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Abstract—This paper investigates Ψ-type multistability of al-
most periodic solutions for memristive Cohen-Grossberg neural
networks (MCGNNs). As the inevitable disturbances in biological
neurons, almost periodic solutions are more common in nature
than equilibrium points (EPs). They are also generalizations of
EPs in mathematics. According to the concepts of almost periodic
solutions and Ψ-type stability, this paper presents Ψ-type multi-
stability definition of almost periodic solutions. Compared with
exponential stability and polynomial stability, Ψ-type stability
is more general stability, and generalizes the existing stability
conclusions. The results show that (K+1)n Ψ-type stable almost
periodic solutions can coexist in a MCGNNs with n neurons,
where K is a parameter of the activation functions. The enlarged
attraction basins are also estimated based on the original state
space partition method. Two simulations are given to verify the
theoretical results at the end of this paper.

Index Terms—Memristive Cohen-Grossberg neural networks,
Multiple Ψ-Type stability, Almost periodic solution, Memristor.

I. INTRODUCTION

MEMRISTOR was first proposed by Chua in 1971 [1] ac-
cording to the law of symmetry. In 2008, Strukov et al.

successfully manufactured the first practical memristor device
in HP Labs [2]. Soon after, Pershin and Ventra showed that the
memristor have the characteristics of pinched hysteresis, which
is similar to the neurons in the human brain have [3]. Based
on the above reasons, the memristor can realize important
functions of memory. Inspired by this important discovery,
scientists constructed MCGNNs by using the memristors in
conventional Cohen-Grossberg neural networks instead of re-
sistors. Exploiting MCGNNs will be of great help to build a
brain-like neural computer to realize the synapses in biological
brains [4], [5]. It should be pointed out that the dynamical
analysis of MCGNNs is of great significance in designing the
MCGNNs. Scientists have been exploring this area in the last
few years. Related researches about dynamical behaviors of
MCGNNs are shown as following [6]–[9].
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Among many dynamic behaviors, multistability is one of
the properties most closely related to the reproduction of
human brain memory [10], [11], which refers to the property
of having multiple stable EPs in neural networks system
[12]. In practical applications, multistability is widely used in
associative memory [13]–[17], deep learning [18], [19], pattern
recognition [20], and other fields. For multistability, activation
functions are important in deciding the number of EPs. In
[21], regarding to the piecewise linear activation functions
which have 2r corner points, (r + 1)n local exponentially
EPs can coexist in a n-neurons network. In [22], Guo et al.
investigated multistability in the neural networks with sigmoid
activation functions, they proved that 3n EPs can exist in
a n-neurons network at the same time. In [23], for neural
networks which have Mexican-hat type activation functions,
there are 2k13k2 locally exponentially stable EPs where k1
and k2 are parameters concerned with activation functions. In
[24], the activation functions have 2m + 1 segments and are
odd functions, Zeng and Zheng proved that (m + 1)n stable
EPs can coexist in one system.

In addition to the number of EPs, the convergence speed of
each stable EP has always been the focus of scholars’ research.
According to the Lyapunov method, previous researchers have
extensively studied polynomial stability, exponential stability
and logarithmic stability [25], [26]. These different stabilities
show the different decay speeds to the trivial solution. Then
these stability concepts are generalized as the general decay
stability. Wu and Hu proposed the definition of Ψ-type general
decay stability, and successfully unified the previously stability
types [26]. Zhang et al. discussed the multiple Ψ-type stability
in [27] and [28]. However, these two papers did not take into
account the almost periodic solutions caused by disturbance.

As mentioned above, disturbances can influence the mul-
tistability in neural networks. In [29], Lin and Shih pointed
out that disturbances can lead to the formation of almost pe-
riodic solutions when considering dynamic behavior in neural
networks. They successfully proved that there are 2n stable
attractors in the perturbed systems. Subsequently, Wang et al.
studied the multistability of almost periodic solutions in neural
networks which have different kind of activation functions,
and they found that 2n stable almost periodic solutions can
coexist in a neural network with n neurons [30]. It should
be emphasized that the almost periodic solutions are more
general than EPs. Although the above studies have done
valuable research on the almost periodic solutions, to our best
knowledge, the research on the Ψ-type multistability of the
almost periodic solutions is not thorough.

Based on the above discussions, we will investigate the Ψ-
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type multistability of almost periodic solutions for MCGNNs.
The main innovations are listed below.

1) Using the almost periodic solutions and Ψ-type stability
concepts, this paper presents the definition about Ψ-
type multistability of almost periodic solutions. Compare
with [27], [28] and [31], this paper generalizes the Ψ-
type multistability conclusions of EPs to the almost
periodic solutions.

2) Ψ-type multistability is a more general concept of multi-
stability, the decay rate conditions are weaken than [24],
[32]. At the same time, Ψ-type stability can deduce the
related conclusions, which shows that our conclusion is
an extension of previous works [12], [16].

3) For almost periodic solutions, compare with [29], [30], it
is not necessary for the activation functions to be neither
piecewise linear nor monotonic. The multistability con-
clusions of MCGNNs can be specialized to the CGNNs
in certain conditions [30], [31].

The remaining parts will be arranged as following. The
model of MCGNNs, definitions and assumptions will be
introduced in Section II. The positive invariant sets, and the
coexistence of Ψ-type stable almost periodic state solutions are
proved in Section III. Some simulations will be given to verify
the criteria in Section IV. Conclusions and future outlooks are
listed in section V.

