14 613 9 180 63 951 47.3 0.95 0.5
X_15 613 9 180 63 917 45.8 0.95 0.5

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 135

Table 5.2: Comparison of models MILP and A-MILP on dataset A instances.

Instance MILP A-MILP

Time (s) UB LB Gap (%) Time (s) Z Gap (%)

A_01 2 1767.81561 1767.81561 0 2 1767.81561 0
A_02 7200 4673.95911 2112.63630 54.80 4 4736.84755 124
A_03 1 848.17861 848.17861 0 0.4 848.17861 0
A_04 74 2085.87605 2085.87605 0 68 2085.87605 0
A_05 7200 638.44659 594.46740 6.89 4 645.42793 8.57
A_06 4 590.62359 590.62359 0 3 590.62359 0
A_07 0.3 2272.78227 2272.78227 0 0.5 2280.60656 0.34
A_08 7200 744.70441 692.65000 6.99 0.2 749.95088 8.27
A_09 0.2 1507.28478 1507.28478 0 0.1 1525.64978 1.21
A_10 4 2994.84873 2994.84873 0 0.3 3016.16708 0.71
A_11 7200 495.86537 461.75280 6.88 2 504.78716 9.31
A_12 2 789.63492 789.63492 0 0.7 789.78896 0.02
A_13 7200 1998.90557 1998.84030 0.003 12 2004.39403 0.28
A_14 7200 2275.50198 2085.27950 8.35 3 2295.81830 10.10
A_15 7200 2290.71433 2072.28270 9.53 4 2302.47084 11.11

5.6.1 Model MILP vs. Model A-MILP

We first evaluate the proposed models MILP and A-MILP, by solving the instances in dataset

A by CPLEX. Table 5.2 summarizes the outcomes. The columns ‘Time (s)’, ‘UB’, ‘LB’, and

‘Gap (%)’ report the running time (in seconds), upper bounds, lower bounds, and gaps

obtained by CPLEX, respectively. For model A-MILP, parameter βt, ∀t ∈ T was fixed at 1;

the objective values of the solutions are computed according to (5.8) and reported under the

column titled ‘Z’; the last column ‘Gap (%)’ reports the deviation of the objective value from

LB and is calculated as Gap (%) = (Z − LB)/LB ∗ 100. For both models, CPLEX stopped

after reaching a 2 hours limit or when an optimal solution was found.

The results in Table 5.2 show that CPLEX obtained optimal solutions to MILP when avg.

Ω ≤ 6. The smallest instance A_09 is solved to optimality in less than 1 second while

the largest instance A_04 requires approximately 74 seconds. As the number of scenarios

in an instance increases, the required computational effort for a solution of MILP grows

rapidly. For the instances where CPLEX could not produce an optimal solution in 2 hours,

the average gap was 13.35%. A_02 has the largest gap of 54.8% among the instances in

dataset A. Further investigation into the characteristics of A_02 suggests that the difficulty

of this instance is due to its high risk values. When A-MILP is used, CPLEX can solve all

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 136

instances to optimality in less than 100 seconds. The times taken to solve A-MILP is on

average 71% less than MILP, but solution quality is on average 0.59% worse than MILP.

5.6.2 Evaluation of the IterUpdate algorithm

We conduct an experiment to assess the effect of the initial values β0
t , ∀t ∈ T (in line 3 of

Algorithm 17) on solution quality of the IterUpdate algorithm. We initialized the parameter

β0
t , ∀t ∈ T with three different settings, i.e. 1, 0.01, and U [0, 1]. For all instances, the

parameter γ in (5.26) was set to 0.6. Termination criteria is a 900 second time limit (excluding

the time to read the data file) or the smallest estimation error of less than 1 × 10−5 or the

number of iterations without improvement of no more than 20. For each iteration within the

heuristic, CPLEX stopped after reaching a 500 seconds limit or when the problem is solved

to within 1%-optimality.

We use two criteria of “Number of best obtained solutions (Nbest)" and “Average relative

percentage time (ARPT)" to compare the results obtained for different settings of β0
t . The

metric ARPT is obtained as follows: first, we compute the average computation time, de-

noted by ACT , for all three settings on the same instance; then, for each instance, we find

the relative percentage computation time of a setting, denoted by RPT , using the formula

RPT = (Time(s)−ACT)/ACT × 100; and finally, ARPT can be obtained by averaging the

RPT of all instances in one dataset. It is possible that CPLEX cannot find a solution in 500

seconds for some large instances (e.g. dataset X). If this happens, the instance is excluded

from the comparison.

A summary of the parameters tuning for the IterUpdate algorithm can be found in Table

5.3. The highlighted numbers denote the outperforming values. For dataset A, the random

initialization obtains better solutions than the other two settings at a cost of longer computing

time. For dataset B, both settings of 1 and 0.01 achieve the same number of best obtained

solution of 7 but the computing time of the former is significantly shorter. β0
t = 1 is the

superior setting for instances of dataset C, while β0
t = 0.01 is more suitable for dataset X

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 137

Table 5.3: Summary of β0
t , t ∈ T for the IterUpdate algorithm on four datasets.

Metric Dataset β0 = 1 β0 = 0.01 β0 = random

Nbest

A 4 8 10
B 7 7 3
C 8 4 4
X 1 9 4

Sum 20 30 19

ARPT

A -17.45 6.77 10.68
B -64.00 76.02 -12.02
C -51.28 39.44 11.84
X -45.05 26.45 18.60

Average -44.44 37.17 7.27

instances. Overall, β0
t = 0.01 is the best setting in term of Nbest, and β0

t = 1 is the second

best. However, the latter takes nearly a hundredfold less in computing time. To conclude,

in terms of solution quality and time, β0
t = 1 is the preferred setting for the IterUpdate

algorithm. Therefore, the IterUpdate algorithm with β0
t = 1, ∀t ∈ T is used to generate

initial solutions in the remainder of this chapter.

We conclude this section with Figure 5.5 illustrating the convergence of the approximate Z2

to the true Z2 for instances A_02 and A_11.

Figure 5.5: Convergence of the approximate Z2 to the true Z2.

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 138

5.6.3 CM-heuristic vs. cs-CM heuristic

In the following, we compare the performance of CM-heuristic and cs-CM heuristic on the

four datasets, the results of which are provided in Tables 5.4 - 5.7. We report the change in

objective value which is given by subtracting the objective value of the final solution from

the objective value of the initial solution; the total time (in seconds) which includes time

for running the methods but does not include time for generating the initial solution; the

average time spent by CPLEX (in seconds); the average MIP relative gap by CPLEX (%);

the average number of constraints of the MIP models over all iterations; and total number

of iterations the procedure took to terminate.

For the sake of brevity, these tables do not present results of the instances, where both CM

and cs-CM fail to improve the initial solutions. The reason is that both CM and cs-CM

heuristics obtain a starting solution by the IterUpdate algorithm, hence both methods will

output the same result if both fail to improve the starting solution. Therefore, omitting

these results will not affect the conclusion. To ensure fair comparisons, we initialize both

methods with the same initial solution, i.e. we use the solution obtained by CPLEX for

the IterUpdate algorithm with β0
t = 1. The CM-heuristic terminates when the solution has

converged, whereas the cs-CM heuristic is to stop after 10 iterations. For both approaches,

CPLEX is used to solve the resulting mixed integer linear programming models and a time

limit of 100 seconds is imposed on CPLEX. For the first iteration of both methods, we use

the initial solution to warm start CPLEX. For iteration η > 1, we use both the current best

solution and the solution from iteration η − 1 to warm start CPLEX.

Results in Table 5.4 indicate that the CM-heuristic works well on small instances, quickly

finding a better solution and exiting in a few iterations. This is because CPLEX can easily

solve these small problems to optimality in 100 seconds. With cs-CM, at the early iterations

of this method, the solutions are often of poor quality because the estimation of the quantile

term in the objective function is not accurate. As more constraints are added to the model in

consecutive iterations, the discrepancy between the actual objective value of model objective

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 139

Table 5.4: Results obtained by CM-heuristic and cs-CM heuristics for dataset A.

Instance Method Change in Total time Average Average gap Average Total
objective value solution time constraints Iterations

A_02 CM 57.45 408 100 0.073% 13468 4
cs-CM 58.94 320 32 0.001% 2964 10

A_05 CM 6.89 230 100 0.775% 28980 2
cs-CM 3.75 842 84 0.334% 7560 10

A_07 CM 5.43 0.5 0.2 0.000% 348 2
cs-CM 5.43 0.3 0.0 0.000% 254 10

A_08 CM 0.14 2.9 0.7 0.000% 11192 2
cs-CM 0.00 1.5 0.1 0.000% 250 10

A_09 CM 18.02 0.1 0.0 0.000% 318 2
cs-CM 18.02 0.2 0.0 0.000% 223 10

A_10 CM 16.83 1.2 0.3 0.001% 1685 3
cs-CM 16.15 1.8 0.1 0.001% 1394 10

A_11 CM 1.52 146 34 0.001% 34628 4
cs-CM 0.00 6.2 1 0.001% 818 10

A_12 CM 0.34 0.5 0.1 0.000% 991 2
cs-CM 0.00 1.2 0.1 0.000% 707 10

A_13 CM 1.76 47 15 0.001% 7198 3
cs-CM 2.04 68 7 0.001% 6162 10

A_14 CM 29.47 403 100 0.230% 9672 4
cs-CM 1.65 367 36 0.001% 1344 10

A_15 CM 19.99 508 100 0.350% 18139 5
cs-CM 0.00 434 43 0.001% 1340 10

value reduces, and therefore, CPLEX can start to improve the initial solution.

