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Abstract—This paper presents a new convolution algorithm:
Convolution Kernel First Operated (CKFO), which can solve
the problem that the actual calculation is not reduced after
pruning the weight of the convolution neural network. According
to the convolution algorithm, this paper proposes a simulated
memristor implementation of a Convolutional Neural Network
(CNN). After that, we use the method of ex-situ training to train
CNN in Tensorflow and then download the trained parameters
to the Simulink system by compiling the conductance value
of memristor to test the proposed simulation model. Finally,
the effectiveness of the proposed model is verified. In addition,
we prune the weights of CNN and retrain it, then adjust the
simulation model according to the parameters after being pruned
(remove memristors with the value of zero). We are surprised
to find that the convolution layer designed according to the new
convolution algorithm can apply the results of the pruned weight
without any modification, which is very cumbersome in other
memristor based CNN, because the distribution of the pruned
weight is irregular. The parameters are reduced by 75.24%, while
the accuracy is just reduced by 0.06%.

Index Terms—CNN, Convolution, Memristor, Weight pruning

I. INTRODUCTION

AS a kind of feedforward neural networks, convolutional
neural network (CNN) contains convolution computa-

tion, and works as one of the most representative algorithms
of deep learning [1], for CNN has the ability of representation
learning and can classify input information according to its
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hierarchical structure by shift-invariant classification. There-
fore, CNNs are also called as Shift-Invariant Artificial Neural
Networks. In the 21st century, with the advancement of deep
learning theory and the improvement of numerical computing
equipment, CNNs have been developed rapidly and applied in
computer vision, natural language processing and other fields
[1].

The research on convolutional neural networks can be
traced back to the Neocognitron model proposed by Kunihiko
Fukushima in his papers published in 1979 and 1980 [2].
Neocognitron is a neural network, whose hidden layer is
composed of simple-layer and complex-layer to implement
one of the earliest deep learning algorithms [3] to extract
and screen features, and partially realize the convolution layer
[4] and pooling layer [5] in convolution neural network [6].
Traditional convolution based on sliding window derive from
the Neocognitron.

Memristor is a circuit element whose conductance can be
compiled by voltage pulse. Its conductance persists even after
the voltage pulse is turned off. At the same time, memristor
can be used to implement multiplication. Since the convolution
operation in CNN is composed of multiplication and addition,
memristor has vast potential in the implementation of the
CNN hardware circuits. In recent years, related methods have
been proposed to implement a memristor-based CNN, such as
memristor crossbar based CNN [7], parallel memristor cross-
bar based CNN [8], and memristor-based Full Convolutional
Network (FCN) [9]. These works provide some methods for
the implementation of memristor-based CNN.

In order to speed up the calculation of convolution in neural
networks, the convolution operation was transformed into
matrix multiplication [10]. The high-speed processing ability
of GPU greatly accelerates the training process of neural
network with matrix multiplication [11]. However, neither
the traditional convolution based on sliding window nor the
convolution in Caffe can reduce the calculation by pruning the
weights [12]–[16], because even after the weight is pruned
to zero, it still needs to participate in the calculation. To
solve this problem, this paper presents a new convolution
algorithm named Convolution Kernel First Operation (CKFO).
At each time, those feature elements, which multiplied by a
kernel element in the traditional convolution calculation, will
be multiplied by this kernel element. Do the same for each
kernel element, then the final convolution result is obtained
by summing up the results of each operation. Because the
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elements in the kernel are calculated one by one, the elements
whose values are pruned to zero can be skipped directly in the
calculation process, thus the algorithm reduces the calculation.

With the rapid development of neural networks, people
begin to devote themselves to deploying neural networks
to mobile devices. Because of the large scale of the net-
work, the memory occupied and the resources consumed by
computing are massive, so it is necessary to compress the
large-scale network [17]–[19]. At the same time, with the
emergence of memristors and thyristor [20], [21], it is possible
to design neural networks based on hardware circuits. At
present, many design schemes of neural network based on
memristor have been proposed [7], [8], [22]–[26], but there
exists a problem that the actual calculation is not reduced
after weight pruned in convolution neural network based on
memristor. In order to reduce the consumption of memristors,
the neural network is pruned to remove the unimportant
weights, so the corresponding memristors used to store these
weights can also be removed. However, due to the irregular
distribution of the removed weights, the actual operation is
very cumbersome, which can not even be achieved for large-
scale neural networks. Fortunately, this problem can be solved
by the convolution algorithm proposed in this paper. Section
III of this paper describes the convolution circuit based on
this algorithm. Section IV implements the memristor-based
CNN recognition system. CNN is trained in Tensorflow by ex-
situ [27], and then the trained parameters are written into the
Simulink system to verify the simulation model. After pruning
and retraining the CNN, the kernel elements with the value of
zero can be skipped directly, because the kernel elements are
written into the memristors one by one for calculation. So the
pruning results can be applied to the simulation model without
deleting the memristor, and the calculation can be reduced.