II. PROBLEM FORMULATION

A. Memristive Cohen-Grossberg Neural Networks Model
The parameters of the MCGNNs will vary with the states,

which makes the MCGNNs models different from the common
Cohen-Grossberg neural networks models. According to [12],
here we introduce the following MCGNNs model:

ẋi(t) =Ai(xi(t))

[
− ai(xi(t))xi(t) +

n∑
j=1

bij(t)

× fj(xj(t)) +

n∑
j=1

cij(t)gj(xj(t− τij)) + Ii(t)

+

n∑
j=1

dij(t)

∫ ∞

0

hj(xj(t− s))lj(s)ds

]
, (1)

where i, j ∈ {1, 2, · · · , n}, t ≥ 0. More precisely, xi(t)
represents the state of the i-th neuron; Ai(xi(t)) denotes the
amplification function, ai(xi(t)) stands for the inhibition rate
of the i-th neuron, B(t) = [bij(t)]nn, C(t) = [cij(t)]nn and
D(t) = [dij(t)]nn are connection weight matrices, fj(·), gj(·)
and hj(·) are activation functions, Ii(t) is external input, τij
denotes the bounded continuous delay and τ , maxi,j{τij}.∫∞
0
hj(xj(t− s))lj(s)ds is the distributed delay and there is∫∞

0
eθslj(s)ds < Lj , where θ ∈ (0, 1) is a positive constant

and Lj > 0. It should be noted that in the MCGNNs model,
the inhibition rates depend on the neural state, which means
that

ai(xi(t)) =


ái(t), xi(t) > 0,

(ái(t) + ài(t))/2, xi(t) = 0,

ài(t), xi(t) < 0,

where ái(t), ài(t) are bounded positive functions, the switch-
ing threshold is 0. According to the above state switching
formula, ai(xi(t)) can be converted into the following form

ai(xi(t)) =
ái(t) + ài(t)

2
+ sign(xi(t))

ái(t)− ài(t)

2
,

where sign(·) is the sign function. For convenience, denote
Ai+(t) = [ái(t) + ài(t)]/2, Ai−(t) = [ái(t) − ài(t)]/2 and
Ai+ = inftAi+(t). So the MCGNNs (1) can be transformed
like following

ẋi(t) =Ai(xi(t))

{
− [Ai+(t) + sign(xi(t))Ai−(t)]xi(t)

+
n∑
j=1

bij(t)fj(xj(t)) +
n∑
j=1

cij(t)gj(xj(t− τij))

+
n∑
j=1

dij(t)

∫ ∞

0

hj(xj(t− s))lj(s)ds+ Ii(t)

}
,

=Ai(xi(t))×
{
−Ai+(t)xi(t)−Ai−(t)|xi(t)|

+
n∑
j=1

bij(t)fj(xj(t)) +
n∑
j=1

cij(t)gj(xj(t− τij))

+

n∑
j=1

dij(t)

∫ ∞

0

hj(xj(t− s))lj(s)ds+ Ii(t)

}
.

(2)

Remark 1: If we choose ái(t) = ài(t), the MCGNNs (1)
can be treated as common Cohen-Grossberg neural networks.
Thus this model is a generalization of Cohen-Grossberg neural
networks [30], [31].

For the initial conditions ϕ(s), let C([−τ, 0], Rn) be the
Banach space of continuous functions. Suppose

xi(s) = ϕi(s), s ∈ [−τ, 0], i = 1, 2, · · · , n, (3)

where ϕ(s) = (ϕ1(s), ϕ2(s), · · · , ϕn(s)) ∈ C([−τ, 0], Rn).

B. Ψ-Type Stability of Almost Periodic Solution
Based on the previous works, we need some preliminaries.

Also, a new definition about Ψ-type stability of almost periodic
solution is given.

Definition 1 [26]: Function ψ : R+ → (0,+∞) is Ψ-type
function if the following conditions are satisfied:

1) ψ(t) is nondecreasing and differentiable;
2) ψ(0) = 1 and ψ(+∞) = +∞;
3) Denote ψ̇(t) as the derivative of ψ(t), then ψ̄(t) = ψ̇(t)

ψ(t)
is a nonincreasing function;

4) For ∀t, s ≥ 0, there is ψ(t+ s) ≤ ψ(t)ψ(s).
Definition 2 [30]: Denote x∗(t) : R+ → Rn as the solution

of system (1), x∗(t) is an almost periodic solution if the
following conditions are met:

1) x∗(t) is a continuous function;
2) For ∀ϵ > 0, in arbitrary intervals with length l, there

exists a constant ω = ω(ϵ) satisfying

|x∗(t+ ω)− x∗(t)| ≤ ϵ, ∀t ∈ R.
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Assume x∗(t) is an almost periodic solution in MCGNNs
(1). For the error networks ei(t) = xi(t)−x∗i (t), the definition
about Ψ-type stability of almost periodic solution is presented
as following.

Definition 3: The error networks is Ψ-type stable with
respect to almost periodic solution if there is a positive
constant γ and

lim sup
t→+∞

ln ||e(t)||
lnψ(t)

≤ −γ,

where e(t) = (e1(t), e2(t), · · · , en(t))T , ψ(t) is a Ψ-type
function. Furthermore, γ stands for the convergence rate.

Remark 2: As we mentioned before, Ψ-type stability
can be treated as the generalization of many different
kinds of stability. For example, If ψ(t) takes the functions et,
1+ln(1+ t), and 1+ t, the solution is stable with exponential,
logarithmic, and polynomial decay rate, respectively.

C. Assumptions
For the existence of solution and analysis of multistability,

the following assumptions are needed.
Assumption 1: Ai(·) is bounded and continuous, which

means there exist positive constants Ai, Āi and Ai ≤ Ai(·) ≤
Āi,where i = 1, 2, · · · , n.

Assumption 2: The activation functions fi(·), g(·), h(·) are
bounded and continuous, which means there are positive
constants mfi,mgi,mhi and Mfj ,Mgi,Mhi so that

mfi ≤ fi(·) ≤Mfi, mgi ≤ gi(·) ≤Mgi,

mhi ≤ hi(·) ≤Mhi,

where i = 1, 2, · · · , n.
Assumption 3: Ai+(t), Ai−(t), Bij+(t), Bij−(t), Cij+(t),

Cij−(t), Dij+(t), Dij−(t) Ii(t) are almost periodic, so for
∀ϵ > 0,∃l = l(ϵ) > 0, for ∀t, there is ω = ω(ϵ) in any
intervals with length l satisfying

|Ai+(t+ ω)−Ai+(t)| < ϵ, |Ai−(t+ ω)−Ai−(t)| < ϵ,

|bij(t+ ω)− bij(t)| < ϵ, |cij(t+ ω)− cij(t)| < ϵ,

|dij(t+ ω)− dij(t)| < ϵ, |I(t+ ω)− I(t)| < ϵ.