Results in Table 5.5 - 5.7 indicate that, for the large instances in dataset B, C, and X, cs-CM

outperform CM-heuristic in terms of solution quality. For example, for X_07, cs-CM yields

an improvement of about 0.05% as compared to the initial solution, whereas CM-heuristic is

not able to give any improvement on this instance. Solution time can grow with the number

of iterations, and so cs-CM, which could stop only after a predetermined number of iterations,

i.e. 10 iterations, can require more computational effort. However, note that, for example, for

X_07, the number of iterations of cs-CM is 10 times that of CM, yet the solution time only

grew 4 times. This is because solving 10 smaller problems (cs-CM with 11002 constraints on

average) can be more efficient than solving one large problem (CM with 29633 constraints).

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 140

Table 5.5: Results obtained by CM-heuristic and cs-CM heuristics for dataset B.

Instance Method Change in Total time Average Average gap Average Total
objective value solution time constraints Iterations

B_02 CM 0.86 214 101 0.430% 11186 2
cs-CM 0.00 908 90 1.370% 1256 10

B_03 CM 9.67 324 100 0.060% 22799 3
cs-CM 15.81 1022 100 0.053% 19592 10

B_04 CM 19.92 324 100 0.008% 22799 3
cs-CM 16.91 923 91 0.005% 19589 10

B_05 CM 4.27 412 100 0.103% 25542 4
cs-CM 3.29 923 91 0.055% 22351 10

B_09 CM 1.34 41 18 0.000% 6442 2
cs-CM 1.33 28 3 0.001% 1096 10

B_12 CM 0.00 157 101 100% 23257 1
cs-CM 18.79 962 92 0.009% 17001 10

Table 5.6: Results obtained by CM-heuristic and cs-CM heuristics for dataset C.

Instance Method Change in Total time Average Average gap Average Total
objective value solution time constraints Iterations

C_03 CM 17.77 416 100 0.070% 22735 4
cs-CM 18.06 1011 100 0.040% 19533 10

C_04 CM 27.75 715 100 0.013% 23299 7
cs-CM 22.06 914 90 0.007% 10107 10

C_05 CM 4.55 807 100 0.110% 25542 8
cs-CM 1.22 1004 100 0.137% 22320 10

C_10 CM 0.00 145 100 100% 27071 1
cs-CM 25.74 964 94 0.005% 20817 10

C_11 CM 0.00 86 63 0.001% 22015 1
cs-CM 0.44 26 2 0.001% 2730 10

Table 5.7: Results obtained by CM-heuristic and cs-CM heuristics for dataset X.

Instance Method Change in Total time Average Average gap Average Total
objective value solution time constraints Iterations

X_02 CM 6.48 217 100 0.088% 23715 2
cs-CM 0.00 1012 100 0.113% 20472 10

X_07 CM 0.00 268 124 100% 29633 1
cs-CM 7.04 1051 99 0.032% 11002 10

X_11 CM 0.00 165 101 100% 34672 1
cs-CM 20.51 1029 99 0.030% 26643 10

5.6.4 Comparison of the ILS with benchmark results

We test the proposed ILS algorithm and compare its performance with the best known results

from other participants. As in the competition, we run the proposed ILS with a time limit of

15 minutes and another one of one hour and a half. Tables 5.8 - 5.11 report the results on the

four datasets, respectively. The highlighted numbers denote the outperforming or the same

values. In these tables, ‘Best’ is the best known results from other participants; ‘ILS’ is the

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 141

results from our proposed ILS algorithm; and ‘%Diff’ is the percentage difference calculated

as %Diff = (ILS− Best)/Best× 100.

For the instances with avg. Ω ≤ 6, initial solution to the iterated local search in Algorithm

18 is obtained by solving the (MILP). For all other instances, the IterUpdate algorithm

with β0
t = 1 is used to provide the initial solution. A time limit of 500 seconds is given

to the IterUpdate algorithm. At each iteration of the local search LS(C-LNS), the set of

non-overlapping tasks U is formed in the following way: a task u is chosen at random from

the set I; The remaining tasks are removed from I if they overlap with u; the procedure

continues until set I is empty. At each iteration, the model (LNS-IP) is solved by CPLEX

with a time limit of 100 seconds.

The parameters of ILS are set as follows. The value of W is calculated using the formula

W = T − TR − TI , where T is either 15 minutes or 1.5 hours, TR is the amount of time it

takes to read the instance, and TI is the time used for obtaining the initial solution. The

initial value of perturbation strength (λ) is 3. We set Λ = 12, γ = 1.2, and Y = 10+N/250,

where N is the number of interventions. Note that Y will be rounded to the nearest integer

if the division N/250 gives a non-integer value.

Table 5.8: Performance of ILS on dataset A instances.

Instance 15 minutes 1.5 hours

Best ILS %Diff Best ILS %Diff

A_01 1767.81561 1767.81561 0.00% 1767.81560 1767.81561 0.00%
A_02 4671.37661 4671.37661 0.00% 4671.37660 4671.37661 0.00%
A_03 848.17861 848.17861 0.00% 848.17861 848.17861 0.00%
A_04 2085.87605 2085.87605 0.00% 2085.87605 2085.87605 0.00%
A_05 635.22178 635.59898 0.06% 635.22178 635.298076 0.01%
A_06 590.62359 590.62359 0.00% 590.62359 590.62359 0.00%
A_07 2272.78227 2272.78227 0.00% 2272.78227 2272.78227 0.00%
A_08 744.29323 744.29323 0.00% 744.29323 744.29323 0.00%
A_09 1507.28478 1507.28478 0.00% 1507.28478 1507.28478 0.00%
A_10 2994.84873 2994.84873 0.00% 2994.84873 2994.84873 0.00%
A_11 495.25577 495.32171 0.01% 495.25577 495.25577 0.00%
A_12 789.63492 789.63492 0.00% 789.63492 789.63492 0.00%
A_13 1998.66216 1999.62679 0.05% 1998.66216 1998.79003 0.01%
A_14 2264.12432 2264.12432 0.00% 2264.12432 2264.12432 0.00%
A_15 2268.56915 2268.56915 0.00% 2268.56915 2269.54047 0.04%

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 142

Table 5.9: Performance of ILS on dataset B instances.

Instance 15 minutes 1.5 hours

Best ILS %Diff Best ILS %Diff

B_01 3986.20283 3986.20283 0.00% 3986.20283 3986.20283 0.00%
B_02 4302.77452 4300.05660 -0.06% 4301.65660 4299.00566 -0.06%
B_03 35279.53018 35284.81226 0.01% 35277.22830 35281.73773 0.01%
B_04 34827.86981 34828.87547 0.00% 34826.94622 34828.84056 0.01%
B_05 2397.09905 2396.70660 -0.02% 2397.10094 2397.18301 0.00%
B_06 4287.89434 4283.36320 -0.11% 4284.67169 4284.73867 0.00%
B_07 7564.03490 7555.35566 -0.11% 7555.95000 7551.01792 -0.07%
B_08 7435.71904 7435.71904 0.00% 7435.71904 7435.71904 0.00%
B_09 7491.75357 7493.61666 0.02% 7491.75357 7496.87857 0.07%
B_10 10637.62000 10602.87600 -0.33% 10633.01600 10611.42199 -0.20%
B_11 3626.27169 3629.57735 0.09% 3626.03490 3623.07452 -0.08%
B_12 37602.96666 37600.49166 -0.01% 37601.38382 37601.55637 0.00%
B_13 5024.49264 5024.96813 0.01% 5024.49264 5024.49264 0.00%
B_14 11905.10994 11915.00471 0.08% 11901.76858 11908.87356 0.06%
B_15 22566.00340 22564.34420 -0.01% 22563.53880 22563.64279 0.00%

Table 5.10: Performance of ILS on dataset C instances.

Instance 15 minutes 1.5 hours

Best ILS %Diff Best ILS %Diff

C_01 8515.90377 8517.58301 0.02% 8515.90377 8515.90377 0.00%
C_02 3541.65377 3548.55471 0.19% 3539.80377 3541.53301 0.05%
C_03 33511.70000 33517.10094 0.02% 33512.25660 33519.07261 0.02%
C_04 37585.73113 37589.06981 0.01% 37586.30849 37588.03867 0.00%
C_05 3166.88962 3167.43773 0.02% 3166.18207 3167.00000 0.03%
C_06 8396.00094 8418.44245 0.27% 8394.48301 8411.25943 0.20%
C_07 6083.27023 6083.60000 0.01% 6083.04404 6083.60000 0.01%
C_08 11162.83600 11193.16198 0.27% 11155.64000 11191.93800 0.33%
C_09 5586.97924 5598.36037 0.20% 5585.65188 5595.71037 0.18%
C_10 43342.48872 43343.28235 0.00% 43341.83676 43344.15490 0.01%
C_11 5749.95735 5749.95735 0.00% 5749.95735 5749.95735 0.00%
C_12 12721.13324 12735.89214 0.12% 12718.79057 12730.73507 0.09%
C_13 42487.99282 42489.57130 0.00% 42484.56065 42485.73760 0.00%
C_14 26467.22113 26467.73954 0.00% 26457.11454 26479.44295 0.08%
C_15 39758.02750 39759.60233 0.00% 39757.54750 39759.35333 0.00%

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 143

Table 5.11: Performance of ILS on dataset X instances.

