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Abstract 
This study proposes a novel zero-stiffness vibration isolator and investigates its dynamic 
responses under micro-oscillation with a friction consideration. The novel vibration isolator is 
based on the mechanism of a cam-roller Quasi-Zero-Stiffness (QZS) system while with 
improvement by reducing its system components. The proposed vibration isolator consists of a 
designed bearing, which can provide stiffness responses in the radial direction, and an inserted 
rod with curved surface. Without the precise cooperation between the positive and negative 
stiffness systems required in a typical QZS isolator, the designed single stiffness system can 
provide the high-static-low-dynamic stiffness characteristic directly. The static characteristics 
of the stiffness performance are numerically confirmed, and then the dynamic responses with 
friction consideration at the contact surfaces are discussed. The displacement transmissibility 
in low frequency range is numerically validated when applying harmonic excitation on the base. 
The analysis results of this study reveal a unique vibration isolating performance of the zero-
stiffness system under frication consideration.  
 

Introduction 
Nonlinear QZS vibration isolation systems have been proposed to overcome the disadvantage of a 
traditional linear isolator [1, 2]. A typical QZS system is combined by a linear isolation system and 
a negative stiffness structure, thus a high-static-low-dynamic stiffness (HSLDS) can be generated 
for the effective vibration isolation in a low frequency range. Different types of the stiffness system 
such as springs [3, 4], buckled beams [5] and magnetic springs [6], have been used individually, or 
in various combinations for both positive and negative stiffness structures.  
 
This study proposes a novel zero-stiffness vibration isolator that can achieve the high-static-low-
dynamic stiffness characteristic directly without precise cooperation between the positive and 
negative stiffness systems. The proposed vibration isolator is based on the cam-roller mechanism 
[7, 8] and consists of a designed bearing, which can provide stiffness responses in the radial direction, 
and an inserted rod with special curved surface, as shown in Figure 1(a) and (b). The design concept 
of the bearing and the static characteristics of the isolator are first presented, and then nonlinear 
dynamic performance with a friction consideration [9, 10] at the connect surface is evaluated.  
  



 
Figure 1: Schematic diagram of the system: (a) system configuration and (b) force-displacement 
relationship 
 
The model of the zero-stiffness system  
There are two systems involves in this novel design for a zero-stiffness performance: a bearing 
design and a curved rod as shown in figure 1(a). The bearing structure is designed based on 
cantilevered beams, which are limited deformable in the horizontal plane. One end of the beam is 
fixed on the outer ring of the structure and a hemisphere roller is placed on the other end. When the 
curved rod is inserted, the contact of the rod surface and the hemisphere balls could perform a cam-
roller mechanical principle. Thus, the stiffness in the vertical direction can be designed according 
to the rod surface curve and a HSLDS characteristic can be achieved when using for vibration 
isolation. The benefits of proposed system are: firstly, the system size can be reduced when 
comparing to other spring structures. Higher stiffness can be obtained when using the cantilevered 
beam structure with less deformation. Secondly, the system stiffness can be designed sectional as  
Demands. Even a zero-stiffness performance can be resulted as shown in figure 1(b) when special 
rod shape is achieved. It should be noting that a weak spring (𝑘𝑘 ≈ 0) is also applied to define the 
initial position of the rod in zero-stiffness section for vibration application. The following sections 
of this paper will demonstrate the designing the system and its static performance, and then the 
dynamic performance will be discussed. 
 
Designing of the structure and static performance 



Figure 2 Mechanism of the proposed bearing structure: (a) top view and (b) deformed condition 
 
As presented in figure 2, the designed bearing could include N sets of cantilevered beam-roller.  
When inserting a rod at the center of the outer ring, the contact points of each hemisphere roller to 
the cross-section of the inserted rod should be on a concentric circle with the outer ring. Considering 
geometrically-trigonometric relationships of the rollers and the neglecting the small deformation of 
the cantilevered beams, the maximum number of the beam-roller set can have the relationship as  

⎿ 𝜋𝜋
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

⏌ ≥ sin−1 � 𝑟𝑟
R𝑖𝑖𝑖𝑖+𝑟𝑟

� (1) 

Where R𝑖𝑖𝑖𝑖 is initial radius of the concentric circle when the beams are at stress-free condition, and 
r is the radius of the hemisphere roller.  