Moreover, the connection weight need to be bounded, and

Ai+ = inf
t
|Ai+(t)|, Āi− = sup

t
|Ai−(t)|,

B̄ij = sup
t

|bij(t)|, C̄ij = sup
t

|cij(t)|, D̄ij = sup
t

|dij(t)|.

Assumption 4: Given a positive integer K. For i ∈
{1, 2, · · · , n} and k ∈ {1, 2, · · · ,K}, there are pki and qki
such that

−∞ < p
(0)
i < q

(0)
i < p

(1)
i < q

(1)
i

< · · · < p
(K−1)
i < q

(K−1)
i < p

(K)
i < q

(K)
i < +∞.

What is more, assume that there exist λ(k)fi , λ(k)gi , λ(k)hi , µ(k)
fi ,

µ
(k)
gi , µ(k)

hi , such that for ∀y, z ∈ [q
(k−1)
i , p

(k)
i ], y ̸= z,

λ
(k)
fi ≤ fi(y)−fi(z)

y−z ≤ µ
(k)
fi , λ

(k)
gi ≤ gi(y)−gi(z)

y−z ≤ µ
(k)
gi ,

λ
(k)
hi ≤ hi(y)−hi(z)

y−z ≤ µ
(k)
hi .

D. State Space Partition
Suppose I is an interval, we denote that I0 = ∅, I1 = I.

Furthermore, according to Assumption 4, there are

[q
(k−1)
i , p

(k)
i ] =(p

(0)
i , q

(0)
i )0 ∪ · · · ∪ [q

(k−1)
i , p

(k)
i ]1

(p
(k)
i , q

(k)
i )0 ∪ · · · ∪ (p

(K)
i , q

(K)
i )0,

(p
(k)
i , q

(k)
i ) =(p

(0)
i , q

(0)
i )0 ∪ · · · ∪ [q

(k−1)
i , p

(k)
i ]0

(p
(k)
i , q

(k)
i )1 ∪ · · · ∪ (p

(K)
i , q

(K)
i )0,

where k = 1, 2, · · · ,K. So there are (2K + 1)n subsets in∏n
i=1(p

(0)
i , q

(K)
i ). Given a positive integer N , the definition

of set ∆ are shown as following

∆(N) ,
{
(δ1, δ2, · · · , δN )

∣∣∣∣ N∑
i=1

δi = 1, δi = 0 or δi = 1

}
.

Then denote γ(i) = (γ
(i)
1 , · · · , γ(i)2K+1) ∈ ∆(2K + 1) and for

i = 1, 2, · · · , n,

Γγ(i) =

( K∪
k=1

[p
(k−1)
i , q

(k)
i ]γ

(i)
2k

)
∪
( K∪
k=0

(p
(k)
i , q

(k)
i )γ

(i)
2k+1

)
.

Next, suppose

Ω =

{
Γγ =

n∏
i=1

Γγ(i)

∣∣∣∣γ = (γ(1), γ(2), · · · , γ(n)),

γ(i) = (γ
(i)
1 , · · · , γ(i)2K+1) ∈ ∆(2K + 1)

}
.

Then it is obvious that there exist (2K + 1)n elements in Ω.
What is more, in order to distinguish the existence space of
stable solution, suppose

Ω1 =

{
Γ

′

γ =
n∏
i=1

( K∪
k=0

(p
(k)
i , q

(k)
i )γ

(i)
k+1

)∣∣∣∣
γ = (γ(1), γ(2), · · · , γ(n)),

γ(i) = (γ
(i)
1 , · · · , γ(i)K+1) ∈ ∆(K + 1)

}
,

Ω2 =Ω− Ω1.

Easy to see, in Ω1, there exist (K +1)n elements, and in Ω2,
there are (2K+1)n− (K+1)n elements . Here we finish the
state space partition.

III. MAIN RESULTS

The main results are proved in three parts. Firstly, for
each Γ

′

γ ∈ Ω1, this paper will prove that it is the positive
invariance set as shown in Lemma 1-2; Secondly, the Ψ-type
almost periodic solutions characters, existence, multistability
will be shown in Theorem 1-3 respectively; Thirdly, the
enlarged attraction basins will be estimated in Theorem 4.
The proofs will be given in turn below.

A. Positive Invariance
For convenience, denote that

Fi+(t, α) =−Ai+(t)α−Ai−(t)|α|+ bii(t)fi(α)
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+
n∑

j=1,j ̸=i

max{bij(t)mfj , bij(t)Mfj}

+

n∑
j=1

max{cij(t)mgj , cij(t)Mgj}+ Ii(t)

+
n∑
j=1

max{dij(t)Ljmhj , dij(t)LjMhj}, (4)

Fi−(t, α) =−Ai+(t)α−Ai−(t)|α|+ bii(t)fi(α)

+

n∑
j=1,j ̸=i

min{bij(t)mfj , bij(t)Mfj}

+
n∑
j=1

min{cij(t)mgj , cij(t)Mgj}+ Ii(t)

+
n∑
j=1

min{dij(t)Ljmhj , dij(t)LjMhj}. (5)

Now, we give the result of positive invariance as Lemma 1.
Lemma 1: Under Assumptions 1, 2, and 4, if the following

conditions established,

Fi+(t, q(k)i ) < 0, Fi−(t, p(k)i ) > 0, (6)

where k = 1, 2, · · · ,K, i = 1, 2, · · · , n and t > 0, then each
set Γ

′

γ is a positive invariance.
Proof: According to the definition of Ω1, it is obvious that

Γ
′

γ =

n∏
i=1

( K∪
k=0

(p
(k)
i , q

(k)
i )γ

(i)
K+1

)
.

Suppose ϕ(s) ∈ C([−τ, 0], R) is the initial condition of
MCGNNs (1), and x(t) is the state solution with x(s) = ϕ(s)
where s ∈ [−τ, 0]. Then we will show that, once ϕ(0) ∈ Γ

′

γ ,
x(t) will stay in this set for ∀t ≥ 0. Here we use the
contradiction method to illustrate.