Instance 15 minutes 1.5 hours

Best ILS %Diff Best ILS %Diff

X_01 4014.37075 4020.20377 0.15% 4011.37641 4018.60849 0.18%
X_02 32231.43867 32237.97075 0.02% 32228.63679 32238.56698 0.03%
X_03 8104.53773 8126.47075 0.27% 8102.58962 8118.05283 0.19%
X_04 11315.94600 11354.26599 0.34% 11303.40000 11335.16399 0.28%
X_05 22858.11477 22872.21181 0.06% 22837.42068 22857.14295 0.09%
X_06 47032.95633 47035.15216 0.00% 47032.16366 47033.91750 0.00%
X_07 13221.61783 13222.48349 0.00% 13221.35849 13222.34350 0.00%
X_08 13717.37033 13726.39583 0.07% 13707.28500 13724.84233 0.13%
X_09 20195.40500 20195.99833 0.00% 20180.45000 20196.45833 0.08%
X_10 17289.31571 17302.40000 0.08% 17267.81857 17269.86714 0.01%
X_11 39121.52404 39121.53206 0.00% 39115.26526 39119.86755 0.01%
X_12 47502.80992 47582.45305 0.17% 47441.36908 47462.10419 0.04%
X_13 15784.25141 15794.64339 0.07% 15784.16933 15788.57924 0.03%
X_14 79417.02750 79416.08194 0.00% 79416.86527 79414.84444 0.00%
X_15 45491.80749 45493.04388 0.00% 45422.28999 45426.09194 0.00%

Tables 5.8 - 5.9 indicate that the proposed ILS performs very well on dataset A and B which

contain mostly small and medium instances. The algorithm obtains better solution than the

best known result for some instances in dataset B. Comparing the results of 15 minutes and

1.5 hours, it is noted that the improvement in solution quality is not significant.

Tables 5.10 - 5.11 indicate that the proposed ILS is less effective on the large instances

of dataset C and X. This is not surprising since increasing the size of the instances will in-

crease the computational burden of model A-MILP. Hence, achieving an initial solution takes

too much time because we rely on CPLEX. Another possible reason is that the subroutine

SEARCH in the ILS, which involves exhaustive search on the neighborhood by one-shift and

two-swap, become time consuming for large instances. This significantly reduces the number

of perturbation in the ILS procedure due to the imposed time limits. For a few instances,

e.g. C_14 and X_02, running the algorithm for 1.5 hours leads to a worse solution than

the result obtained in 15 minutes. The same observation was reported by Roadef Challenge

in the semi-final results for instance B05 (see https://www.roadef.org/challenge/2020/

en/semifinalfresult.php). One possible reason is that for the 1.5 hours, given a better

starting solution, the perturbation mechanism was unable to escape from the local optimum.

https://www.roadef.org/challenge/2020/en/semifinalfresult.php
https://www.roadef.org/challenge/2020/en/semifinalfresult.php

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 144

5.7 Summary

In this chapter, we studied the grid operation-based outage maintenance planning problem

which was proposed for the ROADEF/EURO challenge 2020. The problem possesses sev-

eral unique features and is fundamentally different from the typical stochastic programming

problems due to the quantile criterion in the objective function. Several MILP models were

derived and three heuristic algorithms were developed for the considered problem.

The first MILP formulation uses binary variables as indicators to model quantile. The ad-

vantage of this model is that we can obtain exact solutions to problem instances with up to 6

scenarios in less than 100 seconds. However, the MILP becomes intractable as the number of

scenarios grow very large, such as the test cases considered in this study. This is because the

size of the first model is dependent on the total number of scenarios as well as the planning

horizon. The second MILP formulation uses general variables to model quantile, owing to the

assumption that the quantile of the sum of distributions is proportional by a fixed parameter

to the sum of quantile of the individual distribution. Solving this model provides a good

feasible solution which is important for the proposed heuristics and metaheuristic.

We apply the confidence (guaranteeing) approach for solving stochastic program with quan-

tile objective function and discrete distribution of the random parameters. The confidence

approach leads to two solution methods: (i) confidence-method heuristic (CM) which uses

the confidence sets to measure quantile; and (ii) critical-scenario confidence-method heuris-

tic (cs-CM) which uses the critical scenarios of the confidence sets. In our experiments, CM

works well on dataset A which contains mostly small-to-medium instances but is less effective

as the problem size grows much larger. On the other hand, cs-CM produces poor-quality

solution in the first few iterations due to the large differences between the approximate ob-

jective function and the true objective function. As a result, cs-CM requires more iterations

to improve the initial solution but each iteration needs less time than that of CM.

An iterated local search algorithm was developed for solving the maintenance planning prob-

CHAPTER 5. PLANNING OF GRID OPERATION-BASED OUTAGE
MAINTENANCE 145

lem. The performance of ILS on the four given datasets was compared with the best known

results from the other participants. Based on the computational results, we observed that our

ILS performed very well on the instances of datasets A, giving an average relative percentage

difference of about 0.004% for both 15 minutes and 1.5 hours tests. The effectiveness of our

ILS was more profound for instances in dataset B where we obtained better solution for 50%

of instances. As the problem size increases, the growth in computation time for executing

the local search procedures is significant. This, in turn, substantially reduces the number

of perturbation in the ILS procedure due to the imposed time limit. As a consequence, ILS

could not escape the local optimum and find high-quality solutions to the large instances in

datasets C and X.

Chapter 6

Conclusion

In this thesis, we develop and solve models for several difficult real-world optimization prob-

lems, which have applications in the fields of maintenance planning. The input data of these

problems can be described with a probability distribution, and the objective function is com-

prised of two types of penalties. For each of the problems discussed, contributions to the

existing body of knowledge are summarized, and some suggestions for future research are

offered.

6.1 Summary of Work

This section provides a summary of the problems discussed in Chapters 3 - 5, outlines the

proposed solution approaches, and recaps the major findings.

1. In Chapter 3, we propose a nonlinear integer programming formulation and a mixed-

integer linear programming relaxation based on Jensen’s inequality for the high-level

heavy maintenance planning problem arising in practice at an Australian rolling stock

maintenance center. The formulation considers the uncertain duration of maintenance,

the permissible number of out-of-service train-sets specified by the rolling stock oper-

146

CHAPTER 6. CONCLUSION 147

ator, and the capacity of the maintenance center. We provide an efficient method to

evaluate the objective function for any feasible solutions and incorporate this method

into the optimization procedures.

Four solution approaches were presented. The first approach was a Genetic Algorithm,

which includes a greedy heuristic that decodes a chromosome into a feasible solution by

selecting the arrival dates according to their contributions to the number of train-sets

in the maintenance center. The second approach combines the Genetic Algorithm with

Sample Average Approximation method, whereby a sequence of train-sets is formed

by sorting the train-sets in the same train family by their desired arrival time win-

dows. The sequence enforces the precedence relations among train-sets to significantly

reduce the solution space, enabling the problem to be solved by an exact method. The

third approach incorporates the Iterated Local Search algorithm within a multi-start

framework. The fourth approach was a two-stage heuristic approach that constructs

an initial solution by solving the mixed-integer programming model and then attempts

to improve the solution by means of local search procedure or Iterated Local Search

metaheuristic.

Using real-world data provided by a maintenance center, it is shown that the two-

stage heuristic approach with Iterated Local Search performed the best, followed by

the Sample Average Approximation-based Genetic Algorithm approach and the multi-

start Iterated Local Search. The Genetic Algorithm was the least successful among

the four proposed approaches. We have demonstrated the effectiveness and efficiency

of the presented approaches. Notably, at the time of implementation at the main-

tenance center, the decision support tool was reported to improve the maintenance

planning significantly. The plan development time was reduced from several days to a

few minutes.

We attribute the success of our two-stage heuristic approach to the characteristics

of the method used in each stage: (1) the Jensen’s Inequality based mixed-integer

linear programming relaxation provides a high-quality initial solution; and (2) the ap-

plication of local search with different neighborhood structures is indeed crucial for

CHAPTER 6. CONCLUSION 148

improving the quality of candidate solutions, thus providing a reason for why the Iter-

ated Local Search-based approach is more successful than the Genetic Algorithm-based

approaches.

2. In Chapter 4, we study a scheduling problem where every job requires several types

of resources and the processing time of each job follows a discrete distribution. It is

assumed that job processing times are independent across jobs and that processing

time realizations should be integers. The study of this problem was motivated by the

fact that the processing of a job is rarely based on a specific resource but rather a

composite of different types of resources (e.g., manpower, equipment and material),

each with differing individual capacity.

We propose a mixed-integer linear programming formulation to minimize the expected

total tardiness and the expected total penalty for violating the capacity. Notably, the

formulation is flexible, and therefore it allows for modeling different scheduling costs.

We provide an efficient method to evaluate the objective function for any feasible so-

lutions and incorporate this method into the optimization procedures. We propose a

Genetic Algorithm enhanced by a local search. Unlike the sampling-based approaches

in the existing literature [92], this solution method is easy to implement and far less

problem-specific. The reasons for choosing GA over ILS for the considered problem are

as follows: (1) based on the results of Chapter 3, it was shown that the iterated local

search is sensitive to the initial solution. On the other hand, GA’s parallel search mech-

anism has the ability to maintain the diversity of population, making it less sensitive to

the initial population; (2) GA is commonly used in the literature to solve optimisation

problems under uncertainty; and (3) GA is suitable for global search and thus with the

help of a simple local search method, its performance can be significantly enhanced.

Through computational experiments with a number of randomly generated test in-

stances, we demonstrate the effectiveness and efficiency of our method. We show that

by incorporating local search into a Genetic Algorithm framework, our method out-

performs a direct application of Integer Programming in terms of solution time. The

superior performance of our approach is also evident on large instances with up to

CHAPTER 6. CONCLUSION 149

1024 scenarios where the Genetic Algorithm enhanced by local search outperforms the

Sample Average Approximation method and yields confidence interval widths that are

on average within 2% from the upper bound.

3. Finally, in Chapter 5, we study the grid operation-based outage maintenance planning

problem, which was put forward by RTE - a major electricity transmission system oper-

ator in France - for the ROADEF/EURO challenge 2020. The problem is characterized

by the time-varying durations, time-varying resource availability, potential vulnerabil-

ity of the power grid due to the maintenance works, and uncertainty in future grid

operations. The goal is to find a schedule of interventions (i.e. required outages due

to maintenance works) to minimize the total mean cumulative risk of carrying out the

maintenance and the total deviation of quantiles of the risk distributions from the mean

values.