 
Figure 3 Maximum number of the beam-roller set with in the system 

 
To minimize the size of the bearing and the system, the relation between maximum number of the 
beam-roller set and the ratio of R𝑖𝑖𝑖𝑖 and r can be calculated as shown in figure 3. It can be found 
that the higher ratio of R𝑖𝑖𝑖𝑖 𝑟𝑟⁄  could using more beam-roller set in the bearing system which could 
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bring more radiation stiffness of the bearing kℎ and provide higher equivalent negative stiffness in 
the vertical direction. 

 
It also can be found that the minimum size of the radius of the outer ring structure, R𝑜𝑜𝑜𝑜𝑜𝑜, can be the 
relationship as: 
R𝑜𝑜𝑜𝑜𝑜𝑜

2 = (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝜃𝜃𝑏𝑏))2 + (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝜃𝜃𝑏𝑏) + R𝑖𝑖𝑖𝑖 + 𝑟𝑟)2 (2) 
where as shown in the figure 2(b), L is the effective length of the cantilevered beam, which is 
calculated from the support location to the center of the roller and 𝜃𝜃𝑏𝑏 is the angle between the beam 
surface and the possible force direction from the rod to the roller. 
 
When rod is inserted with its cross-section larger than the initial radius of the concentric circle, 
R𝑖𝑖𝑖𝑖 + ∆𝑟𝑟, the cantilevered beam can be forced at the roller center with a deformation. Thus, the 
equivalent total radiation stiffness of the bearing kℎ due to the deformation of the cantilevered 
beams can be calculated as  

kℎ = 𝑁𝑁 𝐸𝐸𝑏𝑏ℎ3

4𝐿𝐿3𝑐𝑐𝑜𝑜𝑐𝑐(𝜃𝜃𝑏𝑏)
 (3) 

where a rectangle cross-section beam is assumed to be applied, 𝑏𝑏  and ℎ  are the width and 
thickness of the beam, and 𝐸𝐸 is the elastic module of the beam material. 
 
It is also worth noting that the direction of the force applied on the beam has an angle change due 
to the roller contact, 𝜃𝜃𝑟𝑟 as shown in the figure 2(b). Only when 𝜃𝜃𝑟𝑟 is small and can be neglected, 
the force applied to the beam can be assumed in the vertical direction. Otherwise, when 𝜃𝜃𝑟𝑟 is big, 
the force applied perpendicular to the beam surface is calculated as  

P = Fcos(𝜃𝜃𝑏𝑏 − 𝜃𝜃𝑟𝑟) 𝑎𝑎𝐿𝐿𝑎𝑎 𝜃𝜃𝑟𝑟 = 𝑃𝑃𝐿𝐿2

2𝐸𝐸𝐸𝐸
 (4) 

where 𝐼𝐼 = 1
12
𝑏𝑏ℎ3 is the moment of inertia of the beam, F is the force applied on the roller, and P 

is the force applies perpendicular to the beam. 
 
By substituting the Eq. (4) into Eq. (1), a required radiation stiffness kℎ, the outer radius of the 
bearing can be rewritten as 

R𝑜𝑜𝑜𝑜𝑜𝑜 = ���𝑁𝑁 𝐸𝐸𝑏𝑏ℎ3

4kℎ𝑐𝑐𝑜𝑜𝑐𝑐(𝜃𝜃𝑏𝑏)
3 𝐿𝐿𝐿𝐿𝐿𝐿(𝜃𝜃𝑏𝑏)�

2

+ (�𝑁𝑁 𝐸𝐸𝑏𝑏ℎ3

4kℎ𝑐𝑐𝑜𝑜𝑐𝑐(𝜃𝜃𝑏𝑏)
3 𝐿𝐿𝐿𝐿𝐿𝐿(𝜃𝜃𝑏𝑏) + R𝑖𝑖𝑖𝑖 + 𝑟𝑟)2 (5) 

Where N must satisfy the minimum requirement as shown in the Eq. (1).  