If there exist a k ∈ {1, 2, · · · ,K}, β ∈ {1, 2, · · · , n} and
time t1, such that xβ(t) reaches qkβ at time t1, which means

xβ(t1) = q
(k)
β ,

p
(k)
β < xβ(t) < q

(k)
β , t ∈ [0, t1),

ẋβ(t1) ≥ 0.

However, from MCGNNs (1), we know that

ẋβ(t1) =Ai(q
(k)
β )× [−ai(q(k)β )q

(k)
β +

n∑
j=1

bij(t1)fj(xj(t1))

+
n∑
j=1

cij(t1)gj(xj(t1 − τij)) + Ii(t1)

+
n∑
j=1

dij(t1)

∫ ∞

0

hj(xj(t1 − s))lj(s)ds]

≤Ai(q(k)β )×Fi+(t1, q(k)β ) < 0.

So far, we have completed the proof of the contradiction
part. And under the condition that xβ(t) reaches p(k)β , relevant
conclusions can be similarly proved, here we omit it.

So, for all t ≥ 0, x(t) will never get out of Γ
′

γ once ϕ(0) ∈
Γ

′

γ , and Γ
′

γ is a positive invariant set.

Remark 3: From Lemma 1, we can see that only ϕ(0)
is in the positively invariant needed to be guaranteed. Thus
it directly reduces the conservativeness required for initial
conditions.

Lemma 2: If the conditions in Lemma 1 are met, then there
are at least (2K + 1)n EPs in MCGNNs (1).

Proof: According to Lemma 1, it is obviously to get that
Fi−(t, xi(t)) ≤ ẋi(t) ≤ Fi+(t, xi(t)). Denote F(xi(t)) ,
ẋi(t), we have

F(q
(k)
i ) < Fi+(t, q(k)i ) < 0,

F(p
(k)
i ) > Fi−(t, q(k)i ) > 0.

It should be noted that F is a continuous function. By the
intermediate value theorem, for each element Γγ ∈ Ω, there
is one point x̄i ∈ Γγ , so that F(x̄i) = 0 holds. Let set Γ̄γ
be the closure of the set Γγ , where Γ̄γ is a compact convex
set. Construct the following mapping function relationship:
G : Γ̄γ → Γ̄γ and G(x1, x2, · · · , xn) → (x̄1, x̄2, · · · , x̄n).
According to Brouwer’s fixed point theory, there must exist a
fixed point x∗ = (x∗1, x

∗
2, · · · , x∗n) ∈ Γ̄γ so that G(x∗) = x∗,

which follows that x∗ ∈ Γ̄γ is an EP.
Furthermore, as there are (2K + 1)n elements in Ω, so

there exist at least (2K + 1)n EPs in MCGNNs (1). Here we
finish our proof.

B. Existence and Multiple Ψ-type Stability of Almost Periodic
Solutions

In this part, it will be shown that there are (K+1)n Ψ-type
stable almost periodic solutions in MCGNNs (1).

Theorem 1: Under the conditions of Assumption 1-4,
if there exist Ψ-type function ψ(·) and positive constants
Mx, k1, k2, · · · , kn, such that

βψ(0)ψ(t0)
1

Ai
−Ai+ +

n∑
j=1

B̄ij max{|λ(k)fj |, |µ
(k)
fj |}

+ψ(τij)
β

n∑
j=1

[C̄ij max{|λ(k)gj |, |µ
(k)
gj |}

+LjD̄ij max{|λ(k)hj |, |µ
(k)
hj |}] < 0, (7)

1

ki
(
ψ(t0)

ψ(t)
)β

∫ t

0

n∑
j=1

kj(
ψj(s)

ψj(t0)
)βΘjds < 1, (8)

where

Θj =

n∑
j=1

(max{|mfj |, |Mfj |}+max{|mgj |, |Mgj |}

+max{|mhj |, |Mhj |}Lj) + 1 + 2Mx.

Then there exists time T , ∀t > T , neuron state x(t) in Ω1 are
almost periodic.

Proof: Firstly, we define the following Lyapunov function

V (x(t), t) = V1(x(t), t) + V2(x(t), t). (9)

To be more precise, there is β > 0 satisfying

V1(x(t), t) ,
n∑
i=1

ki(
ψ(t)

ψ(t0)
)β
∣∣∣∣ ∫ xi(t+ω)

xi(t)

1

Ai(s)
ds

∣∣∣∣, (10)
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and

V2(x(t), t)

,
n∑
i=1

[ n∑
j=1

kiC̄ij
∫ t

t−τij
(
ψ(s+ τij)

ψ(t0)
)β |gj(xj(s+ ω))

− gj(xj(s))|ds+
n∑
j=1

kiD̄ij
∫ ∞

0

lj(s)

∫ t

t−s
(
ψ(u+ s)

ψ(t0)
)β

× |hj(xj(u+ ω))− hj(xj(u))|duds
]
. (11)

Furthermore, for convenience, we define ∆i+ as following:

∆i+ =− (Ai+(t+ ω)−Ai+(t))xi(t+ ω)−Ai+(t)

× (xi(t+ ω)− xi(t))−Ai−(t+ ω)|xi(t+ ω)|

+Ai−(t)|xi(t)|+
n∑
j=1

((bij(t+ ω)− bij(t))

× fj(xj(t+ ω)) + bij(t)(fj(xj(t+ ω))− fj(xj(t))))

+
n∑
j=1

((cij(t+ ω)− cij(t))gj(xj(t+ ω − τij))

+ cij(t)(gj(xj(t+ ω − τij))− gj(xj(t− τij))))

+
n∑
j=1

((dij(t+ ω)− dij(t))

∫ ∞

0

hj(xj(t+ ω − s))

× lj(s)ds+ dij(t)

∫ ∞

0

lj(s)(hj(xj(t+ ω − s))

− hj(xj(t− s)))ds) + Ii(t+ ω)− Ii(t). (12)

Then, we have the Dini-Derivative of V1(x(t), t)

D+V1(x(t), t)

