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Abstract—This article attempts to address output synchroniza-
tion and H∞ output synchronization problems for multiple out-
put coupled complex networks (MOCCNs) under proportional-
derivative (PD) and proportional-integral (PI) controllers. Firstly,
two classes of MOCCNs without and with external disturbances
are separately put forward. Secondly, based on the PD and
PI control schemes, several output synchronization criteria for
MOCCNs are formulated by using the Lyapunov functional
method and inequality techniques. Thirdly, H∞ output synchro-
nization for MOCCNs is also studied with the help of the PD and
PI controllers. Finally, two numerical examples are separately
presented to demonstrate the validity of acquired theoretical
results.

Index Terms—H∞ output synchronization, multiple output
coupled complex networks (MOCCNs), output synchronization,
proportional-integral-derivative (PID) control.

I. INTRODUCTION

SYnchronization, as a ubiquitous and prevalent phe-
nomenon in natural and engineered systems, has seen a

growing interest in numerous distinct fields, including biology,
economics, and earth sciences [1]. In particular, synchro-
nization for complex networks (CNs), ranging from complex
human networks to electric power grids, has received consider-
able attention, and many advanced results have been published
[2]–[13], [53]. In [7], the authors not only presented a class of
CNs with fixed coupling model, but also devised a distributed
controller to cope with the synchronization problem of an
arbitrary subset of the nodes for CNs. Hu et al. [9] considered
two types of intermittently coupled complex-valued dynam-
ical networks with heterogeneous or homogeneous adaptive
coupling weights, and used some devised adaptive schemes to
ensure several synchronization criteria for these two networks
by utilizing a direct error approach. As stated in [10], a
sufficient condition was established to guarantee the local
and global bound synchronization for CNs, and some easy-
to-use bound synchronization criteria were also developed,

This publication was made possible by NPRP grant: NPRP 9-466-1-103
from Qatar National Research Fund. The statements made herein are solely
the responsibility of the authors. (Corresponding authors: Shiping Wen.)

L. Zhao and S. Wen are with Australian AI Institute, Faculty of Engineering
and Information Technology, University of Technology Sydney, NSW 2007,
Australia (linhao.zhao@student.uts.edu.au; shiping.wen@uts.edu.au). M. Xu
is with School of Electrical and Data Engineering, Faculty of Engineer-
ing and Information Technology, University of Technology Sydney, NSW
2007, Australia (min.xu@uts.edu.au). K. Shi is with School of Information
Science and Engineering, Chengdu University, Chengdu, 611040, China,
(email: skbs111@163.com). S. Zhu is with School of Mathematics, China
University of Mining and Technology, Xuzhou 221116, China (e-mail:
songzhu@cumt.edu.cn). T. Huang is with Science Program, Texas A & M Uni-
versity at Qatar, Doha 23874, Qatar (e-mail: tingwen.huang@qatar.tamu.edu).

which contained low-dimensional linear matrix inequalities.
In addition, to characterize the actual world networks, such
as stock transmission systems and inter-city population flow
networks, more accuracy and reasonable, numerous authors
have borrowed the ideas from single-weighted CNs to multi-
weighted CNs (MWCNs). In view of this, a great majority
of works related to synchronization for MWCNs have been
further reported [14]–[19]. Wang et al. [14] discussed two
kinds of MWCNs with undirected and directed topologies,
and exploited the Lyapunov functional approach and pinning
adaptive control schemes to investigate synchronization for
these two networks. In [17], a multiplex network with static
and dynamic diffusive couplings was presented, in which
the network consists of Chua’s circuits, and some sufficient
conditions were established to ensure synchronization for the
network. Liu et al. [19] not only took synchronization for
MWCNs with diagonal inner matrices into consideration by
using inequality techniques, but also developed several pinning
synchronization criteria for the MWCNs with non-diagonal
inner matrices.

Recently, various studies have been related to output syn-
chronization, and many researchers have focused on the output
synchronization for CNs [20]–[27]. In [23], the authors ex-
plored output synchronization for uncertain CNs with noniden-
tical nodes based on the neural sliding-mode pinning control
strategy. Wei et al. [25] not only presented a class of multi-
agent systems composed of heterogeneous individual systems
with nonlinear dynamics, but also exploited state feedback and
observer-based controllers to address output synchronization
problems for the systems. As stated in [26], several sufficient
conditions for guaranteeing an optimal control scheme were
developed, and output synchronization was also investigated
for CNs with partially unknown system dynamics by using the
optimal controller. However, few authors also have considered
the output synchronization for MWCNs [36], [37], [44]. Wang
et al. [36] analyzed output and H∞ output synchronization
for MWCNs based on inequality techniques and Lyapunov
functional, and utilized nodes and edges-based pinning adap-
tive control methods to guarantee the output and H∞ output
synchronization for MWCNs.

In addition, due to wide extensive of external disturbance in
the real-life world, numerous authors have devoted to paying
attention to H∞ synchronization and H∞ output synchro-
nization for CNs [28]–[32], [34], [35]. Wen et al. [29] not
only considered a class of CNs with aperiodic sampled-data
communications, but also further used pinning control strategy
to address the H∞ synchronization issue of this network. As



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2

stated in [30], several H∞ synchronization criteria were estab-
lished for a switched complex network based on the Lyapunov
functional, and the H∞ synchronization for the network was
also discussed by using a switching impulsive controller. Wang
et al. [35] put forward four types of undirected and directed
coupled neural networks with fixed and adaptive couplings,
and formulated several H∞ output synchronization criteria
for these networks based on adaptive control schemes or the
Lyapunov functional. However, few authors have taken H∞
synchronization and H∞ output synchronization for MWCNs
[33], [36], [37]. In [33], the authors analyzed H∞ synchro-
nization for MWCNs with fixed and switching topologies by
exploiting inequality techniques.

It should be mentioned that for CNs and MWCNs, most
of authors mainly studied state coupling of these networks
[2]–[11], [14]–[19], [21]–[36], [53], but few works about
output coupling have been published [20], [40]–[43]. Chen
[41] developed a synchronization criterion for a class of
CNs with output coupling by using the Lyapunov functional
approach. As stated in [42], the authors presented a class
of output coupled CNs with unknown parameters, and used
adaptive control strategies to develop several synchronisation
criteria for the network. Unfortunately, very few authors also
have investigated multiple output coupled complex networks
(MOCCNs) [44]. In [44], two kinds of multiple output and
output derivative coupled CNs were put forward, and output
synchronization problems for these two networks were also
dealt with based on the Lyapunov functional and adaptive
control schemes.

Proportional-integral-derivative (PID) controller, as a useful
and well-known instrument, has played an outstanding role in
industry and academics since it is easy and simple to perform
and does not rely on a precise model. In view of this, numerous
advances works related to the PID controller and its variations
have been extensively reported [45]–[49]. Daniel et al. [47] not
only developed a distributed multiplex PI control strategy for
ensuring the consensus for a heterogeneous network, but also
further established several consensus criteria for the network
by using the Lyapunov functional method and the multiplex PI
controller. Moreover, PID-based synchronization for CNs also
has been discussed [50], [51]. As stated in [50], the authors uti-
lized PD controller to investigate synchronization for a class of
directed CNs, and developed several synchronization criteria
for the CNs with a directed topology and a directed spanning
tree based on PI control methods. However, very few authors
have considered the synchronization for MWCNs based on
PID controller [52]. Motivated by the above discussions, this
paper aims to address output and H∞ output synchronization
problem for MOCCNs based on PID controllers. The main
contributions involve the following three aspects.

