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Abstract- The novel Coronavirus disease, known as COVID-19, is an outbreak that started in Wuhan, 6 

one of the Central Chinese cities. In this report, a short analysis focusing on Australia, Italy, and the 7 

United Kingdom has been conducted. The analysis includes confirmed and recovered cases and deaths, 8 

the growth rate in Australia as compared with Italy and the United Kingdom, and the outbreak in 9 

different Australian cities. Mathematical approaches based on the susceptible, infected, and recovered 10 

case (SIR) and susceptible, exposed, infected, and recovered (SEIR) models were proposed to predict 11 

the epidemiology in the countries. Since the performance of the classic form of SIR and SEIR depends 12 

on parameter settings, some optimization algorithms, namely, the Broyden–Fletcher–Goldfarb–Shanno 13 

(BFGS), conjugate gradients (CG), L-BFGS-B, and Nelder-Mead are proposed to optimize the 14 

parameters of SIR and SEIR  models and improve its predictive capabilities. The results of optimized 15 

SIR   and SEIR models are compared with the Prophet algorithm and logistic function as two known 16 

ML algorithms. The results show that different algorithms display different behaviours in different 17 

countries. However, the improved version of the SIR and SEIR models have a better performance 18 

compared with other mentioned algorithms described in this study. Moreover, the Prophet algorithm 19 

works better for Italy and the United Kingdom cases than for Australian cases and Logistic function 20 

compared with Prophet algorithm has a better performance in these cases. It seems that Prophet 21 

algorithm is suitable for data with increasing trend in pandemic situations. Optimization of the SIR and 22 

SEIR models parameters has yielded a significant improvement in the prediction accuracy of the 23 

models. Although there are several algorithms for prediction of this Pandemic, there is no certain 24 

algorithm that would be the best one for all cases.  25 
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Introduction: In December 2019, the Chinese government informed the rest of the world that a virus 28 

was spreading throughout China. A few months later, it spread very rapidly to some other countries. 29 

This virus is the Severe Acute Respiratory Syndrome- Related Coronavirus 2 which causes the disease 30 

novel coronavirus known as COVID-19. The United States Centers for Disease Control and Prevention 31 

(CDC) identified a seafood market in Wuhan that was suspected to be at the centre of the outbreak. The 32 

World Health Organization (WHO) reported a case in Thailand on Jan 13, which was the first time it 33 

was identified outside China. On Jan 16, Japan confirmed its first case of this novel coronavirus. On 34 

Jan 20, South Korea identified its first confirmed case of the new coronavirus. Nowadays, most 35 

countries in the world are affected by this virus.  36 

Putra and Khozin Mu'tamar (2019) used Particle Swarm Optimization (PSO) algorithm to estimate 37 

parameters (Susceptible, Infected, Recovered) in the SIR model. The results indicate that the suggested 38 

method is precise enough with low error compared to analytical methods. Mbuvha and Marwala (2020) 39 

calibrated the SIR model to South Africa after considering different scenarios for R0 (reproduction 40 

number) for reporting infections and healthcare resource estimation for the next few days. Qi, Xiao et 41 

al. (2020) proposed that both daily temperature and relative humid-ity influenced the occurrence of 42 

COVID-19 in Hubei province and insome other provinces. 43 

Salgotra, Gandomi et al. (2020) developed two COVID-19 prediction models based on genetic 44 

programming and applied this model in India. Findings from a study by (Salgotra, Gandomi et al. 2020) 45 

show genetic evolutionary programming models are highly reliable for COVID-19 cases in India.  46 

In January 2020, the first case of Covid-19 was reported in Australia. In this report, a short analysis 47 

focusing on Australia was addressed and reported and continued as a simulation for the next few days. 48 

The manuscript is organized in several sections. Section I presents the research methodology. Section 49 

II and III introduce the SIR and SEIR models. Section IV shows the prediction algorithms (logistic 50 
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function and Prophet algorithm). Sections V shows the results. The conclusion and discussion are 51 

provided in the last section. 52 

I. Research methodology  53 

The study was carried out in several phases. For the first step, data were collected from World 54 

Health Organization (WHO) and John Hopkins University since they collect data from different 55 

organizations. After that, data were analyzed and preprocessed in order to avoid any duplicated 56 

and missing values. Numerical tests were performed using Python and R and executed on a 57 

computer Intel ® Core i7-4510U 2.0 GHz 8 GB DDR3 Memory (Supplementary file). The 58 

flowchart of the research methodology is provided in Figure 1. 59 

 60 

 61 

 62 

 63 

 64 

Figure  1   Flowchart of the current research process 65 

 66 

II. The SIR model 67 

This section introduces the classic form of the SIR model (Kermack and McKendrick 1932, 68 

