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Abstract 23 

Reverse vaccinology (RV) was described at its inception in 2000 as an in silico process that 24 

starts from the genomic sequence of the pathogen and ends with a list of potential protein 25 

and/or peptide candidates to be experimentally validated for vaccine development. Twenty-26 

two years later, this process has evolved from a few steps entailing a handful of 27 

bioinformatics tools to a multitude of steps with a plethora of tools. Other in silico related 28 

processes with overlapping workflow steps have also emerged with terms such as subtractive 29 

proteomics, computational vaccinology, and immunoinformatics. From the perspective of a 30 

new RV practitioner, determining the appropriate workflow steps and bioinformatics tools 31 

can be a time consuming and overwhelming task, given the number of choices. This review 32 

presents the current understanding of RV and its usage in the research community as 33 

determined by a comprehensive survey of scientific papers published in the last seven years. 34 

We believe the current mainstream workflow steps and tools presented here will be a 35 

valuable guideline for all researchers wanting to apply an up-to-date in silico vaccine 36 

discovery process. 37 

Introduction 38 

In October 2000, a novel process for vaccine discovery was first described by Rino Rappuoli 39 

in a landmark publication (Rappuoli, 2000). The process was named ‘reverse vaccinology’ 40 

(RV) to encapsulate the idea that the vaccine discovery process started in silico (on a 41 

computer) using genetic information rather than in a laboratory with the pathogen itself. RV’s 42 

overriding goal is to identify potential protein and/or peptide candidates to be experimentally 43 

validated for vaccine development i.e., the hope is that these identified candidates are 44 

immunogenic. It must be accepted, nonetheless, that the output from an in silico process is 45 

fundamentally informed predictions. Experimental validation is the only way to be certain a 46 

predicted candidate is immunogenic.  47 
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The first study (Pizza et al., 2000) accredited to have followed the RV process 48 

essentially had only two RV-related steps: 1) identifying open reading frames (ORFs) in 49 

unassembled DNA sequence fragments that potentially encoded surface-exposed or exported 50 

proteins; and 2) a phylogenetic analysis to distinguish from the identified proteins those 51 

conserved in sequence across a range of target strains. Like many novel processes, RV has 52 

evolved greatly over the last 22 years since its inception. An RV-inspired study can now 53 

typically have a multitude of computational steps with a choice of hundreds of bioinformatics 54 

resources to perform these steps. Other in silico related processes have also emerged, namely 55 

subtractive genomics and proteomics, computational vaccinology, and 56 

immunoinformatics (see Glossary). Conceptual boundaries between RV and these latest 57 

processes have blurred. Nonetheless, all these novel processes play an important role in this 58 

revolutionary era of identifying vaccine candidates in silico.  59 

Fig. 1 shows the rise in number of scientific publications with ‘reverse vaccinology’ 60 

in its title since 2000. The total number of publications over this 21 year period is 180. 61 

Supplementary Table S1 lists the 180 publications. The increasing interest in RV did not 62 

occur until 2015, with over 133 (74%) of the 180 publications released in the last seven years. 63 

RV’s current importance is exemplified by its escalating application to the greatest global 64 

health crisis of our age, the coronavirus COVID-19 pandemic. Seven papers with RV in the 65 

title and focusing on ‘COVID-19’ were published in 2020-21 (as of October 2022, a further 66 

seven have been published). The aim of this review is to present the current status of RV and 67 

its usage as revealed in the 133 publications of the last seven years. We present a 68 

comprehensive guideline of the most commonly used workflow and bioinformatics programs, 69 

given the current RV status. We believe this guideline will be a valuable resource for all RV 70 

practitioners wanting to apply an up-to-date in silico vaccine discovery process. 71 
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Principles of classical reverse vaccinology  72 

To fully appreciate this review, the reader requires an understanding of the RV principles and 73 

influences. For example, why is RV now a reality, where does RV fit within the conventional 74 

approach to vaccine discovery; and from an RV perspective, what vaccine types can be 75 

discovered, what pathogen components are most likely to induce an immune response, and 76 

what are the main immune system players. Figures 2-7 are now presented to answer these 77 

questions and provide an introduction to RV. Table 1 shows comparisons between the 78 

conventional approach and classical RV in terms of antigen types that can be discovered, and 79 

time and financial factors impacting the discovery. Additional information on RV can be 80 

found in three reviews published between 2015-16 that are specific to bacteria (Heinson et 81 

al., 2015), viruses (Bruno et al., 2015), and ticks (Lew-Tabor & Valle, 2016).  82 

Overview of the reverse vaccinology workflow 83 

Pathogenic (see Glossary) organisms are composed of thousands of proteins. The central RV 84 

aim is to narrow down this number leaving only the most worthwhile candidates for 85 

laboratory investigation. This aim is achieved by predicting or gathering protein 86 

characteristics that support or oppose candidacy using bioinformatics programs or accessing 87 

biological databases, respectively (these characteristics are described later in depth). Reverse 88 

vaccinology tools (i.e., bioinformatics programs and biological databases) can be executed or 89 

accessed via three modes: web servers, application programming interfaces (APIs) to access 90 

tools over the internet, and standalone (i.e., tools installed on local computer). Each mode has 91 

its advantages and disadvantages. Web servers are by far the easiest to use but have 92 

restrictions on input data size and constraints on parsing the output. Using only web servers is 93 

essentially a one step at a time manual workflow. APIs and standalone programs allow for 94 

automated high-throughput workflows but require programming and computer administration 95 

skills. Standalone has a further disadvantage in that its installation becomes outdated because 96 
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most programs and databases are incrementally updated. Note that not every RV tool 97 

provides all three modes of operation. 98 

Most predicted characteristics by a bioinformatics program are assigned a score (e.g., a 99 

probability that the protein contains a signal peptide), and most database derived 100 

characteristics belong to classifications (e.g., a protein has a subcellular localization 101 

classification of ‘extracellular’). These scores and classifications are used to select 102 

candidates. The two main selection methods applied are filtering and ranking. Filtering is a 103 

manual process performed by the RV practitioner. It involves a series of workflow steps with 104 

conditional rule-based tests applied consecutively to each protein’s characteristic scores or 105 

classifications to retain or discard it from the next workflow step e.g., retain protein if signal 106 

peptide probability is greater than a 0.5 threshold, and discard protein if subcellular 107 

localization is cytoplasm. The order of tests and threshold values applied are at the discretion 108 

of the RV practitioner. Ranking aims to assign only one score collectively representing all 109 

predicted characteristics, with the highest scoring proteins considered the most worthy 110 

candidates. Ranking can be achieved using ML (see later ‘Machine learning specific to 111 

reverse vaccinology’). 112 

Ideally, the RV workflow ends with selected candidates being tested for their 113 

immunogenicity in a laboratory experiment or animal model. Typically, however, most RV 114 

studies due to budget or other resource constraints rely on in silico techniques to verify their 115 

candidates. For example, a vaccine formulation can be modelled and assessed in a simulated 116 

immune system (these techniques are discussed further later).  117 

A typical reverse vaccinology workflow 118 

We have collated statistics from a survey sought to capture the current status, patterns and 119 

trends of RV usage. The survey source was all scientific publications after 2014 containing 120 
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‘reverse vaccinology’ in the title. Although the total number of publication titles for this 121 

period was 133, 43 publications were excluded from the survey (21 publications were 122 

reviews and/or did not contain RV workflows, 16 were not accessible, five did not specify 123 

RV programs, and one was a duplicate publication but with a different DOI. Supplementary 124 

Table S1 lists these 43 publications and the reason for their exclusion). Therefore, the RV 125 

workflows from 90 publications provided the survey data. These 90 publications are referred 126 

to henceforth as ‘latest publications’. Supplementary Table S1 lists the survey questions and 127 

results. Fig. 8 shows a graphical RV snapshot providing a status overview. 128 

The following RV workflow is compiled from the most common steps presented in the latest 129 

publications. With this in mind, we make no judgement as to what steps should or should not 130 

define the RV scope. The common steps collectively entail a filtering workflow to discover a 131 

multi-epitope vaccine against a pathogenic bacterium. There are essentially four stages: input 132 

data gathering and preparation, predicting proteins naturally exposed to the immune system 133 

(classical RV), predicting epitopes (immunoinformatics), and vaccine candidate verification. 134 

The most popular bioinformatics program and/or database resource to achieve each step is 135 

shown bold in brackets. Table 2 lists the main output of RV interest and where to access the 136 

program or resource. Supplementary Information S1 describes these programs, including type 137 

of input and output. Fig. 9 shows a schematic of the typical RV workflow as derived from 138 

latest publications. 139 

Stage #1 – input data gathering and preparation 140 

The essential input data to the workflow are protein sequences. Every available sequence 141 

pertaining to every available strain from the target species are the ultimate input data to attain 142 

a conserved vaccine (see Glossary). Data can be downloaded from resources such as the 143 

National Center for Biotechnology Information (NCBI) (Agarwala et al., 2018) and UniProt 144 

Knowledgebase (UniProtKB) (Bateman et al., 2021)). If protein sequences are not available, 145 
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then genome sequences are the workflow commencement data. Thereby, predicting genes 146 

encoded in genomes would be the first step followed by coding sequence (CDS) translations 147 

to protein sequences.  148 

Given sequences representative of entire proteomes from multiple strains, the aim is to find 149 

conserved proteins and compile them in one set to represent the common (core) proteome of a 150 

species (CD–HIT (Li & Godzik, 2006)). Conserved proteins tend to play an essential 151 

function. Next step is to remove the following from the core proteome: proteins homologous 152 

to those of the vaccine recipient (BlastP), allergenic (AllerTOP (Dimitrov et al., 2014) ) and 153 

toxic (ToxinPred (Gupta et al., 2013)) proteins. 154 

Stage #2 – predicting proteins naturally exposed to the immune system 155 

There is no consensus order for the next steps but the broad aim is to determine which of the 156 

remaining core proteins (i.e., proteins that are non-redundant, non-homologous, non-157 

allergenic, and non-toxic) are naturally exposed to the immune system. This can be achieved 158 

by predicting informative protein characteristics such as antigenicity (VaxiJen (Doytchinova 159 

& Flower, 2007)), subcellular localisation (PSORTb (Yu et al., 2010)), transmembrane 160 

domains (TMHMM (Krogh et al., 2001)), signal peptides (signalP (Teufel et al., 2022)), 161 

virulence (VFDB (Chen et al., 2005)), adhesion (SPAAN (Sachdeva et al., 2005)), protein 162 

function (Pfam (Mistry et al., 2021)), and physical and chemical (physicochemical) 163 

properties (ProtParam (E. et al., 2005)). User defined criteria is applied to prediction values 164 

to select proteins for the immunoinformatics workflow stage. 165 

Stage #3 – predicting epitopes (immunoinformatics) 166 

Whether cellular and/or humoral immune responses are required for protection is dependent 167 

on the target species’ pathogenicity and virulence. The key here from an RV perspective is 168 

whether helper T-lymphocytes (HTLs), cytotoxic T lymphocytes (CTLs), and B-cell epitopes 169 
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are required as the basis of the protective immune response. The immunoinformatics stage 170 

involves predicting the required epitopes residing on selected proteins e.g., on filtered 171 

proteins expected to be exposed to the immune system (CTLs: IEDB-MHC-I Binding and 172 

HTLs: IEDB-MHC-II Binding (Vita et al., 2019), and B-cell epitope: BepiPred (Jespersen 173 

et al., 2017)). Predicted epitopes here are small lengths of amino acids (peptides) from the 174 

selected proteins. Promiscuous epitopes with high binding affinity and broad population 175 

coverage (IEDB-Population coverage (Bui et al., 2006)) are selected from epitope-rich 176 

proteins. The selected epitopes are connected with suitable linkers (see Glossary) and 177 

adjuvants to construct one sequence that represents the multi-epitope vaccine candidate (i.e., 178 

vaccine construct).  179 

Stage #4 – verifying vaccine construct candidates 180 

The aim of the final workflow stage is to verify by computational means whether the vaccine 181 

construct is potentially immunogenic and safe, which in effect is attempting to determine how 182 

the construct, represented essentially as a one dimensional digital sequence, might interact in 183 

the 3D real-world. The immunoinformatics and this final verification stage are expected to be 184 

iterative with different combinations of vaccine construct candidates i.e., different 185 

combinations of CTLs, HTLs and B-cell epitopes. Each candidate is checked for antigenicity 186 

(VaxiJen), allergenicity (AllerTOP), toxicity (ToxinPred), solubility (SOLpro (Cheng et 187 

al., 2005)) and stability (ProtParam). Candidates predicted to be antigenic, non-allergic, 188 

non-toxic, soluble and highly stable are further verified by predicting secondary and tertiary 189 

structure (PSIPRED (Buchan & Jones, 2019) and I-TASSER (Zhang, 2008), respectively), 190 

epitopes on 3D structure (ElliPro (Ponomarenko et al., 2008)), molecular docking with 191 

immune receptor (PatchDock (Duhovny et al., 2002, Schneidman-Duhovny et al., 2005), 192 

molecular dynamics simulation (GROMACS (Berendsen et al., 1995) and PyMOL – a 193 

commercial product: https://pymol.org/2/), binding free energy (MM-PBSA and MM-GBSA 194 
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(Miller et al., 2012), codon optimization (Java Codon Adaptation Tool (Grote et al., 195 

2005)), in silico cloning (SnapGene – a commercial product: https://www.snapgene.com/), 196 

and immune simulation (C-ImmSim (Rapin et al., 2010)).  197 

Informative protein characteristics 198 

This section presents the predicted or obtained protein characteristics from the latest 199 

publications. The main question to be answered here for each characteristic is why it is 200 

considered informative to the overall in silico vaccine discovery approach. Programs used to 201 

predict or obtain these characteristics, and reported in more than one publication, are named 202 

along with a usage percentage given the number of latest publications. For example, Database 203 

of essential genes (DEG) is used in the workflow of 20 of the 90 latest RV publications; 204 

therefore its usage is 22.2 % (20/90). Note, programs listed here with a strikethrough indicate 205 

that the published URL failed to access the site or no up-to-date URL could be found at the 206 

time of execution by the authors (November 2022). URLs and usage percentage for all 207 

programs are listed in Supplementary Table S1. 208 

Conserved proteins (stage #1) 209 

The level of a protein’s conservancy between strains is an informative protein characteristic. 210 

An ideal workflow starting point towards attaining a conserved vaccine is to determine 211 

proteins present in all strains of the target organism i.e., determine conserved proteins 212 

representing the core proteome. If no protein sequences are available, then the starting point 213 

is to perform a pangenomic analysis to determine the core genome (i.e., a set of homologous 214 

genes present in all genomes of the target organism) for translation into protein sequences.  215 

The core proteome can be obtained by measuring protein sequence identity i.e., the amount of 216 

characters which match exactly between two different sequences. A user-defined threshold is 217 

first applied to the identity of proteins from the same strain to filter out paralogous and 218 
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duplicated proteins, and then to the identity of proteins from all strains to select the core 219 

proteome. Conserved proteins contain amino acid residues that are vital to its function, which 220 

is manifested by fewer variations from evolutionary selection pressures (Rappuoli, 2007). 221 

From a vaccine development perspective, conserved proteins help address the challenge of 222 

antigen variability i.e., a vaccine will only have continued success if the antigens targeted are 223 

relatively conserved and do not undergo significant variability over time. It must be noted, 224 

however, that conserved proteins are not expected to be the most virulent in a strain and 225 

therefore by association are possibly less antigenic. For example, strains have varying 226 

degrees of virulence. Strain-specific proteins are considered the determining factor making 227 

one strain more virulent than others. Virulence-associated proteins, nonetheless, are more 228 

prone to antigenic variation due to an evolutionary balancing act to evade the immune system 229 

by varying their antigens but still retaining functionality (Ernst, 2017). A popular workflow 230 

step in the latest publications is to determine which of the conserved proteins are essential for 231 

pathogen survival within the host and, in effect, filter out non-essential proteins from the RV 232 

protocol e.g., determine conserved proteins with roles in adhesion, and entry and infection. 233 

Tools for conservation and/or essentiality analysis: database of essential genes (DEG) 20.0%, 234 

CD-HIT 12.2%, COGS 6.7%, orthoMCL 5.6%, BPGA 4.4%, PATRIC 4.4%, ConSurf 2.2%, 235 

Geptop 2.2%, OrthoFinder 2.2%, and MBGD 2.2%. 236 

Sequence similarity analysis with the proteome of the vaccine recipient (stage #1) 237 

To avoid the likelihood of an autoimmune response, the sequences of vaccine candidates 238 

should have no significant similarity with any proteins from the intended vaccine recipient 239 

species. Note that although significant similarity between two sequences can infer they are 240 

related by evolutionary changes from a common ancestral sequence (i.e., sequence 241 

homology), finding homologous sequences is not the objective. Chains of amino acids from 242 

similar sequences, irrespective of their ancestry, can fold to potentially become similar 243 



11 
 

biologically active proteins in their native 3D structures. This has the conceivable 244 

consequence that the immune system responds both to the 3D structure of the vaccine and 245 

undesirably to a similar 3D structure residing in the vaccine recipient. Similarity based search 246 

tools: BlastP 47.8%, PSI-BLAST 7.8%. 247 

Toxicity (stage #1 and #4) 248 

It is important to ensure that any potential vaccine candidate, protein or peptide, will not have 249 

a detrimental effect when administered to the intended vaccine recipient i.e., a measure of the 250 

candidate’s potential toxicity is required. Differences in single and dipeptide amino acid 251 

compositions of toxic and non-toxic peptides has been shown to exist (Gupta et al., 2013). 252 

These differences can be detected with ML. Tool: ToxinPred 25.6%. 253 

Allergenicity (stage #1 and #4) 254 

Allergen proteins or peptides need to be removed from vaccine candidacy to avoid host 255 

allergic reactions. Tools: AllerTOP 20.0%, AllergenFP 15.6%, AlgPred 12.2%, AllerCatPro 256 

2.2%, and SORTALLER 2.2%. 257 

Antigenicity (stage #2) 258 

Predicting a protein’s antigenicity potential is possibly the most highly desirable 259 

characteristic. No encoded signal within protein sequences has yet been detected that clearly 260 

indicates a protein is antigenic. Consequently, there are no known programs directly using 261 

protein sequences to predict antigenicity. However, VaxiJen (developed in 2007) 262 

(Doytchinova & Flower, 2007) and AntigenPro (developed in 2010) (Magnan et al., 2010) 263 

predict antigenicity scores by applying ML methods to known protective and non-protective 264 

antigen training data based on physicochemical properties derived from protein sequences or 265 

a collection of sequence-based features, respectively. Tools: VaxiJen 68.9%, AntigenPro 266 