1) Compare with [34]–[37], we proposed two types of
MOCCNs without and with the external disturbance, and
further extend the study of [44] to the case of H∞ output
synchronization.

2) By exploiting devised PD and PI control strategies,
several output synchronization criteria are derived for
MOCCNs with different dimensions of system state and
output. Compared with [50]–[52], we establish some

sufficient conditions to guarantee the output synchro-
nization for MOCCNs.

3) We not only address H∞ output synchronization prob-
lems for MOCCNs based on PD and PI control schemes,
but also develop several H∞ output synchronization by
using inequality techniques.

The rest of this paper is organized as follows: Section
II introduces two types of MOCCNs; Section III discusses
PID-based output synchronization for MOCCNs; Section IV
considers H∞ output synchronization for MOCCNs based on
PID controllers; Two numerical examples are given in Section
V; At last, conclusions are drawn in Section VI.

II. PRELIMINARIES AND NETWORK MODELS

A. Notations

Let R = (−∞,+∞), Rk be the space of k real vectors, and
Rs×k be the space of s× k real matrices. D = {1, 2, · · · ,K}
and E ⊂ D × D respectively denote a node set and an undi-
rected edge set in a network. ϖ1(X ) and ϖ2(X ) respectively
stand for minimum and maximum eigenvalues of the real
symmetric matrix X . The same symbol in this paper indicates
the same meaning unless otherwise mentioned.

B. Lemma

Lemma 2.1 (See [55]). The Kronecker product has the
following properites:

(1) (Γ⊗Ψ)T = ΓT ⊗ΨT ;

(2) (Γ⊗Ψ)−1 = Γ−1 ⊗Ψ−1;

(3) (βΓ)⊗Ψ = Γ⊗ (βΨ);

(4) (Γ + Φ)⊗Ψ = Γ⊗Ψ+Φ⊗Ψ;

(5) (Γ⊗ Φ)(Ψ⊗ Ξ) = (ΓΦ)⊗ (ΨΞ),

where β is a constant, Γ,Ψ,Φ,Ξ are matrices with suitable
dimension.

C. Networks

Considering two networks composing of K nodes with
dimension k are modeled as

ṗi(t) = d(pi(t)) +
n∑

m=1

K∑
j=1

lmSm
ij Amwj(t)

+ui(t),
wi(t) = Ypi(t),

(1)


ṗi(t) = d(pi(t)) +

n∑
m=1

K∑
j=1

lmSm
ij Amwj(t)

+εi(t) + ui(t),
wi(t) = Ypi(t),

(2)

where i = 1, 2, · · · ,K;Rk ∋ pi(t) = (pi1(t), pi2(t), · · · ,
pik(t))

T refers to the state of ith node; The function Rk ∋
d(pi(t)) is the continuously differentiable; R ∋ lm > 0
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indicates the coupling strength; The inner coupling matrix
Rk×s ∋ Am(1 ⩽ s < k) is denoted as

Rk×s ∋ Am =



am1 0 0 0 0
0 am2 0 0 0
0 0 am3 0 0
· · · · · · · · · · · · · · ·
0 0 0 · · · ams
· · · · · · · · · · · · · · ·
0 0 0 · · · 0


,

in which R ∋ amν > 0, ν = 1, 2, · · · , s; RK×K ∋ Sm =
(Sm

ij )K×K stands for the weighted matrix with the following
definition:

R ∋ Sm
ij =


Sm
ji > 0, if (i, j) ∈ E ,

−
K∑

r=1
r ̸=i

Sm
ir , if i = j,

0, otherwise;

Rs ∋ wi(t) = (wi1(t), wi2(t), · · · , wis(t))
T refers to the

output of ith node; Rk ∋ ui(t) is the control input;

Rs×k ∋ Y =


y1 0 0 0 0 · · · 0
0 y2 0 0 0 · · · 0
0 0 y3 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · ys · · · 0

 ,

where R ∋ yν , ν = 1, 2, · · · , s; Rk ∋ εi(t) =
(εi1(t), εi2(t), · · · , εik(t))T stands for the external disturbance
with square integrable, which is defined by∫ t1

0

εTi (ρ)εi(ρ)dρ < +∞

for any R ∋ t1 > 0.
Remark 1. Under some circumstances, the changing of node

state may be affected by the output of neighbor nodes in a
network. Consequently, the study of CNs with output coupling
was firstly proposed in [39]. Up till now, many authors have
focused on the synchronization or output synchronization
for CNs with output coupling [20], [39]–[43]. Furthermore,
considering that node’s state is also influenced by various
distinct factors, few results have extended to the case of CNs
with multiple output couplings [44]. Compared with [44],
this paper further investigates H∞ output synchronization for
MOCCNs based on PID control schemes.

For these two networks (1) and (2), topologies are con-
nected, and all their coupling forms are identical. In addition,
d(·) fulfills [54]:

∥d(σ1)− d(σ2)∥ ⩽ δ∥σ1 − σ2∥, (3)
(σ1 − σ2)

TF [d(σ1)− d(σ2)−H(σ1 − σ2)]

⩽ −α(σ1 − σ2)
T (σ1 − σ2) (4)

for any σ1, σ2 ∈ Rϱ, in which Rϱ×ϱ ∋ F = diag(f1, f2,
· · · , fϱ) > 0;Rϱ×ϱ ∋ H = diag(h1, h2, · · · , hϱ);R ∋ α >
0;R ∋ δ > 0.

III. OUTPUT SYNCHRONIZATION FOR MOCCNS

This section respectively uses PD and PI control approaches
to address output synchronization problems for MOCCNs,
and formulates two criteria of output synchronization for this
network based on the Lyapunov functional and inequality
techniques.

From network (1), the following equations can be acquired: ˙̃pi(t) = d̃(p̃i(t)) +
n∑

m=1

K∑
j=1

lmSm
ij Ãmwj(t) + ũi(t),

wi(t) = Ỹ p̃i(t), i = 1, 2, · · · ,K,
(5)

in which Rs ∋ p̃i(t) = (pi1(t), pi2(t), · · · , pis(t))T ;Rs ∋
d̃(p̃i(t)); Rs×s ∋ Ãm = diag(a1, a2, · · · , as);Rs ∋ ũi(t) =
(ui1(t), ui2(t), · · · , uis(t))T ;Rs×s ∋ Ỹ = diag(y1, y2, · · · ,
ys).

Define d̂(η(t)) = d̃(Ỹ−1η(t)) and Rs ∋ η(t), it is deduced
from (5) that

ẇi(t) = Ỹ d̂(wi(t))+

n∑
m=1

K∑
j=1

lmSm
ij ỸÃmwj(t)+Ỹũi(t). (6)

Denoting w∗(t) = (w∗
1(t), w

∗
2(t), · · · , w∗

s(t))
T =

1
K

K∑
c=1

wc(t), (6) turns into

ẇ∗(t) =
1

K

K∑
c=1

ẇc(t)

=
1

K

K∑
c=1

Ỹ d̂(wc(t)) +
1

K

K∑
c=1

Ỹũc(t)

+
1

K

n∑
m=1

K∑
j=1

lm

( K∑
c=1

Sm
cj

)
ỸÃmwj(t)

=
1

K

K∑
c=1

Ỹ d̂(wc(t)) +
1

K

K∑
c=1

Ỹũc(t).