We provide a method to approximate the quantile in the objective function and then

reformulate the problem as a mixed-integer linear program. This approximation model

is the core of our optimization procedures as it is the only means of obtaining initial

solutions. Four solution approaches were presented. The first approach was an iterative

updating heuristic that iteratively improves the estimation error of the approximated τ -

quantile values. The second and third approaches, which were used in the qualification

phase, are based on the confidence method [95]. The fourth approach, which was

used in the semi-final and final phases of the competition, incorporates three local

search optimization procedures, a self-adaptive perturbation, and a restart strategy in

the Iterated Local Search algorithm. The reason for choosing ILS over GA for the

considered problem is that it can produce high-quality solutions in 15 minutes, which

helps us to achieve high score in the Roadef competition. Although the hybridization

of GA with local search performs well for the problem in Chapter 4, the big challenge

for applying the hybrid GA to the problem in Chapter 5 is the extensive computational

effort for assessing the quality of solutions in each neighborhood.

Using problem instances provided by the competition, we demonstrate that our pro-

posed Iterated Local Search method outperforms the solution approaches of 11/13

CHAPTER 6. CONCLUSION 150

qualified teams in the final phase and obtains the 2nd prize in the competition.

The success of the proposed method stems from the following key attributes: (1) the

self-adaptive perturbation mechanism provides a method for adjusting the perturba-

tion strength so as to balance between exploration and exploitation as the algorithm

progresses; (2) our implementation of the local search procedures includes techniques

for speeding up the check of disjunctive and resource constraints, as well as the move

evaluations; and (3) the code was implemented in Cython [24] which results in a 100

times speedup over the pure Python code, thus enabling a good performance on the

large instances in dataset C and anonymous dataset X.

Based on the findings in this thesis, given an optimization problem under uncertainty, we

would recommend using the hybrid genetic algorithm which employs genetic algorithm to do

the global search and some local search methods to do the local search. In the case that a

good solution needs to be sought in a short time (e.g. 15 minutes), an iterated local search

with self-adaptive perturbation mechanism should be considered.

The overall scientific discoveries from solving these three problems that could be general-

ized to solving other combinatorial problems are as follows. First, the exact evaluation of

the objective function instead of Markov Chain Monte Carlo simulation could be general-

ized to more complex resource sharing problems, e.g., resource-constrained project scheduling

problem. Second, the integration of genetic algorithm (GA) with local search significantly en-

hances the performance of traditional GA. Third, an amalgamation of deterministic MIP and

adaptive local search can produce good solutions to optimization problem with uncertainty.

6.2 Future Work

In this section, we reflect on the limitations of this research, draw on the contributions to

offer a number of recommendations for future research for each of the problems discussed in

this thesis.

CHAPTER 6. CONCLUSION 151

1. In Chapter 3, we addressed the rolling stock heavy maintenance planning problem

through strategic planning, which aims at developing a plan of train-sets’ arrivals for

a year. Given that heavy maintenance is a lengthy procedure that takes more than a

month, it is common to consider a year-length scale. For example, in 2017, the China

Railway Society awarded a Science and Technology Prize for a case study involving

124 trains and the planning horizon of 607 days [105]. In the context of strategic

planning, the maintenance center is considered as a single unit. This was done not only

to increase the tractability of the considered problem but also to simplify the modeling

process. A direct extension of this work could be to address the operational level of

scheduling the maintenance which will consider the uncertain duration of maintenance

operations and the technological specifics of the maintenance of trains such as the

order of maintenance operations, space limitations and the necessity of shunting. As

a starting point, the existing nonlinear integer programming model could introduce

an additional subscript l to the x variables, corresponding to the starting time of a

particular train-set j on operation line l. This change will lead to an increase in the

number of variables and constraints, for which we anticipate additional computational

challenges. As a result, the solution approaches presented in Chapter 3 may not be as

attractive. For this reason, further research should investigate more efficient modeling

approaches and alternative solution methods so as to achieve greater tractability as

well as performance guarantees.

In alignment with the current practice at the maintenance center, the mathematical

models presented in Chapter 3 were developed based on fixed TAKT time (i.e. mainte-

nance duration). In this context, the labor hours demand is evenly distributed across

the duration to give the daily demand. The drawback of this approach is that labor

resource is not used efficiently. A potential future research direction is to investigate

the case with varying TAKT time, whereby the more resources we have, the less time

is taken to complete a maintenance task. For example, currently, Dj is the cycle time

of a particular train-set j. If instead we replace Dj by D′
j and Yj, where D′

j is the

normal cycle time of train-set j and Yj is the units of resources allocated to train-set

CHAPTER 6. CONCLUSION 152

j. Then, the actual cycle time of train-set j is given by the formula D′
j − Yj. In the

resulting problem, both the days of arrival at the maintenance center and the cycle

times are decision variables, and the objective function should include an additional

component representing the compression cost. We believe that the resource-dependent

TAKT time approach, with the ability to affect the duration of maintenance by choice

of the allocated resources, represents a promising direction for improving the efficiency

of resource utilization in the maintenance center.

2. In Chapter 4, we solved the considered problem by means of a hybrid optimization

procedure that combines Genetic Algorithm with a local search procedure. It may be

interesting to investigate exact mathematical programming methods for the problem

considered. For example, Keller and Bayraksan [92] present an L-shaped algorithm,

which decomposes the considered problem into one master problem and |Ω| subprob-

lems. At iteration i of the L-shaped algorithm, the master problem is solved for the

first-stage decision variables x, corresponding to the jobs’ starting times. Then, the

optimal dual solution from the subproblems is used to form a cut that is added to the

master problem. One possible direction for extending the work of Keller and Bayraksan

[92] is to enable both the objective function and subgradients to be evaluated exactly.

Given that the objective function in our problem is a convex function but is not dif-

ferentiable at x, so there exist more than one subgradients at x. Finding the set of

subgradients of the objective function will be very challenging; however, one could em-

ploy the sum, and integral rule [32] for constructing subgradients of convex functions.

The computational experiments showed that some good solutions could be obtained by

solving with CPLEX the Sample Average Approximation problems despite the small

sample size (i.e. N = 50). Indeed, the reported solutions were within an estimated

1.7%, 2.7%, 2.8%, and 3.1% from the lower bounds for the 20-5-220, the 40-5-240, the 60-

5-260, and the 80-5-280, respectively. It is unclear whether this is the case in general or

simply a result of the properties of the test instances. Future research should study the

theoretical analysis for tighter sample-size bounds for SAA for the problem considered in

Chapter 4. Such sample-size bounds, which are logarithmic in the problem dimension,

CHAPTER 6. CONCLUSION 153

was proposed in [36] for the capacity- or budget-constrained optimization problems.

3. Finally, in Chapter 5, the proposed solution approaches depend on an initial feasible

solution which is generated by solving with CPLEX the approximate MILP model.

The computational experiments showed that this model became intractable as the

problem size grew very large. Investigating more efficient methods for finding the

initial solutions to the considered problem can be a direct follow-up of our work. One

possible research direction is the application of Lagrangian Relaxation, whereby we

can formulate the Lagrangian Relaxation model by moving either the resource or the

disjunctive constraints to the objective function. However, the solutions obtained from

solving the Lagrangian Relaxation model may be infeasible with respect to the original

problem since some of the constraints are relaxed. Further research should investigate

how to transform the obtained infeasible initial solution into a feasible one.

Another future research opportunity is to permit infeasible solutions for the Iterated

Local Search metaheuristic, particularly in the subroutines SEARCH and PERTUR-

BATION. The success of using infeasible solutions within the ILS procedure has been

demonstrated in a number of studies by our research team for the Workforce Scheduling

and Routing Problem [73, 74].

Bibliography

[1] Abirami, M., Ganesan, S., Subramanian, S., and Anandhakumar, R. (2014). Source and

transmission line maintenance outage scheduling in a power system using teaching learning

based optimization algorithm. Applied Soft Computing, 21:72–83.

[2] Abiri-Jahromi, A., Fotuhi-Firuzabad, M., and Abbasi, E. (2009). An efficient mixed

integer linear formulation for long-term overhead lines maintenance scheduling in power

distribution systems. IEEE Transactions on Power Delivery, 24(4):2043–2053.

[3] Alayo, H. and Paucar, E. (2018). A milp model for maintenance scheduling in transmis-

sion systems and an example application to the peruvian system. IEEE Latin America

Transactions, 16(4):1099–1104.

[4] Almakhlafi, A. and Knowles, J. (2015). Iterated local search for the generator maintenance

scheduling problem. In Proceedings of the 7th Multidisciplinary International Conference

on Scheduling : Theory and Applications (MISTA 2015), pages 708–742, Prague, Czech

Republic.

[5] Angulo, G., Ahmed, S., and Dey, S. S. (2016). Improving the integer l-shaped method.

Journal on Computing, 28(11):483–499.

[6] Arkhipov, D., Battaïa, O., and Lazarev, A. (2019). An efficient pseudo-polynomial al-

gorithm for finding a lower bound on the makespan for the resource constrained project

scheduling problem. European Journal of Operational Research, 275(1):35–44.

[7] Artigues, C., Leus, R., and Nobibon, F. T. (2013). Robust optimization for resource-

154

BIBLIOGRAPHY 155

constrained project scheduling with uncertain activity durations. Flexible Services and

Manufacturing Journal, 25:175–205.

[8] Atighehchian, A., Sepehri, M. M., and Shadpour, P. (2020). A two-step stochastic ap-

proach for operating rooms scheduling in multi-resource environment. Annals of Operations

Research, 292:191–214.

[9] Avci, M. and Topaloglu, S. (2017). A multi-start iterated local search algorithm for

the generalized quadratic multiple knapsack problem. Computers & Operations Research,

83:54–65.

[10] Avramidis, A. N., Chan, W., Gendreau, M., L’Ecuyer, P., and Pisacane, O. (2010). Op-

timizing daily agent scheduling in a multiskill call center. European Journal of Operational

Research, 200(3):822–832.