13.3%, Protegen (database of protective antigens) 3.3%. 267 
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Subcellular localization (stage #2) 268 

An important characteristic is where a protein resides in the pathogen i.e., a protein’s 269 

subcellular localization (SCL). The main determinant of an SCL is the protein sequence 270 

(Horton et al., 2007). SCL’s of interest for classical RV are those accessible to the host 271 

immune system e.g., cell wall, extracellular, secreted, and surface-exposed. Tools: PSORTb 272 

43.3%, CELLO 24.0%, SurfG+ 7.8%, SOSUI-GramN 4.4%, Wolf PSORT 2.2%.  273 

Secreted proteins (stage #2) 274 

Proteins secreted to the outside of the pathogen are accessible to the immune system. One of 275 

the most well-known sorting signals is the secretory signal peptide (SP), which targets a 276 

protein to the secretory pathway via the endoplasmic reticulum. Note, however, that not all 277 

secretory proteins have SPs, or are necessarily secreted to the outside of the pathogen 278 

(Emanuelsson et al., 2007). Tools: SignalP 25.6%, SecretomeP (non-classical secretion) 279 

5.6%, Phobius 5.6%, TatP 2.2%.  280 

Membrane-related proteins (stage #2) 281 

Surface membranes of pathogens are exposed to the outside environment and are therefore in 282 

full view of a host’s immune system surveillance. Consequently, membrane molecules, 283 

including proteins spanning or anchored to the membrane are likely to be antigenic (Krogh et 284 

al., 2001). Tools: TMHMM 36.7%, HMMTOP 15.6%, Phobius 5.6%, CCTOP 3.3%, PRED-285 

TMBB 3.3%, BOMP 2.2%, TMBETADISC-RBF 2.2%.  286 

Virulence (stage #2) 287 

Focusing on pathogen targets accessible to the host immune system (e.g., membrane-related 288 

and secreted proteins) is important because of their potential role as virulence factors aiding 289 

in host cell infection. Target proteins that are virulent are deemed more worthy of onward 290 

investigation than non-virulent proteins. Tools to predict or determine virulence in bacterial 291 

proteins: VFDB 20.0%, VirulentPred 11.1%, VICMpred 2.2%. Adhesion is a significant 292 
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virulence factor and adhesins are worthwhile candidates because of their surface exposure. 293 

Tool for predicting adhesins: SPAAN 12.2%. Some bacteria have been found to have 294 

pathogenicity islands (PAIs), which carry virulence factor genes (Dobrindt et al., 2000). 295 

GIPSy (4.4%) is a tool to predict if putative targets are on PAIs i.e., virulence-associated. 296 

Protein function (stage #2) 297 

Determining a protein’s function can provide an indication of its potential interaction with the 298 

immune system. The conjecture is that amino acids determine the structure, and the structure 299 

defines the function of the mature protein in the pathogen. If annotation on protein function is 300 

unavailable or limited for the target organism, homology searching can be used to find 301 

annotated proteins in other organisms e.g., proteins with similar sequences frequently 302 

perform similar functions (program: BlastP).  303 

Protein function is a multifaceted concept with complex mutually overlapping and 304 

intertwined levels such as biochemical, cellular, organism-mediated, developmental and 305 

physiological (Rost et al., 2003, Clark & Radivojac, 2011). For instance, two proteins with 306 

the same annotated molecular function may be involved in drastically different biological 307 

processes, and conversely, a set of proteins associated with the same biological process may 308 

have different molecular functions. It is also well-known that proteins can have more than 309 

one function (Clark & Radivojac, 2011) e.g., moonlighting proteins (see Glossary) 310 

(Henderson & Martin, 2011, Wang et al., 2014). Several classification systems have been 311 

proposed to standardize functional annotation, although not strictly specific to immunology 312 

terms. One such classification system is Gene Ontology (GO) (Ashburner et al., 2000, 313 

Carbon et al., 2021).  314 

Proteins are typically composed of one or more building blocks, called domains (see 315 

Glossary). Domain sequences can be classified in accordance to degrees of similarity. If a 316 
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region of protein sequence has a highly significant match to a particular domain, then it is 317 

likely to share similar structures and functions. Functionally important residues are also 318 

expected to be highly conserved. Tools: KEGG 11.1%, CDD 6.7%, CELLO2go 6.7%, Pfam 319 

6.7%, InterProScan 5.6%, UniProt 4.4%, GO 3.3%, and eggNOG-mapper 2.2%. 320 

B-cell epitopes (stage # 3) 321 

The majority (~90%) of B-cell epitopes are discontinuous (or conformational) and the 322 

remaining 10% are continuous (or linear) (Korber et al., 2006) (see Glossary). The main 323 

point to emphasize is that the specific interaction between B-cells and epitopes (in their 324 

folded state) occur at a 3D level. A challenge to the RV practitioner is that at least one 325 

epitope is predicted on any given protein. Therefore, selecting proteins for candidacy based 326 

on whether or not it contains an epitope is unfeasible. A common practice in the RV selection 327 

process is to use a metric based on a protein’s epitope density. For example, B-cell epitope 328 

ratio (the numbers of amino acids of all epitopes divided into all amino acids of protein) 329 

(Oprea & Antohe, 2013), and mature epitope density (the number of 9-mer epitopes) (Santos 330 

et al., 2013). Continuous predictors: BCPred 24.4% , BepiPred 23.3%, ABCpred 20.0%, 331 

IEDB B-cell epitopes 10.0%, FBCPred 4.4%; discontinuous predictors (predicted from 3D 332 

structure): ElliPro 18.9%, DiscoTope 4.4%; and Epitope mapping: Pepitope 3.3%. 333 

T-cell epitopes (stage # 3) 334 

T-cell epitopes are typically short linear peptides (Hanada et al., 2004) and are predicted via 335 

an indirect method (see Fig. 10). Major histocompatibility complex (MHC) molecules are 336 

inherited and unique to an individual. They bind peptides exhibiting specific sequence 337 

patterns i.e., allele sequences. Therefore, MHC alleles vary within the species of the target 338 

host. This is associated with an individual’s susceptibility or resistance to infection (Juliarena 339 

et al., 2008), and why vaccine efficacy may differ between individuals. A judicious approach 340 

towards developing a vaccine that protects a broader target population would be to identify 341 
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conserved epitopes that bind to multiple MHC alleles (i.e., promiscuous epitopes) and bind to 342 

promiscuous MHCs. Note that there is no guarantee that a protein predicted to contain 343 

peptides that bind to a particular MHC allele will be presented by antigen-presenting cells 344 

and/or recognised by cognate T-cell receptors and/or is immunogenic.  345 

Similar to B-cell epitopes, a previous study (Goodswen et al., 2014) reported that every 346 

protein from the eukaryotic pathogens tested were predicted to contain at least one peptide 347 

binding with a high-affinity to at least one of the known human MHC alleles. This finding 348 

suggests that selecting a protein for vaccine candidacy on the basis it contains a high-affinity 349 

peptide is impractical. Proposed solutions are to identify immunological hotspots (see 350 

Glossary) and use density ratio metrics such as MHC I or II binding site ratios (Oprea & 351 

Antohe, 2013) (similar to B-cell epitope ratios) and an ML-derived probability to encapsulate 352 

all peptide-MHC binding scores from a protein into one score (Goodswen et al., 2014). 353 

Tools: IEDB MHC-II Binding 31.1%, IEDB MHC-I Binding 25.6%, ProPred 12.2%, 354 

NetCTL 11.1%, NetMHCpan 8.9%, MHCPred 7.8%, NetMHCII 7.8%, NetMHCIIpan 7.8%, 355 

NetMHC 5.6%, MHC2Pred 4.4%, CTLPred 3.3%, SYFPEITHI 3.3%, MHCcluster 2.2%, 356 

NetCTLpan 2.2%, RANKPEP 2.2%, Vaxitop 2.2%. IFNepitope (17.8%) and IL10Pred 357 

(4.4%) can predict the nature of an MHC class-II epitope as either an IFN-γ or IL-10 inducer, 358 

respectively. 359 

Conservancy of epitopes (stage # 3) 360 

It is desirable for a conserved epitope-based vaccine to contain epitopes conserved across 361 

multiple strains or even species than epitopes unique to only one strain. Conserved epitopes 362 

tend to evolve slowly, even under immune pressure, because they typically have a critical 363 

protein function (Ernst, 2017). One method to determine the degree of epitope conservation is 364 

to appropriately align the epitope to a set of homologous protein sequences representing the 365 

desired scope of multiple strains. Note that sequence conservation does not guarantee that the 366 
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epitope will be recognized by the immune system or be cross-reactive. This is mainly because 367 

of differences in residues flanking the conserved epitope on different antigens (Ernst, 2017) 368 

e.g., T-cell epitopes need to be presented via MHC molecules to be recognised, and the 369 

flanking sequences influence this presentation. Also, B-cell epitope conformation is 370 

influenced by the entire 3D antigen shaped by the flanking sequences. Tools related to 371 

peptide conservation analysis: IEDB Population coverage 12.2%, IEDB Epitope conservancy 372 

tool 10.0%, IEDB-clustering analysis 5.6%, and BLAT (sequence similarity based search 373 

tool) 3.0%. 374 

Chemical and physical properties of vaccine construct (stage # 4) 375 

The vaccine construct comprising peptides, adjuvants, and linkers at the time of delivery will 376 

be a folded 3D structure presented to the immune system. This means that exposed peptides 377 

of the construct as opposed to buried peptides are more important in determining the 378 

immunogenic capacity. This is because only exposed amino acids can interact with T- and/or 379 

B-cells. Predicting different physicochemical properties of the construct can help assess its 380 

potential interactions in a 3D environment. Preferable vaccine construct properties are 381 

hydrophilic, stable, good water solubility, high thermostability (see Glossary), and not too 382 

large for purification (Enayatkhani et al., 2021, Goodarzi et al., 2021). The following 383 

properties can be deduced from the construct sequence: molecular weight (smaller size 384 

vaccines are easier to purify during experimental studies (Allemailem, 2021)), theoretical 385 

isoelectric point (pI) (the pH at which construct has a neutral charge), instability index (an 386 

estimate of the construct stability in a solution), aliphatic index (indicates the relative volume 387 

occupied by aliphatic side chains (see Glossary) and is an indicator of thermostability), and 388 

hydropathicity index (a number representing the hydrophobic or hydrophilic properties). Tool 389 

for predicting physicochemical characteristics ProtPram 52.2% (predicts molecular weight, 390 
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pI, instability, aliphatic, and hydropathicity indexes). Tools for predicting solubility: SOLpro 391 

13.3%, Protein-sol 6.7%, Innovagen 2.2%, and PROSO II 2.2%. 392 

Tertiary structure of vaccine construct (stage # 4) 393 

Theoretically, a protein sequence contains all the information needed to make structural 394 

predictions. Unlike genetic code, however, there is no known code that can be used to 395 

definitively predict the folded structure of a protein. There are mainly two prediction 396 

methods: comparative modelling (when the input protein sequence significantly matches with 397 

a known structure), and de novo. Viewing a 3D structure to assess its immunogenic potential, 398 

or even its correctness, requires expert knowledge. Therefore, predicted 3D models are used 399 

in subsequent workflow steps towards computationally validating a vaccine construct. 400 

Models are defined with coordinates, typically in a Protein Data Bank (PDB) file format. 401 

Tools: I-TASSER 16.7%, Phyre2 12.2%, RaptorX 12.2%, PEP-FOLD 10.0%, SWISS-402 

MODEL 10.0%, Modeller 7.8%, Robetta 6.7%, 3DPro 4.4%, MHOLline 4.4%, CABS-fold 403 

2.2%, and trRosetta 2.2%. 404 

Protein-protein interactions (stage # 4) 405 

Proteins function by interacting with other proteins. The interactions create protein 406 

complexes and networks (Aguttu et al., 2021). Understanding candidate protein interactions 407 

with closely related proteins may help reveal the candidate’s function and its immunogenic 408 

potential. This understanding can be achieved by first determining candidate and intra-species 409 

protein interactions; and then performing a functional enrichment analysis on the resulting 410 

interactions network. Tools: STRING 18.9%, GalaxyPepDock 3.3%. 411 

Protein structure analysis (stage # 4) 412 

The accuracy and reliability of most predicted 3D models remains in question. Consequently, 413 

independent programs have been developed for recognition of errors and/or model refinement 414 

given predicted 3D coordinates. These programs typically provide a type of conformational 415 
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correctness score (e.g., Template modelling (TM) score and Root-Mean-Square Deviation 416 

(RMSD) (Ahmad et al., 2017), and/or a Ramachandran plot of residues, where residues 417 

located in a specific region indicate a reliable 3D model. Verification tools: ProSA 21.1%, 418 

UCSF Chimera 20.0%, ERRAT 15.6%, PROCHECK 15.6%, RAMPAGE 8.9%, PDBsum 419 

6.7%, Mod Refiner 3.3%, QMEAN 3.3%, MolProbity 2.2%. Refinement tools: GalaxyRefine 420 

20.0% (ProSA also performs refinement). 421 

Molecular docking of vaccine constructs (stage # 4) 422 

Microbial signatures, such as bacterial cell wall components, are recognized by host innate 423 

immune receptors (Ishii et al., 2008) e.g., Toll-like receptor (TLR) cells. These receptors 424 

trigger innate immune activation and regulate subsequent adaptive immune responses 425 

(Medzhitov, 2007). An expectation is that an effective vaccine construct will present 426 

microbial signatures. The best 3D predicted models of candidate constructs are used in 427 

molecular docking (MD) programs to assess their binding conformation and interactions with 428 

host immune receptors e.g., TLRs. If sufficient binding affinity and presentation ability with 429 

host receptors are observed in simulated docking then it supports the possibility of a construct 430 

induced immune response in the real-world. The type of host receptor used for MD is 431 

dependent on the target pathogen i.e., it needs to be established, possibly through the 432 

Literature, whether the receptor naturally plays a role in a host’s immune response, which 433 

conversely equates to whether the vaccine candidate is a potential agonist to the chosen 434 

receptor. Furthermore, the receptor choice is dependent on availability of its 3D model.  435 

Most MD programs predict the best docked intermolecular conformations e.g., where the 436 

construct (the ligand molecule) and receptor molecule have the highest number of favourable 437 

interactions. Construct-receptor complexes with low global binding energy scores are 438 

considered favourable (see Estimation of binding free energy later). PDB codes or files in 439 

PDB format of the ligand and receptor molecules are the only input data required. MD tools: 440 



19 
 

PatchDock 15.6%, AutoDock Vina 10.0%, HADDOCK 10.0%, ClusPro 8.9%, Discovery 441 

studio 5.6%, HawkDock 3.3%, and CPORT 2.2%. MD refinement and analysis tools: 442 

FireDock 12.2% and CPPTRAJ 4.4%. 443 

Molecular dynamics simulation (stage # 4) 444 

The best-scored construct-receptor complexes are subjected to molecular dynamics 445 

simulation i.e., simulating Newtonian equations of motion. Simulation programs use force 446 

fields (see Glossary), and the result of simulations are trajectories (see Glossary). The 447 

simulation objective here is to check docking binding stability and residual flexibility with 448 

metrics such as RMSD and root mean square fluctuations (RMSF)(Ahmad et al., 2018), 449 

respectively. Lower RMSD and RMSF values indicate more stable complexes (Allemailem, 450 

2021). Tools: PyMOL 12.2%, GROMACS 12.2%, AMBER 10.0%, iMods 7.8%, VMD 451 

6.7%, and MDWeb 2.2%. 452 

Estimation of binding free energy (stage # 4) 453 

Solvation (see Glossary) and associated binding free energies produced as an outcome of 454 

interactions between the bound construct and receptor complex in an aqueous solvent are 455 

calculated i.e., the sum of all the energy released due to the intermolecular interactions of the 456 

construct (ligand) and immune receptor (protein) is estimated. Negative binding free energy 457 

is an indicator of high construct-receptor binding affinity. The binding free energy is 458 

calculated by taking frames from the molecular dynamics simulation trajectories. Tools: MM-459 

GBSA 4.4% and MM-PBSA 4.4%.  460 

Immune system simulation (stage # 4) 461 

A considered Holy Grail for the in silico vaccine discovery approach is to predict 462 

immunogenicity of the vaccine construct in a simulated immune system i.e.; perform 463 

verification experiments in silico. Over the last 30 years predominantly two modelling 464 

techniques have been attempted to simulate the immune system: equation-based and agent-465 
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based modelling (ABM) (see Glossary) (Shinde & Kurhekar, 2018). ABM appears to be the 466 

trending technique with several publications reporting programs implementing ABM 467 

techniques: Reactive Animation (2005) (Efroni et al., 2005), SIMISYS (2006) (Kalita et al., 468 

2006), synthetic immune system (2007) (Mata & Cohn, 2007), IMMUNOGRID (2009) 469 

(Pappalardo et al., 2009), C-ImmSim (2010) (Rapin et al., 2010). However, the published 470 

URLs to access these programs are no longer valid, and Google searches conducted in 471 

November 2022 found no internet access to these or equivalent programs. The one exception 472 

is C-ImmSim, which may reflect why it is the only simulation program used in the latest 473 

publications (20.0% usage). This ABM program performs in silico experiments by simulating 474 

vaccine injections (represented by a vaccine sequence) administered at different time 475 

intervals. The output is a vaccine immune response profile with results such as antibody 476 

production in response to antigen injections. C-ImmSim still relies on epitope predictions 477 

prior to the ABM simulation with rules incorporating working theories on the immune 478 

system. From a user perspective, the challenge is ascertaining reliability of the output profile 479 

without performing an in vivo validation. We could find no study comparing a C-ImmSim’s 480 

output with the real in vivo vaccine immune response. 481 

Another program referred to in the latest publications to predict immunogenicity was IEDB 482 

Class I Immunogenicity (Calis et al., 2013) (2.2% usage). This program provides a score 483 

indicating the probability of a peptide eliciting an immune response when presented on a 484 

MHC I molecule. 485 

Codon optimization of vaccine sequence (stage # 4) 486 

A vaccine development goal is to express the vaccine construct (represented by a sequence of 487 

amino acids) in an expression organism at levels to allow production and future purification 488 

for vaccine efficacy studies. A variety of protein expression organisms are currently available 489 

e.g. bacteria (Escherichia coli is the most popular) and eukaryotic hosts (e.g.,  mammalian 490 
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cells, yeast, and insect cells) (Tripathi & Shrivastava, 2019). The choice of expression 491 

organism dictates the type of expression vector containing the gene of interest, which are 492 

commonly either plasmids (propagated in bacterial cells) or viruses (engineered to infect 493 

eukaryotic cells). Each expression organism has strengths and weaknesses (Rosano & 494 