Letting υi(t) = wi(t)− w∗(t), one acquires

υ̇i(t) = ẇi(t)− ẇ∗(t)

= Ỹ d̂(wi(t))−
1

K

K∑
c=1

Ỹ d̂(wc(t))

+

n∑
m=1

K∑
j=1

lmSm
ij ỸÃmwj(t)

+Ỹũi(t)−
1

K

K∑
c=1

Ỹũc(t), i = 1, 2, · · · ,K, (7)

where υ(t) = (υT1 (t), υ
T
2 (t), · · · , υTK(t))T .

Definition 3.1. Network (1) is output synchronized if

lim
t→+∞

∥∥∥∥∥wi(t)−
1

K

K∑
c=1

wc(t)

∥∥∥∥∥ = 0

for any i = 1, 2, · · · ,K.
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For ensuring the output synchronization for network (1), we
design a PID controller as follows:

ũi(t) =

n∑
m=1

bmP

 K∑
j=1

Zm
ij Ãmwj(t)− wi(t) + w∗(t)


+

n∑
m=1

K∑
j=1

bmDZm
ij Ãmẇj(t)

+

n∑
m=1

bmI

 K∑
j=1

Zm
ij Ãm

∫ t

0

wj(ρ)dρ

−
∫ t

0

wi(ρ)dρ+

∫ t

0

w∗(ρ)dρ

)
, (8)

in which i = 1, 2, · · · ,K;R ∋ bmP > 0;R ∋ bmD ⩾ 0;R ∋
bmI ⩾ 0;RK×K ∋ Zm = (Zm

ij )K×K;

R ∋ Zm
ij =


Zm

ji > 0, if (i, j) ∈ E ,

−
K∑

r=1
r ̸=i

Zm
ir , if i = j,

0, otherwise.

Remark 2. To further reinforce the performance of network
synchronization, the state of node relies on not only “present”
feedback but also “past” information or “future” tendency.
Therefore, PD, PI, PID control schemes and their variations
have attracted considerable attention, and numerous results
have also been published [45]–[52]. Moreover, compared with
existing works related to output synchronization and H∞ out-
put synchronization [20]–[27], [36], [37], most of authors only
considered “present” feedback. Consequently, it is meaningful
to discuss PID-based output synchronization and H∞ output
synchronization for MOCCNs.

A. PD Control for Output Synchronization for MOCCNs

Taking bmI = 0, it is deduced from (8) that

ũi(t) =

n∑
m=1

bmP

 K∑
j=1

Zm
ij Ãmυj(t)− υi(t)


+

n∑
m=1

K∑
j=1

bmDZm
ij Ãmυ̇j(t), i = 1, 2, · · · ,K, (9)

where R ∋ bmP > 0;R ∋ bmD > 0.
By (7) and (9), we can obtain

υ̇i(t) = Ỹ d̂(wi(t))−
1

K

K∑
c=1

Ỹ d̂(wc(t))

+

n∑
m=1

K∑
j=1

lmSm
ij ỸÃmυj(t)

+

n∑
m=1

bmP

 K∑
j=1

Zm
ij ỸÃmυj(t)− Ỹυi(t)


+

n∑
m=1

K∑
j=1

bmDZm
ij ỸÃmυ̇j(t)

− 1

K

K∑
c=1

Ỹũc(t), i = 1, 2, · · · ,K. (10)

Theorem 3.1. If the following condition fulfills

IK ⊗

(
ỸH − αIk −

n∑
m=1

bmP Ỹ

)
+

n∑
m=1

(bmP Zm

+lmSm)⊗ (ỸÃm) ⩽ 0, (11)

then network (1) is the output synchronized via PD controller
(9).

Proof. For network (10), a Lyapunov functional is proposed
as follows:

V1(t) =

K∑
i=1

υTi (t)υi(t)

−
n∑

m=1

bmDυ
T (t)[Zm ⊗ (ỸÃm)]υ(t). (12)

From (12), one gets

V̇1(t) = 2

K∑
i=1

υTi (t)υ̇i(t)

−2

n∑
m=1

bmDυ
T (t)[Zm ⊗ (ỸÃm)]υ̇(t)

= 2

K∑
i=1

υTi (t)

[
Ỹ d̂(wi(t))−

1

K

K∑
c=1

Ỹ d̂(wc(t))

−Ỹ d̂(w∗(t)) + Ỹ d̂(w∗(t))− 1

K

K∑
c=1

Ỹũc(t)

+

n∑
m=1

K∑
j=1

(bmP Zm
ij + lmSm

ij )ỸÃmυj(t)

−
n∑

m=1

bmP Ỹυi(t) +
n∑

m=1

K∑
j=1

bmDZm
ij ỸÃmυ̇j(t)

]

−2

n∑
m=1

bmDυ
T (t)[Zm ⊗ (ỸÃm)]υ̇(t)

= 2

K∑
i=1

υTi (t)Ỹ
(
d̂(wi(t))− d̂(w∗(t))

)
+2

n∑
m=1

K∑
i=1

K∑
j=1

(bmP Zm
ij +lmSm

ij )υ
T
i (t)ỸÃmυj(t)

−2

n∑
m=1

K∑
i=1

bmP υ
T
i (t)Ỹυi(t) + 2

K∑
i=1

υTi (t)Ỹ ×(
d̂(w∗(t))− 1

K

K∑
c=1

d̂(wc(t))−
1

K

K∑
c=1

ũc(t)

)
.(13)

Obviously, we have
K∑
i=1

υTi (t)Ỹ
(
d̂(wi(t))− d̂(w∗(t))

)
⩽

K∑
i=1

υTi (t)(ỸH − αIk)υi(t). (14)
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Moreover, since

K∑
i=1

υi(t) =

K∑
i=1

(wi(t)− w∗(t))

=

K∑
i=1

(
wi(t)−

1

K

K∑
c=1

wc(t)

)

=

K∑
i=1

wi(t)−
K∑

c=1

wc(t)

= 0,

it can be proved that

K∑
i=1

υTi (t)Ỹ

(
d̂(w∗(t))− 1

K

K∑
c=1

d̂(wc(t))

− 1

K

K∑
c=1

ũc(t)

)
= 0. (15)

Substituting (14) and (15) into (13), one acquires

V̇1(t) ⩽ 2

K∑
i=1

υTi (t)

(
ỸH − αIk −

n∑
m=1

bmP Ỹ

)
υi(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

(bmP Zm
ij +lmSm

ij )υ
T
i (t)ỸÃmυj(t)

= υT (t)

[
2IK ⊗

(
ỸH − αIk −

n∑
m=1

bmP Ỹ

)

+2

n∑
m=1

(bmP Zm + lmSm)⊗ (ỸÃm)

]
υ(t)

⩽ ϖ2(F1)υ
T (t)υ(t), (16)

where F1 = 2IK ⊗
(
ỸH − αIk −

∑n
m=1 b

m
P Ỹ
)

+

2
∑n

m=1(b
m
P Zm + lmSm)⊗ (ỸÃm).