[11] Bakker, H., Dunke, F., and Nickel, S. (2020). A structuring review on multi-stage

optimization under uncertainty: Aligning concepts from theory and practice. Omega,

96:102080.

[12] Ballestín, F. (2007). When it is worthwhile to work with the stochastic rcpsp? Journal

of Scheduling, 10:153–166.

[13] Ballestín, F. and Leus, R. (2009). Resource-constrained project scheduling for timely

project completion with stochastic activity durations. Production and Operations Man-

agement, 18(4):459–474.

[14] Battiti, R., Brunato, M., and Mascia, F. (2008). Reactive Search and Intelligent Opti-

mization, volume 45. Springer, New York.

[15] Battiti, R. and Protasi, M. (1997). Reactive search, a history-based heuristic for max-sat.

ACM Journal of Experimental Algorithmics, 2:2.

[16] Baum, E. B. (1986a). Iterated descent: a better algorithm for local search in combinato-

rial optimization problems. Technical report, California Institute of Technology, Pasadena,

CA.

BIBLIOGRAPHY 156

[17] Baum, E. B. (1986b). Towards practical “neural” computation for combinatorial opti-

mization problems. In Denker, J., editor, Neural Networks for Computing, pages 53–64.

AIP Conference Proceedings.

[18] Bayraksan, G. (2018). An improved averaged two-replication procedure with latin hy-

percube sampling. Operations Research Letters, 46(2):173–178.

[19] Bayraksan, G. and Morton, D. P. (2006). Assessing solution quality in stochastic pro-

grams. Mathematical Programming, 108(2-3):495–514.

[20] Bayraksan, G. and Morton, D. P. (2009). Assessing solution quality in stochastic pro-

grams via sampling. INFORMS Tutorials in Operations Research, pages 102–122.

[21] Bayraksan, G. and Morton, D. P. (2011). A sequential sampling procedure for stochastic

programming. Operations Research, 59(4):898–913.

[22] Bayraksan, G. and Pierre-Louis, P. (2012). Fixed-width sequential stopping rules for a

class of stochastic programs. SIAM Journal on Optimization, 22(4):1518–1548.

[23] Beale, E. M. L. (1955). On minimizing a convex function subject to linear inequalities.

Journal of the Royal Statistical Society, 17(2):173–184.

[24] Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith, K. (2011).

Cython: the best of both worlds. Computing in Science & Engineering, 13(2):31–39.

[25] Bertsekas, D. P. (2017). Dynamic Programming and Optimal Control. Athena Scientific.

4th edition.

[26] Biajioli, F. L., Chaves, A. A., and Lorena, L. A. N. (2019). A biased random-key

genetic algorithm for the two-stage capacitated facility location problem. Expert Systems

with Applications, 115:418–426.

[27] Billingsley, P. (1995). Probability and Measure, volume 3rd edition. John Wiley & Sons,

New York.

BIBLIOGRAPHY 157

[28] Birge, J. and Wets, R. (1989). Sublinear upper bounds for stochastic programs with

recourse. Mathematical Programming, 43:131–149.

[29] Birge, J. R. (1985). Decomposition and Partitioning Methods for Multistage Stochastic

Linear Programs. https://doi.org/10.1287/opre.33.5.989, 33(5):989–1007.

[30] Birge, J. R. and Louveaux, F. (1997). Introduction to Stochastic Programming. Springer,

New York. 2nd edition.

[31] Biscarri, W., Zhao, S. D., and Brunner, R. J. (2018). A simple and fast method for

computing the poisson binomial distribution function. Computational Statistics & Data

Analysis, 122:92–100.

[32] Boyd, S., Duchi, J., and Vandenberghe, L. (2018). Subgradients. https://stanford.

edu/class/ee364b/lectures/subgradients_notes.pdf [Accessed: 11 November 2019].

[33] Brandão, J. (2020). A memory-based iterated local search algorithm for the multi-depot

open vehicle routing problem. European Journal of Operational Research, 284(2):559–571.

[34] Bruni, M. E., Beraldi, P., Guerriero, F., and Pinto, E. (2011). A heuristic approach for

resource constrained project scheduling with uncertain activity durations. Computers &

Operations Research, 38(9):1305–1318.

[35] Bruni, M. E., Pugliese, L. D. P., Beraldi, P., and Guerriero, F. (2018). A two-stage

stochastic programming model for the resource constrained project scheduling problem

under uncertainty. In proceedings of the 7th International Conference on Operations Re-

search and Enterprise System (ICORES 2018).

[36] Bugg, C. and Aswani, A. (2021). Logarithmic sample bounds for sample average approx-

imation with capacity- or budget-constraints. Operations Research Letters, 49(2):231–238.

[37] Cao, Z., Lin, C., Zhou, M., Zhou, C., and Sedraoui, K. (2022). Two-Stage Genetic

Algorithm for Scheduling Stochastic Unrelated Parallel Machines in a Just-in-Time Man-

ufacturing Context. in IEEE Transactions on Automation Science and Engineering.

https://stanford.edu/class/ee364b/lectures/subgradients_notes.pdf
https://stanford.edu/class/ee364b/lectures/subgradients_notes.pdf

BIBLIOGRAPHY 158

[38] Chakrabortty, R. K., Sarker, R. A., and Essam, D. L. (2017). Resource constrained

project scheduling with uncertain activity durations. Computers & Industrial Engineering,

112:537–550.

[39] Charnes, A. and Cooper, W. (1959). Chance-constrained programming. Management

Science, 6(1):73–79.

[40] Charnes, A. and Cooper, W. (1963). Deterministic equivalents for optimizing and sat-

isficing under chance constraints. Operations Research, 11(1):18–39.

[41] Chen, Z., Demeulemeester, E., Bai, S., and Guo, Y. (2018). Efficient priority rules

for the stochastic resource-constrained project scheduling problem. European Journal of

Operational Research, 270(3):957–967.

[42] Cotta, C., Mathieson, L., and Moscato, P. (2018). Memetic algorithms. Handbook of

Heuristics, 1-2:607–638.

[43] Dalal, G., Gilboa, E., Mannor, S., and Wehenkel, L. (2019). Chance-constrained out-

age scheduling using a machine learning proxy. IEEE Transactions on Power Systems,

34(4):2528–2540.

[44] Dantzig, G. B. (1955). Linear programming under uncertainty. Management Science,

1(3-4):197–206.

[45] D’Ariano, A., Meng, L., Centulio, G., and Corman, F. (2019). Integrated stochastic

optimization approaches for tactical scheduling of trains and railway infrastructure main-

tenance. Computers & Industrial Engineering, 127:1315–1335.

[46] De Jong, K. (1975). An analysis of the behavior of a class of genetic adaptive systems.

PhD thesis, University of Michigan.

[47] Debels, D. and Vanhoucke, M. (2007). A decomposition-based genetic algorithm for the

resource-constrained project-scheduling problem. Operations Research, 55(3):457–469.

BIBLIOGRAPHY 159

[48] Denton, B., Viapiano, J., and Vogl, A. (2007). Optimisation of surgery sequencing and

scheduling decisions under uncertainty. Health Care Management Science, 10:13–24.

[49] Denton, B. T., Miller, A. J., Balasubramanian, H. J., and Huschka, T. R. (2010). Op-

timal allocation of surgery blocks to operating rooms under uncertainty. Operations Re-

search, 58(4):802–816.

[50] Doganay, K. and Bohlin, M. (2010). Maintenance plan optimization for a train fleet.

Computers in Railways XII, 114:349–358.

[51] Dokov, S. P. and Morton, D. P. (2005). Second-order lower bounds on the expectation

of a convex function. Mathematics of Operations Research, 30(3):662–677.

[52] Dong, X., Nowak, M., Chen, P., and Lin, Y. (2015). Self-adaptive perturbation and

multi-neighborhood search for iterated local search on the permutation flow shop problem.

Computers & Industrial Engineering, 87:176–185.

[53] Dowson, O., Morton, D. P., and Downward, A. (2022). Bi-objective multistage stochastic

linear programming. Mathematical Programming 2022, pages 1–27.

[54] Durán, G., Rey, P. A., and Wolff, P. (2017). Solving the operating room scheduling

problem with prioritized lists of patients. Annals of Operations Research, 258(2):395–414.

[55] Dye, S. (2009). Simple recourse problem. In Floudas, C. A. and Pardalos, P. M., editors,

Encyclopedia of Optimization. Springer, Boston.

[56] El-Mihoub, T. A., Hopgood, A. a., Nolle, L., and Battersby, A. (2006). Hybrid genetic

algorithms: A review. Engineering Letters, 13(2).

[57] Erschler, J. (1976). Analysis under constraints and decision support for certain schedul-

ing problems. PhD thesis, University of Toulouse.

[58] Eshelman, L. J. and Schaffer, J. D. (1991). Preventing premature convergence in genetic

algorithm by preventing incest. Proceedings of the Fourth International Conference on

Genetic Algorithms, pages 115–121.

BIBLIOGRAPHY 160

[59] Fortz, B., Labbé, M., Louveaux, F., and Poss, M. (2013). Stochastic binary prob-

lems with simple penalties for capacity constraints violations. Mathematical Programming,

138(1-2):199–221.

[60] Froger, A., Gendreau, M., Mendoza, J., Pinson, E., and Rousseau, L. (2016). Main-

tenance scheduling in the electricity industry: A literature review. European Journal of

Operational Research, 251:695–706.

[61] Fu, Y., Shahidehpour, M., and Li, Z. (2007). Security-constrained optimal coordination

of generation and transmission maintenance outage scheduling. IEEE Transactions on

Power Systems, 22(3):1302–1313.

[62] Gade, D., Küçükyavuz, S., and Sen, S. (2014). Decomposition algorithms with paramet-

ric gomory cuts for two-stage stochastic integer programs. Mathematical Programming,

144(1-2):39–64.