 

Figure 4 Inclined angle analysis of the beams within the bearing structure for required stiffness to 
minimize the bearing size 

 
Figure 4 illustrates the Inclined angle analysis of the beams within the bearing structure for required 
stiffness Kℎ. This analysis is based on using spring steel beams. Particular design parameters are 
given as: 𝐸𝐸 = 205𝐺𝐺𝐺𝐺𝑎𝑎,𝑏𝑏 = 8𝑚𝑚𝑚𝑚,ℎ = 3𝑚𝑚𝑚𝑚,𝑟𝑟 = 4𝑚𝑚𝑚𝑚, R𝑖𝑖𝑖𝑖 = 24𝑚𝑚𝑚𝑚, N = 20  and Kℎ =
160𝑁𝑁/𝑚𝑚. It is clearly shown that although the minimum length of the beam can be required when 
𝜃𝜃𝑏𝑏 = 0, its outer ring size is not at its minimum. For the given design parameters, the minimum size 
of the outer ring can be achieved when 𝜃𝜃𝑏𝑏 = −50. 
 
Designing of the curved rod  
The inclined angle of the touching surface on the shaped rod could decide the transformation ratio 
of the total radiation stiffness to the resultant stiffness in vertical direction.  

 

Figure 5 (a) Mechanism of the bearing-rod system and (b) the rod inclined curve 
 

If the rod surface curve is expressed as  
𝑦𝑦(𝑥𝑥) = 𝐴𝐴(𝑥𝑥)𝐵𝐵  (6) 
 
The equivalent vertical stiffness 𝑘𝑘𝑣𝑣 can be rewritten as:  



𝑘𝑘𝑣𝑣 = 𝑘𝑘ℎ
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 (7) 

where 𝐴𝐴 and 𝐵𝐵 are algebraic constants, 𝛿𝛿 is the pre-compression condition of the beam at the 
original point of the curve. 
 
It is worth noting that special curve conditions could result different equivalent vertical stiffness as 
demand: when B=1, the rod would be presented as a cone shaped rod, and the equivalent vertical 

stiffness can be simplified to a constant 𝑘𝑘𝑣𝑣 = 𝑘𝑘ℎ
𝐴𝐴2

; when 𝐵𝐵 = 2 & 𝛿𝛿 = 0, a zero-stiffness condition 

𝑘𝑘𝑣𝑣 = 0 can be achieved along the rod. The combination of the two special curve conditions thus 
can provide the desired stiffness in the vertical direction along the rod, the stiffness static 
performance of proposed system then could be able as shown in figure 1(b). it is ideally that the 
vibration can be totally isolated to the load platform at the zero-stiffness section. However, for any 
real engineer application, the frictions involved in the cam-roller system should not be neglected as 
it can directly effect on the dynamic response.  
 

Dynamic analysis with friction consideration 
The designed zero-stiffness system would be investigated with a Coulomb friction consideration at 
its contact surface between the rod and the roller. Although the proposed system is a single-degree-
of-freedom system, its dynamic behavior still can be complicated as nonlinearities due to the friction 
consideration and the unsymmetrical curved shape. 
 