Ceccarelli, 2014, Gutierrez & Lewis, 2015, Baghban et al., 2019, Tripathi & Shrivastava, 495 

2019) and its selection may ultimately be governed by the vaccine construct’s DNA 496 

sequence. For example, specific codon usage of different genes in some organisms relate to 497 

their rate of expression (Gouy & Gautier, 1982). This may require selecting the optimum 498 

DNA coding sequence for the vaccine construct from the vast number of possible coding 499 

sequences, given there are multiple codons coding for the same amino acid. As an 500 

illustration, the arginine codon AGA is a common codon in eukaryotic genes but is 501 

particularly rare in E. coli (Calderone et al., 1996). The usage of rare codons for arginine in 502 

E. coli can provoke translational errors of amino acids (Sorensen et al., 1989). Therefore, 503 

certain codons in some organisms used for expression of foreign genes are considered 504 

optimal for minimising errors. 505 

The workflow step is to back-translate the vaccine construct sequence to generate a DNA 506 

sequence, and then optimise/adapt the codon usage to achieve high expression in the intended 507 

expression organism e.g., E. coli. Tools: Codon Adaptation (JCAT) tool (Grote et al., 2005) 508 

27.8% and Gene Designer software (commercial product) 2.2%.  509 

In silico cloning of the codon optimised vaccine sequence in an expression organism (stage # 510 
4)  511 

The final workflow step is to confirm cloning and expression of the optimized final vaccine 512 

sequence in a suitable expression organism. This can be achieved by in silico cloning, which 513 

is essentially simulating experimental methods to assemble recombinant DNA molecules and 514 

to direct their replication within host organisms e.g., restriction enzyme digestion, PCR 515 
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primer design, PCR amplification, and ligation. Currently, the most popular program is 516 

SnapGene (20.0% usage), which is a commercial product. 517 

Reverse vaccinology pipelines 518 

To automate and facilitate the RV process of predicting protective antigens, software 519 

pipelines have been developed and made freely available since 2006. There are currently 11 520 

known RV-related pipelines and listed here in the order of their release year: NERVE 521 

(Vivona et al., 2006), VaxiJen (Doytchinova & Flower, 2007), Vaxign (Xiang & He, 2008), 522 

AntigenPro (Magnan et al., 2010), Vacceed (Goodswen et al., 2014), VacSol (Rizwan et al., 523 

2017), Antigenic (Rahman et al., 2019), PanRV  (Naz et al., 2019), ReVac (D'Mello et al., 524 

2019), Vaxign-ML (Ong et al., 2020), Vax-ELAN (Rawal et al., 2021). These pipelines can 525 

be categorised according to their methodology for selecting candidates given protein 526 

characteristics (e.g., filtering or ranking), type of protein characteristics used in candidate 527 

selection (e.g., biological and/or physiochemical), mode of operation (e.g., web server and/or 528 

standalone), and organism type for which the pipeline has been designed (e.g., bacteria and/or 529 

eukaryotic parasite). Table 3 shows different attributes and categories of the 11 pipelines. A 530 

study by Dalsass et al. (Dalsass et al., 2019) in 2019 compared pipelines designed for 531 

bacterial vaccines from years 2006 to 2017 (e.g., NERVE, VaxiJen 1.0, Vaxign, and VacSol 532 

but excluding AntigenPro). The study also included an ML method (Bowman et al., 2011) 533 

and a revised Bowman ML method (Heinson et al., 2017), which was not made available as a 534 

pipeline. VaxiJen 1.0 also uses ML but with a smaller training dataset. Dalsass et al. 535 

concluded from an evaluation with a benchmark dataset that the predicted vaccine candidates 536 

from each pipeline/method were in poor agreement suggesting that users should not rely on a 537 

single RV pipeline. The Bowman-Heinson method, nonetheless, performed the overall best in 538 

terms of the evaluation measures. Note that almost all known RV pipelines that perform 539 
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candidate ranking use ML for this purpose (the exception is ReVac that uses feature-based 540 

scoring). 541 

Machine learning specific to reverse vaccinology 542 

In this section we make the distinction between the internal or hidden use of ML within the 543 

bioinformatics programs and the application of ML by the RV practitioner. Machine learning 544 

is now a critical component in practically every bioinformatics program used to predict RV-545 

related protein characteristics. Surprisingly, however, ML is not directly applied in the typical 546 

RV workflow. For example, the workflow for selecting candidates in 87.8% of the latest 547 

publications is a consecutive filtering process not involving ML. This process essentially 548 

entails predicting a score or classification for a protein characteristic via a Web server, and 549 

then retaining or discarding proteins based on a rule-based selection threshold for the next 550 

Web server in the workflow. A major disadvantage of a series of filtering steps is that a 551 

potential candidate can inadvertently be discarded due to only one erroneous characteristic 552 

prediction and/or a marginally below threshold value. Ideally, all predicted protein 553 

characteristic scores and classifications should be simultaneously considered during 554 

candidate selection. This ideal has been approached by ML i.e., the RV pipelines that rank 555 

candidates implement ML with the generalised goal of collectively representing all predicted 556 

protein characteristics in a single score indicative of a protective antigen. One advantage is 557 

that ML-derived ranking scores are not severely compromised by one or two erroneous 558 

protein characteristics, unlike the filtering workflow. The ML methods used are binary 559 

classifiers such as support vector machines (learning models with associated learning 560 

algorithms), k-nearest neighbors algorithm, and random forest algorithm. These supervised 561 

algorithms learn from training data to classify unseen input data as 1 (positive) or 0 562 

(negative) e.g., vaccine or non-vaccine candidate. Training data comprises one dataset 563 
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representing examples of positives and another one representing negatives. Quantity and 564 

quality of training data are paramount to the ML algorithm’s performance. 565 

Ideal training data would be sourced from proteins that were observed in a host to 566 

induce a protective immune response (positives) or observed to be non-immunogenic 567 

(negatives). Currently, there are insufficient numbers of known proteins meeting these ideal 568 

requirements. This raises a fundamental cyclic conundrum that currently limits the ML 569 

potential for RV candidate selection. That is, a sufficient number of verified protective 570 

antigens are required in the training data to predict protective antigens. The present strategy 571 

to tackle the conundrum is to build a sufficient quantity of training data using verified and 572 

‘likely’ protective antigens. ‘Likely’ antigens are those published to induce an immune 573 

response in vitro or in an animal model, and those proteins experimentally shown to be 574 

naturally exposed to the immune system. The strategy can be statistically evaluated by 575 

predicting the outcome of known verified antigens not used in the training data. We have 576 

successfully followed this strategy in a recent study against Babesia bovis (Goodswen et al., 577 

2021a, Goodswen et al., 2021b). Finding ‘likely’ antigens can still be a time-consuming task 578 

for many pathogens, especially eukaryotic parasites. The only known repository 579 

distinguishing proteins with immunogenic potential is Protegen (Yang et al., 2011) 580 

(November 2022: contains 1548 protective antigens, with 167 unique to parasites). 581 

An ongoing but significant challenge in training data preparation is how best to 582 

represent the collection of biological and/or physiochemical characteristics, predicted from 583 

protein sequences of varying length, as a fixed length of features appropriate for ML input. 584 

For example, VaxiJen has faced this challenge by using auto cross covariance (ACC) to 585 

transform physicochemical properties of varying length amino acid sequences into uniform 586 

equal-length vectors (Doytchinova & Flower, 2007). We describe in a previous study 587 

(Goodswen et al., 2013) a methodology to convert a collection of biological characteristics, 588 
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predicted by seven bioinformatics programs, to a fixed set of features representing the ML 589 

training data. 590 

VaxiJen, which uses ML for candidate ranking, is used in 68.9% of the workflows 591 

described in the latest publications and is by far the most popular RV pipeline. Interestingly, 592 

however, VaxiJen is essentially used in these publications to predict an antigenicity score as 593 

one step in a filtering workflow e.g., programs such as PSORTb and/or TMHMM programs 594 

are still used before or after to filter VaxiJen results. 595 

Concluding remarks 596 

Reverse vaccinology remains a dynamic evolving process that can still be regarded as one in 597 

its infancy due to limitations still to overcome. In a nutshell, these limitations are 598 

bioinformatics tools and their biological input and output data with various levels of 599 

inaccuracies; lack of an accepted standard as to what steps constitute an RV workflow or an 600 

agreed set of tools to complete these steps; and inadequate numbers of experimentally 601 

validated vaccine candidates to provide examples for prediction targets, ML training and 602 

testing data. Taken together, the accumulated impact of these limitations makes it difficult to 603 

quantify how close RV is from reaching its full potential. This section first presents the 604 

constraints of the review itself and then proceeds with the authors’ observations, opinions, 605 

and proposed solutions on RV’s current status having conducted the review research. Table 4 606 

summarises the outstanding RV issues and proposed solutions. 607 

The review constraints 608 

To capture current understanding of RV and its usage in the scientific community, all 609 

published papers from the last seven years with ‘reverse vaccinology’ in their title were 610 

manually reviewed (133 papers in total, source: Web of Science). There were, however, 490 611 

additional papers from the same period with RV in the abstract or keywords but not in the 612 



26 
 

title. A question that arises is whether the 133 reviewed papers truly represent current RV 613 

status. Five of the 490 papers (Dixit, 2021, Fadaka et al., 2021, Goethel et al., 2021, 614 

Wisnewski et al., 2021, Yousafi et al., 2021) were randomly selected and reviewed, given the 615 

impracticality of reviewing every RV-related paper. We propose that the trends in RV 616 

methodology and usage revealed in the 133 papers would not change significantly given 617 

more RV-related papers from the same time period. A further challenge in capturing current 618 

RV status is the unknown number of papers using an in silico vaccine discovery approach but 619 

with no reference to RV in the title or abstract e.g., three such papers (Pourseif et al., 2019, 620 

Dong et al., 2020, Mahmud et al., 2021) use an RV approach in their overall workflow. 621 

Added to this challenge is the non-standardised usage of terminology in publications, which 622 

we believe reflects the scientific community’s disputed understanding of what constitutes an 623 

RV workflow step. For example, similarities and differences in steps described by such terms 624 

as RV, subtractive proteomics, computational vaccinology, predictive vaccinology, and 625 

immunoinformatics are debatable. Nonetheless, there exists a common goal in all reviewed 626 

papers irrespective of terms used, which is to identify vaccine candidates in silico.  627 

The Web of Science reports 171 ‘subtractive proteomics’, 228 ‘computational 628 

vaccinology’, and 1047 immunoinformatics publications (as of November 2022 when using a 629 

Topic search i.e., searching title, abstract, and keywords). We acknowledge that it remains 630 

undetermined whether the presented current understanding of RV correlates to current 631 

understanding of in silico vaccine discovery, given the unrealistic task of reviewing all 632 

publications. 633 

Proposed unified term to encapsulate in silico vaccine discovery 634 

Given the latest publications as a guideline, the in silico steps can be categorised into four 635 

consecutive stages: 1) input data gathering and preparation; 2) predicting proteins naturally 636 

exposed to the immune system (classical RV); 3) predicting epitopes (immunoinformatics); 637 
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and 4) computational candidate verification. We propose that these four stages are unified 638 

under the term ‘in silico vaccine discovery’. Put simply, any workflow step that takes place 639 

on a computer can be encapsulated in this one term. Ideally, ‘in silico vaccine discovery’ 640 

should be consistently used in titles, abstracts, and/or keywords in future publications. One 641 

consistent term will retain that important searchable link between all publications in the field. 642 

Challenges presented by bioinformatics tools 643 

Bioinformatics tools are a primary reason why in silico vaccine discovery is now a 644 

reality (see Fig. 2.) However, the tools in themselves contribute to RV challenges. First, the 645 

number of available bioinformatics tools to perform the workflow steps is almost 646 

overwhelming now and continues to rise e.g., 283 different tools were used in one or more of 647 

the workflows of the latest publications. The challenge is in selecting the best tool to use for 648 

each step, especially when choices are for tools performing the same task. There is no agreed 649 

common set of tools or workflow for in silico vaccine discovery. Without actually evaluating 650 

the tools, it is difficult to determine which tool is best for the task at hand. To critically 651 

evaluate and compare tools, one would need to find experimentally validated test data 652 

specific to the tools and establish appropriate test measures to justify ‘the best tool’, 653 

notwithstanding the fact one would need to install the latest tools (if needed), learn how to 654 

use them, determine comparative parameter settings, and extract/interpret results for 655 

evaluation. Due to extensive logistics of evaluating so many tools and the potential for 656 

subjectivity, we make no judgement here as to the quality of the tools.  657 

It is clear from their frequency of use, however, that some tools are vastly more 658 

popular than others performing the same task. One could speculate that popular programs 659 

must be judged by the community to be comparatively of higher quality. Conversely, 660 

programs may increase in popularity simply because they are chosen on this reputation. We 661 

recommend using several tools performing the same task in order to prioritise/value results 662 
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that are in agreement, rather than trust one set of results from the most popular program. One 663 

common feature for all popular tools, including RV-related pipelines, is their accessibility 664 

through a graphical user interface (GUI). We concede that this review runs the risk of further 665 

encouraging the selection of popular tools by quantifying their popularity. It must be 666 

emphasized that popularity of a tool does not correlate necessarily with its quality. Older 667 

well-established tools are more likely to be used or cited when there may be better, more 668 

modern alternatives yet to gain popularity (see ‘Future directions’ for examples). 669 

Second, all bioinformatic tools have various levels of inaccuracies e.g., there is 670 

always an unknown percentage of erroneous predictions. Ideally, every tool performing the 671 

same task needs to be independently evaluated on experimentally validated task-specific 672 

test/benchmark data using a standard set of testing protocols. Protocols such as using 673 

consistent empirical evaluation measures e.g., comparing program predictions with known 674 

actual results and deriving metrics like accuracy, specificity, sensitivity, and error rate. 675 

Realistically, it would be a monumental challenge for any one organisation to perform these 676 

proposed benchmark evaluations for the purpose of making the metrics readily accessible to 677 

the public, especially considering the ever-growing number of new tools and new versions of 678 

existing ones (see section later on proposed new website). 679 

Third, the increasing broad range and complexity of the task-specific tools also 680 

presents a challenge to an RV practitioner. Often, the methods behind the tools are hidden 681 

from the user or too computationally sophisticated to fully understand. We conjecture that 682 

many users accept the tool output at face value without necessarily knowing how it was 683 

derived. If all tools implemented perfect methods with perfect accuracy then this black box 684 

mentality would not be an issue. Blindly choosing tools on popularity or simply due to lack 685 

of choice may hinder the required progression for new or improved tools. 686 
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Fourth, computational prediction of biological phenomenon (e.g., immune response 687 

cellular interactions) is unlikely ever to be perfect. Computer algorithms can be used to 688 

predict phenomena at a fundamental level with informative levels of accuracy (e.g., 689 

predicting a signal encoded in a protein sequence), but this accuracy decreases as systems 690 

grow. For example, there are separate rules at play at the atomic, biomolecular, subcellular 691 

and cellular levels etcetera. Each level adds a layer of complexity to the overall parent 692 

system. Chance interactions also contribute to complexity. The consequence of this 693 

complexity is an increase in variables, which generates more possibilities that are less 694 

predictable. A dynamic model of the immune system interacting with vaccine formulations is 695 

in principle feasible, but realistically there are still many hurdles to overcome. 696 

Challenges presented by input data 697 

Protein sequences are the key starting input data for the RV workflow. This immediately 698 

presents a challenge if none are available for the target organism. The compromise is to 699 

predict genes encoded within the genome sequence of the target organism. Except, for some 700 

pathogen species there are no complete genome sequences e.g., the genome sequence 701 

availability for eukaryotic and multicellular pathogens is limited when compared to the viral 702 

and bacterial pathogens. There are more than 100,000 prokaryotic genomes in public archives 703 

(Sommer & Salzberg, 2021) ranging from draft to high-quality sequences. Each generation of 704 

genome sequencing techniques has greatly improved sequence quality and cost-effectiveness.  705 

The majority of protein sequences in public databases are deduced from predicted 706 

genes. Relative to eukaryotic genomes, prokaryotic genomes are small, structurally simple, 707 

have no introns, and most of their DNA (≈ 80-90%) encodes protein-coding genes. Current 708 

prokaryotic gene finders have a high sensitivity (≈ 99%) to known genes using species-709 

specific gene models (Sommer & Salzberg, 2021), nevertheless, they also predict multiple 710 

novel but questionable genes (Dimonaco et al., 2022) that are typically annotated 711 
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‘hypothetical protein’. A recent evaluation of prokaryotic gene predictors (Dimonaco et al., 712 

2022) found that their performance was dependent on the genome being analysed, which 713 

effectively means a user should cautiously select a gene predictor appropriate to the target 714 

organism. Ab initio gene predictors for eukaryotic genomes are inaccurate in the absence of 715 

experimental evidence (Goodswen et al., 2012), especially the precise recognition of exon-716 

intron structures. To exacerbate this inaccuracy, the gene predictions are typically from poor 717 

quality eukaryotic genomes. For example, a recent study (Berna et al., 2021) reveals 718 

misassembly, karyotype differences, and chromosomal rearrangements of the Toxoplasma 719 

gondii genome following a re-evaluation. This is disconcerting considering that T. gondii is 720 

an important model system for the phylum Apicomplexa, which includes Plasmodium 721 

falciparum, the cause of malaria. Taken together, inaccuracies in genome sequences and gene 722 

predictions, the prediction accuracy of protein characteristics is compromised given protein 723 

sequences deduced from gene predictions. 724 

Underutilisation of automated and/or high-throughput workflows 725 

A surprising 95.6% of workflows in the latest publications rely on RV tools online, 726 

despite restrictions on input data size and constraints on parsing the output. This implies that 727 

the typical workflow is not automated and/or high-throughput. We speculate that the 728 

alternatives of having to install a standalone program and/or adapt an API are a major 729 

disincentive to RV practitioners limited with time and/or programming and computer 730 

administration skills. The RV pipelines developed so far mainly perform stage #2 of the ‘in 731 

silico vaccine discovery’ workflow i.e., predict proteins naturally exposed to the immune 732 

system. We propose that there is a need for an automated, high-throughput ‘in silico vaccine 733 

discovery’ pipeline. The ideal pipeline would entail: an input filtering stage to obtain core 734 

proteins that are essential, non-redundant, non-homologous, non-allergenic, and non-toxic; a 735 

subsequent stage incorporating an ML selection process for proteins naturally exposed to the 736 
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immune system; and then an iterative third and fourth stage. The third stage involves 737 

predicting from epitope-rich proteins, promiscuous epitopes with high binding affinity and 738 

broad population coverage. These epitopes are used to construct different combinations of 739 

candidate vaccine sequences. The final fourth stage is to computationally verify candidates 740 

for immunogenicity and safety. Each workflow step within each pipeline stage would be 741 

performed by a collection of bioinformatics tools to obtain a consensus, rather than a reliance 742 

on one tool. APIs and similar internet access tools are the key to achieving high-throughput 743 

automation. The ideal pipeline would need to provide a user-friendly GUI without 744 

programming or third party installation requirements i.e., the pipeline is delivered as a 745 

complete standalone package with pre-installed or pre-programmed access to third party 746 

bioinformatics tools. This ideal could be achieved with software container technology e.g., 747 