This paper focuses on the new convolution algorithm and its
application in the CNN implementation based on memristor.
The main contributions of this article are listed as follows:

i) A new convolution algorithm is proposed to solve the
problem that the calculation is still not reduced after the
weights of CNN are pruned.

ii) Based on the new convolution algorithm, a new imple-
mentation method of memristor based CNN is proposed.

iii) The pruned weight result of CNN can be applied to the
CNN recognition system without any modification to the
circuit.

II. A NEW ALGORITHM OF CONVOLUTION IN CNN

A. Background

In 1989, Yann LeCun constructed a convolutional neural
network for image classification, which was the initial version
of LeNet, and the word convolution was used for the first time
when its network structure was discussed [28]. The calculation
method of convolution is using the convolution kernel as a
sliding window to slide on the input feature map. After each
sliding, the kernel elements and the currently covered feature
map elements are multiplied and then added together, every
such operation will get an element of the final output feature
map. When the sliding window completes the scanning of the

entire input feature map, the output feature map is obtained.
Afterward, in the deep learning framework Caffe developed
by Yangqing Jia of Berkeley university, a new convolution
calculation method was adopted, which converted input feature
map and kernel into the unrolled matrix and a column vector,
then the sliding window convolution was simplified into matrix
multiplication. The specific calculation process is shown in
Fig. 1. This method makes Caffe convolution operation on
GPU three times faster than conventional convolution opera-
tion and makes good use of the parallelism of GPU calculation.

Fig. 1: The Compute Process of Convolution in Caffe

B. A New Convolution Algorithm: Convolution Kernel First
Operated (CKFO)

It can be seen from the Caffe algorithm diagram shown
in Fig. 1, in matrix multiplication, the first-row element 1 of
the unrolled kernel matrix needs to be multiplied with all the
elements of the first column of the extended input matrix.
Similarly, the second-row element 2 of the unrolled kernel
matrix needs to be multiplied with all the elements of the
second column of the expanded input matrix. Inspired by it,
this paper proposes a new convolution algorithm: Convolution
Kernel First Operated (CKFO). CKFO bypasses the conven-
tional requirement for obtaining an element of the output
feature map after every operation and transfers the priority
of computation to the convolution kernel.

Fig. 2 shows an example of convolution by CKFO. We
can see from the picture that the first element I(1, 1) = 1
of the kernel needs to be multiplied by the first-row element
of the unrolled input matrix. Similarly, the second element
I(1, 2) = 0 of the kernel needs to be multiplied by the second-
row element of the unrolled input matrix. Repeat this operation
for the remaining kernel elements. The final output feature map
can be obtained by summing the results of these operations.

CKFO transforms a large number of matrix dot product
into multiplications of matrix and single kernel element (As
we know, in traditional convolution based on sliding window,
there are a lot of matrix dot products). Meanwhile, we can
observe from Fig. 2 that there is a sliding window similar to
the traditional convolution in the calculation process of this
algorithm. But the size of the sliding window of CKFO is
larger. In fact, the size of the sliding window is the same as that
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Fig. 2: The compute process of convolution in CKFO

of the output feature map and the sliding times of the sliding
window depends only on the number of non-zero elements in
the convolution kernel (not the size of the kernel, because the
sliding times of the sliding window is equal to the number of
non-zero elements in the kernel after the weights are pruned).
From this point of view, when the size of the input feature
map is larger than that of the kernel, the CKFO algorithm
can greatly reduce the sliding times of the sliding window.
Such as 512×512 input and 3×3 kernel, the sliding times of
traditional convolution window is 510×510, while the sliding
times of CKFO is just 3 × 3. It can be seen that for large
size input, our algorithm greatly reduces the sliding times of
the window. Furthermore, because of the characteristics of the
CKFO algorithm, elements with a value of zero in the kernel
can be skipped directly during the calculation. Therefore, this
algorithm can reduce the calculation after the weights are
pruned.