[63] García-Martínez, C., Rodriguez, F. J., and Lozano, M. (2018). Genetic algorithms. In

Martí, R., Pardalos, P. M., and Resende, M. G. C., editors, Handbook of Heuristics, pages

431–464. Springer, Cham.

[64] Giacco, G. L., Carillo, D., D’Ariano, A., Pacciarelli, D., and Marín, A. G. (2014). Short-

term rail rolling stock rostering and maintenance scheduling. Transportation Research

Procedia, 3:651–659.

[65] Glover, F. (1986). Future paths for integer programming and links to artificial intelli-

gence. Computers and Operations Research, 13(5):533–549.

[66] Glover, F. and Kochenberger, G. A. (2003). Handbook of Metaheuristics, volume 1st

edition. Springer, US.

[67] Glover, F. and Sörensen, K. (2015). Metaheuristics. Scholarpedia, 10(4):6532.

[68] Gonçalves, J. F., Mendes, J. J. M., and Resende, M. G. C. (2005). A hybrid genetic

algorithm for the job shop scheduling problem. European Journal of Operational Research,

167(1):77–95.

BIBLIOGRAPHY 161

[69] Gonzalez-Neira, E., Montoya-Torres, J. R., and Barrera, D. (2017). Flow-shop schedul-

ing problem under uncertainties: review and trends. International Journal of Industrial

Engineering Computations, 8:399–426.

[70] Gu, H., Joyce, M., Lam, H. C., Woods, M., and Zinder, Y. (2019a). A genetic algorithm

for assigning train arrival dates at a maintenance centre. Paper presented at the 9th

IFAC Conference on Manufacturing Modelling, Management and Control, Berlin School

of Economics and Law, 28-30 August.

[71] Gu, H. and Lam, H. C. (2019). A genetic algorithm approach for scheduling trains

maintenance under uncertainty. In Le Thi, H. A., Pham Dinh, T., and Nguyen, N.,

editors, Advanced Computational Methods for Knowledge Engineering. ICCSAMA 2019.

Advances in Intelligent Systems and Computing, volume 1121, pages 106–118. Springer,

Cham.

[72] Gu, H., Lam, H. C., and Zinder, Y. (2022). Planning rolling stock maintenance: optimi-

sation of train arrival dates at a maintenance centre. Journal of Industrial & Management

Optimisation, 18(2):747–772.

[73] Gu, H., Zhang, A., and Zinder, Y. (2021). An efficient optimisation procedure for the

workforce scheduling and routing problem: Lagrangian relaxation and iterated local search.

Computers & Operations Research, Preprint.

[74] Gu, H., Zhang, Y., and Zinder, Y. (2019b). Lagrangian relaxation in iterated local

search for the workforce scheduling and routing problem. In Kotsireas, I., Pardalos, P.,

Parsopoulos, K. E., Souravlias, D., and Tsokas, A., editors, Analysis of Experimental

Algorithms. SEA 2019. International Symposium on Experimental Algorithms, pages 527–

540. Springer, Cham.

[75] Gu, J., Gu, M., Cao, C., and Gu, X. (2010). A novel competitive co-evolutionary

quantum genetic algorithm for stochastic job shop scheduling problem. Computers &

Operations Research, 37(5):927–937.

BIBLIOGRAPHY 162

[76] Hansen, P. and Mladenović, N. (2001). Variable neighborhood search: Principles and

applications. European Journal of Operational Research, 130(3):449–467.

[77] Harper, P. R., Powell, N. H., and Williams, J. E. (2010). Modelling the size and skill-mix

of hospital nursing teams. Journal of the Operational Research Society, 61(5):768–779.

[78] Higle, J. L. and Sen, S. (1996). Duality and statistical tests of optimality for two stage

stochastic programs. Mathematical Programming, 75(2):257–275.

[79] Ho, S. C. and Leung, J. M. Y. (2010). Solving a manpower scheduling problem for airline

catering using metaheuristics. European Journal of Operational Research, 202(3):903–921.

[80] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of

Michigan Press, Michigan.

[81] Homem-de Mell, T. and Bayraksan, G. (2014). Monte carlo sampling-based methods

for stochastic optimization. Surveys in Operations Research and Management Science,

19(1):56–85.

[82] Horng, S. C., Lin, S. S., and Yang, F. Y. (2012). Evolutionary algorithm for stochas-

tic job shop scheduling with random processing time. Expert Systems with Applications,

39(3):3603–3610.

[83] Jeon, G., Leep, H. R., and Shim, J. Y. (2007). A vehicle routing problem solved by

using a hybrid genetic algorithm. Computers & Industrial Engineering, 53(4):680–692.

[84] Ji, G., Wu, W., and Zhang, B. (2016). Robust generation maintenance scheduling

considering wind power and forced outages. IET Renewable Power Generation, 10(5):634–

641.

[85] Jia, Q. and Seo, Y. (2013). An improved particle swarm optimization for the resource-

constrained project scheduling problem. The International Journal of Advanced Manufac-

turing Technology, 67(9-12):2627–2638.

BIBLIOGRAPHY 163

[86] Jiang, Y., Zhang, Z., Mccalley, J., Van Voorhis, T., and Ames, I. A. (2006). Risk-

based maintenance optimisation for transmission equipment. IEEE Transactions on Power

Systems, 21.

[87] Jing, X., Pan, Q., and Gao, L. (2021). Local search-based metaheuristics for the robust

distributed permutation flowshop problem. Applied Soft Computing, 105:107247.

[88] Johnson, D. S. (1990). Local optimization and the travelling salesman problem. In In

proceedings of the 17th Colloquium on Automata, Languages, and Programming. Lecture

Notes in Computer Science, volume 443, pages 446–461. Springer, Heidelberg.

[89] Kadri, R. L. and Boctor, F. F. (2018). An efficient genetic algorithm to solve the

resource-constrained project scheduling problem with transfer times: The single mode

case. European Journal of Operational Research, 265(2):454–462.

[90] Kall, P. and Wallace, S. W. (1994). Stochastic programming. Wiley, New York.

[91] Kaut, M. and Wallace, S. W. (2007). Evaluation of scenario-generation methods for

stochastic programming. Pacific Journal of Optimization, 3(2):257–271.

[92] Keller, B. and Bayraksan, G. (2009). Scheduling jobs sharing multiples resources under

uncertainty: A stochastic programming approach. IIE Transactions, 42(1):16–30.

[93] Khalid, A. and Ioannis, K. (2012). A survey of generator maintenance scheduling tech-

niques. Global Journal of Researches in Engineering, 12(1).

[94] Khatami, M., Salehipour, A., and Hwang, F. J. (2019). Makespan minimization for

the m-machine ordered flow shop scheduling problem. Computers & Operations Research,

111:400–414.

[95] Kibzun, A. I. and Kurbakovskiy, V. Y. (1991). Guaranteeing approach to solving quantile

optimisation problems. Annals of Operations Research, 30(1-4):81–94.

[96] Kleywegt, A. J., Shapiro, A., and Homem-de Mello, T. (2002). The sample average ap-

proximation method for stochastic discrete optimization. SIAM Journal on Optimization,

12(2):479–502.

BIBLIOGRAPHY 164

[97] Kolen, A. and Pesch, E. (1994). Genetic local search in combinatorial optimization.

Discrete Applied Mathematics, 48(3):273–284.

[98] Krishnamoorthy, K. (2006). Handbook of Statistical Distributions with Applications.

Chapman & Hall/CRC.

[99] Kulkarni, R., Khuntia, S. R., Joseph, A., Rueda, J. L., and Palensky, P. (2018). Eco-

nomic outage scheduling of transmission line for long-term horizon under demand and

wind scenarios. In Proceedings of the 2018 IEEE PES Innovative Smart Grid Technologies

Conference Europe.

[100] Lai, Y. C., Fang, D. C., and Huang, K. L. (2015). Optimizing rolling stock assign-

ment and maintenance plan for passenger railway operations. Computers & Industrial

Engineering, 85:284–295.

[101] Lanza, G., Crainic, T. G., Rei, W., and Ricciardi, N. (2021). Scheduled service network

design with quality targets and stochastic travel times. European Journal of Operations

Research, 288(1):30–46.

[102] Laporte, G. and Louveaux, F. V. (1993). The integer l-shaped method for stochastic

integer programs with complete recourse. Operations Research Letters, 13(3):133–142.

[103] Law, A. M. and Kelton, W. D. (2000). Simulation Modeling and Analysis. McGraw-Hill,

New York, 5 edition.

[104] Li, H. and Demeulemeester, E. (2016). A genetic algorithm for the robust resource

leveling problem. Journal of Scheduling, 19(1):43–60.

[105] Lin, B., Wu, J., Lin, R., Wang, J., Wang, H., and Zhang, X. (2019). Optimization of

high-level preventive maintenance scheduling for high-speed trains. Reliability Engineering

& System Safety, 183:261–275.

[106] Lin, S. and Kernighan, B. W. (1973). An effective heuristic algorithm for the travelling-

salesman problem. Operations Research, 21(2):498–516.

BIBLIOGRAPHY 165

[107] Lourenço, H. R., Martin, O. C., and Stützle, T. (2010). Iterated local search: framework

and applications. In Gendreau, M. and Potvin, J., editors, Handbook of Metaheuristics,

volume 2nd edition, pages 363–397. Springer, US.

[108] Lv, C., Wang, J., You, S., and Zhang, Z. (2014). Short-term transmission maintenance

scheduling based on the benders decomposition. International Transactions on Electrical

Energy Systems, 25(4):697–712.

[109] Mak, W., Morton, D. P., and Wood, R. K. (1999). Monte carlo bounding techniques

for determining solution quality in stochastic programs. Operations Research Letters, 24(1-

2):47–56.

[110] Malcolm, D. G., Rooseboom, J. H., Clark, C. E., and Fazar, W. (1959). Application

of a technique for research and development program evaluation. Operations Research,

7(5):646–669.