Docker (Piccolo & Frampton, 2016, Kadri et al., 2022). 748 

The need for in vivo validation 749 

Possibly the most important question to pose concerning RV is whether it is a 750 

successful process for identifying vaccine candidates. The preeminent measure of success is 751 

the manufacture of the vaccine candidate discovered by RV. The only known RV-inspired 752 

commercialised vaccine is BEXSERO, which provides protection against meningococcal 753 

disease caused by the bacterium Neisseria meningitidis serogroup B (Masignani et al., 2019). 754 

Progressing to the manufacturing stage is a long, complex process. It is difficult to assess if 755 

any candidates identified in the latest publications will reach the manufacturing stage. An 756 

expectation is that if significant validation results were obtained for the in silico identified 757 

candidates, then a patent application would ensue e.g., a patent was applied and granted for a 758 

candidate related to the BEXSERO vaccine (patent: US-8398999-B2). None of the latest 759 

publications could be associated with patent applications. Perhaps a more interim success 760 

measure is whether an RV-derived candidate induces a protective response in an animal 761 
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model. Currently, only 12.2% of the latest publications report tests on animal models. It is 762 

unclear whether the vaccine candidates computationally or in vitro verified in 57.8% and 763 

7.8% of the latest publications, respectively, will undergo future investigation or encourage 764 

further grant funding to pursue the vaccine. Moreover, there is no known study that has 765 

collectively quantified the prediction outcomes from RV studies i.e., it is not known how 766 

many false positive and negative candidates have been erroneously proposed or excluded for 767 

experimental validation.  768 

We speculate that the limited use of animal model validation is due to time, financial, 769 

and/or legal constraints, but paradoxically, in silico vaccine discovery without in vivo 770 

validation could be considered an unfinished endeavour. Even with in vivo validation, a 771 

candidate may only elicit its true potential in the context of other critical interdependent 772 

vaccine design factors e.g., a perfect candidate might be identified, but any wrong decision in 773 

the type of adjuvant and/or antigen display method and/or vaccine delivery route could 774 

negate its immunogenic potential. 775 

A proposed new website for in silico vaccine discovery  776 

To help address the many challenges presented so far, we propose the creation of a 777 

new website dedicated to in silico vaccine discovery. The premise is to provide a platform for 778 

the research community to discuss and address challenges. In particular, the underlying goals 779 

would be to establish, through community input, standards for ‘in silico vaccine discovery’ 780 

workflows and recommended tools, including data repositories for experimentally validated 781 

candidates as examples of prediction targets, and task-specific benchmarking data for tool 782 

evaluation and ML training data.  783 

The choice of bioinformatic tools is not static. New or updated tools are constantly 784 

being made available, whilst older or even new unsuccessful tools can disappear from public 785 
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access. Evaluating and keeping up-to-date with new tools, versions, URLs, and methodology 786 

would be a substantial challenge for any website curator or organisation. We propose that the 787 

website adopts a ‘product review-type’ model, such as those universally used by a 788 

community of consumers to make better purchasing decisions. In the new website, however, 789 

a registered scientific community will have the capacity to add/update new tools, versions, 790 

URLs, and importantly, add prescribed program appraisals. 791 

Future directions 792 

Protein sequences are the primary data that drives RV. Sequences are essentially a one 793 

dimensional abstraction, but yet host-pathogen interactions within an immune system are 3D. 794 

Transformation of the current one dimensional RV ideology to a 3D one is beginning to 795 

happen (e.g., molecular docking with immune receptor and molecular dynamics simulation) 796 

but requires continued encouragement. One exciting new development is AlphaFold (Jumper 797 

et al., 2021), which is designed as a deep learning system for the prediction of 3D models of 798 

protein structures. In 2020, this program won the 14th Critical Assessment of Structural 799 

Prediction competition (CASP14) by a substantial margin. The newly upgraded AlphaFold 2 800 

is producing predictions that approach the accuracy of an experimentally predicted structure. 801 

The code for AlphaFold is freely available at https://github.com/deepmind/alphafold/, and the 802 

AlphaFold database (https://alphafold.ebi.ac.uk/) provides open access to over 200 million 803 

protein structure predictions. AlphaFold is expected to accelerate research in nearly every 804 

field of biology, including in silico vaccine discovery.  805 

AlphaFold is a product of artificial intelligence (AI). The impact of AI to every 806 

industry, including vaccine development, is expected to be so great it has potential to rival 807 

that of the internet. Multiple recent reviews (Alimadadi et al., 2020, Arshadi et al., 2020, 808 

Lalmuanawma et al., 2020, Vaishya et al., 2020, Arora et al., 2021, Lv et al., 2021) focus on 809 
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the application of AI towards drug and vaccine discovery, particularly for COVID-19 810 

(relevance to protozoal infectious diseases is discussed in another review (Hu et al., 2022)). 811 

Machine learning is a core subfield under AI. Given the copious volumes of 812 

biological data relevant to RV that can be gathered or predicted, if may now be humanly 813 

impossible to detect vaccine candidates without ML. Applying ML to candidate decision 814 

making, rather than user-defined filtering criteria, is expected to grow. Reliable ML 815 

decisions, however, are completely dependent on quality input and training data. Poor quality 816 

protein sequences (mainly predicted) and limited protein vaccine examples are obstructing 817 

the decision making potential. Consequently, it is vital that the ML algorithms receive 818 

iterative cycles of experimental feedback for training. A rapid, inexpensive, high-throughput 819 

screening assay is greatly needed. 820 

A long term aspiration is a 3D host immune system simulator that computationally 821 

predicts a vaccine candidate’s efficacy. A simulator that was not used or cited in the latest 822 

publications is the Universal Immune System Simulator (UISS). UISS seems to be gaining 823 

prominence as a human immune system simulator with several validation studies (Pappalardo 824 

et al., 2018, Pappalardo et al., 2020, Russo et al., 2020, Maleki et al., 2022). There are also 825 

known simulation models that could provide useful ways to explore the interaction of 826 

different immunological components. A recent review describes examples of simulation 827 

models for immunologists (Handel et al., 2020a). We were unable, however, to find publicly 828 

available programs that implement these described models. An R package called Dynamical 829 

Systems Approaches to Immune Response Modelling (DSAIRM) is a tool to learn about 830 

modelling in immunology (Handel, 2020b). This might be a worthwhile starting point for RV 831 

practitioners, with limited programming experience, to develop and use simulation models 832 

specific to their research. 833 
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A goal to strive towards is the acceptance, by vaccine regulatory agencies, of 834 

evidence generated from in silico trials designed to evaluate safety and efficacy of in silico-835 

derived candidates. Contributions to this goal are ongoing. So far, proposed protocols for in 836 

silico trials have been validated for the efficacy evaluation of in silico developed vaccines 837 

(and for existing vaccines to determine dosages for improved efficacy) (Pappalardo et al., 838 

2019, Viceconti et al., 2021, Russo et al., 2022). 839 

How is the future of RV envisioned? In silico vaccine discovery needs to be and is 840 

becoming a totally holistic approach. RV, as it currently stands, plays only a small but 841 

important part. Classical RV primarily focuses on genomics. Other high-throughput cutting-842 

edge omics technologies are beginning to contribute to the holistic approach, such as 843 

transcriptomics, proteomics, metabolomics, interactomics (study of interactions between and 844 

among proteins), and immunomics. Rationally, RV can no longer be an approach used in 845 

isolation of other emerging approaches. It is even expected the term ‘reverse vaccinology’ 846 

may shortly be one of the past. New terms like ‘in silico vaccine discovery’ perhaps now 847 

better encompasses the epitome of a holistic approach. Furthermore, solutions for identifying 848 

candidates in silico may not necessarily come from understanding of the biology and in the 849 

domain of biologists. To truly achieve a holistic approach requires a collaboration of 850 

interdisciplinary experts from unconventional areas e.g., spatial and hydrodynamics engineers 851 

to adapt their programs that compute area and volume of irregular 3D shapes such as 852 

antibodies and their antigens. 853 

The COVID-19 virus pandemic has changed the world of immunology. It has fast-854 

tracked vaccine technologies such as producing an RNA vaccine in record time. It is expected 855 

that RV methodology may change to exploit the new or matured technologies motivated by 856 

the COVID-19 urgency (e.g., RNA vaccines, viral vectors, and protein-based vaccines with 857 

potent adjuvants) (Rappuoli et al., 2021).  858 
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One unquestionable reality is that the world will continue to be challenged by 859 

established, unknown, neglected tropical diseases, emerging, and re-emerging infectious 860 

disease threats. Vaccination is considered the most efficient tool for preventing these threats 861 

(Delany et al., 2014). Reverse vaccinology, an integral stage of in silico vaccine discovery, 862 

will clearly help save time, cost and effort by reducing the number of false candidates 863 

assigned for laboratory validation. 864 
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Glossary 867 

Agent-based modelling – a computational approach for simulating the actions and 868 

interactions of self-governing agents (e.g., immune cells) in order to understand the 869 

behaviour and outcomes of a system (e.g., the immune system). 870 

Adjuvant – an agent that has no specific antigenic effect on its own but stimulates the 871 

immune system when used with other components. 872 

Aliphatic – a group of organic chemical compounds in which the carbon atoms are linked in 873 

open chains. 874 

Amphipathic – a hydrophobic side facing the major histocompatibility complex molecule 875 

and a hydrophilic side interacting with the T-cell receptor. 876 

Antigenicity –the capacity of epitopes on proteins to bind specifically with T- and B-cell 877 

receptors from the adaptive immune system. 878 

Attenuated vaccine – contains a live, attenuated (or weakened) micro-organism i.e., a 879 

‘whole pathogen’ living vaccine or infectious vaccine. 880 
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Discontinuous (or conformational) B-cell epitope – amino acids are brought together 881 

spatially in the folded antigen to form the epitope i.e., binding site motifs are not encoded by 882 

a contiguous primary sequence. 883 

Domains – protein domains are generally considered as independently-folding units of 884 

structure.  885 

Computational vaccinology – an interdisciplinary field addressing scientific and clinical 886 

questions in vaccinology using computational and informatics approaches, which overlaps 887 

fields such as immunoinformatics, reverse vaccinology, vaccinomics, literature mining, and 888 

systems vaccinology. 889 

Continuous (or linear) B-cell epitope – a continuous stretch of amino acids in a protein 890 

sequence. 891 

Conserved vaccine – a vaccine that provides broad protection across multiple strains. 892 

Force field –a computational method used in molecular dynamics simulation to estimate the 893 

forces between atoms within molecules and also between molecules. 894 

Immunoinformatics – the application of tools of computation and analysis to the capture 895 

and interpretation of immunological data. 896 

Immunological hotspot – a region with a certain density of epitopes within a given protein 897 

sequence. 898 

Killed vaccine – contains a killed (or inactivated), but previously virulent, micro-organism 899 

i.e., a ‘whole pathogen’ non-living vaccine or non-infectious vaccine). 900 
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Linker – an added sequence in a vaccine construct that plays a vital role in making the 901 

construct more stable e.g., produces extended conformation (flexibility), protein folding, and 902 

separation of functional domains. 903 

Moonlighting proteins – examples of multifunctional proteins e.g., these protein types are 904 

typically classified as cytoplasmic and lack sequence motifs commonly found in known 905 

secreted or surface-exposed proteins, but they additionally have the ability to localise on the 906 

cell surface to contribute to virulence. 907 

Pathogenic – ability of an organism to cause disease. 908 

Solvation – the interaction of a solvent with dissolved molecules. 909 

Subtractive proteomics – a computation process starting with entire proteome that 910 

undergoes a sequential subtraction process to narrow down the number of proteins to a few 911 

vaccine candidates e.g., the process involves a step by step removal of unwanted proteins 912 

from the pathogen and host proteomes to leave a set of protein candidates that are essential 913 

for the pathogen but absent in the host. Subtractive genomics is a process identical to 914 

‘subtractive proteomics’ but applied to genomes and genes. 915 

Subunit vaccine – comprises antigenic components of a micro-organism i.e., a non-living, 916 

non-infectious vaccine or ‘acellular’ vaccine. The vaccine formulation needs other 917 

ingredients such as adjuvants. 918 

Thermostability – indicates resistant to irreversible change at a high relative temperature. 919 

Trajectories – sequential snapshots (frames) of a simulated molecular system which 920 

represents atomic coordinates at specific time periods. 921 

Virulence – the degree of pathogenicity within a group or species. 922 



39 
 

References 923 

Agarwala R, Barrett T, Beck J, et al. (2018) Database resources of the National Center for 924 
Biotechnology Information. Nucleic Acids Research 46: D8-D13. 925 
Aguttu C, Okech BA, Mukisa A & Lubega GW (2021) Screening and characterization of hypothetical 926 
proteins of Plasmodium falciparum as novel vaccine candidates in the fight against malaria using 927 
reverse vaccinology. Journal of Genetic Engineering and Biotechnology 19. 928 
Ahmad S, Raza S, Uddin R & Azam SS (2017) Binding mode analysis, dynamic simulation and binding 929 
free energy calculations of the MurF ligase from Acinetobacter baumannii. Journal of Molecular 930 
Graphics & Modelling 77: 72-85. 931 
Ahmad S, Raza S, Uddin R & Azam SS (2018) Comparative subtractive proteomics based ranking for 932 
antibiotic targets against the dirtiest superbug: Acinetobacter baumannii. Journal of Molecular 933 
Graphics & Modelling 82: 74-92. 934 
Alimadadi A, Aryal S, Manandhar I, Munroe PB, Joe B & Cheng X (2020) Artificial intelligence and 935 
machine learning to fight COVID-19. Physiological Genomics 52: 200-202. 936 
Allemailem KS (2021) A Comprehensive Computer Aided Vaccine Design Approach to Propose a 937 
Multi-Epitopes Subunit Vaccine against Genus Klebsiella Using Pan-Genomics, Reverse Vaccinology, 938 
and Biophysical Techniques. Vaccines 9. 939 
Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R & Sethi T (2021) Artificial Intelligence in 940 
Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens 10. 941 
Arshadi AK, Webb J, Salem M, et al. (2020) Artificial Intelligence for COVID-19 Drug Discovery and 942 
Vaccine Development. Frontiers in Artificial Intelligence 3. 943 
Ashburner M, Ball CA, Blake JA, et al. (2000) Gene Ontology: tool for the unification of biology. 944 
Nature Genetics 25: 25-29. 945 
Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, Rahbarnia L & Aria M (2019) 946 
Yeast Expression Systems: Overview and Recent Advances. Molecular Biotechnology 61: 365-384. 947 
Bateman A & Martin MJ & Orchard S, et al. (2021) UniProt: the universal protein knowledgebase in 948 
2021. Nucleic Acids Research 49: D480-D489. 949 
Berendsen HJC, Vanderspoel D & Vandrunen R (1995) GROMACS: A message-passing parallel 950 
molecular dynamics implementation. Computer Physics Communications 91: 43-56. 951 
Berna L, Marquez P, Cabrera A, Greif G, Francia ME & Robello C (2021) Reevaluation of the 952 
Toxoplasma gondii and Neospora caninum genomes reveals misassembly, karyotype differences, 953 
and chromosomal rearrangements. Genome Research 31: 823-833. 954 
Bhasin M & Raghava GPS (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques. 955 
Vaccine 22: 3195-3204. 956 
Bowman BN, McAdam PR, Vivona S, et al. (2011) Improving reverse vaccinology with a machine 957 
learning approach. Vaccine 29: 8156-8164. 958 
Bruno L, Cortese M, Rappuoli R & Merola M (2015) Lessons from Reverse Vaccinology for viral 959 
vaccine design. Current Opinion in Virology 11: 89-97. 960 
Buchan DWA & Jones DT (2019) The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids 961 
Research 47: W402-W407. 962 
Bui H-H, Sidney J, Dinh K, Southwood S, Newman MJ & Sette A (2006) Predicting population 963 
coverage of T-cell epitope-based diagnostics and vaccines. Bmc Bioinformatics 7. 964 
Calderone TL, Stevens RD & Oas TG (1996) High-level misincorporation of lysine for arginine at AGA 965 
codons in a fusion protein expressed in Escherichia coli. Journal of Molecular Biology 262: 407-412. 966 
Calis JJA, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD, Sette A, Kesmir C & Peters B (2013) 967 
Properties of MHC Class I Presented Peptides That Enhance Immunogenicity. Plos Computational 968 
Biology 9. 969 
Carbon S & Douglass E & Good BM, et al. (2021) The Gene Ontology resource: enriching a GOld 970 
mine. Nucleic Acids Research 49: D325-D334. 971 