=
n∑
i=1

ki

{
β

(
ψ(t)

ψ(t0)

)β−1

ψ̇(t)

∣∣∣∣ ∫ xi(t+ω)

xi(t)

1

Ai(s)
ds

∣∣∣∣
+

(
ψ(t)

ψ(t0)

)β
sign(xi(t+ ω)− xi(t))

×
(

ẋi(t+ ω)

Ai(xi(t+ ω))
− ẋi(t)

Ai(xi(t))

)}
=

n∑
i=1

ki

{
β

(
ψ(t)

ψ(t0)

)β−1

ψ̇(t)

∣∣∣∣ ∫ xi(t+ω)

xi(t)

1

Ai(s)
ds

∣∣∣∣
+

(
ψ(t)

ψ(t0)

)β
sign(xi(t+ ω)− xi(t))∆i+

}
. (13)

In D+V1(x(t), t), according to Assumption 1, we find that∣∣∣∣ ∫ xi(t+ω)

xi(t)

1

Ai(s)
ds

∣∣∣∣ ≤ 1

Ai

∣∣∣∣xi(t+ ω)− xi(t)

∣∣∣∣. (14)

For ∆i+, combine with Assumption 3, the following inequa-
tions are established

∆i+ ≤− (Ai+(t+ ω)−Ai+(t))xi(t+ ω)

−Ai+(t)(xi(t+ ω)− xi(t))

−Ai−(t+ ω)|xi(t+ ω)|+Ai−(t)|xi(t)|

+

n∑
j=1

(ϵmax{|mfj |, |Mfj |}

+ Bij(t)|fj(xj(t+ ω))− fj(xj(t))|

+
n∑
j=1

(ϵmax{|mgj |, |Mgj |}

+ Cij(t)|gj(xj(t+ ω − τij))− gj(xj(t− τij))|

+
n∑
j=1

(ϵmax{|mhj |, |Mhj |}Lj

+Dij(t)
∫ ∞

0

|lj(s)||(hj(xj(t+ ω − s))

− hj(xj(t− s)))|ds) + ϵ

=ϵ
n∑
j=1

(max{|mfj |, |Mfj |}+max{|mgj |, |Mgj |}

+max{|mhj |, |Mhj |}Lj + 1)

− (Ai+(t+ ω)−Ai+(t))xi(t+ ω)

−Ai+(t)(xi(t+ ω)− xi(t))

−Ai−(t+ ω)|xi(t+ ω)|+Ai−(t)|xi(t)|

+
n∑
j=1

[Bij(t)|fj(xj(t+ ω))− fj(xj(t))|

+ Cij(t)|gj(xj(t+ ω − τij))− gj(xj(t− τij))|

+Dij(t)
∫ ∞

0

|lj(s)||hj(xj(t+ ω − s))

− hj(xj(t− s))|ds]. (15)

At the same time,

D+V2(x(t), t)

=
n∑
i=1

{ n∑
j=1

kiC̄ij [(
ψ(t+ τij)

ψ(t0)
)β |gj(xj(t+ ω))− gj(xj(t))|

− (
ψ(t)

ψ(t0)
)β |gj(xj(t+ ω − τij))− gj(xj(t− τij))|]

+

n∑
i=1

kiD̄ij
∫ ∞

0

lj(s)[(
ψ(t+ s)

ψ(t0)
)β |hj(xj(t+ ω))

− hj(xj(t))| − (
ψ(t)

ψ(t0)
)β |hj(xj(t+ ω − s))

− hj(xj(t− s))|]ds
}
. (16)

Combine (10)− (16), denote eωi , |xi(t+ ω)− xi(t)|,

D+V (x(t), t)

≤
n∑
i=1

ki

{
β(

ψ(t)

ψ(t0)
)β
ψ̇(t)

ψ(t)
ψ(t0)

1

Ai
eωi

+ (
ψ(t)

ψ(t0)
)β
[
ϵ

n∑
j=1

(max{|mfj |, |Mfj |}

+max{|mgj |, |Mgj |}+max{|mhj |, |Mhj |}Lj
+ 1)− (Ai+(t+ ω)−Ai+(t))xi(t+ ω)

−Ai+(t)eωi −Ai−(t+ ω)|xi(t+ ω)|

+Ai−(t)|xi(t)|+
n∑
j=1

Bij(t)|fj(xj(t+ ω))
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− fj(xj(t))|
]
+ (

ψ(t+ τij)

ψ(t0)
)β

n∑
j=1

[
C̄ij

× |gj(xj(t+ ω))− gj(xj(t))|+ D̄ij

×
∫ ∞

0

lj(s)|hj(xj(t+ ω))− hj(xj(t))|ds
]}
. (17)

Since xi(t) ∈ Ω1, so there is xi(t) ≤ Mx holds, where
Mx > 0 is a constant. From Assumption 4, we have

D+V (x(t), t)

≤
n∑
i=1

ki

{
(
ψ(t)

ψ(t0)
)β
[
β
ψ̇i(t)

ψ(t)
ψ(t0)

1

Ai
eωi −Ai+(t)eωi

+ [ϵ

n∑
j=1

(max{|mfj |, |Mfj |}+max{|mgj |, |Mgj |}

+max{|mhj |, |Mhj |}Lj + 1)] + 2ϵMx

+
n∑
j=1

B̄ij max{|λ(k)fj |, |µ
(k)
fj |}eωi

]
+

eωi(
ψ(t+ τij)

ψ(t0)
)β

n∑
j=1

[
C̄ij max{|λ(k)gj |, |µ

(k)
gj |}

+ LjD̄ij max{|λ(k)hj |, |µ
(k)
hj |}

]}
.