Using (12) and (16), we can get

V̇1(t) ⩽ ϖ2(F1)∥υ(t)∥2,
ϖ1(F2)∥υ(t)∥2 ⩽ V1(t) ⩽ ϖ2(F2)∥υ(t)∥2, (17)

in which F2 = IKk −
∑n

m=1 b
m
D [Zm ⊗ (ỸÃm)].

Then, one yields

V̇1(t) ⩽
ϖ2(F1)

ϖ2(F2)
V1(t).

Consequently, we can derive

V1(t) ⩽ V1(0)exp
ϖ2(F1)

ϖ2(F2)
t
. (18)

Combining (17) with (18), one obtains

∥υ(t)∥ ⩽

√
ϖ2(F2)

ϖ1(F2)
∥υ(0)∥exp

ϖ2(F1)

2ϖ2(F2)
t
.

Therefore, network (1) can achieve output synchronization
via PD controller (9).

B. PI Control for Output Synchronization for MOCCNs

Letting bmD = 0, we can acquire from (8) that

ũi(t) =

n∑
m=1

bmP

 K∑
j=1

Zm
ij Ãmυj(t)− υi(t)


+

n∑
m=1

bmI

 K∑
j=1

Zm
ij Ãm

∫ t

0

υj(ρ)dρ−
∫ t

0

υi(ρ)dρ


=

n∑
m=1

bmP

 K∑
j=1

Zm
ij Ãmυj(t)− υi(t)


+

n∑
m=1

bmI

 K∑
j=1

Zm
ij Ãmϵj(t)− ϵi(t)

 , (19)

where i = 1, 2, · · · ,K;R ∋ bmP > 0;R ∋ bmI > 0;Rs ∋
ϵi(t) = (ϵi1(t), ϵi2(t), · · · , ϵis(t)) =

∫ t

0
υi(ρ)dρ.

From (7) and (19), one derives

υ̇i(t) = Ỹ d̂(wi(t))−
1

K

K∑
c=1

Ỹ d̂(wc(t))

+

n∑
m=1

K∑
j=1

lmSm
ij ỸÃmυj(t)−

1

K

K∑
c=1

Ỹũc(t)

+

n∑
m=1

bmP

 K∑
j=1

Zm
ij ỸÃmυj(t)− Ỹυi(t)


+

n∑
m=1

bmI

 K∑
j=1

Zm
ij ỸÃmϵj(t)− Ỹϵi(t)

 ,

ϵ̇i(t) = υi(t), i = 1, 2, · · · ,K, (20)

in which ϵ(t) = (ϵT1 (t), ϵ
T
2 (t), · · · , ϵTK(t))T .

Theorem 3.2. If the following conditions fulfill(
Is Is
Is Ẑ

)
> 0 (21)(

F1 + (2 + δ2)IKk F3

FT
3 F4

)
⩽ 0 (22)

where Ẑ =
∑n

m=1 b
m
P Ỹ −

∑n
m=1

∑K
j=1 b

m
I Zm

ij ỸÃm, F3 =∑n
m=1(b

m
P Zm + lmSm) ⊗ (ỸÃm), F4 = IK ⊗ (Ỹ2 −

2
∑n

m=1 b
m
I Ỹ)+ 2

∑n
m=1 b

m
I Zm ⊗ (ỸÃm), then network (1)

can achieve the output synchronization under PI controller
(19).

Proof. For network (20), a Lyapunov functional is formu-
lated as follows:

V2(t) =

K∑
i=1

υ̃Ti (t)

(
Is Is
Is Ẑ

)
υ̃i(t), (23)

in which υ̃i(t) = (υTi (t), ϵ
T
i (t))

T .
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According to (23), we can obtain

V̇2(t) = 2

K∑
i=1

υ̃Ti (t)

(
Is Is
Is Ẑ

)
˙̃υi(t)

= 2

K∑
i=1

(
υTi (t)υ̇i(t) + υTi (t)ϵ̇i(t) + ϵTi (t)υ̇i(t)

+ϵTi (t)Ẑ ϵ̇i(t)
)

= 2

K∑
i=1

(υTi (t) + ϵTi (t))

[
Ỹ d̂(wi(t))− Ỹ d̂(w∗(t))

− 1

K

K∑
c=1

Ỹ d̂(wc(t))+Ỹ d̂(w∗(t))− 1

K

K∑
c=1

Ỹũc(t)

+

n∑
m=1

K∑
j=1

(bmP Zm
ij + lmSm

ij )ỸÃmυj(t)

−
n∑

m=1

bmP Ỹυi(t) +
n∑

m=1

K∑
j=1

bmI Zm
ij ỸÃmϵj(t)

−
n∑

m=1

bmI Ỹϵi(t)

]
+ 2

K∑
i=1

υTi (t)υi(t)

+2

n∑
m=1

K∑
i=1

bmP ϵ
T
i (t)Ỹυi(t)

−2

n∑
m=1

K∑
i=1

K∑
j=1

bmI Zm
ij ϵ

T
i (t)ỸÃmυj(t)

= 2

K∑
i=1

(υTi (t) + ϵTi (t))
(
Ỹ d̂(wi(t))− Ỹ d̂(w∗(t))

)
+2

n∑
m=1

K∑
i=1

K∑
j=1

(bmP Zm
ij +lmSm

ij )υ
T
i (t)ỸÃmυj(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

(bmP Zm
ij +lmSm

ij )ϵ
T
i (t)ỸÃmυj(t)

+2

K∑
i=1

(
υTi (t)υi(t)−

n∑
m=1

bmP υ
T
i (t)Ỹυi(t)

)

+2

n∑
m=1

K∑
i=1

K∑
j=1

bmI Zm
ij ϵ

T
i (t)ỸÃmϵj(t)

−2

n∑
m=1

K∑
i=1

bmI ϵ
T
i (t)Ỹϵi(t)

+2

K∑
i=1

(υTi (t) + ϵTi (t))Ỹ

(
d̂(w∗(t))

− 1

K

K∑
c=1

d̂(wc(t))−
1

K

K∑
c=1

ũc(t)

)

⩽ 2

K∑
i=1

υTi (t)

[
ỸH − (α− 1)Ik −

n∑
m=1

bmP Ỹ

]
υi(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

(bmP Zm
ij +lmSm

ij )υ
T
i (t)ỸÃmυj(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

(bmP Zm
ij +lmSm

ij )ϵ
T
i (t)ỸÃmυj(t)

+

K∑
i=1

ϵTi (t)Ỹ2ϵi(t) + δ2
K∑
i=1

υTi (t)υi(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

bmI Zm
ij ϵ

T
i (t)ỸÃmϵj(t)

−2

n∑
m=1

K∑
i=1

bmI ϵ
T
i (t)Ỹϵi(t)

= υT (t)
[
F1 + (2 + δ2)IKk

]
υ(t) + 2ϵT (t)F3υ(t)

+ϵT (t)F4ϵ(t)

= υ̃T (t)

(
F1 + (2 + δ2)IKk F3

FT
3 F4

)
υ̃(t)

⩽ ϱ1υ̃
T (t)υ̃(t), (24)

where ϱ1 = ϖ2

((
F1 + (2 + δ2)IKk F3

FT
3 F4

))
, υ̃(t) =

(υT (t), ϵT (t))T .
Similar to the proof of Theorem 3.1, it is easy to obtain that

ϖ1(F5)∥υ̃(t)∥2 ⩽ V2(t) ⩽ ϖ2(F5)∥υ̃(t)∥2,
V2(t) ⩽ V2(0)exp

ϱ1
ϖ2(F5)

t
,

in which F5 =

(
Is Is
Is Ẑ

)
.