According to the geometry relationship at the contact surface, the equation of motion along the rod 
can be expressed as:  
 
𝑚𝑚𝑧𝑧�̈�𝑚 + 𝑘𝑘𝑦𝑦+ 𝜇𝜇𝑚𝑚𝜇𝜇�2�𝐶𝐶𝑅𝑅𝑦𝑦�𝐿𝐿𝜇𝜇𝐿𝐿��̇�𝑈� = 0 (8) 
where 𝑘𝑘  is the vertical stiffness of the system and it equal to 0 while within the zero-stiffness 
section, 𝜇𝜇 is the frictional coefficient, 𝜇𝜇 is the gravity constant, 𝐶𝐶𝑅𝑅 is the curve constant (same 
as 𝐴𝐴 in Eq. (6)), 𝑦𝑦 is the location of the contact point along the rod from the original point, �̇�𝑈 
denotes the absolute speed of the roller to the rod, and 𝑧𝑧�̈�𝑚 denote the absolute acceleration of the 
weight. 
 
Suppose that a steady-state can be reached for the proposed system in a frictional oscillator. The 
displacement of the payload can be exhibited to the same period of the excitation. A time interval 
[0 2𝜋𝜋 𝜔𝜔𝑏𝑏⁄ ] can be found between a generic couples of subsequent maximum value, which could 
represent the steady-state of the motion. An unknown phase shift is also expected between the 
excitation and the response. Assuming that the motion is continuous and symmetric with respect to 
the initial position of the contact between the rod and the rollers, the absolute speed of the roller to 
the rod at all internal points within the half time interval [0 𝜋𝜋 𝜔𝜔𝑏𝑏⁄ ]  from the maximum 
displacement to the minimum condition are always negative �̇�𝑈 < 0, so Eq. (8) will be rewritten as: 
 



�̈�𝑈 − 𝐶𝐶1√1 + 𝑈𝑈 = 𝐶𝐶2 cos(𝜔𝜔𝑏𝑏𝑡𝑡 +𝜑𝜑) (9) 

where 𝐶𝐶1 = 2𝜇𝜇𝜇𝜇 ��𝐶𝐶𝑅𝑅
�𝑦𝑦0

� ,𝐶𝐶2 = 𝑍𝑍𝑒𝑒𝜔𝜔𝑏𝑏
2

𝑦𝑦0
 and 𝜔𝜔𝑏𝑏 is the excitation frequency. It also should be noted 

that the initial position 𝑦𝑦0 , which is defined by the weak spring and the phase angle 𝜑𝜑  of the 
excitation are both unknown.  
 
An analytical solution using Taylor series expansion with keeping up to the third-order about its 
initial position can be succinctly written as: 

�̈�𝑈 − 𝐶𝐶1 �1 + 𝑈𝑈
2
� = 𝐶𝐶2 cos(𝜔𝜔𝑏𝑏𝑡𝑡+ 𝜑𝜑) (10) 

 
The end boundary conditions of both displacement and velocity in a half time period [0 𝜋𝜋 𝜔𝜔𝑏𝑏⁄ ] 
can be found as: 

�
𝑈𝑈(0) = 𝑈𝑈0 �̇�𝑈(0) = 0

𝑈𝑈
� 𝜋𝜋
𝜔𝜔𝑏𝑏

�
= −𝑈𝑈0 �̇�𝑈

� 𝜋𝜋
𝜔𝜔𝑏𝑏

�
= 0   (11) 

 
As solving the general solution of Eq. (10), the response regarding to the time interval can be 
expressed as: 

𝑈𝑈(𝑜𝑜) = �− 2
𝐶𝐶1
𝜔𝜔𝑖𝑖2� [𝐴𝐴𝑖𝑖 cos(𝜔𝜔𝑖𝑖𝑡𝑡) +𝐵𝐵𝑖𝑖 sin(𝜔𝜔𝑖𝑖𝑡𝑡)] − 2 �1 + 𝐶𝐶2

𝐶𝐶1
cos(𝜔𝜔𝑏𝑏𝑡𝑡+ 𝜑𝜑)� (12) 

Where 𝜔𝜔𝑖𝑖 is the natural frequency of the system for a target weight 𝑚𝑚. Since the system would 
provide a zero-stiffness, the calculation of its natural frequency is depending on the initial position 
of the contact of the rod and the roller, where 𝜔𝜔𝑖𝑖 = �𝜇𝜇 𝑦𝑦0⁄ . 
 