III. MEMRISTOR CONVOLUTION CIRCUIT BASED ON
CKFO

This section mainly describes the fundamental principle
of a memristor convolution circuit based on CKFO. The
circuit for compiling memristor and the circuit for formatting
output are from the design in [7], [8], [29]–[31]. To make the
circuit concise and intuitive, all programming circuits for the
memristor are omitted in this paper. The concrete realization
of this circuit is shown in Fig. 3.

Before introducing the circuit, it is necessary to introduce
the GTO thyristor [32], because the gate-controlled switch
composed of GTOs is the most critical part of the circuit. GTO
is a special thyristor, which is a high-power semiconductor
device. GTOs, as opposed to normal thyristors, are fully
controllable switches which can be turned on and off by their
third lead. The connection is accomplished by a positive pulse
between the gate and cathode terminal. The disconnection
is accomplished by a negative pulse between the gate and
cathode terminal. Because of its fast response and simple
control method, GTO is used to construct the gate-controlled
switch on this circuit.

After introducing the characteristics of GTO, we will intro-
duce the functions of each part of the circuit and the operation
of the circuit. Part A is used to store the input feature map row-
by-row. A positive pulse is applied to the row that is currently

Fig. 3: Memristor convolution circuit based on CKFO. Part
A: storing the input feature map; Part B: realizing the dot
product of a row of elements and a kernel element; Part C:
transferring the calculation result of the previous layer to the
corresponding output column; Part D: storing the positive
and negative values in the convolution process in two storage
matrices respectively.

written, at the same time a negative pulse is applied to other
rows. Then, a row of elements in the feature map are written
into the memristor of the row to which the positive pulse is
applied. Throughout this paper, we employ a voltage threshold
memristor model [33]. In this way, the element values of each
row are written into the storage matrix. Part B is used to
realize the product of a row of elements and a kernel element.
The value of the kernel element is stored in memristors. To
eliminate the time consumed in storing kernel elements, two
lines of memristors are used to store two different convolution
kernel elements. When the memristor in one line is participat-
ing in the calculation, a new element can be written to another
line. To implement multiplication operation, a positive pulse
is applied to the ELi and a negative pulse is applied to others
row. Subsequently, a read voltage of 1V is inputted to all IL
ports, then the row elements are output to Part B multiplied by
the kernel element stored in memristors. Part C transfers the
calculation result of the previous layer to the corresponding
output column. As described in the previous sections, CKFO
is different from the traditional convolution calculation that
cannot produce an element of the output feature map by one
such operation. However the value of kernel element may be
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negative, so Part D stores the positive and negative values of
the convolution process in two storage matrices, respectively.
A row of memristors at the Bias control port is used to store
bias values. When the element in the convolution kernel is
negative, its absolute value will be written into the memristor
of Part B. At the same time, a positive pulse is applied to the
Negative port of Part D, and a negative pulse is applied to
the Positive port. If the element value is positive, the opposite
operation is performed. After the elements of the convolution
kernel are calculated, the positive pulse will be applied to
port Bias, and positive pulses are applied to EL1−1, EL1−2,
EL1−3 in turn so that the final convolution results can be
written into the storage matrix row-by-row.

As shown in (1), the ReLU function can be implemented
with a diode at the output ports. In practice, a DC bias voltage
must be added to the input to balance the diode and GTO leads
voltage.

f(x) =

{
0, x < 0;
x, x ≥ 0.

(1)

Take the 4× 4 input feature map and the 2× 2 convolution
kernel in Fig. 2 as an example, the control logic of the circuit is
shown in Fig. 4, in which the process of writing the calculation
results into the memristor is omitted. As the kernel elements
in this example are not negative, the storage matrix that stores
negative values in Part D is not used.

Fig. 4: The operate process of convolution circuit based on
CKFO. In this figure, I denotes the kernel matrix, k2 = I(2, 2)
express writing I(2, 2) into memristors k2 in Part B, Y =
1V represents 1V read voltage is applied to port Y , X =
positive pulse stands for positive pulse be applied to port X .

IV. CNN RECOGNITION SYSTEM

This section describes how this memristor-based CNN
recognition system operates in detail, in which the first
and second convolution layers are designed based on the
CKFO. The recognition algorithm is organized according to
the flowchart in Fig. 5. The network structure is the same as

LeNet except that the convolution order of the input feature
graph is different in the second convolution layer.