Accordingly, one yields

∥υ(t)∥ ⩽ ∥υ̃(t)∥ ⩽

√
ϖ2(F5)

ϖ1(F5)
∥υ̃(0)∥exp

ϱ1
2ϖ2(F5)

t
. (25)

Therefore, network (1) under PI controller (9) realizes
output synchronization. □

IV. H∞ OUTPUT SYNCHRONIZATION FOR MOCCNS

In this section, we not only investigate PD-based H∞
output synchronization for MOCCNs, but also establish several
sufficient conditions for guaranteeing the H∞ output synchro-
nization for MOCCNs by exploiting a PI control strategy.

From network (2), the following equations can be derived:
˙̃pi(t) = d̃(p̃i(t)) +

n∑
m=1

K∑
j=1

lmSm
ij Ãmwj(t)

+ε̃i(t) + ũi(t),

wi(t) = Ỹ p̃i(t), i = 1, 2, · · · ,K,

(26)

where some parameters p̃i(t), d̃(p̃i(t)), Ãm, ũi(t), Ỹ are iden-
tical as those parameters of the Section III and Rs ∋ ε̃i(t) =
(εi1(t), εi2(t), · · · , εis(t))T .

According to (6) and (26), we can get

ẇi(t) = Ỹ d̂(wi(t)) +

n∑
m=1

K∑
j=1

lmSm
ij ỸÃmwj(t)

+Ỹ ε̃i(t) + Ỹũi(t), (27)
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Defining w∗(t) = (w∗
1(t), w

∗
2(t), · · · , w∗

s(t))
T =

1
K

K∑
c=1

wc(t), (27) turns into

ẇ∗(t) =
1

K

K∑
c=1

Ỹ d̂(wc(t)) +
1

K

K∑
c=1

Ỹũc(t) +
1

K

K∑
c=1

Ỹ ε̃c(t)

+
1

K

n∑
m=1

K∑
j=1

lm

( K∑
c=1

Sm
cj

)
ỸÃmwj(t)

=
1

K

K∑
c=1

Ỹ d̂(wc(t)) +
1

K

K∑
c=1

Ỹũc(t) +
1

K

K∑
c=1

Ỹ ε̃c(t).

Denoting υi(t) = wi(t)− w∗(t), one yields

υ̇i(t) = Ỹ d̂(wi(t))−
1

K

K∑
c=1

Ỹ d̂(wc(t))

+

n∑
m=1

K∑
j=1

lmSm
ij ỸÃmwj(t) + Ỹũi(t)

− 1

K

K∑
c=1

Ỹũc(t)+Ỹ ε̃i(t)−
1

K

K∑
c=1

Ỹ ε̃c(t), (28)

in which i = 1, 2, · · · K; υ(t) = (υT1 (t), υ
T
2 (t), · · · , υTK(t))T .

Definition 4.1. Network (2) realizes H∞ output synchro-
nization if

K∑
i=1

∫ tρ

0

υTi (ρ)υi(ρ)dρ ⩽ W(0) + ϕ2
K∑
i=1

∫ tρ

0

ε̃Ti (ρ)ε̃i(ρ)dρ

for any Rn ∋ tρ > 0; R ∋ ϕ > 0, and W(·) refers to the
non-negative function.

For guaranteeing the H∞ output synchronization for net-
work (2), a PID controller can be developed as follows:

ũi(t) =

n∑
m=1

b̃mP

 K∑
j=1

Z̃m
ij Ãmwj(t)− wi(t) + w∗(t)


+

n∑
m=1

K∑
j=1

b̃mDZ̃m
ij Ãmẇj(t)

+

n∑
m=1

b̃mI

 K∑
j=1

Z̃m
ij Ãm

∫ t

0

wj(ρ)dρ

−
∫ t

0

wi(ρ)dρ+

∫ t

0

w∗(ρ)dρ

)
, (29)

where i = 1, 2, · · · ,K;R ∋ b̃mP > 0;R ∋ b̃mD ⩾ 0;R ∋ b̃mI ⩾
0;RK×K ∋ Z̃m = (Z̃m

ij )K×K;

R ∋ Z̃m
ij =


Z̃m

ji > 0, if (i, j) ∈ E ,

−
K∑

r=1
r ̸=i

Z̃m
ir , if i = j,

0, otherwise.

A. PD Control for H∞ Output Synchronization for MOCCNs

Taking b̃mI = 0, it is deduced from (29) that

ũi(t) =

n∑
m=1

b̃mP

 K∑
j=1

Z̃m
ij Ãmυj(t)− υi(t)


+

n∑
m=1

K∑
j=1

b̃mDZ̃m
ij Ãmυ̇j(t), (30)

in which i = 1, 2, · · · ,K;R ∋ b̃mP > 0;R ∋ b̃mD > 0.
From (28) and (30), we can get

υ̇i(t) = Ỹ d̂(wi(t))−
1

K

K∑
c=1

Ỹ d̂(wc(t))

+

n∑
m=1

K∑
j=1

lmSm
ij ỸÃmυj(t) + Ỹ ε̃i(t)

+
n∑

m=1

b̃mP

 K∑
j=1

Z̃m
ij ỸÃmυj(t)− Ỹυi(t)


+

n∑
m=1

K∑
j=1

b̃mDZ̃m
ij ỸÃmυ̇j(t)

− 1

K

K∑
c=1

Ỹũc(t)−
1

K

K∑
c=1

Ỹ ε̃c(t), (31)

where i = 1, 2, · · · ,K.
Theorem 4.1. If the following condition fulfills

IK ⊗

[
ỸH −

(
α− 1

2

)
Ik −

n∑
m=1

b̃mP Ỹ +
Ỹ2

2ϕ2

]

+

n∑
m=1

(b̃mP Z̃m + lmSm)⊗ (ỸÃm) ⩽ 0, (32)

then network (2) can realize the H∞ output synchronization
under PD controller (30).

Proof. For network (31), a Lyapunov functional is presented
as follows:

V3(t) =
K∑
i=1

υTi (t)υi(t)−
n∑

m=1

b̃mDυ
T (t)

[
Z̃m ⊗ (ỸÃm)

]
υ(t).