The constants 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖 can be then removed by bring 𝑈𝑈(𝑜𝑜) into its boundary conditions 𝑈𝑈(0) 
and �̇�𝑈(0), So  

𝑈𝑈(𝑜𝑜) = �𝑈𝑈0 + 2 𝐶𝐶2
𝐶𝐶1

cos(𝜑𝜑) + 2� cos(𝜔𝜔𝑖𝑖𝑡𝑡)− 2 𝐶𝐶2
𝐶𝐶1

𝜔𝜔𝑏𝑏

𝜔𝜔𝑖𝑖
sin(𝜑𝜑) sin(𝜔𝜔𝑖𝑖𝑡𝑡)− 2 �1 + 𝐶𝐶2

𝐶𝐶1
cos(𝜔𝜔𝑏𝑏𝑡𝑡+ 𝜑𝜑)�

 (13) 
 

Substituting the response result into the impositions of the boundary condition at time interval 𝜋𝜋
𝜔𝜔𝑏𝑏

 

allows to finding the unknown values of the phase angle 𝜑𝜑, hence:  

�
cos(𝜑𝜑) = −1

2
𝐶𝐶1
𝐶𝐶2
𝑈𝑈0

sin(𝜑𝜑) = −𝐶𝐶1
𝐶𝐶2

1
𝛼𝛼

sin�𝜋𝜋𝛼𝛼�

cos�𝜋𝜋𝛼𝛼�+1

 (14) 

Where 𝛼𝛼 = 𝜔𝜔𝑏𝑏 𝜔𝜔𝑖𝑖⁄ . 
 

By introducing a damping function 𝐷𝐷(𝛼𝛼) = 1
𝛼𝛼

sin�𝜋𝜋𝛼𝛼�

cos�𝜋𝜋𝛼𝛼�+1
 , the maximum absolute displacement 𝑈𝑈0 

can be determined as  



𝑈𝑈0 = 2��𝐶𝐶2
𝐶𝐶1
�
2
− 𝐷𝐷(𝛼𝛼)

2  (15) 

It should be noted that as for continuous motion,  �̇�𝑈(𝑜𝑜) < 0  at 𝑡𝑡 ∈ �0
𝜋𝜋
𝜔𝜔𝑏𝑏
� ; substituting the 

cos(𝜑𝜑)and sin(𝜑𝜑), a unique limit condition for the validity of the maximum absolute displacement 
𝑈𝑈0 can be obtained, which is independently of the ratio between friction and external force: 

𝑈𝑈0 > −2𝜔𝜔𝑖𝑖 sin(𝜔𝜔𝑖𝑖𝑜𝑜)+2𝐷𝐷𝜔𝜔𝑏𝑏[cos(𝜔𝜔𝑖𝑖𝑜𝑜)−cos(𝜔𝜔𝑏𝑏𝑜𝑜)]
𝜔𝜔𝑏𝑏 sin(𝜔𝜔𝑏𝑏𝑜𝑜)  (16) 

 
It must be underlined that the friction response has been considered over the response of the weak 
spring applied for initial position, and which has been neglected when analysis the dynamic behavior 
within the zero-stiffness section. The numerical solution of the amplitude-frequency relationship 
can be calculated and shown in figure 6 to investigate the system dynamic response. However, the 
response under the limit condition as shown in Eq. (16) cannot be captured in the analytic solution. 
Only the displacement transmissibility with respect to the excitation frequency within the limit 
condition are discussed. From figure 8, the effects of the designing parameters, such as natural 
frequency of the system 𝜔𝜔𝑖𝑖 , rod curve constant 𝐶𝐶𝑟𝑟 , frictional coefficient 𝜇𝜇  and the excitation 
amplitude 𝑍𝑍𝑒𝑒 to the AF response can be found, respectively. According to Figure 6(a-b), both the 
natural frequency of the system 𝜔𝜔𝑖𝑖, which is depending on the initial position of the contact of the 
rod and the roller, and the excitation amplitude 𝑍𝑍𝑒𝑒 can be found to decide the unique limit condition 
in the nonlinear dynamic analysis. Either low natural frequency or large excitation amplitude could 
increase the range within the limited condition, and in the meantime reduce the workable isolation 
frequency range. Other parameters which can have significant effect on the vibration isolation 
performance are also simulated and presented in Figure 6(c)-(d). The increasing of either the 
frictional coefficient 𝜇𝜇 or the rod curve constant 𝐶𝐶𝑟𝑟 are able to increase the workable isolation 
range of the system. 
 