[111] Marin, M., Karangelos, E., and Wehenkel, L. (2017). A computational model of mid-

term outage scheduling for long-term system studies. In Proceedings of the 2017 IEEE

Manchester PowerTech, pages 1–7, Manchester, UK.

[112] Martin, O. and Otto, S. W. (1996). Combining simulated annealing with local search

heuristics. Annals of Operations Research, 63:57–75.

[113] Martin, O., Otto, S. W., and Felten, E. W. (1991). Large-step markov chains for the

traveling salesman problem. Complex Systems, 5(3):299–326.

[114] Marwali, M. and Shahidehpour, S. (2000). Short-term transmission line maintenance

scheduling in a deregulated system. IEEE Transactions on Power Systems, 15(3):1117–

1124.

[115] Mazidi, P., Tohidi, Y., Ramos, A., and Sanz-Bobi, M. (2018). Profit-maximization

generation maintenance scheduling through bi-level programming. European Journal of

Operational Research, 264(3):1045–1057.

BIBLIOGRAPHY 166

[116] Mira, L., Andrade, A. R., and Gomes, M. C. (2020). Maintenance scheduling within

rolling stock planning in railway operations under uncertain maintenance durations. Jour-

nal of Rail Transport Planning & Management, 14:100177.

[117] Mitchell, S., O’Sullivan, M., and Dunning, I. (2011). Pulp : A linear programming

toolkit for python.

[118] Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers &

Operations Research, 24(11):1097–1100.

[119] Moghaddam, B. F., Ruiz, R., and Sadjadi, S. J. (2012). Vehicle routing problem

with uncertain demands: An advanced particle swarm algorithm. Computers & Industrial

Engineering, 62(1):306–317.

[120] Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial

arts: towards memetic algorithms. Technical report, California Institute of Technology.

[121] Moscato, P. and Cotta, C. (2019). An accelerated introduction to memetic algorithms.

International Series in Operations Research and Management Science, 272:275–309.

[122] Moscato, P. and Norman, M. G. (1992). A “memetic” approach for the traveling sales-

man problem implementation of a computational ecology for combinatorial optimization

on message-passing systems. In proceedings of the International Conference on Parallel

Computing and Transputer Applications, pages 177–186.

[123] Mountakis, K. S. (2013). Stochastic Scheduling of Train Maintenance Projects. PhD

thesis, Delft University of Technology.

[124] Nemirovski, A., Ben-Tal, A., and El Ghaoui, L. (2009). Robust Optimization. Princeton

University Press, Princeton.

[125] Neri, F. and Cotta, C. (2012). Memetic algorithms and memetic computing optimiza-

tion: A literature review. Swarm and Evolutionary Computation, 2:1–14.

BIBLIOGRAPHY 167

[126] Neri, F., Cotta, C., and Moscato, P. (2012). Handbook of Memetic Algorithms. Studies

in Computational Intelligence.

[127] Norkin, V. I., Pflug, G. C., and Ruszczynski, A. (1998). A branch and bound method

for stochastic global optimisation. Mathematical Programming, 83:425–450.

[128] Ntaimo, L. (2013). Fenchel decomposition for stochastic mixed-integer programming.

Journal of Global Optimization, 55(1):141–163.

[129] Özarik, S. S., Veelenturf, L. P., Woensel, T. V., and Laporte, G. (2021). Optimizing

e-commerce last-mile vehicle routing and scheduling under uncertain customer presence.

Transportation Research Part E: Logistics and Transportation Review, 148:102263.

[130] Pandz̆ić, H., Conejo, A., Kuzle, I., and Caro, E. (2012). Yearly maintenance scheduling

of transmission lines within a market environment. IEEE Transactions on Power Systems,

27(1):407–415.

[131] Parisio, A. and Neil Jones, C. (2015). A two-stage stochastic programming approach

to employee scheduling in retail outlets with uncertain demand. Omega, 53:97–103.

[132] Peña, D., Tchernykh, A., Dorronsoro, B., and Ruiz, P. (2022). A novel multi-objective

optimization approach to guarantee quality of service and energy efficiency in a heteroge-

neous bus fleet system. Engineering Optimization.

[133] Pérez, J. G., Martín, M., García, C., and Granero, M. (2016). Project management

under uncertainty beyond beta: the generalized bicubic distribution. Operations Research

Perspectives, 3:67–76.

[134] Pezzella, F., Morganti, G., and Ciaschetti, G. (2008). A genetic algorithm for the

flexible job-shop scheduling problem. Computers & Operations Research, 35(10):3202–

3212.

[135] Pierre-Louis, P., Bayraksan, G., and Morton, D. P. (2011). A combined deterministic

and sampling-based sequential bounding method for stochastic programming. In Jain, S.,

BIBLIOGRAPHY 168

Creasey, R. R., Himmelspach, J., White, K. P., and Fu, M., editors, Proceedings of the

2011 Winter Simulation Conference, pages 4167–4178.

[136] Plambeck, E. L., Fu, B. R., Robinson, S. M., and Suri, R. (1996). Sample-path opti-

mization of convex stochastic performance functions. Mathematical Programming: Series

A and B, 75(2):137–176.

[137] Prékopa, A. (1995). Stochastic programming. Kluwer Academic Publishers, Dordrecht.

[138] Reeves, C. R. (1994). Genetic algorithms and neighbourhood search. In Fogarty, T. C.,

editor, Evolutionary Computing, volume 865, pages 115–130, Berlin, Heidelberg. Springer.

[139] Reihani, E., Sarikhani, A., and Davodi, M. (2012). Reliability based generator mainte-

nance scheduling using hybrid evolutionary approach. International Journal of Electrical

Power & Energy Systems, 42(1):434–439.

[140] Ritchie, H. and Roser, M. (2021). France: Energy Country Profile. https://

ourworldindata.org/energy/country/france [Accessed: 03 October 2021].

[141] Robinson, S. M. (1996). Analysis of sample-path optimization. Mathematics of Oper-

ations Research, 21(3):513–528.

[142] Rockafellar, R. and Wets, R. (1991). Scenarios and policy aggregation in optimization

under uncertainty. Mathematics of Operations Research, 16:119–147.

[143] Rostami, S., Creemers, S., and Leus, R. (2018). New strategies for stochastic resource-

constrained project scheduling. Journal of Scheduling, 21(3):349–365.

[144] Rubinstein, R. Y. and Shapiro, A. (1993). Sensitivity Analysis and Stochastic Opti-

mization by the Score Function Method, volume 1st edition. John Wiley & Sons, Chichester,

England.

[145] Ruiz, M. (2020). Github Repository for ROADEF/EURO 2020 Challenge. https:

//github.com/rte-france/challenge-roadef-2020/ [Accessed: 01 September 2020].

https://ourworldindata.org/energy/country/france
https://ourworldindata.org/energy/country/france
https://github.com/rte-france/challenge-roadef-2020/
https://github.com/rte-france/challenge-roadef-2020/

BIBLIOGRAPHY 169

[146] Ruszczyński, A. (1999). Some advances in decomposition methodsfor stochastic linear

programming. Annals of Operations Research 1999 85:0, 85(0):153–172.

[147] Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and oppor-

tunities. Computers and Chemical Engineering, 28(6-7):971–983.

[148] Sauma, E. (2013). A Survey and Comparison of Optimization Methods

for Solving Multi-Stage Stochastic Programs with Recourse. https://services.igi-

global.com/resolvedoi/resolve.aspx?doi=10.4018/joris.2013040102, 4(2):22–35.

[149] Schlünz, E. and van Vuuren, J. (2013). An investigation into the effectiveness of simu-

lated annealing as a solution approach for the generator maintenance scheduling problem.

International Journal of Electrical Power & Energy Systems, 53:166–174.

[150] Sen, S. and Hugle, J. L. (2005). The c3 theorem and a d2 algorithm for large scale

stochastic mixed integer programming: Set convexification. Mathematical Programming,

104(1):1–20.

[151] Sen, S. and Sherali, H. D. (2006). Decomposition with branch-and-cut approaches for

two-stage stochastic mixed-integer programming. Mathematical Programming, 106(2):203–

223.

[152] Shapiro, A. (2003). Monte carlo sampling methods. Handbooks in Operations Research

and Management Science, 10:353–425.

[153] Shapiro, A., Dentcheva, D., and Ruszczýnski, A. (2009). Lectures on Stochastic Pro-

gramming: Modeling and Theory. Society for Industrial Mathematics, Philadelphia.

[154] Shapiro, A. and Homem-de Mello, T. (1998). A simulation-based approach to two-stage

stochastic programming with recourse. Mathematical Programming, 81:301–325.

[155] Shapiro, A. and Homem-De-Mello, T. (2000). On the rate of convergence of optimal

solutions of monte carlo approximations of stochastic programs. SIAM Journal of Opti-

mization, 11(1):70–86.

BIBLIOGRAPHY 170

[156] Shapiro, A., Homem-de Mello, T., and Kim, J. (2002). Conditioning of convex piecewise

linear stochastic programs. Mathematical Programming, 94:1–19.

[157] Shaw, P. (1998). Using constraint programming and local search methods to solve

vehicle routing problems. In Maher, M. and Puget, J. F., editors, Principles and Practice

of Constraint Programming. CP 1998. International Conference on Principles and Practice

of Constraint Programming, volume 1520, pages 417–431. Springer, Berlin.

[158] Skytte, K. and Ropenus, S. (2005). Regulatory Review and International Comparison

of EU-15 Member States. Technical report.

[159] Soares, L. C. R. and Carvalho, M. A. M. (2020). Biased random-key genetic algorithm

for scheduling identical parallel machines with tooling constraints. European Journal of

Operational Research, 285(3):955–964.

[160] SPCHP (2021). Stochastic Programming Society. https://www.stoprog.org/ [Ac-

cessed: 06 September 2021].