Capasso and Serio 1978) that is used to describe the transmission of COVID-19 virus in 69 

Australia, Italy, and the United Kingdom. The flowchart of SIR model is shown in Figure 2: 70 

 71 

 72 

Figure 2  SIR model 73 
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The SIR model shows how a disease spreads through a population. The equations of SIR model are as 74 

shown below (Weiss 2013): 75 

ds IS
dt

β= −  
(1) 

dI IS I
dt

β γ= −  
(2) 

dR I
dt

γ=  
(3) 

 76 

in which 77 

• S is the number of individual susceptible at time t. 78 

• I is the number of infected individuals at time t. 79 

• R is the number of recovered individuals at time t. 80 

• β  and γ  are the transmission rate and rate of recovery (removal), respectively.  81 

III. The SEIR model 82 
 83 
The SEIR model is an extended version of SIR model (Peng, Yang et al. 2020). It models the 84 

interaction of people between different conditions: the susceptible (S), exposed (E), infective 85 

(I), and recovered (R).  The parameters S, I, and R are same as parameters in SIR model and E 86 

presents the fraction of individuals that have been infected but does not show any signs. The 87 

SEIR-model diagram is as follows (Fig. 3): 88 
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               Figure 3  The SEIR diagram (Peng, Yang et al. 2020) 89 

The equations of SEIR model are defined as follows (Eqs. 4-10): 90 

 91 

( ) ( ) ( ) ( )dS t S t I t S t
dt N

β α= − −  (4) 

( ) ( ) ( ) ( )dE t S t I t E t
dt N

β γ= −  (5) 

( ) ( ) ( )dI t E t I t
dt

γ δ= −  (6) 

( ) ( ) ( ) ( ) ( ) ( )dQ t I t t Q t t Q t
dt

δ λ κ= − −  (7) 

( ) ( ) ( )dR t t Q t
dt

λ=  (8) 

( ) ( ) ( )dD t t Q t
dt

κ=  (9) 

( ) ( )dP t S t
dt

α=  (10) 

 92 

 93 

 94 

Where  95 

α  presents the protection rate, β shows the infection rate, illustrates the inverse of the 96 

average latent time, δ displays the inverse of the average quarantine time, 0 1andλ λ  are 97 
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coefficients used in the time- dependent cure rate, 0 1andκ κ   are coefficients used in the time- 98 

dependent mortality rate (Peng, Yang et al. 2020). 99 

 100 

 101 

IV. Prediction  102 

In the present section, some machine learning techniques were used for COVID-19 case 103 

predictions in Australia, Italy, and the United Kingdom. Machine learning is a branch of 104 

computer science in which data could teach algorithms. The learning process could be done as 105 

supervised-, unsupervised, and/or semi-supervised learning forms (Mitchell 1997, Arkes 2001, 106 

Armstrong 2001, Nikolopoulos, Litsa et al. 2015, Maleki, Mahmoudi et al. 2020). In this 107 

section, some approaches that are used for prediction of cases (confirmed and deaths) of 108 

COVID-19 Pandemic are provided.  109 

a) Logistic function 110 

A logistic function could be defined as follows: 111 

 112 

  113 

  e = Euler's number  114 

0 ' intx Sigmoid s midpo= , 115 

L is the curve’s maximum value, 116 

and K is the logistic growth of the curve 117 

b) Times Series forecasting with the Prophet algorithm 118 
 119 
The Prophet algorithm is an open-source tool developed by Facebook’ s Data Science 120 

team, and its main goal is business forecasting (Taylor and Letham 2017, Taylor and 121 

Letham 2018). The Prophet algorithm works well with time-series data that have 122 

seasonal effects and are robust in dealing with missing data (Ndiaye, Tendeng et al. 123 

0( )( )
1 k x x

Lf x
e − −=

+
 

 (11) 

https://en.wikipedia.org/wiki/E_(mathematical_constant)
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2020). In the Prophet algorithm, the forecast could be written as shown in Equation 5 124 

(Ndiaye, Tendeng et al. 2020): 125 

 126 
^

1 2( ... ) /T
T h T

y y y y y T
+

= = + +  
(12) 

in which 1 2, ,..., Ty y y are denoted as historical data, and 
^

T h T
y
+

is a short-hand to 127 

forecast 
T h T

y
+

based on available data.  128 

 129 

V. Results 130 

 131 

a. Analysis  132 

i. New cases 133 

In this sub-section, the confirmed growth rates focusing on Australia, Italy, and the United Kingdom 134 

for every day from 2020-04-24 to 2020-05-23 were calculated. Figure 4 depicts the growth rate of 135 

confirmed cases in the countries. As can be seen in Figure 4, the growth rate for Australia was always 136 

below 0.5 during times of outbreak and just above 0.0 at the of May, while the rate for Italy and the 137 

