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Abstract

D
emands for active noise control/cancellation (ANC) to provide a quiet

environment have grown significantly over the past few decades.

Notably, many ANC headphones and earphones have emerged and

gained much success in the market due to their excellent performance and

robustness. There are also other ANC applications, such as ANC headrests

and ANC windows. However, developments for such applications have been

slow due to their relative complexity and cost of implementation. Particularly,

the physical presence and the number of required sensors, typically condenser

microphones, severely limit the performance of many ANC applications.

Laser Doppler vibrometry, which works on the principle of optical interfer-

ometry, has been widely used in to measure vibrations in many vibro-acoustic

applications. Yet, the developed instrument, laser Doppler vibrometer (LDV),

has little been studied in the published literature in the context of sound/noise

measurement and control. The main advantage of such a technique is that

it is often considered to be non-contact and non-invasive. For ANC headrests

and windows, which prohibit the use of passive acoustic absorption materials

and limit the installation of physical microphones for noise control, an LDV

can be favourable by providing acoustic information remotely and inherently

non-invasively.

This thesis, therefore, investigates and develops LDV-based remote acoustic

sensing techniques for ANC applications, particularly ANC headrests and

windows. The first part of the thesis studies how to use an LDV together

with customised retro-reflective membranes to acquire acoustic information at

discrete locations from a remotely positioned LDV. Then, such a configuration is

used for remote error sensing in an ANC headrest scenario. The experimental

results show significant improvements over the state-of-the-art systems. The

reference signals are also investigated in ANC systems. Results show that

a non-minimum-phase secondary path may require reference microphones
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to be installed at a considerable distance away from the secondary sources

to have an adequate control performance, especially for the low frequencies.

This is impractical in many applications. Remote acoustic sensing can also

be applied for the reference signal. Results show that the proposed remote

reference sensing can achieve a comparable result without the need for physical

connections like those required for conventional microphones.

The second part of the thesis is concerned with measuring and controlling

noise over a large area, e.g., at a window or a similar opening. Instead of

measuring at a series of discrete points as with a microphone array, refracto-

vibrometry can serve as an alternative method to measure the sound field,

quasi-continuously, over an area and then utilise the measurements for control.

The major advantage of this technique is that it enables sound pressure

measurement at all points of interest without disturbing the sound field and

with high spatial resolution. Such a technique is preferable for noise control at

windows and openings where ventilation and access are prioritised over the

introduction of physical sensors. The sound field at an enclosure opening is

measured in the experiment and used for the error signals for ANC. Results

show that using refracto-vibrometry to measure a sound field can give a much

finer resolution than using a microphone array and an ANC system as a

consequence can have the optimal performance for a given secondary source

arrangement.
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