[161] Sriskandarajah, C., Jardine, A. K. S., and Chan, C. K. (1998). Maintenance scheduling

of rolling stock using a genetic algorithm. Journal of the Operational Research Society,

49(11):1130–1145.

[162] Stork, F. (2001). Stochastic resource-constrained project scheduling. PhD thesis, Tech-

nische Universität Berlin.

[163] Sydney Trains (2018). Sydney Trains Annual Report 2017-18. https:

//www.transport.nsw.gov.au/news-and-events/reports-and-publications/

sydney-trains-annual-reports [Accessed: 15 August 2019].

[164] Topaloglu, H. (2009). A tighter variant of jensen’s lower bound for stochastic programs

and separable approximations to recourse functions. European Journal of Operational

Research, 199(2):315–322.

https://www.stoprog.org/
https://www.transport.nsw.gov.au/news-and-events/reports-and-publications/sydney-trains-annual-reports
https://www.transport.nsw.gov.au/news-and-events/reports-and-publications/sydney-trains-annual-reports
https://www.transport.nsw.gov.au/news-and-events/reports-and-publications/sydney-trains-annual-reports

BIBLIOGRAPHY 171

[165] Toubeau, J., Pardoen, L., Hubert, L., Marenne, N., Sprooten, J., De Grève, Z., and

Vallée, F. (2022). Machine learning-assisted outage planning for maintenance activities in

power systems with renewables. Energy, 238:121993.

[166] Tseng, L. Y. and Lin, Y. T. (2009). A hybrid genetic local search algorithm for the

permutation flowshop scheduling problem. European Journal of Operational Research,

198(1):84–92.

[167] Ulder, N. L. J., Aarts, E. H. L., Bandelt, H. J., van Laarhoven, P. J. M., and Pesch, E.

(1991). Genetic local search algorithms for the traveling salesman problem. In Schwefel,

H. P. and Männer, R., editors, Parallel Problem Solving from Nature. PPSN 1990. Lecture

Notes in Computer Science, volume 496. Springer, Berlin.

[168] Ünal, H. T. and Başçiftçi, F. (2020). Using evolutionary algorithms for the scheduling of

aircrew on airborne early warning and control system. Defence Science Journal, 70(3):240–

248.

[169] Valente, J. M. S., Moreira, M. R. A., Singh, A., and Alves, R. (2011). Genetic al-

gorithms for single machine scheduling with quadratic earliness and tardiness costs. The

International Journal of Advanced Manufacturing Technology, 54(1-4):251–265.

[170] Valls, V., Ballestín, F., and Quintanilla, S. (2008). A hybrid genetic algorithm for

the resource-constrained project scheduling problem. European Journal of Operational

Research, 185(2):495–508.

[171] van der Laan, N. and Romeijnders, W. (2020). A converging benders’ de-

composition algorithm for two-stage mixed-integer recourse models. http://www.

optimization-online.org/DB_HTML/2020/12/8165.html [Accessed: 10 September

2020].

[172] Van Slyke, R. M. and Wets, R. (1969). L-shaped linear programs with applications

to optimal control and stochastic programming. SIAM Journal of Applied Mathematics,

17(4):638–663.

http://www.optimization-online.org/DB_HTML/ 2020/12/8165.html
http://www.optimization-online.org/DB_HTML/ 2020/12/8165.html

BIBLIOGRAPHY 172

[173] Vásquez, S. A., Angulo, G., and Klapp, M. A. (2021). An exact solution method for the

tsp with drone based on decomposition. Computers & Operations Research, 127:105127.

[174] Vela, C. R., Varela, R., and Gonzalez, M. A. (2010). Local search and genetic algorithm

for the job shop scheduling problem with sequence dependent setup times. Journal of

Heuristics, 16(2):139–165.

[175] Wang, K. J., Wang, S. M., and Chen, J. C. (2008). A resource portfolio planning model

using sampling-based stochastic programming and genetic algorithm. European Journal of

Operational research, 184(1):327–340.

[176] Wang, Y., Zhong, H., Xia, Q., Kirschen, D. S., and Kang, C. (2016). An approach for

integrated generation and transmission maintenance scheduling considering n-1 contingen-

cies. IEEE Transactions on Power Systems, 31(3):2225–2233.

[177] Waskom, M. (2017). Seaborn: v0.8.1. https://seaborn.pydata.org [Accessed: 15

August 2019].

[178] Watson, J. P., Rana, S., Whitley, L. D., and Howe, A. E. (1999). The impact of

approximate evaluation on the performance of search algorithms for warehouse scheduling.

Journal of Scheduling, 2(2):79–98.

[179] Xie, F., Potts, C. N., and Bektaş, T. (2017). Iterated local search for workforce schedul-

ing and routing problems. Journal of Heuristics, 23:471–500.

[180] Yamada, T. and Nakano, R. (1992). A genetic algorithm applicable to large-scale job-

shop problems. Paper presented at the Parallel Problem Solving from Nature 2, Belgium,

28-30 September.

[181] Yoshitomi, Y. and Yamaguchi, R. (2003). A genetic algorithm and the monte carlo

method for stochastic job-shop scheduling. International Transactions in Operational Re-

search, 10(6):577–596.

[182] Younis, M. T. and Yang, S. (2018). Hybrid meta-heuristic algorithms for independent

job scheduling in grid computing. Applied Soft Computing, 72:498–517.

https://seaborn.pydata.org

BIBLIOGRAPHY 173

[183] Yun, Y., Gen, M., and Seo, S. (2003). Various hybrid methods based on genetic

algorithm with fuzzy logic controller. Journal of Intelligent Manufacturing, 14:401–419.

[184] Yun, Y. and Moon, C. (2003). Comparison of adaptive genetic algorithms for engineer-

ing optimization problems. International Journal of Industrial Engineering: Applications

and Practice, 10:584–590.

[185] Zaman, F., Elsayed, S., Sarker, R., Essam, C., and Coello Coello, C. A. (2021). An

evolutionary approach for resource constrained project scheduling with uncertain changes.

Computers & Operations Research, 125:105104.

[186] Zaman, M. F., Elsayed, S., Ray, T., and Sarker, R. (2018). Scenario-based solution

approach for uncertain resource constrained scheduling problems. In proceedings of the

2018 IEEE Congress on Evolutionary Computation, pages –.

[187] Zhang, C. and Li, Y. F. (2021). Imperfect Maintenance Optimization of Multi-State

Rolling Stocks Based on Deep Reinforcement Learning. Proceedings - 2021 3rd Interna-

tional Conference on System Reliability and Safety Engineering, SRSE 2021, pages 265–

269.

[188] Zhang, M., Hong, Y., and Balakrishnan, N. (2018). An algorithm for computing the

distribution function of the generalized poisson binomial distribution. Journal of Statistical

Computation and Simulation, 88(8):1515–1527.

[189] Zheng, F., Man, X., Chu, F., Liu, M., and Chu, C. (2019). A two-stage stochastic

programming for single yard crane scheduling with uncertain release times of retrieval

tasks. International Journal of Production Research, 57(13):4132–4147.

[190] Zhong, Q., Lusby, R. M., Larsen, J., Zhang, Y., and Peng, Q. (2019). Rolling stock

scheduling with maintenance requirements at the chinese high-speed railway. Transporta-

tion Research Part B: Methodological, 126:24–44.

[191] Zimmermann, H. J. (1991). Fuzzy set theory and its application. Kluwer Academic

Publishers, Boston. 2nd edition.

	Title Page
	Certificate of Original Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Planning of Rolling Stock Maintenance
	Scheduling of Jobs Sharing multiple Resources
	Planning of Grid Operation-based Outage Maintenance
	Contributions

	Literature Review
	Stochastic Programming
	Stochastic programs with recourse
	Solution methods
	Sample Average Approximation

	Metaheuristic
	Genetic Algorithm
	Iterated Local Search

	Planning of Rolling Stock Maintenance
	Scheduling Jobs Sharing Multiple Resources
	Planning of Grid Operation-based Outage Maintenance

	Planning of Rolling Stock Maintenance
	Introduction
	Mathematical Programming Formulation
	Nonlinear Integer Programming Formulation
	Evaluation of the Objective Function
	Integer Linear Programming Relaxation based on Jensen’s Inequality

	Genetic Algorithm Approach
	The decoding procedure
	Evolutionary process

	Genetic Algorithm based Matheuristic
	Hybrid Two-stage optimization Procedure
	Mixed Integer Linear Program MILP
	Local Search Subroutines
	Iterated Local Search

	Computational Results
	Comparison of GA and GA-based matheuristic
	Comparison of the Performance of MIPM and MILP
	Comparison of Hybrid ILS and Multi-start ILS
	Visualization of Quality of Arrival Plan

	Summary

	Scheduling of Jobs Sharing multiple Resources
	Introduction
	Mixed integer linear programming formulation
	Mixed integer linear program
	Evaluation of the objective function

	Sample Average Approximation
	Hybrid Genetic Algorithm
	Representation of chromosome and definition of fitness function
	Parent selection and crossover
	Mutation
	Local search method

	Computational Results
	Generation of test instances
	HGA parameter setting
	Comparisons between the proposed HGA and CPLEX on small problem instances
	Performance evaluation of the proposed HGA on large problem instances
	Sensitivity analysis

	Summary

	Planning of Grid Operation-based Outage Maintenance
	Introduction
	Mathematical programming formulation
	Notations
	Objective function
	Mixed integer linear programming formulation

	Approximation of quantile term in objective function and iterative updating algorithm
	Confidence method approaches
	Iterated local search
	Subroutine INITIAL
	Subroutine SEARCH
	Subroutines PERTURB_SHIFT and PERTURB_SWAP

	Computational results
	Model MILP vs. Model A-MILP
	Evaluation of the IterUpdate algorithm
	CM-heuristic vs. cs-CM heuristic
	Comparison of the ILS with benchmark results

	Summary

	Conclusion
	Summary of Work
	Future Work

	Bibliography