Fig. 5: Flowchart describing the CNN recognition system. The
input image of 32 × 32 in the first layer is obtained by zero
filling around the image of 28× 28.

A. First Convolution Layer

In this layer, an input image will be convoluted with six
different 5 × 5 kernels, and the final output is a data array
which has a size of 28× 28× 6. The memristor-based circuit
for performing this operation is shown in Fig. 6 in which the
circuit is used to produce one output feature map. To realize
the first convolution layer, six such circuits are needed. x1-x32

represents the row-by-row input of the feature map stored in
the upper layer. The elements in each row of the feature map
are multiplied by a kernel element stored in the memristor,
and the calculation results are written into the positive or
negative value storage matrix. After the calculation of all
kernel elements are completed, the final convolution results
can be obtained by reading the positive storage matrix and the
negative storage matrix row-by-row.

B. First Average-pooling Layer

Following the first convolution layer, an average-pooling
operation is performed on the six generated maps, and the final
output is a data array that has a size of 14×14×6. This is just a
simple convolution operation in which the convolution kernels
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Fig. 6: Circuit used to perform the convolution operations for
the first convolution layer.

applied to each feature map are shown in (2). Therefore, the
average pooling operation is realized by convolution operation
as shown in Fig. 7 in which the circuit is used to produce one
output feature map. To realize the first average-pooling layer,
six such circuits are needed. The positive pulse is applied to
the control terminals of the two rows in turn. Meanwhile, a
read voltage of 1V is applied to all columns. Average pooling
can be accomplished with only fourteen such operations. In
this way, the efficiency of pooling can be greatly improved.

K =

 1/4 1/4

1/4 1/4

 . (2)

Fig. 7: Circuit used to perform the smoothing operation for
the first average pooling layer.

C. Second Convolution Layer

Following the average pooling layer is another convolution
layer that is similar to the first convolution layer. However,

there are six input maps instead of one and sixteen output
maps instead of six. Therefore, the size of the output data
array generated by this layer is 10 × 10 × 16. According to
the principle of convolution calculation, after the six channels
of the input feature map are convoluted with the 5 × 5 size
kernel respectively, the results are summed to obtain the
output. The circuit based on this method can refer to the
first convolution layer. Two memristor-based storage matrices
which store positive and negative values are added to each
circuit that convolves one channel respectively, therefore the
result of the convolution will be obtained by summing the
stored values of these storage matrices. However this will
consume a large amount of the memristors. To reduce the
consumption of the memristors, as shown in Fig. 8, we have
improved the circuit for performing convolution operation,
which is used to produce an output feature map. To realize
the second convolution layer, sixteen circuits are needed.

Fig. 8: Circuit used to perform the convolution operation
for the second convolution layer. xN,1-xN,14, N ∈ (0, 6],
represent the row-by-row input of the Nth in the six feature
maps stored in the upper layer.

D. Second Average-pooling Layer

Following the second convolution layer, another average
pooling layer is applied (that will further reduce the size of
data array). The circuit of this layer is similar to the first
average-pooling layer. The difference is that the input feature
size is 10×10×16 instead of 28×28×6, and the output data
array size is 5× 5× 16. The concrete circuit is shown in Fig.
9 in which the circuit is used to produce one output feature
map. To realize the second average-pooling layer, sixteen such
circuits are needed.

E. Third Convolution Layer

Following the second average pooling layer, the third convo-
lution layer is applied. As mentioned in the previous section,
CKFO is suitable for the situation where the size of the input
feature map is much larger than that of the kernel. But in this
layer, they are equal in size, so the implementation of this layer
circuit is based on the memristor crossbar in [7]. To facilitate
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Fig. 9: Circuit used to perform the smoothing operation for
the second average pooling layer.

the design of the circuit of this layer, the 5×5×16 data array
outputted by the previous layer is rearranged into a column
vector of 400 × 1. At the same time, the convolution kernel
of this layer 120 × 16 × 5 × 5 is rearranged to 120 × 400.
Therefore, the convolution operation is converted into simple
matrix multiplication and addition, and the size of the output
data array is 1 × 120. Since the bias only participates in the
addition operation, just one-row memristor is used to store the
absolute offset value, and the voltage orientation of the input
xβ indicates whether the offset value is positive or negative.
The concrete circuit is shown in Fig. 10.