Accordingly, one obtains

V̇3(t) = 2

S∑
i=1

υTi (t)

[
Ỹ d̂(wi(t))− Ỹ d̂(w∗(t))

− 1

K

K∑
c=1

Ỹ d̂(wc(t)) + Ỹ d̂(w∗(t))

+

n∑
m=1

K∑
j=1

lmSm
ij ỸÃmυj(t) + Ỹ ε̃i(t)

+

n∑
m=1

b̃mP

 K∑
j=1

Z̃m
ij ỸÃmυj(t)− Ỹυi(t)


+

n∑
m=1

K∑
j=1

b̃mDZ̃m
ij ỸÃmυ̇j(t)
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− 1

K

K∑
c=1

Ỹũc(t)−
1

K

K∑
c=1

Ỹ ε̃c(t)

]

−2

n∑
m=1

b̃mDυ
T (t)[Z̃m ⊗ (ỸÃm)]υ̇(t)

⩽ 2

K∑
i=1

υTi (t)

(
ỸH − αIk −

n∑
m=1

b̃mP Ỹ

)
υi(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

(b̃mP Z̃m
ij +lmSm

ij )υ
T
i (t)ỸÃmυj(t)

+2

K∑
i=1

υTi (t)Ỹ ε̃i(t). (33)

From (33), we can derive

V̇3(t) +

K∑
i=1

υTi (t)υi(t)− ϕ2
K∑
i=1

ε̃Ti (t)ε̃i(t)

⩽ 2

K∑
i=1

υTi (t)

(
ỸH − αIk −

n∑
m=1

b̃mP Ỹ

)
υi(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

(b̃mP Z̃m
ij +lmSm

ij )υ
T
i (t)ỸÃmυj(t)

+2

K∑
i=1

υTi (t)Ỹ ε̃i(t) +
K∑
i=1

υTi (t)υi(t)

−ϕ2
K∑
i=1

ε̃Ti (t)ε̃i(t)

⩽ 2

K∑
i=1

υTi (t)

[
ỸH −

(
α− 1

2

)
Ik −

n∑
m=1

b̃mP Ỹ

]
υi(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

(b̃mP Z̃m
ij +lmSm

ij )υ
T
i (t)ỸÃmυj(t)

+
1

ϕ2

K∑
i=1

υTi (t)Ỹ2υi(t)

= υT (t)

{
2IK⊗

[
ỸH−

(
α− 1

2

)
Ik−

n∑
m=1

b̃mP Ỹ+
Ỹ2

2ϕ2

]

+2

n∑
m=1

(b̃mP Z̃m + lmSm)⊗ (ỸÃm)

}
υ(t). (34)

In view of (32) and (34), one gets
K∑
i=1

υTi (t)υi(t) ⩽ −V̇3(t) + ϕ2
K∑
i=1

ε̃Ti (t)ε̃i(t).

Accordingly, we can acquire
K∑
i=1

∫ tρ

0

υTi (ρ)υi(ρ)dρ ⩽ V3(0)− V3(tρ)

+ϕ2
K∑
i=1

∫ tρ

0

ε̃Ti (ρ)ε̃i(ρ)dρ

⩽ V3(0)+ϕ
2

K∑
i=1

∫ tρ

0

ε̃Ti (ρ)ε̃i(ρ)dρ

for any R ∋ tρ > 0.
Consequently, network (2) via PD controller (30) can

realize the H∞ output synchronization.

B. PI Control for H∞ Output Synchronization for MOCCNs

Letting b̃mD = 0, we can derive from (29) that

ũi(t) =

n∑
m=1

b̃mP

 K∑
j=1

Z̃m
ij Ãmυj(t)− υi(t)


+

n∑
m=1

b̃mI

 K∑
j=1

Z̃m
ij Ãmϵj(t)− ϵi(t)

 , (35)

where i = 1, 2, · · · ,K;R ∋ b̃mP > 0;R ∋ b̃mI > 0;Rn ∋
ϵi(t) = (ϵi1(t), ϵi2(t), · · · , ϵis(t)) =

∫ t

0
υi(ρ)dρ.

By (28) and (35), one obtaines

υ̇i(t) = Ỹ d̂(wi(t))−
1

K

K∑
c=1

Ỹ d̂(wc(t))

+

n∑
m=1

K∑
j=1

lmSm
ij ỸÃmυj(t) + Ỹ ε̃i(t)

+

n∑
m=1

b̃mP

 K∑
j=1

Z̃m
ij ỸÃmυj(t)− Ỹυi(t)


+

n∑
m=1

b̃mI

 K∑
j=1

Z̃m
ij ỸÃmϵj(t)− Ỹϵi(t)


− 1

K

K∑
c=1

Ỹũc(t)−
1

K

K∑
c=1

Ỹ ε̃c(t),

ϵ̇i(t) = υi(t), i = 1, 2, · · · ,K, (36)

in which ϵ(t) = (ϵT1 (t), ϵ
T
2 (t), · · · , ϵTK(t))T .

Theorem 4.2. If the following conditions fulfill(
Is Is

Is
ˆ̃Z

)
> 0, (37)(

F5 F3

FT
3 F6

)
⩽ 0, (38)

where ˆ̃Z =
∑n

m=1 b̃
m
P Ỹ −

∑n
m=1

∑K
j=1 b̃

m
I Z̃m

ij ỸÃm, F5 =

2IK ⊗
[
ỸH −

(
α− 3

2 − δ2
)
Ik −

∑n
m=1 b̃

m
P Ỹ + Ỹ2

ϕ2

]
, F6 =

IK⊗
(
Ỹ2 − 2

∑n
m=1 b̃

m
I Ỹ + 2Ỹ2

ϕ2

)
+2
∑n

m=1 b̃
m
I Z̃ ⊗ (ỸÃm),

then network (2) can achieve the H∞ output synchronization
under PI controller (35).

Proof. For network (36), a Lyapunov functional is selected
as follows:

V4(t) =

K∑
i=1

υ̃Ti (t)

(
Is Is

Is
ˆ̃Z

)
υ̃i(t).
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Then, we have

V̇4(t) = 2

K∑
i=1

(υTi (t) + ϵTi (t))

[
Ỹ d̂(wi(t))− Ỹ d̂(w∗(t))

− 1

K

K∑
c=1

Ỹ d̂(wc(t)) + Ỹ d̂(w∗(t)) + Ỹ ε̃i(t)

+

n∑
m=1

K∑
j=1

(b̃mP Z̃m
ij + lmSm

ij )ỸÃmυj(t)

−
n∑

m=1

b̃mP Ỹυi(t) +
n∑

m=1

K∑
j=1

b̃mI Z̃m
ij ỸÃmϵj(t)

−
n∑

m=1

b̃mI Ỹϵi(t)−
1

K

K∑
c=1

Ỹũc(t)−
1

K

K∑
c=1

Ỹ ε̃c(t)

]

+2

K∑
i=1

υTi (t)υi(t) + 2

n∑
m=1

K∑
i=1

b̃mP ϵ
T
i (t)Ỹυi(t)

−2

n∑
m=1

K∑
i=1

K∑
j=1

b̃mI Z̃m
ij ϵ

T
i (t)ỸÃmυj(t)

⩽ 2

K∑
i=1

υTi (t)

[
ỸH − (α− 1)Ik −

n∑
m=1

b̃mP Ỹ

]
υi(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

(b̃mP Z̃m
ij +lmSm

ij )υ
T
i (t)ỸÃmυj(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

(b̃mP Z̃m
ij +lmSm

ij )ϵ
T
i (t)ỸÃmυj(t)

+2

K∑
i=1

υTi (t)Ỹ ε̃i(t) + 2

K∑
i=1

ϵTi (t)Ỹ ε̃i(t)

+

K∑
i=1

ϵTi (t)Ỹ2ϵi(t) + δ2
K∑
i=1

υTi (t)υi(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

b̃mI Z̃m
ij ϵ

T
i (t)ỸÃmϵj(t)

−2

n∑
m=1

K∑
i=1

b̃mI ϵ
T
i (t)Ỹϵi(t). (39)