Moreover, from the property of Ψ-type function, there are
(
ψ(t+τij)
ψ(t0)

)β ≤ (
ψ(t)ψ(τij)
ψ(t0)

)β = ( ψ(t)ψ(t0)
)βψ(τij)

β and ψ̇i(t)
ψ(t) ≤

ψ̇i(0), so

D+V (x(t), t)

≤
n∑
i=1

ki

{
(
ψ(t)

ψ(t0)
)β
[
eωi{βψ(0)ψ(t0)

1

Ai
−Ai+

+
n∑
j=1

B̄ij max{|λ(k)fj |, |µ
(k)
fj |}

+ ψ(τij)
β

n∑
j=1

[C̄ij max{|λ(k)gj |, |µ
(k)
gj |}

+ LjD̄ij max{|λ(k)hj |, |µ
(k)
hj |}]}

+ ϵ(
n∑
j=1

(max{|mfj |, |Mfj |}+max{|mgj |, |Mgj |}

+max{|mhj |, |Mhj |}Lj) + 1 + 2Mx)

]}
. (18)

Clearly,

Ξi =βψ(0)ψ(t0)
1

Ai
−Ai+ +

n∑
j=1

B̄ij max{|λ(k)fj |, |µ
(k)
fj |}

+ ψ(τij)
β

n∑
j=1

[C̄ij max{|λ(k)gj |, |µ
(k)
gj |}

+ LjD̄ij max{|λ(k)hj |, |µ
(k)
hj |}] < 0,

Θi =

n∑
j=1

(max{|mfj |, |Mfj |}+max{|mgj |, |Mgj |}

+max{|mhj |, |Mhj |}Lj) + 1 + 2Mx,

are constants. Rewrite (18) as following

D+V (x(t), t) ≤
n∑
i=1

ki(
ψ(t)

ψ(t0)
)β [eωiΞi + ϵΘi]

≤
n∑
i=1

ki(
ψ(t)

ψ(t0)
)βϵΘi. (19)

So there are

V (x(t), t) ≤ V (xi(0), 0) +

∫ t

0

n∑
i=1

ki(
ψ(t)

ψ(t0)
)βϵΘids.

Meanwhile, for ∀i ∈ {1, 2, · · · , n}

ki(
ψ(t)

ψ(t0)
)β
eωi
Āi

≤
n∑
i=1

ki(
ψ(t)

ψ(t0)
)β
eωi
Āi

≤ V1(x(t), t) ≤ V (x(t), t).

Thus there is

eωi =|xi(t+ ω)− xi(t)| ≤
Āi
ki

(
ψ(t0)

ψ(t)
)βV (xi(0), 0)

+ ϵ
Āi
ki

(
ψ(t0)

ψ(t)
)β

∫ t

0

n∑
j=1

kj(
ψj(s)

ψj(t0)
)βΘjds. (20)

According to (8), it should be pointed that there exists some
moment T satisfying

Āi
ki

(
ψ(t0)

ψ(T )
)βV (xi(0), 0)

≤ ϵ

(
1− Āi

ki
(
ψ(t0)

ψ(T )
)β

∫ T

0

n∑
j=1

kj(
ψ(s)

ψ(t0)
)βΘjds

)
.

Thus we have |xi(t + ω) − xi(t)| ≤ ϵ holds after time T ,
and the neuron states in Ω1 are almost periodic solutions for
MCGNNs (1). Here we finish our proof.

Theorem 1 shows that if there exist solutions in Ω1, they
must be almost periodic solutions. Then in Theorem 2, we
state that there exists at least one solution in each element of
Ω1 for MCGNNs (1).

Theorem 2: If the conditions in Theorem 1 hold, there exists
at least one almost periodic solution in each element of Ω1.

Proof: Denote

Si,k(t) =− (Ai+(t+ Tk)−Ai+(t))xi(t+ Tk)
− (Ai−(t+ Tk)−Ai−(t))|xi(t+ Tk)|

+
n∑
j=1

(bij(t+ Tk)− bij(t))fj(xj(t+ Tk))

+
n∑
j=1

(cij(t+ Tk)− cij(t))gj(xj(t+ Tk − τij))

+
n∑
j=1

(dij(t+ Tk)− dij(t))

∫ ∞

0

lj(s)

× hj(xj(t+ Tk − s))ds+ Ii(t+ Tk)− Ii(t).

For x(t) ∈ Ω1 and the connection weights are almost periodic,
a sequence {Tk} can be selected so that{

lim
k→+∞

Tk = +∞,

|Si,k(t)| ≤ 1
k , ∀t > 0.
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Furthermore, by diagonal selection principle and Arzela-
Ascoli theorem, there is a subsequence Tkj such that x(t+Tkj )
is uniformly convergent to a continuous function x∗(t) on any
compact set of Rn. Then, according to Lebesgue’s dominated
convergence theorem, for ∀ζ ∈ R and ∀t > 0, there is

x∗i (t+ ζ)− x∗i (t)

= lim
j→+∞

∫ t+ζ

t

Ai(xi(u+ Tkj ))

× {−Ai+(u)xi(u+ Tkj )−Ai−(u)|xi(u+ Tkj )|

+
n∑
j=1

bij(u)fj(xj(u+ Tkj ))

+
n∑
j=1

cij(u)gj(xj(u+ Tkj − τij)) + Ii(t)

+

n∑
j=1

dij(u)

∫ ∞

0

hj(xj(u+ Tkj − s))lj(s)ds}du

=

∫ t+ζ

t

Ai(x
∗
i (t)){−Ai+(u)x

∗
i (t)−Ai−(u)|x∗i (t)|

+
n∑
j=1

bij(u)fj(x
∗
j (t)) +

n∑
j=1

cij(u)gj(x
∗
j (t)) + Ii(t)

+
n∑
j=1

dij(u)

∫ ∞

0

hj(x
∗
j (t))lj(s)ds}du.

For the arbitrary of ζ, x∗(t) is a solution of MCGNNs (1).
Based on Theorem 1, for ∀ϵ > 0, when j is sufficient large, we
have |xi(t+ Tkj + ω)− xi(t+ Tkj )| ≤ ϵ. Suppose j → +∞,
then |x∗i (t + ω) − x∗i (t)| ≤ ϵ for t ≥ 0. So far, we have
proved that there is at least one almost periodic solution in
each elements of Ω1.

Finally, we will show that the almost periodic solutions in
Ω1 are Ψ-type stable.

Theorem 3: If the conditions in Theorem 1 hold, then the
solutions of MCGNNs (1) are Ψ-type stable.