 

Figure 6 Displacement transmissibility of the proposed system with frictional consideration with 
different designing parameters 



CONCLUSIONS 
 
A HSLDS vibration isolation system is proposed with a novel designed bearing and a curved surface 
rod. The designed system omits the precise cooperation between the positive and negative stiffness 
systems in a typical QZS system and is able to provide a high-static-low-dynamic stiffness directly. 
The design concept and its static characteristics of the stiffness performance have been numerically 
confirmed and discussed. A zero-stiffness-in-range property at the targeted weight applied can be 
achieved ideally. Then nonlinear dynamic performance under micro-oscillation with a friction 
consideration is also evaluated. The analysis results of this study reveal a unique vibration isolating 
performance of the zero-stiffness system under frication consideration. 
 
  



References 
[1] H. Ding, J. Ji, L.-Q. Chen, Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero 
stiffness characteristics, Mechanical Systems and Signal Processing, 121 (2019) 675-688. 
[2] K. Ye, J. Ji, T. Brown, Design of a quasi-zero stiffness isolation system for supporting different loads, 
Journal of Sound and Vibration, 471 (2020) 115198. 
[3] F. Zhao, J. Ji, K. Ye, Q. Luo, Increase of quasi-zero stiffness region using two pairs of oblique springs, 
Mechanical Systems and Signal Processing, 144 (2020). 
[4] Z. Lu, M. Brennan, H. Ding, L. Chen, High-static-low-dynamic-stiffness vibration isolation enhanced 
by damping nonlinearity, Science China Technological Sciences, 62 (2018) 1103-1110. 
[5] X. Huang, X. Liu, J. Sun, Z. Zhang, H. Hua, Vibration isolation characteristics of a nonlinear isolator 
using Euler buckled beam as negative stiffness corrector: A theoretical and experimental study, Journal 
of Sound and Vibration, 333 (2014) 1132-1148. 
[6] B. Yan, H. Ma, C. Zhao, C. Wu, K. Wang, P. Wang, A vari-stiffness nonlinear isolator with magnetic 
effects: Theoretical modeling and experimental verification, International Journal of Mechanical 
Sciences, 148 (2018) 745-755. 
[7] J. Zhou, X. Wang, D. Xu, S. Bishop, Nonlinear dynamic characteristics of a quasi-zero stiffness 
vibration isolator with cam–roller–spring mechanisms, Journal of Sound and Vibration, 346 (2015) 53-
69. 
[8] D. Xu, Q. Yu, J. Zhou, S. Bishop, Theoretical and experimental analyses of a nonlinear magnetic 
vibration isolator with quasi-zero-stiffness characteristic, Journal of Sound and Vibration, 332 (2013) 
3377-3389. 
[9] X. Liu, Q. Zhao, Z. Zhang, X. Zhou, An experiment investigation on the effect of Coulomb friction 
on the displacement transmissibility of a quasi-zero stiffness isolator, Journal of Mechanical Science and 
Technology, 33 (2019) 121-127. 
[10] L. Marino, A. Cicirello, D.A. Hills, Displacement transmissibility of a Coulomb friction oscillator 
subject to joined base-wall motion, Nonlinear Dynamics, 98 (2019) 2595-2612. 
 