According to (39), one derives

V̇4(t) +

K∑
i=1

υTi (t)υi(t)− ϕ2
K∑
i=1

ε̃Ti (t)ε̃i(t)

⩽ 2

K∑
i=1

υTi (t)

[
ỸH −

(
α− 3

2

)
Ik −

n∑
m=1

b̃mP Ỹ

]
υi(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

(b̃mP Z̃m
ij +lmSm

ij )υ
T
i (t)ỸÃmυj(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

(b̃mP Z̃m
ij +lmSm

ij )ϵ
T
i (t)ỸÃmυj(t)

+2

K∑
i=1

υTi (t)Ỹ ε̃i(t) + 2

K∑
i=1

ϵTi (t)Ỹ ε̃i(t)

+

K∑
i=1

ϵTi (t)Ỹ2ϵi(t) + δ2
K∑
i=1

υTi (t)υi(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

b̃mI Zm
ij ϵ

T
i (t)ỸÃmϵj(t)

−2

n∑
m=1

K∑
i=1

b̃mI ϵ
T
i (t)Ỹϵi(t)− ϕ2

K∑
i=1

ε̃Ti (t)ε̃i(t)

⩽ 2

K∑
i=1

υTi (t)

[
ỸH−

(
α− 3

2
−δ2

)
Ik−

n∑
m=1

b̃mP Ỹ

]
υi(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

(b̃mP Z̃m
ij +lmSm

ij )υ
T
i (t)ỸÃmυj(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

(b̃mP Z̃m
ij +lmSm

ij )ϵ
T
i (t)ỸÃmυj(t)

+

K∑
i=1

ϵTi (t)Ỹ2ϵi(t)− 2

n∑
m=1

K∑
i=1

b̃mI ϵ
T
i (t)Ỹϵi(t)

+2

n∑
m=1

K∑
i=1

K∑
j=1

b̃mI Z̃m
ij ϵ

T
i (t)ỸÃmϵj(t)

+
2

ϕ2

K∑
i=1

υTi (t)Ỹ2υi(t) +
2

ϕ2

K∑
i=1

ϵTi (t)Ỹ2ϵi(t)

= υ̃T (t)

(
F5 F3

FT
3 F6

)
υ̃(t).

By (38) and the similar proof of Theorem 3.2, it can be
easily proved that

K∑
i=1

∫ tρ

0

υTi (ρ)υi(ρ)dρ ⩽ V4(0) + ϕ2
K∑
i=1

∫ tρ

0

ε̃Ti (ρ)ε̃i(ρ)dρ

for any R ∋ tρ > 0.
Consequently, network (2) via PI controller (35) can realize

the H∞ output synchronization.
Remark 3. More recently, a great deal of attention has

been drawn to H∞ and H∞ output synchronization for CNs,
with many profound results established [28]–[32], [34], [35].
Unfortunately, very few authors have considered H∞ output
synchronization for MWCNs [33], [36], [37]. It is worth
pointing out that the results in this paper have been extended
to the case that H∞ output synchronization of MOCCNs
under PID control. In this section, several sufficient conditions
are established for ensuring H∞ output synchronization by
using inequality techniques, and H∞ output synchronization
problem for MOCCNs is also dealt with on the basis of PID
control strategies [see Theorems 4.1-4.2].

V. NUMERICAL EXAMPLES

To illustrate the validity of theoretical results, two numerical
examples are given here.
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b1P = 3.8933, b2P = 3.8933, b3P = 3.8933,

Z1 =


−2.8007 0.9952 0 0.9543 0.8511 0
0.9952 −2.8013 0.9516 0 0 0.8546

0 0.9516 −1.9204 0 0 0.9688
0.9543 0 0 −1.9132 0.9589 0
0.8511 0 0 0.9589 −2.8084 0.9984

0 0.8546 0.9688 0 0.9984 −2.8218

 ,

Z2 =


−1.3882 0.4944 0 0.5288 0.3650 0
0.4944 −1.3697 0.5200 0 0 0.3553

0 0.5200 −1.0315 0 0 0.5115
0.5288 0 0 −1.0564 0.5277 0
0.3650 0 0 0.5277 −1.3826 0.4898

0 0.3553 0.5115 0 0.4898 −1.3566

 , (40)

Z3 =


−0.9274 0.3745 0 0.3321 0.2208 0
0.3745 −0.9450 0.3290 0 0 0.2415

0 0.3290 −0.6832 0 0 0.3542
0.3321 0 0 −0.6749 0.3427 0
0.2208 0 0 0.3427 −0.9340 0.3705

0 0.2415 0.3542 0 0.3705 −0.9662

 ,

b1P = 13.9410, b2P = 13.9410, b3P = 13.9410,

Z1 =


−6.1986 3.0962 3.1023 0 0
3.0962 −9.2651 3.0235 0 3.1454
3.1023 3.0235 −9.2639 3.1381 0

0 0 3.1381 −6.4449 3.3068
0 3.1454 0 3.3068 −6.4523

 ,

Z2 =


−5.7356 2.8636 2.8720 0 0
2.8636 −8.5673 2.7875 0 2.9162
2.8720 2.7875 −8.5678 2.9083 0

0 0 2.9083 −5.9678 3.0595
0 2.9162 0 3.0595 −5.9757

 , (41)

Z3 =


−6.0175 3.0028 3.0147 0 0
3.0028 −8.9820 2.9134 0 3.0658
3.0147 2.9134 −8.9840 3.0559 0

0 0 3.0559 −6.2599 3.2040
0 3.0658 0 3.2040 −6.2698

 .

Example 5.1. Consider the following network composing of
six Chua’s circuits [20]:

ṗi(t) = d(pi(t))+1.3

K∑
j=1

S1
ijA1wj(t)+0.6

K∑
j=1

S2
ijA2wj(t)

+0.9

K∑
j=1

S3
ijA3wj(t) + ui(t),

wi(t) = Ypi(t), (42)

in which i = 1, 2, · · · , 6,

A1 =

 0.1 0
0 0.3
0 0

 ,A2 =

 0.3 0
0 0.4
0 0

 ,

A3 =

 0.2 0
0 0.5
0 0

 ,Y =

(
2.5 0 0
0 3.5 0

)
,

S1 =


−0.6 0.2 0 0.1 0.3 0
0.2 −0.6 0.1 0 0 0.3
0 0.1 −0.4 0 0 0.3
0.1 0 0 −0.3 0.2 0
0.3 0 0 0.2 −0.7 0.2
0 0.3 0.3 0 0.2 −0.8

 ,

S2 =


−0.4 0.1 0 0.2 0.1 0
0.1 −0.5 0.2 0 0 0.2
0 0.2 −0.3 0 0 0.1
0.2 0 0 −0.4 0.2 0
0.1 0 0 0.2 −0.4 0.1
0 0.2 0.1 0 0.1 −0.4

 ,

S3 =


−0.5 0.2 0 0.2 0.1 0
0.2 −0.7 0.2 0 0 0.3
0 0.2 −0.4 0 0 0.2
0.2 0 0 −0.4 0.2 0
0.1 0 0 0.2 −0.4 0.1
0 0.3 0.2 0 0.1 −0.6

 ,
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Fig. 1. Evolutions of ∥υi(t)∥, i = 1, 2, · · · , 6, in network (1) under PD
controller (9).
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Fig. 2. Change curves of ∥υi(t)∥, i = 1, 2, · · · , 6, in network (1) under PI
controller (19).

d(pi(t)) =

 10(−pi1(t) + pi2(t)− ψ(pi1(t)))
pi1(t)− pi2(t) + pi3(t)
−14.87pi2(t)

 ,

with ψ(pi1(t)) = −0.68pi1(t) + 0.5(−1.27 + 0.68)(|pi1(t) +
1| − |pi1(t)− 1|).