40 
 

Chen LH, Yang J, Yu J, Ya ZJ, Sun LL, Shen Y & Jin Q (2005) VFDB: a reference database for bacterial 972 
virulence factors. Nucleic Acids Research 33: D325-D328. 973 
Cheng J, Randall AZ, Sweredoski MJ & Baldi P (2005) SCRATCH: a protein structure and structural 974 
feature prediction server. Nucleic Acids Research 33: W72-W76. 975 
Clark WT & Radivojac P (2011) Analysis of protein function and its prediction from amino acid 976 
sequence. Proteins-Structure Function and Bioinformatics 79: 2086-2096. 977 
D'Mello A, Ahearn CP, Murphy TF & Tettelin H (2019) ReVac: a reverse vaccinology computational 978 
pipeline for prioritization of prokaryotic protein vaccine candidates. Bmc Genomics 20. 979 
Dalsass M, Brozzi A, Medini D & Rappuoli R (2019) Comparison of Open-Source Reverse Vaccinology 980 
Programs for Bacterial Vaccine Antigen Discovery. Frontiers in Immunology 10. 981 
Delany I, Rappuoli R & De Gregorio E (2014) Vaccines for the 21st century. Embo Molecular Medicine 982 
6: 708-720. 983 
Dimitrov I, Bangov I, Flower DR & Doytchinova I (2014) AllerTOP v.2-a server for in silico prediction of 984 
allergens. Journal of Molecular Modeling 20. 985 
Dimonaco NJ, Aubrey W, Kenobi K, Clare A & Creevey CJ (2022) No one tool to rule them all: 986 
prokaryotic gene prediction tool annotations are highly dependent on the organism of study. 987 
Bioinformatics 38: 1198-1207. 988 
Dixit NK (2021) Design of Monovalent and Chimeric Tetravalent Dengue Vaccine Using an 989 
Immunoinformatics Approach. International Journal of Peptide Research and Therapeutics 27: 2607-990 
2624. 991 
Dobrindt U, Janke B, Piechaczek K, Nagy G, Ziebuhr W, Fischer G, Schierhorn A, Hecker M, Blum-992 
Oehler G & Hacker J (2000) Toxin genes on pathogenicity islands: impact for microbial evolution. 993 
International Journal of Medical Microbiology 290: 307-311. 994 
Dong R, Chu Z, Yu F & Zha Y (2020) Contriving Multi-Epitope Subunit of Vaccine for COVID-19: 995 
Immunoinformatics Approaches. Frontiers in Immunology 11. 996 
Doytchinova IA & Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour 997 
antigens and subunit vaccines. Bmc Bioinformatics 8. 998 
Duhovny D, Nussinov R & Wolfson HJ (2002) Efficient unbound docking of rigid molecules. 999 
Algorithms in Bioinformatics, Proceedings, Vol. 2452 (Guigo R & Gusfield D, eds.), p.^pp. 185-200. 1000 
E. G, C. H, A. G, S. D, M.R. W, R.D. A & A. B (2005) Protein Identification and Analysis Tools on the 1001 
ExPASy Server. The Proteomics Protocols Handbook,(Walker JM, ed.) p.^pp. 571-607 Humana Press. 1002 
Efroni S, Harel D & Cohen IR (2005) Reactive animation: Realistic modeling of complex dynamic 1003 
systems. Computer 38: 38-+. 1004 
Emanuelsson O, Brunak S, von Heijne G & Nielsen H (2007) Locating proteins in the cell using 1005 
TargetP, SignalP and related tools. Nature Protocols 2: 953-971. 1006 
Enayatkhani M, Hasaniazad M, Faezi S, Guklani H, Davoodian P, Ahmadi N, Einakian MA, Karmostaji 1007 
A & Ahmadi K (2021) Reverse vaccinology approach to design a novel multi-epitope vaccine 1008 
candidate against COVID-19: an in silico study. Journal of Biomolecular Structure & Dynamics 39: 1009 
2857-2872. 1010 
Ernst JD (2017) Antigenic Variation and Immune Escape in the MTBC. Strain Variation in the 1011 
Mycobacterium Tuberculosis Complex: Its Role in Biology, Epidemiology and Control, Vol. 1019 1012 
(Gagneux S, ed.) p.^pp. 171-190. 1013 
Fadaka AO, Sibuyi NRS, Martin DR, Goboza M, Klein A, Madiehe AM & Meyer M (2021) 1014 
Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. 1015 
Scientific Reports 11. 1016 
Flower DR, Macdonald IK, Ramakrishnan K, Davies MN & Doytchinova IA (2010) Computer aided 1017 
selection of candidate vaccine antigens. Immunome research 6 Suppl 2: S1-S1. 1018 
Goethel M, Listek M, Messerschmidt K, Schloer A, Hoenow A & Hanack K (2021) A New Workflow to 1019 
Generate Monoclonal Antibodies against Microorganisms. Applied Sciences-Basel 11. 1020 



41 
 

Goodarzi NN, Bolourchi N, Fereshteh S & Badmasti F (2021) Introduction of novel putative 1021 
immunogenic targets against Proteus mirabilis using a reverse vaccinology approach. Infection 1022 
Genetics and Evolution 95. 1023 
Goodswen SJ, Kennedy PJ & Ellis JT (2012) Evaluating High-Throughput Ab Initio Gene Finders to 1024 
Discover Proteins Encoded in Eukaryotic Pathogen Genomes Missed by Laboratory Techniques. Plos 1025 
One 7. 1026 
Goodswen SJ, Kennedy PJ & Ellis JT (2013) A novel strategy for classifying the output from an in silico 1027 
vaccine discovery pipeline for eukaryotic pathogens using machine learning algorithms. Bmc 1028 
Bioinformatics 14. 1029 
Goodswen SJ, Kennedy PJ & Ellis JT (2014) Enhancing In Silico Protein-Based Vaccine Discovery for 1030 
Eukaryotic Pathogens Using Predicted Peptide-MHC Binding and Peptide Conservation Scores. Plos 1031 
One 9. 1032 
Goodswen SJ, Kennedy PJ & Ellis JT (2014) Vacceed: a high-throughput in silico vaccine candidate 1033 
discovery pipeline for eukaryotic pathogens based on reverse vaccinology. Bioinformatics 30: 2381-1034 
2383. 1035 
Goodswen SJ, Kennedy PJ & Ellis JT (2021a) Applying Machine Learning to Predict the Exportome of 1036 
Bovine and Canine Babesia Species That Cause Babesiosis. Pathogens 10. 1037 
Goodswen SJ, Kennedy PJ & Ellis JT (2021b) Predicting Protein Therapeutic Candidates for Bovine 1038 
Babesiosis Using Secondary Structure Properties and Machine Learning. Frontiers in Genetics 12. 1039 
Gouy M & Gautier C (1982) Codon usage in bacteria - correlation with gene expressivity. Nucleic 1040 
Acids Research 10: 7055-7074. 1041 
Grote A, Hiller K, Scheer M, Munch R, Nortemann B, Hempel DC & Jahn D (2005) JCat: a novel tool to 1042 
adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research 33: 1043 
W526-W531. 1044 
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS & Open Source Drug D (2013) In 1045 
Silico Approach for Predicting Toxicity of Peptides and Proteins. Plos One 8. 1046 
Gutierrez JM & Lewis NE (2015) Optimizing eukaryotic cell hosts for protein production through 1047 
systems biotechnology and genome-scale modeling. Biotechnology Journal 10: 939-949. 1048 
Hanada K, Yewdell JW & Yang JC (2004) Immune recognition of a human renal cancer antigen 1049 
through post-translational protein splicing. Nature 427: 252-256. 1050 
Handel A (2020b) A software package for immunologists to learn simulation modeling. Bmc 1051 
Immunology 21. 1052 
Handel A, La Gruta NL & Thomas PG (2020a) Simulation modelling for immunologists. Nature 1053 
Reviews Immunology 20: 186-195. 1054 
Heinson AI, Woelk CH & Newell M-L (2015) The promise of reverse vaccinology. International Health 1055 
7: 85-89. 1056 
Heinson AI, Gunawardana Y, Moesker B, et al. (2017) Enhancing the Biological Relevance of Machine 1057 
Learning Classifiers for Reverse Vaccinology. International Journal of Molecular Sciences 18. 1058 
Henderson B & Martin A (2011) Bacterial Virulence in the Moonlight: Multitasking Bacterial 1059 
Moonlighting Proteins Are Virulence Determinants in Infectious Disease. Infection and Immunity 79: 1060 
3476-3491. 1061 
Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ & Nakai K (2007) WoLF PSORT: 1062 
protein localization predictor. Nucleic Acids Research 35: W585-W587. 1063 
Hu RS, Hesham A & Zou Q (2022) Machine Learning and Its Applications for Protozoal Pathogens and 1064 
Protozoal Infectious Diseases. Frontiers in Cellular and Infection Microbiology 12. 1065 
Ishii KJ, Koyama S, Nakagawa A, Coban C & Akira S (2008) Host innate immune receptors and 1066 
beyond: Making sense of microbial infections. Cell Host & Microbe 3: 352-363. 1067 
Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Strominger JL & Wiley DC (1996) 1068 
Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, 1069 
polyproline II-like conformation for bound peptides. Proceedings of the National Academy of 1070 
Sciences of the United States of America 93: 734-738. 1071 



42 
 

Jespersen MC, Peters B, Nielsen M & Marcatili P (2017) BepiPred-2.0: improving sequence-based B-1072 
cell epitope prediction using conformational epitopes. Nucleic Acids Research 45: W24-W29. 1073 
Juliarena MA, Poli M, Sala L, Ceriani C, Gutierrez S, Dolcini G, Rodriguez EM, Marino B, Rodriguez-1074 
Dubra C & Esteban EN (2008) Association of BLV infection profiles with alleles of the BoLA-DRB3.2 1075 
gene. Animal Genetics 39: 432-438. 1076 
Jumper J, Evans R, Pritzel A, et al. (2021) Highly accurate protein structure prediction with AlphaFold. 1077 
Nature 596: 583-+. 1078 
Kadri S, Sboner A, Sigaras A & Roy S (2022) Containers in Bioinformatics: Applications, Practical 1079 
Considerations, and Best Practices in Molecular Pathology. The Journal of molecular diagnostics : 1080 
JMD. 1081 
Kalita JK, Chandrashekar K, Hans R, Selvam P & Newell MK (2006) Computational modelling and 1082 
simulation of the immune system. International journal of bioinformatics research and applications 1083 
2: 63-88. 1084 
Korber B, LaBute M & Yusim K (2006) Immunoinformatics comes of age. Plos Computational Biology 1085 
2: 484-492. 1086 
Krogh A, Larsson B, von Heijne G & Sonnhammer ELL (2001) Predicting transmembrane protein 1087 
topology with a hidden Markov model: Application to complete genomes. Journal of Molecular 1088 
Biology 305: 567-580. 1089 
Lalmuanawma S, Hussain J & Chhakchhuak L (2020) Applications of machine learning and artificial 1090 
intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos Solitons & Fractals 139. 1091 
Lew-Tabor AE & Valle MR (2016) A review of reverse vaccinology approaches for the development of 1092 
vaccines against ticks and tick borne diseases. Ticks and Tick-Borne Diseases 7: 573-585. 1093 
Li W & Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or 1094 
nucleotide sequences. Bioinformatics 22: 1658-1659. 1095 
Lundegaard C, Hoof I, Lund O & Nielsen M (2010) State of the art and challenges in sequence based 1096 
T-cell epitope prediction. Immunome research 6 Suppl 2: S3-S3. 1097 
Lv H, Shi L, Berkenpas JW, Dao F-Y, Zulfiqar H, Ding H, Zhang Y, Yang L & Cao R (2021) Application of 1098 
artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Briefings 1099 
in Bioinformatics 22. 1100 
Magnan CN, Zeller M, Kayala MA, Vigil A, Randall A, Felgner PL & Baldi P (2010) High-throughput 1101 
prediction of protein antigenicity using protein microarray data. Bioinformatics 26: 2936-2943. 1102 
Mahmud S, Rafi MO, Paul GK, et al. (2021) Designing a multi-epitope vaccine candidate to combat 1103 
MERS-CoV by employing an immunoinformatics approach. Scientific Reports 11. 1104 
Maleki A, Russo G, Palumbo GAP & Pappalardo F (2022) In silico design of recombinant multi-epitope 1105 
vaccine against influenza A virus. Bmc Bioinformatics 22. 1106 
Masignani V, Pizza M & Moxon ER (2019) The Development of a Vaccine Against Meningococcus B 1107 
Using Reverse Vaccinology. Frontiers in Immunology 10. 1108 
Mata J & Cohn M (2007) Cellular automata-based modeling program: synthetic immune system. 1109 
Immunological Reviews 216: 198-212. 1110 
Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 1111 
449: 819-826. 1112 
Miller BR, III, McGee TD, Jr., Swails JM, Homeyer N, Gohlke H & Roitberg AE (2012) MMPBSA.py: An 1113 
Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and 1114 
Computation 8: 3314-3321. 1115 
Mistry J, Chuguransky S, Williams L, et al. (2021) Pfam: The protein families database in 2021. Nucleic 1116 
Acids Research 49: D412-D419. 1117 
Naz K, Naz A, Ashraf ST, Rizwan M, Ahmad J, Baumbach J & Ali A (2019) PanRV: Pangenome-reverse 1118 
vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. 1119 
Bmc Bioinformatics 20. 1120 



43 
 

Ong E, Wang H, Wong MU, Seetharaman M, Valdez N & He Y (2020) Vaxign-ML: supervised machine 1121 
learning reverse vaccinology model for improved prediction of bacterial protective antigens. 1122 
Bioinformatics 36: 3185-3191. 1123 
Oprea M & Antohe F (2013) Reverse-vaccinology strategy for designing T-cell epitope candidates for 1124 
Staphylococcus aureus endocarditis vaccine. Biologicals 41: 148-153. 1125 
Pappalardo F, Russo G, Tshinanu FM & Viceconti M (2019) In silico clinical trials: concepts and early 1126 
adoptions. Briefings in Bioinformatics 20: 1699-1708. 1127 
Pappalardo F, Russo G, Pennisi M, Palumbo GAP, Sgroi G, Motta S & Maimone D (2020) The Potential 1128 
of Computational Modeling to Predict Disease Course and Treatment Response in Patients with 1129 
Relapsing Multiple Sclerosis. Cells 9. 1130 
Pappalardo F, Russo G, Pennisi M, Sgroi G, Alessandro G, Palumbo P, Motta S & Fichera E (2018) An 1131 
agent based modeling approach for the analysis of tuberculosis - immune system dynamics. p.^pp. 1132 
1386-1392. Madrid, SPAIN. 1133 
Pappalardo F, Halling-Brown MD, Rapin N, et al. (2009) ImmunoGrid, an integrative environment for 1134 
large-scale simulation of the immune system for vaccine discovery, design and optimization. 1135 
Briefings in Bioinformatics 10: 330-340. 1136 
Piccolo SR & Frampton MB (2016) Tools and techniques for computational reproducibility. 1137 
Gigascience 5. 1138 
Pizza M, Grandi G, Telford JL & Rappuoli R (2002) Reverse vaccinology: A genome-based approach to 1139 
vaccine development. Chimica Oggi-Chemistry Today 20: 32-36. 1140 
Pizza M, Scarlato V, Masignani V, et al. (2000) Identification of vaccine candidates against serogroup 1141 
B meningococcus by whole-genome sequencing. Science 287: 1816-1820. 1142 
Ponomarenko J, Bui H-H, Li W, Fusseder N, Bourne PE, Sette A & Peters B (2008) ElliPro: a new 1143 
structure-based tool for the prediction of antibody epitopes. Bmc Bioinformatics 9. 1144 
Pourseif MM, Yousefpour M, Aminianfar M, Moghaddam G & Nematollahi A (2019) A multi-method 1145 
and structure-based in silico vaccine designing against Echinococcus granulosus through 1146 
investigating enolase protein. Bioimpacts 9: 131-144. 1147 
Rahman MS, Rahman MK, Saha S, Kaykobad M & Rahman MS (2019) Antigenic: An improved 1148 
prediction model of protective antigens. Artificial Intelligence in Medicine 94: 28-41. 1149 
Rammensee HG, Friede T & Stevanovic S (1995) MHC ligands and peptide motifs: first listing 1150 
Immunogenetics 41: 178-228. 1151 
Rapin N, Lund O, Bernaschi M & Castiglione F (2010) Computational Immunology Meets 1152 
Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune 1153 
System. Plos One 5. 1154 
Rappuoli R (2000) Reverse vaccinology. Current Opinion in Microbiology 3: 445-450. 1155 
Rappuoli R (2007) Bridging the knowledge gaps in vaccine design. Nature Biotechnology 25: 1361-1156 
1366. 1157 
Rappuoli R, De Gregorio E, Del Giudice G, Phogat S, Pecetta S, Pizza M & Hanon E (2021) Vaccinology 1158 
in the post-COVID-19 era. Proceedings of the National Academy of Sciences of the United States of 1159 
America 118. 1160 
Rawal K, Sinha R, Abbasi BA, et al. (2021) Identification of vaccine targets in pathogens and design of 1161 
a vaccine using computational approaches. Scientific Reports 11. 1162 
Rizwan M, Naz A, Ahmad J, Naz K, Obaid A, Parveen T, Ahsan M & Ali A (2017) VacSol: a high 1163 
throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using 1164 
subtractive reverse vaccinology. Bmc Bioinformatics 18. 1165 
Rosano GL & Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and 1166 
challenges. Frontiers in Microbiology 5. 1167 
Rost B, Liu J, Nair R, Wrzeszczynski KO & Ofran Y (2003) Automatic prediction of protein function. 1168 
Cellular and Molecular Life Sciences 60: 2637-2650. 1169 



44 
 

Russo G, Di Salvatore V, Sgroi G, Palumbo GAP, Reche PA & Pappalardo F (2022) A multi-step and 1170 
multi-scale bioinformatic protocol to investigate potential SARS-CoV-2 vaccine targets. Briefings in 1171 
Bioinformatics 23. 1172 
Russo G, Pennisi M, Fichera E, Motta S, Raciti G, Viceconti M & Pappalardo F (2020) In silico trial to 1173 
test COVID-19 candidate vaccines: a case study with UISS platform. Bmc Bioinformatics 21. 1174 
Sachdeva G, Kumar K, Jain P & Ramachandran S (2005) SPAAN: a software program for prediction of 1175 
adhesins and adhesin-like proteins using neural networks. Bioinformatics 21: 483-491. 1176 
Santos AR, Pereira VB, Barbosa E, Baumbach J, Pauling J, Roettger R, Turk MZ, Silva A, Miyoshi A & 1177 
Azevedo V (2013) Mature Epitope Density - A strategy for target selection based on 1178 
immunoinformatics and exported prokaryotic proteins. Bmc Genomics 14. 1179 
Schneidman-Duhovny D, Inbar Y, Nussinov R & Wolfson HJ (2005) PatchDock and SymmDock: servers 1180 
for rigid and symmetric docking. Nucleic Acids Research 33: W363-W367. 1181 
Shinde SB & Kurhekar MP (2018) Review of the systems biology of the immune system using agent-1182 
based models. Iet Systems Biology 12: 83-92. 1183 
Sommer MJ & Salzberg SL (2021) Balrog: A universal protein model for prokaryotic gene prediction. 1184 
Plos Computational Biology 17. 1185 
Sorensen MA, Kurland CG & Pedersen S (1989) Codon usage determines translation rate in 1186 
Escherichia coli. Journal of Molecular Biology 207: 365-377. 1187 
Teufel F, Almagro Armenteros JJ, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, Winther O, Brunak 1188 
S, von Heijne G & Nielsen H (2022) SignalP 6.0 predicts all five types of signal peptides using protein 1189 
language models. Nature Biotechnology. 1190 
Tripathi NK & Shrivastava A (2019) Recent Developments in Bioprocessing of Recombinant Proteins: 1191 
Expression Hosts and Process Development. Frontiers in Bioengineering and Biotechnology 7. 1192 
Vaishya R, Javaid M, Khan IH & Haleem A (2020) Artificial Intelligence (AI) applications for COVID-19 1193 
pandemic. Diabetes & Metabolic Syndrome-Clinical Research & Reviews 14: 337-339. 1194 
Viceconti M, Pappalardo F, Rodriguez B, Horner M, Bischoff J & Tshinanu FM (2021) In silico trials: 1195 
Verification, validation and uncertainty quantification of predictive models used in the regulatory 1196 
evaluation of biomedical products. Methods 185: 120-127. 1197 
Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A & Peters B 1198 
(2019) The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Research 47: D339-D343. 1199 
Vivona S, Bernante F & Filippini F (2006) NERVE: New Enhanced Reverse Vaccinology Environment. 1200 
Bmc Biotechnology 6. 1201 
Vivona S, Gardy JL, Ramachandran S, Brinkman FSL, Raghava GPS, Flower DR & Filippini F (2008) 1202 
Computer-aided biotechnology: from immuno-informatics to reverse vaccinology. Trends in 1203 
Biotechnology 26: 190-200. 1204 
Wang G, Xia Y, Cui J, Gu Z, Song Y, Chen YQ, Chen H, Zhang H & Chen W (2014) The Roles of 1205 
Moonlighting Proteins in Bacteria. Current Issues in Molecular Biology 16: 15-22. 1206 
Wang P, Sidney J, Dow C, Mothe B, Sette A & Peters B (2008) A systematic assessment of MHC class 1207 
II peptide binding predictions and evaluation of a consensus approach. Plos Computational Biology 4. 1208 
Wisnewski AV, Redlich CA, Liu J, et al. (2021) Immunogenic amino acid motifs and linear epitopes of 1209 
COVID-19 mRNA vaccines. Plos One 16. 1210 
Xiang Z & He Y (2008) Vaxign: a web-based vaccine target design program for reverse vaccinology. 1211 
Vol. 1 p.^pp. 23-29. Boston, MA. 1212 
Yang B, Sayers S, Xiang Z & He Y (2011) Protegen: a web-based protective antigen database and 1213 
analysis system. Nucleic Acids Research 39: D1073-D1078. 1214 
Yousafi Q, Amin H, Bibi S, Rafi R, Khan MS, Ali H & Masroor A (2021) Subtractive Proteomics and 1215 
Immuno-informatics Approaches for Multi-peptide Vaccine Prediction Against Klebsiella oxytoca and 1216 
Validation Through In Silico Expression. International Journal of Peptide Research and Therapeutics 1217 
27: 2685-2701. 1218 