Proof: Denote the following Lyapunov function

V(x(t), t)

=
n∑
i=1

[
ki(

ψ(t)

ψ(t0)
)β
∣∣∣∣ ∫ xi(t)

x∗
i (t)

1

Ai(s)
ds

∣∣∣∣
+

n∑
j=1

kiC̄ij
∫ t

t−τij
(
ψ(s+ τij)

ψ(t0)
)β |gj(xj(s))

− gj(x
∗
j (s))|ds+

n∑
j=1

kiD̄ij
∫ ∞

0

lj(s)

∫ t

t−s
(
ψ(u+ s)

ψ(t0)
)β

× |hj(xj(t))− hj(x
∗
j (u))|duds

]
. (21)

For ei(t) = xi(t) − x∗i (t), as the corresponding proof in
Theorem 1, we have

V(x(t), t) ≤ (
ψ(t)

ψ(t0)
)β

n∑
i=1

kiΞi|ei(t)| < 0.

So
ki
Ai

(
ψ(t)

ψ(t0)
)β |ei(t)| ≤ V(x(t), t) ≤ V(x(0), 0),

which means that

|ei(t)| ≤
Ai
ki

(
ψ(t0)

ψ(t)
)βV(x(0), 0).

Thus, we have

ln |ei(t)|
lnψ(t)

≤ −β ln(Ai
ki

V(x(0), 0)(ψ(t0))β).

From the Definition 3, the solutions are Ψ-type stable.
Remark 4: Different from EPs, the multistability conclusion

of almost periodic solutions can not be obtained directly. So
we need Theorem 1-3 to analyze the multiple Ψ-type stability
in system (1).

Remark 5: If we choose fj(·) = gj(·) = hj(·), ψ(t) = et,
then we can get the relevant multistability conclusions in [12].

C. Estimation of the attraction basins
Next, we will estimate the attraction basin. From the def-

inition of Fi+(t, α) and Fi−(t, α), it is obvious to get the
conclusion that Fi+(t,+∞) = −∞ and Fi−(t,−∞) = +∞.
So for the time being, the following formula can be established

Fi+(t, u1) = −ιi < 0, Fi−(t, u2) = ιi > 0,

where ιi > 0 is a positive constant, u1 ≥ p
(K)
i , u2 ≤ q

(0)
i

and t > 0. According to Lemma 1, there is Fi−(t, q(k−1)
i ) <

Fi+(t, q(k−1)
i ) < 0. Combine with Fi−(t, p(k)i ) > 0 and

Fi−(t, ·) is continuous, so there is at least one u∗2 ∈
(q

(k−1)
i , p

(k)
i ) satisfying Fi−(t, u∗2) = 0. Suppose there are

multiple u∗2 and U∗
i,k is the max one of them, which means

U∗
i,k = max{u∗2|Fi−(t, u∗2) = 0, u∗2 ∈ (q

(k−1)
i , p

(k)
i ), t > 0}.

So Fi−(t, U∗
i,k) = 0 and Fi−(t, u2) > 0 where u2 ∈

(U∗
i,k, p

(k)
i ]. Also, define

H∗
i,k = min{h∗1|Fi+(t, h∗1) = 0, h∗1 ∈ (q

(k−1)
i , p

(k)
i ), t > 0}.

Similarly, Fi−(t,H∗
i,k) = 0 and Fi−(t, h1) < 0 where

h1 ∈ [q
(k−1)
i ,H∗

i,k), k = 1, 2, · · · ,K. So the lower bound
of Fi−(t, ·) and the upper bound of Fi+(t, ·) are shown as
following respectively

Li = inf{Fi−(t, x)|x ∈ (−∞, p
(0)
i ]},

Ui = sup{Fi+(t, x)|x ∈ [q
(K)
i ,+∞)}.

For convenience, the following notations are introduced

Ū∗
i0 , −∞, H̄∗

i,k , +∞,

Ū∗
i,k , sup

t≥0
U∗
i,k, H̄∗

i,k , inf
t≥0

H∗
i,k,

where k = 1, 2, · · · ,K. It is obvious that Ū∗
i,k < p

(k)
i and

H̄∗
i,k > q

(k)
i for all k. Suppose

Ω̄1 =

{
Γ̄

′

γ =
n∏
i=1

( K∪
k=0

(Ū∗
i,k, H̄

∗
i,k)

γ
(i)
k+1

)∣∣∣∣
γ = (γ(1), γ(2), · · · , γ(n)),

γ(i) = (γ
(i)
1 , · · · , γ(i)K+1) ∈ ∆(K + 1)

}
.

Page 7 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

Similar with Ω1, Ω̄1 has (K + 1)n elements, and there are
Γ

′

γ ⊆ Γ̄
′

γ established. Then we will show that the elements in
Ω̄1 are also the attraction basins.

Theorem 4: The elements in Ω̄1 are the enlarged attraction
basins compared with Ω1 of MCGNNs (1).

Proof: Similar to the proof of the positive invariance, we
firstly show that H̄∗

i−1,k ≤ Ū∗
i,k holds for k = 1, 2, · · · ,K

and i = 1, 2, · · · , n. From the definition of H∗
i−1,k, it is

obvious that Fi+(t,H∗
i−1,k) = 0 and Fi−(t,H∗

i−1,k) <
Fi+(t,H∗

i−1,k) = 0. So H∗
i−1,k ≤ U∗

i,k. Thus we have
H̄∗
i−1,k ≤ Ū∗

i,k. For arbitrary initial condition ϕ(t), if ϕi(t0) ∈
(Ū∗

i,0, p
(0)
i ], then there is ẋi(t) ≥ Fi−(t, xi(t)) ≥ Li ≥ ιi > 0

for t > 0, thus we have xi(t) ≥ Lit + ϕi(t0). So there exist
T ≥ t0 such that xi(T ) ∈ (p

(0)
i , q

(0)
i ).

Similarly, it is easy to prove that there is some time T

satisfying xi(t) will never escape from (p
(k)
i , q

(k)
i ) after time

T for k = 1, 2, · · · ,K.
Hence Ω̄1 is the enlarged attraction basin of MCGNNs (1).