Case 1. Apparently, denote H = 11I2 and α = 1, the func-
tion d̂(·) = (d1(·), d2(·))T fulfills (4). By virtue of MATLAB
YALMIP Toolbox, the following parameters [see (40) at the
top of page 10] can be acquired such that (11) holds. From
Theorem 3.1, network (42) can realize output synchronization
under PD controller (9). Letting b1D = 0.09, b2D = 0.1, b3D =
0.07, the evolutions of υi(t) (i = 1, 2, · · · , 6) are displayed in
Fig. 1.

Case 2. Obviously, take H = 11I2 and α = 1, the function
d̂(·) = (d1(·), d2(·))T fulfills (4). Moreover, we can easily
demonstrate that

∥d̂(σ1)− d̂(σ2)∥ ⩽ 10∥σ1 − σ2∥

for any σ1, σ2 ∈ Rϱ. Define Z1 = S1,Z2 = 1.1 ∗ S2,Z3 =
0.8 ∗S3 and on the basis of MATLAB YALMIP Toolbox, the
following parameters:

b1P = 8.8876, b2P = 14.9866, b3P = 11.9341,

b1I = 3.3112, b2I = 3.8919, b3I = 5.9665,

can be obtained such that (21) and (22) hold. Based on
Theorem 3.2, network (42) can achieve output synchronization
under PI controller (19). The changing curves of υi(t) (i =
1, 2, · · · , 6) are shown in Fig. 2.

Example 5.2. Consider the following network [53]:

ṗi(t) = d(pi(t))+0.5

K∑
j=1

S1
ijA1wj(t)+0.9

K∑
j=1

S2
ijA2wj(t)

+0.7

K∑
j=1

S3
ijA3wj(t) + εi(t) + ui(t),

wi(t) = Ypi(t), (43)

in which i = 1, 2, · · · , 5,

A1 =

 0.6 0
0 0.5
0 0

 ,A2 =

 0.6 0
0 0.7
0 0

 ,

A3 =

 0.5 0
0 0.8
0 0

 ,Y =

(
3 0 0
0 1.5 0

)
,

S1 =


−0.5 0.2 0.3 0 0
0.2 −1.4 0.5 0 0.7
0.3 0.5 −1.2 0.4 0
0 0 0.4 −0.5 0.1
0 0.7 0 0.1 −0.8

 ,

S2 =


−0.6 0.3 0.3 0 0
0.3 −0.9 0.4 0 0.2
0.3 0.4 −0.8 0.1 0
0 0 0.1 −0.2 0.1
0 0.2 0 0.1 −0.3

 ,

S3 =


−0.4 0.2 0.2 0 0
0.2 −0.6 0.1 0 0.3
0.2 0.1 −0.5 0.2 0
0 0 0.2 −0.3 0.1
0 0.3 0 0.1 −0.4

 ,

d(pi(t))=

 −pi1(t) + p2i2(t)
−2pi2(t)
−3pi3(t) + pi2(t)pi3(t)

 .

Case 1. Taking H = diag (2, 3) and α = 1, the function
d̂(·) = (d1(·), d2(·))T fulfills (4). Select ϕ = 1.2 and by
virtue of MATLAB YALMIP Toolbox, the following pa-
rameters [see (41) at the top of page 10] can be acquired
such that (32) holds. From Theorem 4.1, network (43) can
realize H∞ output synchronization under PD controller (30).
Letting b1D = 0.01, b2D = 0.01, b3D = 0.02, and εi(t) =
(1.8i sin(12πt), 1.7i2 sin(12πt), 1.6

√
i sin(12πt))T , the evo-

lutions of υi(t) and εi(t) (i = 1, 2, · · · , 5) are displayed in
Fig. 3.



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 12

t(s)
0 0.05 0.1 0.15

0

10

20

30

40

50

60

70

80

||υ1(t)||

||υ2(t)||

||υ3(t)||

||υ4(t)||

||υ5(t)||

||υ1(t)||, [44]

||υ2(t)||, [44]

||υ3(t)||, [44]

||υ4(t)||, [44]

||υ5(t)||, [44]

||ε1(t)||

||ε2(t)||

||ε3(t)||

||ε4(t)||

||ε5(t)||

Fig. 3. Evolutions of ∥υi(t)∥, ∥εi(t)∥, i = 1, 2, · · · , 5, in network (2)
under PD controller (30).
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Fig. 4. Change curves of ∥υi(t)∥, ∥εi(t)∥, i = 1, 2, · · · , 5, in network (2)
under PI controller (35).

Case 2. Letting H = diag (2, 3) and α = 1, the function
d̂(·) = (d1(·), d2(·))T fulfills (4). In addition, it can be easily
verified that

∥d̂(σ1)− d̂(σ2)∥ ⩽ 2∥σ1 − σ2∥

for any σ1, σ2 ∈ Rϱ. Define ϕ = 0.4,Z1 = 0.5 ∗ S1,Z2 =
0.6 ∗ S2,Z3 = 0.7 ∗ S3 and on the basis of the MATLAB
YALMIP Toolbox, the following parameters:

b1P = 3.5259, b2P = 9.1904, b3P = 17.4043,

b1I = 4.4479, b2I = 7.8420, b3I = 12.7134,

can be obtained such that (37) and (38) hold. Based on
Theorem 4.2, network (43) can achieve H∞ output syn-
chronization under PI controller (35). Denoting εi(t) =
(0.3i sin(8πt), 0.4i2 sin(8πt), 0.5

√
i sin(8πt))T , the changing

curves of υi(t) and εi(t) (i = 1, 2, · · · , 5) are shown in Fig.
4.

Remark 4. In order to compare the performances of PD/PI
control strategies, we also execute the control schemes in [44]

with this paper network parameters. The convergence trends
for norms of synchronization errors in network (42) under
PD/PI control approaches and [44] control approaches are
displayed in Figs. 1-2, respectively. Furthermore, Figs 3-4 are
shown the evolutions of ∥υi(t)∥ and ∥εi(t)∥, (i = 1, 2, · · · , 5)
of network (43) under these control methods. From Fig. 1
to Fig. 4, it can be seen that performances of PD/PI control
strategies are better than [44] control schemes.

VI. CONCLUSION

In this article, we have not only utilized PD control schemes
to tackle output and H∞ output synchronization problems
for MOCCNs, but also established several output and H∞
output synchronization criteria for MOCCNs based on PI
controllers. By using the PD control approaches and Lyapunov
functional, some sufficient conditions for guaranteeing the
output and H∞ output synchronization for MOCCNs have
been acquired. Furthermore, we also have been developed the
PI control strategies to investigate the output and H∞ output
synchronization for MOCCNs based on inequality techniques.
At last, several obtained results have been allowed to verify
by adopting two numerical examples, which illustrate their
effectiveness. In the future, we will combine the PID controller
with the adaptive control strategy to investigate finite-time
synchronization for MWCNs.
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