45 
 

Yu NY, Wagner JR, Laird MR, et al. (2010) PSORTb 3.0: improved protein subcellular localization 1219 
prediction with refined localization subcategories and predictive capabilities for all prokaryotes. 1220 
Bioinformatics 26: 1608-1615. 1221 
Zhang Y (2008) I-TASSER server for protein 3D structure prediction. Bmc Bioinformatics 9. 1222 

 1223 



1 

 

Programs and biological databases for in silico vaccine discovery 

 

This document is a supplement to the article ‘A guide to current methodology and usage of reverse 

vaccinology towards in silico vaccine discovery’. Its purpose is to present a brief introduction and 

portal to the main bioinformatics tools (programs and biological databases) mentioned in the article. A 

typical reverse vaccinology (RV) workflow, as followed in the latest publications from the last seven 

years (2015 to 2021), can be conceptually viewed in four stages: stage #1 – input data gathering and 

preparation, stage #2 – predicting proteins naturally exposed to the immune system (classical RV), 

stage #3 – predicting epitopes (immunoinformatics), and stage #4 – vaccine candidate verification. 

Bioinformatics tools perform the steps within these stages. 
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Conserved proteins (stage #1) 

DEG [1] is a database of essential genes. DEG hosts records of currently available essential genomic 

elements, such as protein-coding genes and non-coding RNAs, among bacteria, archaea and 

eukaryotes. 

URL = http://tubic.tju.edu.cn/deg  

First released = 2004 (and last updated Dec 18
th
 2017) 

Latest version = 15.2 

Method = all information is stored and operated by using an open-source database management 

system, MySQL. The essential genes in DEG are extracted from 36 publications.  

Input = protein sequence in FASTA format for a local BLASTP. 

Note: 48 Bacteria and nine eukaryote species are recorded in DEG. The eukaryote species are 

Arabidopsis thaliana, Aspergillus fumigatus, Caenorhabditis elegans, Danio rerio, Drosophila 

melanogaster, Homo sapiens, Mus musculus, Saccharomyces cerevisiae, and Schizosaccharomyces 

pombe 972h- 

Clustering (stage #1) 

CD-HIIT [2] is a very widely used program for clustering and comparing protein or nucleotide 

sequences. Used in the reverse vaccinology workflow to find the common (core) proteome of a 

species. 

URL = http://cd-hit.org/  

First released = 2001 (and last updated 01 Mar 2019) 

Latest version = 4.8.1 

Method = the algorithm behind cd-hit is short word filtering, which can determine that the similarity 

between two sequences is below a certain value without performing an actual sequence alignment. 

Input = protein sequences in FASTA format 

Example output  

Sorted Clusters 

>Cluster 0 

0 561aa, >TGME49_210678... * 

1 486aa, >TGME49_323700... at 99.59% 

2 219aa, >TGME49_207650... at 98.63% 

3 486aa, >TGME49_323800... at 99.59% 

4 486aa, >TGME49_323600... at 99.59% 

http://tubic.tju.edu.cn/deg
http://cd-hit.org/
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5 219aa, >TGME49_237894... at 99.54% 

6 486aa, >TGME49_237900... at 99.59% 

>Cluster 1 

0 568aa, >TGME49_322010... * 

1 568aa, >TGME49_242240... at 93.13% 

2 249aa, >TGME49_323330... at 99.60% 

3 199aa, >TGME49_323300... at 98.49% 

>Cluster 2 

0 181aa, >TGME49_328000... at 100.00% 

 

Sequence similarity analysis with the proteome of the vaccine recipient  

To avoid the likelihood of an autoimmune response, the sequences of vaccine candidates should have 

no significant similarity with any proteins from the intended vaccine recipient species. The immune 

system targets cells and proteins for destruction that it considers “non-self”. 

BLASTp can be used to identify sequence similarity. 

PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool) [3] derives a position-

specific scoring matrix (PSSM) or profile from the multiple sequence alignment of sequences detected 

above a given score threshold using NCBI protein–protein BLAST (BLASTp). PSI-BLAST provides 

a means of detecting distant relationships between proteins of the target organism and a human. 

Search database non-redundant protein sequences (nr) using PSI-BLAST. The aim with respect to 

reverse vaccinology is to exclude human homolog proteins as candidates. 

Example output 

# blastp 

# Iteration: 2 

# Query:  

# RID: UE7MVUDJ016 

# Database: nr 

# Fields: query acc.ver, subject acc.ver, % identity, alignment length, mismatches, 

gap opens, q. start, q. end, s. start, s. end, evalue, bit score, % positives 

# 501 hits found 

Query_21782,TKC41514.1,90.870,471,42,1,1,471,26,495,0.0,866,94.48 

Query_21782,XP_012499284.1,91.083,471,42,0,1,471,1,471,0.0,864,95.12 

Query_21782,XP_020145984.1,90.234,471,46,0,1,471,1,471,0.0,863,94.27 

… 

Allergenicity (stage #1 and #4) 

AllerTOP [4] predicts the allergenicity of a protein 

URL = https://www.ddg-pharmfac.net/AllerTOP/ 

Latest version = 0.2 

https://www.ddg-pharmfac.net/AllerTOP/
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Method = based on auto cross covariance (ACC) transformation of protein sequences into uniform 

equal-length vectors. ACC is a protein sequence mining method that has been applied to quantitative 

structure-activity relationships (QSAR) studies of peptides with different length. The principal 

properties of the amino acids were represented by five E descriptors: amino acid hydrophobicity, 

molecular size, helix-forming propensity, relative abundance of amino acids, and β-strand forming 

propensity.  

The proteins are classified by k-nearest neighbor algorithm (kNN,k=1) based on training set 

containing 2427 known allergens from different species and 2427 non-allergens.  

Input = protein sequence in FASTA format (only one sequence at a time) 

Output = a description of whether the sequence is an allergen 

Example output 

Your sequence is: 

PROBABLE NON-ALLERGEN 

The nearest protein is:  

UniProtKB accession number Q9NZN5 

defined as non-allergen 

 

Other programs that predict allergenicity: 

AlgPred [5] predicts allergenic proteins given a primary sequence. Main output = a probability and 

statement of protective antigen or non-antigen, according to a predefined threshold; method = user 

choice of Random Forest (RF) based on amino-acid composition or a hybrid approach (RF + BLAST 

+ MERCI). MERCI (Motif - EmeRging and with Classes – Identification) is a program used to locate 

motifs in sets of sequences that represent positive and negatives [6]. 

Example output 

AlgPred (Random Forest based on amino-acid composition) 

 

Subject ML Score Prediction 

test1 0.996  Allergen 

 

ML Score = predicted scored from Random Forest 

Note: Amino Acid Composition (AAC): It is a 20 length vector where each 

element represents the fraction of each amino acid present in the protein 

sequence. 

 

AlgPred (a hybrid approach  based on RF + BLAST + MERCI) 

 

Subject ML Score MERCI Score BLAST Score Hybrid Score

 Prediction 

test1 1.0  0.5  0.5  2.0  Allergen 

 

Hybrid Score is a combination of scores generated from machine learning 

(RF), MERCI, and BLAST 

AllergenFP.v1.0 (http://ddg-pharmfac.net/Allergen).  

  

http://ddg-pharmfac.net/Allergen
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Toxicity (stage #1 and #4) 

ToxinPred [7] predicts highly toxic regions in a given protein sequence  

URL = http://crdd.osdd.net/raghava/toxinpred/ 

Method = models based on support vector machines (SVM) and quantitative matrix using various 

properties of toxic and non-toxic peptides/proteins obtained from Swiss-Prot and TrEMBL.  

Input = protein sequence in FASTA format (only one sequence at a time) 

Output = a table showing toxicity prediction and physicochemical properties of peptides within a 

given protein sequence 

Example output 

Peptide 

Sequence 

SVM 

score 

Prediction Hydrophobicity Hydropathicity Hydrophilicity Charge Mol wt 

             

CPKILKKCRC -0.97 Non-Toxin -0.38 -0.20 0.54 4.00 1191.71 
             

PKILKKCRCS -0.60 Non-Toxin -0.40 -0.53 0.67 4.00 1175.65 
             

KILKKCRCSI -0.65 Non-Toxin -0.32 0.08 0.49 4.00 1191.70 
             

ILKKCRCSIR -0.34 Non-Toxin -0.39 0.02 0.49 4.00 1219.71 
             

LKKCRCSIRI -0.41 Non-Toxin -0.39 0.02 0.49 4.00 1219.71 
             

KKCRCSIRIC -0.31 Non-Toxin -0.44 -0.11 0.57 4.00 1209.68 
             

KCRCSIRICM 0.02 Toxin -0.30 0.47 0.14 3.00 1212.70 
             

 

Subcellular localization (stage #2) 

PSORTb [8] predicts bacterial protein subcellular localization (SCL) scores for five major 

localizations for Gram-negative bacteria (cytoplasmic, inner membrane, periplasmic, outer membrane 

and extracellular) and four localizations for Gram-positive bacteria (cytoplasmic, cytoplasmic 

membrane, cell wall and extracellular).  

URL = www.psort.org/psortb/ 

Latest version = 3.0.3 

Method = support vector machines (SVM) (contains 13 SVMs, one for each of the localization sites 

(five Gram-negative, four Gram-positive and four archaeal).  

Input = protein sequence in FASTA format. 

Output = a score and SCL associated with highest score. 

Note: Web display mode is limited to the analysis of approximately 100 proteins. For larger analyses, 

the user must enter email address (results of up to 5000 per submission returned by email) or for even 

larger analyses a standalone version is recommended 

Example output 

SeqID Localization Score 

SAK_BPP42  Extracellular 9.98 

 

Where ‘Score’ = a probability for the subcellular localization 

http://crdd.osdd.net/raghava/toxinpred/
https://webs.iiitd.edu.in/raghava/toxinpred/prot_submitfreq_S.php?ran=11805
https://webs.iiitd.edu.in/raghava/toxinpred/prot_submitfreq_S.php?ran=11805
https://webs.iiitd.edu.in/raghava/toxinpred/prot_submitfreq_S.php?ran=11805
https://webs.iiitd.edu.in/raghava/toxinpred/prot_submitfreq_S.php?ran=11805
https://webs.iiitd.edu.in/raghava/toxinpred/prot_submitfreq_S.php?ran=11805
https://webs.iiitd.edu.in/raghava/toxinpred/prot_submitfreq_S.php?ran=11805
https://webs.iiitd.edu.in/raghava/toxinpred/prot_submitfreq_S.php?ran=11805
https://webs.iiitd.edu.in/raghava/toxinpred/prot_submitfreq_S.php?ran=11805
https://webs.iiitd.edu.in/raghava/toxinpred/prot_submitfreq_S.php?ran=11805
https://webs.iiitd.edu.in/raghava/toxinpred/prot_submitfreq_S.php?ran=11805
https://webs.iiitd.edu.in/raghava/toxinpred/pepsearch_S.php?seq=CPKILKKCRC&thval=0.0
https://webs.iiitd.edu.in/raghava/toxinpred/pepsearch_S.php?seq=PKILKKCRCS&thval=0.0
https://webs.iiitd.edu.in/raghava/toxinpred/pepsearch_S.php?seq=KILKKCRCSI&thval=0.0
https://webs.iiitd.edu.in/raghava/toxinpred/pepsearch_S.php?seq=ILKKCRCSIR&thval=0.0
https://webs.iiitd.edu.in/raghava/toxinpred/pepsearch_S.php?seq=LKKCRCSIRI&thval=0.0
https://webs.iiitd.edu.in/raghava/toxinpred/pepsearch_S.php?seq=KKCRCSIRIC&thval=0.0
https://webs.iiitd.edu.in/raghava/toxinpred/pepsearch_S.php?seq=KCRCSIRICM&thval=0.0
http://www.psort.org/psortb/
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TMHMM [9] predicts transmembrane helices in proteins.  

URL = https://services.healthtech.dtu.dk/service.php?TMHMM-2.0 

Latest version = 2.0 

Method = hidden Markov model. 

Input = protein sequence in FASTA format. 

Main output = the number of predicted transmembrane helices. 

Note: At most 10,000 sequences and 4,000,000 amino acids per submission; and each sequence 

should not be more than 8,000 amino acids. 

Example output 

COX2_BACSU 

len=278 

ExpAA=68.69 

First60=39.89 

PredHel=3 

Topology=i7-29o44-66i87-109o 

 

Where: 

len=": the length of the protein sequence. 

"ExpAA=": The expected number of amino acids intransmembrane helices  

"First60=": The expected number of amino acids in transmembrane helices in the first 60 amino acids 

of the protein (see above). 

"PredHel=": The number of predicted transmembrane helices by N-best. 

"Topology=": The topology predicted by N-best. The topology shows the position of the 

transmembrane helices, where 'i' denotes the loop is on the inside, and 'o' on the outside. The above 

example 'i7-29o44-66i87-109o' means that it starts on the inside and has a predicted TMH at position 

7 to 29, then a TMH at position 44-66 on the outside, and then a TMH at position 87-109 on the 

inside. 

Antigenicity (stage #2 and #4) 

VaxiJen [10] is an alignment-free approach for antigen prediction, which is based on auto cross 

covariance (ACC) transformation of protein sequences into uniform vectors of principal amino acid 

properties i.e., antigen classification solely based on the physicochemical properties of proteins 

without recourse to sequence alignment.  

URL = https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html 

Latest version = 3.0.3 

Method = ACC and two-class discriminant analysis by partial least squares (DA-PLS) [11]. 

https://services.healthtech.dtu.dk/service.php?TMHMM-2.0
https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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Input = protein sequences in FASTA format.  

Main output = a probability and statement of protective antigen or non-antigen, according to a 

predefined threshold. 

Note: Jobs containing >100 proteins need to contact creators. The models discriminate between 

immunoprotective antigens and non-antigens without considering explicitly the presence or absence 

of T-cell or/and B-cell epitopes 

Example output 

Overall Prediction for the Protective Antigen = 0.5752 ( Probable ANTIGEN ) 

 

Signal peptides (stage #2) 

SignalP [12] predicts the presence of signal peptides and the location of their cleavage sites in 

proteins from Archaea, Gram-positive Bacteria, Gram-negative Bacteria and Eukarya.  

URL = https://services.healthtech.dtu.dk/service.php?SignalP-6.0 

Latest version = 6.0 

Method = based on a transformer protein language model with a conditional random field for 

structured prediction.  

Input = protein sequences in FASTA format.  

Output = long (with graphics) or short (no graphics) formats  

Example output (short format) 

GLR1_DROME_Glutamate_receptor_1_OS_Drosophila_melanogaster_GN_GluRIA_PE_1_S

V_2  

Prediction: Signal Peptide (Sec/SPI) 

Cleavage site between pos. 27 and 28. Probability 0.949258 

Protein type Other Signal Peptide (Sec/SPI) 

Likelihood 0.0013 0.9987 

Virulence (stage #2) 

The virulence factor database (VFDB) [13] is an online resource for curating information about 

virulence factors of bacterial pathogens.  

URL = http://www.mgc.ac.cn/VFs/ 

First released = 2004 (last updated March 18
th
 2022) 

Usage = can search VFDB by browsing each genus or by typing keywords. A BLAST search tool 

against all known VF-related genes is also available.  

https://services.healthtech.dtu.dk/service.php?SignalP-6.0
http://www.mgc.ac.cn/VFs/
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Adhesion (stage #2) 

SPAAN [14] (can be accessed through Vaxign or NERVE) is a software program for prediction of 

adhesins and adhesin-like proteins using neural networks. 

URL = https://sourceforge.net/projects/adhesin/files/SPAAN/ 

First released = 2005 (last updated 2013) 

Method = uses a non-homology method using 105 compositional properties combined with artificial 

neural networks (ANNs) to identify adhesins and adhesin-like proteins in species belonging to a wide 

phylogenetic spectrum 

Input = protein sequences in FASTA format.  

Output = probability of a protein being an adhesion 

Example output (SPAAN used from Vaxign) 

 

"#","Protein Accession","Protein Name","Gene Accession","Gene 

Symbol","Locus Tag","Adhesin Probability" 

"1","SAK_BPP42","","-","-","-","0.662" 

 

Protein function (stage #2) 

CELLO2go [15] is a web server for protein subCELlular LOcalization prediction with functional 

Gene Ontology annotation  

URL = http://cello.life.nctu.edu.tw/cello2go 

First released = 2014 

Method = provides brief and/or detailed annotations of GO terms related to homologs of a query 

protein found by BLAST searching in combination with a CELLO-predicted subcellular 

localization(s) for the queried protein  

Input = protein sequences in FASTA format.  