Here we finish our proof. At this point, we have completed
the discussion on Ψ-type multistability of almost periodic
solutions for MCGNNs.

IV. ILLUSTRATIVE EXAMPLES

Two simulation examples are shown to verify the obtained
results in this section.

Example 1: Consider a 2-neurons MCGNNs (1) with the
following coefficients

A1(x1(t)) = 1 +
2

sin(x1(t)) + 2
,

A2(x2(t)) = 2− 1

cos(x2(t)) + 2
,

A1+(t) = 10− 0.5| cos(t)|, A2+(t) = 8 + 0.4| sin(t)|,
A1−(t) = 0.5 sin(t), A2−(t) = 0.2 cos(t).

The connection weight matrices are

B(t) =

(
15 + 0.5 cos(t) 0.2 sin(t)

0.2 sin(t) 15 + sin(t)

)
,

C(t) =

(
0.5 sin(t) 0.1 cos(t)
0.1 cos(t) 0.5 sin(t)

)
,

D(t) =

(
0.2 cos(t) 0.1 sin(t)
0.1 cos(t) 0.2 sin(t)

)
.

The external inputs are

I1(t) = 6(sin(πt) + sin(t)), I2(t) = 4(cos(πt) + cos(t)).

Moreover, the activation functions are as following

f(u) = ue−
3(u2−1)

2 ,

g(u) =
1− e−10u

1 + e−10u

1− 0.5e15(|u|−10)

1 + e15(|u|−10)
,

h(u) =


−1.1207(u+ 2), u ∈ [−2,−0.6),

2.615u, u ∈ [−0.6, 0.6],

−1.1207(u− 2), u ∈ (0.6, 2],

0, u ∈ (−∞,−2) ∪ (2,+∞).

-3 -2 -1 1 2 3

-1

1

f(u)

u

(a)

-3 -2 -1 1 2 3

-1

1

g(u)

u

(b)

-3 -2 -1 1 2 3

-1

1

h(u)

u

(c)

Fig. 1. Three different kinds of activation functions in Example 1. (a).
The Crespi activation function; (b). The Morita activation function; (c). The
piecewise linear activation function.

In order to facilitate understanding, we show the function
images of the three activation functions here.

Here we choose K = 1. According to Assumption 4, the
whole state space is divided into (2K + 1)2 = 9 parts. The
specific state space partition is shown in Table 1. From (4), (5),
we have

Fi+(t,−3) < 0, Fi−(t,−0.58) > 0,

Fi+(t, 0.58) < 0, Fi−(t, 3) > 0.

Table 1. State space partition.

p01 q01 p11 q11

-3 -0.58 0.58 3

p02 q02 p12 q12

-3 -0.58 0.58 3

Then we choose ψ(t) = et, from Theorem 1-3, it has (K +
1)n = 4 Ψ-type stable almost periodic solutions. 100 random
initial conditions are selected for computer simulation. The
trajectories are drawn in Fig. 2-4 respectively. In Fig. 2-3, it
can be clearly observed that the state of neuron x1(t) gradually
converges to the vicinity of points 1.138 and -1.136. Moreover,
from partial enlarged figures (a), (b) within [0.18, 0.184] in
Fig. 2, the solutions of x1(t) are almost periodic. In Fig. 3,
the state of neuron x2(t) gradually converges to the vicinity
of points 1.185 and -1.183. Also, from partial enlarged figures
(a), (b) within [0.212, 0.218] in Fig. 3, the solutions of x2(t)
are almost periodic. In Fig. 4, we can observe that the 100
initial values converge to 4 almost periodic solutions in the
entire state space, which is in line with our theoretical results.

Example 2: In order to show that our conclusions are still
correct for the degraded MCGNNs without almost periodic
solutions, we will show the degraded MCGNNs model with
multiple stable EPs. The specific coefficients are shown as
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Fig. 2. Two almost periodic solution trajectories of neuron state x1(t).

Fig. 3. Two almost periodic solution trajectories of neuron state x2(t).

Fig. 4. Four stable almost periodic solution trajectories of neuron states
(x1(t), x2(t)) with time t.

following

A1(x1(t)) = 1, A2(x2(t)) = 1,

A1+(t) = 1.5, A2+(t) = 1.5,

A1−(t) = 0.1, A2−(t) = 0.1.

Also, the connection weight matrices are B(t) =

[
15 0.2
0.2 15

]
,

C(t) =

[
0.5 0.1
0.1 0.5

]
, D(t) =

[
0.2 0.1
0.1 0.2

]
, and the external

inputs are I1(t) = 6, I2(t) = 4. The activation functions are
as follows

f(x) = g(x) = h(x) = xe−
3(x2−1)

2 .

Fig. 5. Two stable EPs trajectories of neuron state x1(t).

Fig. 6. Two stable EPs trajectories of neuron state x2(t).

Similarly, we choose K = 1. Example 2 also satisfies the
theorem conditions, so there should be (K + 1)n = 22 = 4
EPs. Through computer simulation, we also verified the the-
oretical results. The state trajectories are shown in Fig. 5-7.
It is easy to observe that there are 2 stable EPs in Fig. 5,6
respectively. To be more precise, in Fig. 5, the states of neuron
x1(t) converges to the points 3.738 and -1.273, in Fig. 6, the
states of neuron x2(t) converges to the points 2.533 and -1.36.
Also, it is clear that there are 4 stable EPs in Fig.7, and this
verifies that our conclusions are still correct when considering
the degraded systems.
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Fig. 7. Four stable EPs trajectories of neuron states (x1(t), x2(t)).

V. CONCLUSION

In this paper, some novel criteria about Ψ-type multistability
of MCGNNs have been proved, which improves the related
existing results. The multistability conclusions are interest
issues in view of associative memory and image processing.
There are still some questions needed to be study. One of the
important practical application issues is whether the Ψ-type
multistability results about almost periodic solutions obtained
in this paper could be extended to the stochastic MCGNNs.
And how robust are the neural networks under the condition
of Ψ-type stable? We will investigate these topics in future.
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