Fig. 10: Circuit used to perform the convolution operations for
the third convolution layer.

F. Fully Connected Layer
The implementation of the fully connected layer is similar

to that of the third convolution layer, where the calculation

consists of matrix multiplication and addition. So the structure
of the circuit is similarly. The input of the first fully connected
layer is a 1 × 120 column vector and the output is a 1 × 84
row vector. The input to the second fully connected layer is a
row vector of size 1 × 84, and the output is a row vector of
1× 10, which will be the input of the last layer.

V. SIMULATION RESULTS

At the first step, CNN is trained completely in software
to generate the weights and kernel values that will be pro-
grammed into the circuit system designed in the previous
section. Subsequently, the trained model is pruned by using the
method in [15] and then re-trained. The training data-set comes
from the MNIST handwritten digit database. The change curve
of accuracy and loss are shown in Fig. 11.

The next step in the simulation process is to test the
accuracy of the CNN recognition system described in the
previous section. After the parameters of the unpruned network
being written into the CNN recognition system, a testing
accuracy of 98.43% was achieved. While the parameters of
the pruned network were written into the CNN recognition
system, a testing accuracy of 98.37% was achieved.

In the process of pruning and retraining the network, the
change curve of the pruning ratio is shown in Fig. 12. In Table
I, we also count the pruning ratio of each layer of network and
the total pruning ratio of the network. The parameters in the
table represent the kernel elements in the convolution layer
or the weights in the full connection layer. The calculation
method of the pruning ratio is shown in (3). A is the number
of parameters after being pruned and B is the number of
parameters before being pruned. As can be seen from the
table, when the overall parameters were pruned by 75.24%,
the accuracy was just reduced by 0.06%.

During the experiment, when adjusting the circuit according
to the result of pruning and removing the memristors at the
corresponding position where the weights were pruned to
zero, we were surprised to find that the circuit of the first
convolution layer and the second convolution layer designed
based on CKFO need not make any modification. Because
the kernel elements in the circuit were input one by one and
calculated one by one, the kernel elements with a value of zero
can be skipped directly. Meanwhile, in the case of channel
pruning, circuit adjustment is also simple by Just deleting
the convolution circuit of the corresponding channel. But in
the third convolution layer and full connection layer based on
the memristor crossbar, the adjustment of the circuit is very
complicated, because the distribution of the pruned weights is
irregular. Moreover, neither the traditional convolution based
on sliding window nor the convolution in Caffe can reduce
the calculation by pruning the weights, because the kernel
elements which were pruned to zero still needed to participate
in the calculation. While in CKFO, the kernel elements with
the values of zero can be skipped directly, so the calculation
can be reduced.

Ratio = 1− A

B
(3)
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TABLE I: Comparison of the Number of Parameters in Unpruned Network and Pruned Network.

Number of Parameters Before Prune Number of Parameters After Prune Prune Ratio Total Prune Ratio
First Convolution Layer 150 112 25.33%

75.24%
Second Convolution Layer 2400 1799 25.04%
Third Convolution Layer 48000 12421 74.12%

First Fully Connected Layer 10080 816 91.90%
Second Fully Connected Layer 840 70 91.67%

(a) (b)

(c) (d)

Fig. 11: The training accuracy and loss curves when training
the CNN network on the software. The abscissa is the number
of training steps, and the ordinate is the accuracy and loss of
training. Unpruned pruning: (a) (b); Pruned network: (c) (d)

Fig. 12: Circuit used to perform the convolution operations for
the third convolution layer.

VI. CONCLUSION

This paper presents a new convolution algorithm. Compared
with the traditional convolution based on sliding window, the
size of the window is larger and the sliding times of the win-
dow are smaller. Moreover, this algorithm solves the problem
that even if the parameters are pruned but the calculation still
can not be reduced in the existing convolution calculation
method.

Subsequently, according to this algorithm, this paper designs
a complete hardware circuit of the CNN recognition system
based on memristor and verifies the effectiveness of the circuit
by simulation. In the simulation process, we also prune the

weight of the network in software and modify the hardware
circuit according to the results of pruning. We are surprised
to find that when the pruning ratio of the network parameters
reaches 75.24%, the accuracy is just reduced by 0.06%. At
the same time, the results of pruned weight can be applied to
the hardware circuits of the first convolution layer and that of
the second convolution layer without any modification to the
circuits.
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