Output = Pie charts and Tables  

Example output (Table only) 

CELLO predictor for Gram- model: 

Localization Score 

Extracellular 0.037 

Outermembrane 0.018 

Periplasmic 0.044 

Innermembrane 0.197 

Cytoplasmic 6.704 

VICMpred is an SVM-based method for the prediction of functional proteins of gram-negative 

bacteria using amino acid patterns and composition [16]. 

https://sourceforge.net/projects/adhesin/files/SPAAN/
http://cello.life.nctu.edu.tw/cello2go
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Example output 
Score of Different Functional Class 

Function Score 

cellular Process 0.86543937  

Information Molecule -0.23647597  

Metabolism -0.33623458  

Virulence factors -1.8177894  

 

CDD (Conserved Domain Database) is a resource for the annotation of functional units in proteins. Its 

collection of domain models includes a set curated by NCBI, which utilizes 3D structure to provide 

insights into sequence/structure/function relationships [17]. 

Physical and chemical properties (stage #2 and #4) 

ProtParam [18] (available from Expasy – the Swiss Bioinformatics Resource Portal [19]) allows the 

computation of various physical and chemical parameters for a given protein stored in Swiss-Prot or 

TrEMBL or for a user entered protein sequence. The computed parameters using the input sequence 

include the molecular weight, theoretical pI, amino acid composition, atomic composition, extinction 

coefficient, estimated half-life, instability index, aliphatic index and grand average of hydropathicity 

(GRAVY)  

URL = https://web.expasy.org/protparam/ 

First released = 2005 

Input = protein sequence in FASTA format (only one sequence at a time).  

Output = physical and chemical parameters for between selected endpoints on the input sequence or 

for the entire sequence 

Note: No standalone version but ProtParam is a sub-module of Seq.Utils. 

Example output  

ProtParam 

 

KPC1_DROME (P05130) 

Protein kinase C, brain isozyme (EC 2.7.11.13) (PKC) (dPKC53E(BR)) 

Drosophila melanogaster (Fruit fly) 

 

The computation has been carried out on the complete sequence (679 amino 

acids). 

Warning: All computation results shown below do not take into account 

any annotated post-translational modification. 

 

 References and documentation are available. 

Number of amino acids: 679 

Molecular weight: 77694.95 

Theoretical pI: 6.77 

Amino acid composition:  

Ala (A)  28   4.1% 

Arg (R)  26   3.8% 

Etc … 

Total number of negatively charged residues (Asp + Glu): 96 

Total number of positively charged residues (Arg + Lys): 94 

Atomic composition: 

Carbon      C       3477 

https://web.expasy.org/protparam/
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Hydrogen    H       5374 

Nitrogen    N        922 

Oxygen      O       1018 

Sulfur      S         41 

 

Formula: C3477H5374N922O1018S41 

Total number of atoms: 10832 

 

Extinction coefficients: 

Extinction coefficients are in units of  M-1 cm-1, at 280 nm measured in 

water. 

Ext. coefficient    81135 

Abs 0.1% (=1 g/l)   1.044, assuming all pairs of Cys residues form cystines 

Ext. coefficient    79760 

Abs 0.1% (=1 g/l)   1.027, assuming all Cys residues are reduced 

Estimated half-life: 

The N-terminal of the sequence considered is M (Met). 

The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). 

                            >20 hours (yeast, in vivo). 

                            >10 hours (Escherichia coli, in vivo). 

Instability index: 

The instability index (II) is computed to be 37.98 

This classifies the protein as stable. 

Aliphatic index: 70.60 

Grand average of hydropathicity (GRAVY): -0.517 

 

Cytotoxic T lymphocytes epitopes (stage #3) 

IEDB MHC-I [20] (MHC-I Binding predictors) are tools from the Immune Epitope Database 

(IEDB) analysis resource for predicting peptide binding to MHC class I molecules  

URL = http://tools.iedb.org/mhci 

Latest version = 2.24 

Method = prediction method is chosen by the user. Prediction methods are: Artificial neural network 

(ANN), Stabilized matrix method (SMM), SMM with a Peptide:MHC Binding Energy Covariance 

matrix (SMMPMBEC), Scoring Matrices derived from Combinatorial Peptide Libraries 

(Comblib_Sidney2008), Consensus, NetMHCpan, NetMHCcons, PickPocket and NetMHCstabpan.  

Input = protein sequences in FASTA format.  

Main output = Table (see below) 

  

http://tools.iedb.org/mhci
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Example output  

 
 

Helper T-lymphocyte epitopes (stage #3) 

IEDB MHC-II [20] (MHC-II Binding predictors) are tools from the Immune Epitope Database 

(IEDB) analysis resource for predicting peptide binding to MHC class II molecules.  

URL = http://tools.iedb.org/mhcii/ 

Method = prediction method is chosen by the user. Prediction methods are: IEDB recommended, 

Consensus method, Combinatorial library, NN-align-2.3 (netMHCII-2.3), NN-align-2.2 (netMHCII-

2.2), SMM-align (netMHCII-1.1), Sturniolo, NetMHCIIpan-3.1, and NetMHCIIpan-3.2.  

Input = protein sequences in FASTA format.  

Main output = Table (see below)  

Example output  
 

 

 

Other predictors for cell-mediated epitopes: 

NetMHC predicts binding of peptides to MHC class I molecules [21]. 

TepiTool [22] provides prediction of peptides binding to MHC class I and class II molecules. Input = 

protein sequence. 

Example output 

Seq #,Peptide start,Peptide end,Peptide,Percentile rank,Allele 

1,29,37,SSFDKGKYK,0.01,HLA-A*11:01 

1,74,82,FPIKPGTTL,0.01,HLA-B*35:01 

1,74,82,FPIKPGTTL,0.01,HLA-B*07:02 

 

allele seq_num start end length peptide core icore score rank

HLA-A*01:01 1 92 100 9 CSANNSHHY CSANNSHHY CSANNSHHY 0.826691 0.06

HLA-A*01:01 2 197 205 9 ALTDLGLLY ALTDLGLLY ALTDLGLLY 0.774194 0.07

HLA-A*01:01 2 232 240 9 QSSINISGY QSSINISGY QSSINISGY 0.617697 0.13

HLA-A*01:01 1 417 425 9 ITEMLRKDY ITEMLRKDY ITEMLRKDY 0.559896 0.16

HLA-A*01:01 1 217 225 9 TTWCSQTSY TTWCSQTSY TTWCSQTSY 0.512549 0.18

HLA-A*01:01 1 233 241 9 RTWENHCTY RTWENHCTY RTWENHCTY 0.508887 0.19

HLA-A*01:01 1 162 170 9 FNNGITIQY FNNGITIQY FNNGITIQY 0.423562 0.25

HLA-A*01:01 2 487 495 9 YEDKVWDKY YEDKVWDKY YEDKVWDKY 0.422743 0.25

allele seq_num start end length method peptide percentile_rank adjusted_rank comblib_core comblib_score

HLA-DRB1*01:01 1 482 496 15 Consensus (comb.lib./smm/nn) ALTFLAVGGVLLFLS 0.1 0.1 FLAVGGVLL 0.01

HLA-DRB1*01:01 1 481 495 15 Consensus (comb.lib./smm/nn) IALTFLAVGGVLLFL 0.1 0.1 FLAVGGVLL 0.01

HLA-DRB1*01:01 1 483 497 15 Consensus (comb.lib./smm/nn) LTFLAVGGVLLFLSV 0.1 0.1 FLAVGGVLL 0.01

HLA-DRB1*01:01 1 479 493 15 Consensus (comb.lib./smm/nn) RSIALTFLAVGGVLL 0.1 0.1 FLAVGGVLL 0.01

HLA-DRB1*01:01 1 480 494 15 Consensus (comb.lib./smm/nn) SIALTFLAVGGVLLF 0.1 0.1 FLAVGGVLL 0.01

HLA-DRB1*01:01 1 485 499 15 Consensus (comb.lib./smm/nn) FLAVGGVLLFLSVNV 0.91 0.91 FLAVGGVLL 0.01

HLA-DRB1*01:01 1 484 498 15 Consensus (comb.lib./smm/nn) TFLAVGGVLLFLSVN 0.91 0.91 FLAVGGVLL 0.01

HLA-DRB1*01:01 1 447 461 15 Consensus (comb.lib./smm/nn) GGAFRSLFGGMSWIT 1.8 1.8 FRSLFGGMS 0.06

HLA-DRB1*01:01 1 358 372 15 Consensus (comb.lib./smm/nn) VNPFVSVATANAKVL 1.8 1.8 FVSVATANA 0.02

HLA-DRB1*01:01 1 446 460 15 Consensus (comb.lib./smm/nn) FGGAFRSLFGGMSWI 2 2 FRSLFGGMS 0.06

http://tools.iedb.org/mhcii/
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IL17eScan [23], the similarity search module maps all experimentally validated epitopes in IEDB 

database that induce IL-17 response onto the similar sequences present in the input peptide/protein 

sequences (performs Smith Watermann search of query sequence in database of experimentally 

validated IL-17 inducing epitopes). 

Example output 

SIMSEARCH 

The best scores are:                                      s-w bits E(388) 

IL17eScan:77_IEDB                              (  20)   47 21.8       1 

IL17eScan:164_IEDB                             (  15)   43 20.6     1.7 

IL17eScan:195_IEDB                             (  16)   43 20.5     1.9 

 

IFNepitope [24] is a web server to predict and design IFN-gamma inducing peptides. 

Example output 

Serial No. Epitope Name Sequence  Method  Result  Score 

1  Epitope_1 GVQQKWDATATELNN MERCI  POSITIVE 5 

2  Epitope_2 FAGIEAAASAIQGNV MERCI  POSITIVE 2 

3  Epitope_3 MTEQQWNFAGIEAAA SVM  POSITIVE 0.99934 

 

Linear B-cell epitopes (stage #3) 

BCPred [25] predicts fixed length linear B-cell epitopes using string kernels 

URL = http://ailab-projects1.ist.psu.edu:8080/bcpred/ 

Latest version = BCPREDS Server 1.0 

Method = String kernels, which are a class of kernel methods that have been successfully used in 

many sequence classification tasks. In these tasks, a protein sequence is viewed as a string defined on 

a finite alphabet of 20 amino acids. In BCPred, the subsequence kernel and support vector machines 

(SVM) are used in predicting linear B-cell epitopes 

Input = protein sequence in plain format.  

Output = Table  

Example output  

Position  Epitope  Score  

34  SRDANSSDASNWTIDGENRT 0.994 

447  TLGKQQSEETCTDNINTVNE 0.989 

425  QAGQNKDSKEDAEPTDNDCS 0.98 

301  REPGSYTGRRTMQSISNEQK 0.937 

199  VWTISVGVSMPIPVFGLQDD 0.796 

 

  

http://ailab-projects1.ist.psu.edu:8080/bcpred/
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Other Linear B-cell epitope predictors: 

FBCPred [26] predicts flexible length linear B-cell epitopes. 

BepiPred [27] predicts B-cell epitopes from a protein sequence, using a Random Forest algorithm 

trained on epitopes and non-epitope amino acids determined from crystal structures 

Example output 

Entry,Position,AminoAcid,Exposed/Buried,RelativeSurfaceAccessilibity,HelixP

robability, SheetProbability,CoilProbability,EpitopeProbability 

5H2A_CRIGR,1,M,E,0.745,0.003,0.003,0.994,0.303 

5H2A_CRIGR,2,E,E,0.592,0.052,0.084,0.864,0.371333333333 

5H2A_CRIGR,3,I,E,0.39,0.056,0.142,0.802,0.442888888889 

5H2A_CRIGR,4,L,E,0.48,0.018,0.088,0.893,0.510444444444 

5H2A_CRIGR,5,C,E,0.482,0.018,0.088,0.893,0.587777777778 

 

Conformational (discontinuous) B-cell epitopes (stage #3) 

ElliPro [28] is a web-based tool for the prediction of antibody epitopes (linear and discontinuous) in 

protein antigens of a given sequence or structure (AUC value of 0.732).  

URL = http://tools.iedb.org/ellipro 

First released = 2008 

Method = represents the protein structure as an ellipsoid and calculates protrusion indexes for protein 

residues outside of the ellipsoid. The method is based on geometrical properties of protein structure 

and does not require training. 

Input = Protein Data Bank (PDB) ID(s) or upload PDB file  

Output = Table with links to 3D views  

Example output  

Input Sequences: 5LYM 

Chain: 

A 

1 KVFGRCELAA AMKRHGLDNY RGYSLGNWVC AAKFESNFNT QATNRNTDGS TDYGILQINS 

61 RWWCNDGRTP GSRNLCNIPC SALLSSDITA SVNCAKKIVS DGNGMNAWVA WRNRCKGTDV 

121 QAWIRGCRL 

Predicted Linear Epitope(s): 

No. Chain Start End Peptide Number of residues Score 3D structure 

1 A 45 50 RNTDGS 6 0.78 
 

2 A 112 129 RNRCKGTDVQAWIRGCRL 18 0.771 
 

3 A 100 103 SDGN 4 0.76 
 

4 A 64 81 CNDGRTPGSRNLCNIPCS 18 0.666 
 

5 A 1 7 KVFGRCE 7 0.597 
 

6 A 13 23 KRHGLDNYRGY 11 0.574 
 

7 A 85 88 SSDI 4 0.504 
 

 

Predicted Discontinuous Epitope(s): 

http://tools.iedb.org/ellipro
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No. Residues 
Number of 

residues 
Score 

3D 

structure 

1 
A:S100, A:D101, A:G102, A:N103, 

A:N106 
5 0.727 

 

2 

A:K1, A:V2, A:F3, A:G4, A:R5, A:C6, A:E7, A:F38, A:N39, A:T40, 

A:Q41, A:A42, A:S85, A:S86, A:D87, A:I88, A:R112, A:N113, A:R114, 

A:C115, A:K116, A:G117, A:T118, A:D119, A:Q121, A:A122, A:I124, 

A:R125, A:G126, A:C127, A:R128, A:L129 

32 0.657 
 

3 

A:R45, A:N46, A:T47, A:D48, A:G49, A:S50, A:N59, A:S60, A:R61, 

A:W62, A:W63, A:C64, A:N65, A:D66, A:G67, A:R68, A:T69, A:P70, 

A:G71, A:S72, A:R73, A:N74, A:L75, A:C76, A:N77, A:I78, A:P79, 

A:S81 

28 0.648 
 

4 
A:A10, A:K13, A:R14, A:G16, A:L17, A:D18, A:N19, A:Y20, A:R21, 

A:G22, A:Y23, A:S24 
12 0.564 

 

 

Prediction of conservancy of linear and conformational B cell epitopes: 

Epitope Conservancy database [29] analyses the variability or conservation of epitopes (linear and 

discontinuous).  

Input = epitope sequences and protein sequences from target organism. Note format for discontinuous 

epitopes. 

Epitope population coverage (stage #3) 

IEDB population coverage [30] calculates the fraction of individuals predicted to respond to a given 

epitope set on the basis of HLA genotypic frequencies and on the basis of MHC binding and/or T cell 

restriction data.  

URL = http://tools.iedb.org/population/ 

First released = 2006 

Method = the Allele Frequency database provides allele frequencies for 115 countries and 21 different 

ethnicities grouped into 16 different geographical areas.  

Input = one epitope-allele combination per line 

e.g., FMKAVCVEV HLA-A*02:01,HLA-A*02:02,HLA-A*02:03,HLA-A*02:06,HLA-A*68:02 

Output = For each population coverage, the tool computes the following: (1) projected population 

coverage, (2) average number of epitope hits / HLA combinations recognized by the population, and 

(3) minimum number of epitope hits / HLA combinations recognized by 90% of the population 

(PC90). 

  

http://tools.iedb.org/population/
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Example output  

Population Coverage Calculation Result 

population/area  
Class combined  

coveragea average_hitb pc90c 

World 98.47% 2.82 1.72 

Average 98.47 2.82 1.72 

Standard deviation 0.0 0.0 0.0 

a projected population coverage 
b average number of epitope hits / HLA combinations recognized by the 

population 
c minimum number of epitope hits / HLA combinations recognized by 90% of 

the population 

Solubility (stage #4) 

SOLpro [31] predicts the propensity of a protein to be soluble upon overexpression in E. coli using a 

two-stage SVM architecture based on multiple representations of the primary sequence.  

URL = http://scratch.proteomics.ics.uci.edu/explanation.html#SOLpro 

Method = each classifier of the first layer takes as input a distinct set of features describing the 

sequence. A final SVM classifier summarizes the resulting predictions and predicts if the protein is 

soluble or not as well as the corresponding probability.  

Input = protein sequence in plain format i.e., no header (only one sequence at a time) 

Output = the results are sent to an e-mail address 

Note: SOLpro is provided with the Scratch protein predictor, which is a server for predicting 

protein tertiary structure and structural features. It includes predictors for secondary structure, relative 

solvent accessibility, disordered regions, domains, disulfide bridges, single mutation stability, residue 

contacts versus average, individual residue contacts and tertiary structure [31]. 

Predict protein-protein interactions (stage #4) 

STRING is a database that aims to integrate all known and predicted associations between proteins, 

including both physical interactions as well as functional associations [32].  

CATH/Gene3D provides information on the evolutionary relationships of protein domains [33, 34]. 

CATH identifies domains in protein structures from wwPDB and classifies these into evolutionary 

superfamilies, thereby providing structural and functional annotations. Gene3D uses profile-Hidden 

Markov Models built from the CATH domain sequences to predict structural domains for proteins.  

Secondary structure (stage #4) 

PSIPRED [35] is a secondary structure prediction method  

URL = http://bioinf.cs.ucl.ac.uk/psipred/ 

Method = incorporates two feed-forward neural networks which perform an analysis on output 

obtained from PSI-BLAST (Position Specific Iterated - BLAST).  

http://tools.iedb.org/population/result/#World
http://scratch.proteomics.ics.uci.edu/explanation.html#SOLpro
http://bioinf.cs.ucl.ac.uk/psipred/
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Input = protein sequence in FASTA format (only one sequence at a time) 

Main output = a cartoon 

Example output 

 

Tertiary structure (stage #4) 

I-TASSER (Iterative Threading ASSEmbly Refinement) [36] is a hierarchical approach to protein 

structure prediction and structure-based function annotation. 

URL = https://zhanggroup.org/I-TASSER/ 

Method = first identifies structural templates from the PDB by multiple threading approach LOMETS, 

with full-length atomic models constructed by iterative template-based fragment assembly 

simulations. Function insights of the target are then derived by re-threading the 3D models through 

protein function database BioLiP.  

Input = protein sequence in FASTA format (only one sequence at a time) 

Output = Secondary Structure, Solvent Accessibility, normalized B-factor, top 10 threading templates 

used by I-TASSER, top 5 final models predicted by I-TASSER, proteins structurally close to the 

target in the PDB (as identified by TM-align), predicted function using COFACTOR and COACH  

Molecular docking (stage #4) 

PatchDock [37, 38] is an algorithm for molecular docking based on shape complementarity principles 

URL = https://zhanggroup.org/I-TASSER/ 

First released = 2002  

Method = the algorithm is inspired by object recognition and image segmentation techniques used in 

Computer Vision. Docking can be compared to assembling a jigsaw puzzle e.g., matching two pieces 

by picking one piece and searching for the complementary one. Given two molecules, their surfaces 

https://zhanggroup.org/I-TASSER/
https://zhanggroup.org/I-TASSER/
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are divided into patches according to the surface shape. These patches correspond to patterns that 

visually distinguish between puzzle pieces. Once the patches are identified, they can be superimposed 

using shape matching algorithms. The algorithm has three major stages: Molecular Shape 

Representation, Surface Patch Matching, and Filtering and Scoring. 

Input = two molecules of any type: proteins, DNA, peptides, drugs (requires PDB codes of receptor 

and ligand molecules or can upload files in PDB format) 

Output = a list of potential complexes sorted by shape complementarity criteria.  

Molecular dynamics simulation (stage #4) 

GROMACS [39] is a package to perform molecular dynamics i.e., simulate the Newtonian equations 

of motion for systems with hundreds to millions of particles. It is primarily designed for biochemical 

molecules like proteins, lipids and nucleic acids that have a lot of complicated bonded interactions. 

URL = https://www.gromacs.org/ 

Latest release = 2021.5 (first released in 1995) 

Method = performs molecular dynamics simulation of (bio)macromolecules in a solvent, using 

classical equations of motion and force fields based on variable non-bonded interactions, and fixed 

bonded interactions. The system is coupled to an external bath of constant temperature and/or 

pressure. Rectangular periodic conditions are allowed. Bond lengths (and angles) can be constrained. 

External forces and force field terms related to experimental constraints can be added [39]. 

Input = protein databank file (PDB) 

Output = trajectory file of a simulation. It contains all the coordinates, velocities, forces and energies. 

Binding free energy (stage #4) 

MM-PBSA (Molecular Mechanics Poisson Boltzmann Surface Area) and its complementary method 

MM-GBSA (Molecular Mechanics-Generalized Born Solvation Area) [40] are post-processing end-

state methods to calculate free energies of molecules in solution. 

URL = http://ambermd.org/ 

Release = source code can be downloaded at http://ambermd.org/ with AmberTools  

Method = a program written in Python for streamlining end-state free energy calculations using 

ensembles derived from molecular dynamics (MD) or Monte Carlo (MC) simulations. 

Input = solvated and unsolvated topology files 

Output = file containing calculated free energies 

Immune simulation (stage #4) 

C-ImmSim [41] is an agent-based simulator of the immune response. It consists of a three 

dimensional (3D) stochastic cellular automaton in which the major classes of cells of both the 

lymphoid (T helper lymphocytes (Th), cytotoxic T lymphocytes (CTL), B lymphocytes, and antibody 

producer plasma cells, PLB) and the myeloid lineage (macrophages (Mw) and dendritic cells (DC)) 

https://www.gromacs.org/
http://ambermd.org/
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are represented. All these entities interact with each other according to a set of rules that describe the 

different phases of the recognition and response processes of the immune system against a pathogen. 

URL = https://kraken.iac.rm.cnr.it/C-IMMSIM/?page=0 

Last updated = 2010 (main logic behind C-ImmSim originates from 1991) 

Method = a bit-string polyclonal lattice model. Bit-string refers to the way in which the molecules are 

represented, polyclonal indicates that the lymphocytes have genetic variation in their receptors, and 

lattice signifies that a discrete lattice is used to represent the space. 

Input = protein sequences in a FASTA format 

Output = graphs representing the vaccine immune response profile  

Example output  

 

Codon optimization (stage #4) 

JCAT (Java Codon Adaptation Tool) [42] provides a method to adapt the Codon Usage to most 

sequenced prokaryotic organisms and selected eukaryotic organisms. The codon adaptation plays a 

major role in cases where foreign genes are expressed in hosts and the codon usage of the host differs 

from that of the organism where the gene stems from.  

URL = http://www.jcat.de/ 

First released = 2005 

Method = adaptation is based on Codon Adaptation Index (CAI) values proposed by Sharp,P.M. and 

Li,W.H. (1987). The CAI-values were calculated by applying an algorithm from Carbone,A., 

Zinovyev,A. and Kepes,F. (2003). The mean codon usage for a certain organism is derived by 

summing over all CAI-values of all genes of this organism (except genes without an amino acid 

sequence, e.g. RNAs) divided by the number of genes.  

Input = protein or DNA sequence 

Output = Results in a table and graph presentation e.g., Codon Adaptation Index (CAI) values given 

for the pasted sequence and the newly adapted sequence. 

https://kraken.iac.rm.cnr.it/C-IMMSIM/?page=0
http://www.jcat.de/
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Example output  

CAI-Value of the improved sequence:  GC-Content of the improved sequence:  

0.9560192581582391  65.34870950027457  

 

Codon Relative Adaptiveness (wij) 

AUG 0.993603411513859 

GAG 0.978678038379531 

GUG 0.963752665245203 

AUG 0.993603411513859 

CUG 0.987206823027719 

GC-Content of Homo sapiens:  

40.892862223204  

 

in silico cloning (stage #4) 

SnapGene is a commercial product that enables a way to plan, visualize, and document everyday 

molecular biology procedures. With a graphical user interface, the software enables DNA sequence 

visualization, sequence annotation, sequence editing, cloning, protein visualization, and simulating 

common cloning methods.  

URL = https://www.snapgene.com/ 

Latest release = 6.0 

Input and output = SnapGene can read and write to the following common file formats: 

Alignment Formats, ApE, CLC Bio, Clone Manager, DNA Strider, DNADynamo, DNASIS  

DNAssist, DNASTAR Lasergene®, DS Gene, EMBL (ENA), EnzymeX, GenBank / DDBJ  

Gene Construction Kit®, Geneious, GeneTool, Genome Compiler, Jellyfish, MacVector, pDRAW32, 

Sequencher, Serial Cloner, Swiss-Prot, Vector NTI®, Visual Cloning  
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Table 1 Comparison between conventional and reverse vaccinology approaches to subunit 
vaccine discovery 

 
 Conventional Reverse vaccinology 

Type of vaccine 
components 

Capacity to identify all types of 
pathogen components known to induce 
immunity including proteins, 
carbohydrates and lipids. 

Limited to proteins only. 

Protein 
availability for 
identification 

Incapacity to identify all potential 
antigens because proteins expressed by 
a parasite may be different in vitro 
than those antigens expressed during 
infection in vivo, in a particular life 
cycle stage, or under different 
environmental conditions and stimuli.  

All proteins can theoretically be 
identified because the genome holds 
the entire repertoire of genes, which 
the pathogen can potentially express, 
irrespective of life cycle stages and 
environmental stimuli. 

Types of protein 
antigens 
identified 

Laboratory techniques tend to capture 
the more abundant antigens or those 
that can be purified in quantities 
suitable for vaccine testing. 

Allows for the discovery of both 
conventional vaccine targets (e.g., 
secreted or membrane-associated 
proteins) and novel protective 
antigens owing to the potential to 
analyse every single possible protein 
that can be expressed 

Types of 
pathogens 

Some pathogens are too difficult 
and/or dangerous to cultivate in the 
laboratory 

Subunit vaccines can potentially be 
developed for any pathogen that has 
a genome sequence  

Cost Cost of laboratory setup, chemicals, 
and technicians is expensive 

Relatively inexpensive – only 
requires a computer. 

Timing Time consuming laboratory procedures Generating a list of potential 
antigens for laboratory testing can 
typically take only days, when given 
the appropriate computer analysis.  

Accuracy Identification of antigens is 
experimentally observed 

Proteins are predominately translated 
from predicted genes encoded in the 
pathogen’s genome sequence. 
Protein antigens are predicted by 
bioinformatics programs. Accuracy 
is dependent on quality of genome 
sequences and accuracy of programs. 

Antigen 
verification 

Experimental verification is an integral 
part of the conventional approach 

Computational verification, 
however, only laboratory testing can 
verify that predicted antigens are 
truly antigenic 

 

  



Table 2: Popular bioinformatics programs and biological databases used in a typical 
reverse vaccinology workflow 

Stage Name  Prediction Mode Organism Access address 
1 DEG conservation W A,B,E http://tubic.tju.edu.cn/deg/ 
1 CD–HIT clustering S,W N http://cd-hit.org/ 
1 BlastP homology A,S,W N https://blast.ncbi.nlm.nih.go

v/Blast.cgi?PAGE=Proteins 
1+4 AllerTOP allergenicity W N https://www.ddg-

pharmfac.net/AllerTOP/ 
1+4 ToxinPred toxicity S,W N https://webs.iiitd.edu.in/ragh

ava/toxinpred2/ 
2 PSORTb subcellular 

localization 
S, W A,B www.psort.org/psortb/ 

2 TMHMMa  transmembrane 
domains 

S, W B, E https://services.healthtech.dt
u.dk/service.php?TMHMM-
2.0 

2+4 VaxiJen antigenicity W B, E, F,V https://www.ddg-
pharmfac.net/vaxijen/VaxiJe
n/VaxiJen.html 

2 signalP signal peptide S,W B, E, F,V https://services.healthtech.dt
u.dk/service.php?SignalP-
6.0 

2 VFDB virulence W B http://www.mgc.ac.cn/VFs/  
2 SPAANb adhesion S,W B https://sourceforge.net/proje

cts/adhesin/files/SPAAN/ 
2 Pfam protein function W N https://pfam.xfam.org/d 
3 IEDB MHC-I CTL epitopes S,W N http://tools.iedb.org/mhci/ 
3 IEDB MHC-II HTL epitopes  S,W N http://tools.iedb.org/mhcii/ 
3 BepiPred B-cell epitopes S,W N https://services.healthtech.dt

u.dk/service.php?BepiPred-
3.0 

3 ElliPro Epitopes from 3D S,W N http://tools.iedb.org/ellipro/ 
3 IEDB population 

coverage 
population coverage S,W N http://tools.iedb.org/populati

on/ 
4 SOLpro solubility W N http://scratch.proteomics.ics.

uci.edu/explanation.html#S
OLpro 

4 PSIPRED secondary structure A,S,W N http://bioinf.cs.ucl.ac.uk/psi
pred/ 

4 I-TASSER tertiary structure S,W N https://zhanggroup.org/I-
TASSER/ 

4 PatchDock molecular docking S,W N https://bioinfo3d.cs.tau.ac.il/
PatchDock/ 

4 GROMACS molecular dynamics 
simulation 

S N https://www.gromacs.org/ 

4 MM-PBSA/MM-
GBSA 

binding free energy S N http://ambermd.org/ 

4 C-ImmSim immune simulation W N https://kraken.iac.rm.cnr.it/C



-IMMSIM/?page=0 
4 JCAT codon optimization S,W B,E http://www.jcat.de/ 
4 SnapGenec in silico cloning W N https://www.snapgene.com/ 

 
Stage = stage number of reverse vaccinology (RV) workflow: 1 (input data gathering and 
preparation, 2 (predicting proteins naturally exposed to the immune system – classical RV), 3 
(predicting epitopes – immunoinformatics), and 4 (vaccine candidate verification). 
 
Name = program or database name: IEDB MHC-I and IEDB-MHC-I (tools from the Immune 
Epitope Database (IEDB) analysis resource for predicting peptide binding to MHC class I 
and MHC class II molecules, respectively). aTMHMM-2.0 is outdated. DeepTMHMM has 
been released and is available at 
https://services.healthtech.dtu.dk/service.php?DeepTMHMM. 
bSPAAN can be accessed through the web server Vaxign or NERVE.cSnapGene is a 
commercial product. 
 
Prediction = main output from bioinformatics tool that is of interest to reverse vaccinology: 
CTL (cytotoxic T lymphocytes), HTL (helper T-lymphocyte). 
 
Mode = modes of operating program: A (application programming interface (API)), B (Batch 
facility), D (download data from database), S (Standalone program), and W (Web Server).  

Organism = type of organism for which the program has been designed: A (Archaea), B 
(Bacteria), E (Eukaryotes), F (Fungi), P (Plant), V (Viruses), N (type of organism not 
specified). 

Access address = internet address for Web server or access to program (last viewed: February 
2023). dThe Pfam website was decommissioned in January 2023 (InterPro offers the same 
functionality and data https://www.ebi.ac.uk/interpro/). 

  



Table 3: Freely available reverse vaccinology pipelines 

Pipeline 
Name  

Year Usage 
(%) 

Select. Char. Mode Org. Access address  
[Last viewed February 2023] 

NERVE 2006 0.0 Filter B S B http://www.bio.unipd.it/molbinfo/ 
VaxiJen 2007 68.9 Rank P W B,E,F,

T,V 
https://www.ddg-
pharmfac.net/vaxijen/VaxiJen/VaxiJen.html 

Vaxign 2008 27.8 Filter B W B https://violinet.org/vaxign/ 
AntigenPro 2010 13.3 Rank B + P W B http://scratch.proteomics.ics.uci.edu/ 
Vacceed 2014 2.2 Rank B S E https://github.com/goodswen/vacceed 
VacSol 2017 2.2 Filter B S. B https://sourceforge.net/projects/vacsol/ 
Antigenic 2019 0.0 Rank P W B,E https://github.com/srautonu/Antigenic 
PanRV 2019 1.1 Filter P S B https://sourceforge.net/projects/panrv2/ 
ReVac 2019 0.0 Rank P S B https://github.com/admelloGithub/ReVac-

package 
Vaxign-ML 2020 4.4 Rank B + P W + S B,V,E https://violinet.org/vaxign/vaxign-ml/ 
Vax-ELAN 2021 0.0 Rank B W B,E https://vac.kamalrawal.in/vaxelan/v2 

 
Year = year first released; Usage = percentage of publications since 2015 that have used the 
program; Select. = methodology for selecting candidates, where Filter denotes a rule-based 
filtering selection method comprising a series of conditional tests applied to each 
characteristic score or classification of a protein, and Rank denotes ranking candidates based 
on one single score collectively representing all predicted characteristic scores and 
classifications per protein; Char. = type of protein characteristics used in candidate selection, 
where B denotes biological characteristics e.g., subcellular location, transmembrane domains 
and P denotes physiochemical properties of amino acids e.g., charge, hydrophobicity; Mode = 
manner by which pipeline can be executed, where W denotes web server and S denotes 
standalone (i.e., pipeline installed on local computer); Org. = type of organism for which the 
pipeline has been designed: B (Bacteria), E (Eukaryote parasite), F (Fungi), T (Tumour 
protein), V (Viruses). 
 
  



Table 4 Summary of outstanding reverse vaccinology issues and proposed solutions 

# Issue Proposed solution 
1 Usage of the term ‘Reverse Vaccinology’ to 

depict various workflow steps is inconsistent 
in publications 

For universal understanding of the term 
‘Reverse Vaccinology’, workflow steps should 
be restricted to those in classical RV, and RV 
acknowledged as one stage in the in silico 
approach to identifying vaccine candidates (see 
issue #2). 

2 Commonly used workflow steps under the 
banner of RV have overlapped with other in 
silico approaches such as subtractive 
proteomics, computational vaccinology, and 
immunoinformatics 

All related in silico approaches have the same 
end goal, which is to computationally identify 
vaccine candidates. A unified term of ‘in silico 
vaccine discovery’ should be consistently used, 
especially in titles, abstracts, and/or keywords 
in future publications 

3 All bioinformatics prediction programs have 
various levels of inherent inaccuracies. 

Use several programs that perform the same 
task and derive a consensus. 

4 The choice of bioinformatics programs to 
perform specific workflow tasks may 
occasionally be governed by its popularity or 
lack of choice, rather than on its merit.  

An independent test using the same input data 
with known outcomes is sought for each 
existing and newly introduced program 
performing the same task. 

5 Using a series of filtering workflow steps has 
the potential to inadvertently discard a true 
candidate due to only one erroneous 
characteristic prediction and/or a marginally 
below threshold value 

All predicted protein characteristic can be 
simultaneously considered during candidate 
selection using ML, which is not severely 
compromised by one or two erroneous 
characteristics.  

6 For most pathogens, there are insufficient 
numbers of verified protective antigens to use 
for ML training.  

Use verified and ‘likely’ protective antigens 
from the target or related species. ‘Likely’ 
antigens are those published to induce an 
immune response in vitro or in an animal 
model, and those proteins experimentally 
shown to be naturally exposed to the immune 
system. 

7 ML algorithms require positive and negative 
examples from training data. It is not clear 
what type of protein is truly a negative 
example e.g., only experimental testing can 
conclusively show a protein/peptide will not 
induce a protective immune response. 
 

A repository is required for experimentally 
validated negative examples 

8 There are possibly thousands of publications 
reporting immunogenicity results from in vitro 
and in vivo experiments. This is a vast 
unexploited resource for ML training data. 

A single online repository, similar to Protegen, 
is required to record protective antigens from 
all past and future publications 
 

9 Over reliance of RV tools online. This restricts 
achieving automated, high-throughput ‘in 
silico vaccine discovery.’ 

APIs and similar internet access tools are the 
key to achieving high-throughput automation. 
Program developers should be encouraged to 
provide this functionality 

10 RV-related pipelines that have high-throughput 
capacity require third party installations, which 
can be challenging to users with limited 
computer administration skills.  

RV pipeline developers should be encouraged 
to use software container technology. 

11 Most predicted vaccine candidates are 
computationally verified, and their true 

Currently, testing in an animal model is the 
recommended method to establish a protective 



protective efficacy is seldom established. antigen. If not feasible, then evaluating the in 
silico process by predicting known protective 
antigens provides probabilities of protection 
when predicting anonymous candidates. 

12 Difficult to quantify (or compare with 
published candidates) the contribution made by 
a protein/peptide to the overall vaccine 
efficacy due to different vaccine formulation 
variables (e.g., adjuvant, dose) and 
environmental variables (e.g. mouse model, 
challenge strain). 

Research community needs to establish a 
standard protocol of candidate evaluation or at 
least determine a strategy for comparing study 
results. 
 

13 High-throughput methods to perform in silico 
verification experiments on host–vaccine 
candidate interactions remain a tantalising 
goal. 

Immune system simulators, such as C-ImmSim, 
show promise, but no correlation between 
predicted and the real in vivo vaccine immune 
responses have been evaluated. 

 

 

API = application programming interfaces; ML = machine learning; RV = reverse vaccinology 
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