United Kingdom is generally high. The growth rate for the United Kingdom was almost above 2.0 in 138 

April and then dramatically declined in May. The rate for Italy fluctuates between 0.5 and 1.5 in April 139 

and May.  140 

Figure 5 also presents the growth rate of death cases for the above-mentioned countries daily from 141 

2020-04-24 to 2020-05-23. The growth rate for death cases in Australia fluctuated between 0 and 7 in 142 

April and May and was 7 at the end of April (higher than Italy and United Kingdom during the same 143 

time), while for Italy, the rate was almost below 2.0 during the same time period and for the United 144 

Kingdom, the rate was just below 4.0 at the end of April and just above 0.0 at the end of May. 145 
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                          Figure 4  Growth rate (Confirmed cases in Australia, Italy, and the United Kingdom) 
 

 
                       Figure 5  Growth rate (death cases in Australia, Italy, and the United Kingdom) 

 146 

ii. Overall growth rate 147 

This section shows numbers of active cases in these three countries. The active cases were calculated 148 

using the following equation: 149 
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 150 

Active_cases=confirmed_cases - deaths_cases -recovered_cases (13) 

 151 

 From equation (13), the overall growth rate could be calculated according to Equation 14: 152 

(14) Overall growth rate[i]=((active cases[i]-active case[i-1])/active case[i-1]) *100 

 
In equation (14), the index i presents day. Figure 6 illustrates the overall growth rate for confirmed 153 

cases in the countries. Negative numbers show that people recovering are faster than those getting sick 154 

and that would be good news. The rate for Australia in the time period was almost below zero and 155 

changed from −15 at the end of April to just below −5 at the end of May and for Italy fluctuated between 156 

just above −7.5 and just above 0.0, while the rate for the United Kingdom was almost always positive 157 

number in the time horizon (00.0 and 3.0). Figure 7 illustrates the number of death cases in Australia 158 

compared with the two other countries, and it is clear that the number in Australia is significantly lower 159 

than other two. 160 
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                                Figure 6  Overall growth rate for confirmed cases in Australia, Italy, and the United Kingdom  

 

 
Figure 7  Number of death cases in Australia compared with Italy  and the United Kingdom     

 161 

 162 

 163 

  164 

 165 
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             Figure 8 (b) Australian Capital Territory  

 
Figure 8 (a) New South Wales 

             Figure 8(d) Queensland      

 

 
Figure 8(c) Northern Territory 

  
      
        Figure 8(f) Tasmania     

Figure 8(e) South Australia             

 
Figure 8(h) Western Australia           

 
      Figure 8 (g) Victoria    

                                            Figure 8 Confirmed versus death cases in different Australian states  166 

   167 

 Figure 8 (a–h) shows confirmed versus deaths cases in each individual Australian state. By now (2020-168 

05-23), New South Wales and Northern Territory possess the most and least number of confirmed and 169 

death cases in Australia, respectively. From Figure 8(a–h), the number of confirmed and death cases in 170 
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New South Wales significantly differed from other states in Australia and increased dramatically, while 171 

the Northern Territory experienced some fluctuation during the study time period. 172 

 173 

With the aim of forecasting, the logistic function is defined in Equation (11) and was applied to collected 174 

data (Time horizon: start of outbreak in the countries) and results have been illustrated in Figures 9-14. 175 

As it is shown in Figures 9-14, the logistic function is fitted until the trend of cases is increases and to 176 

evaluate the performance of metric R2 scores used for confirmed and death cases. Results are presented 177 

in Table 2. Another metric that has been used in experiments is the root mean square error (RMSE), 178 

and the results of RMSE I depicted in Table 2. The best RMSE value belongs to the Australian cases 179 

(confirmed and deaths). 180 

Table 1 R2 score fore different countries, different cases   181 

countries Confirmed cases Deaths cases 

Australia 0.87 0.67 

United Kingdom 0.92 0.97 

Italy 0.93 0.95 

 182 

Table 2   Root mean square error (RMSE) values for different countries and different cases   183 

countries Confirmed cases Deaths cases 

Australia 8.22 0.88 

United Kingdom 21.94 6.97 

Italy 23.24 8.00 
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Figure 9  Prediction of confirmed cases by logstic function 
(Australia) 

 

 
Figure 10  Prediction of death cases by logistic function (Australia) 

 
Figure 11  Prediction of confirmed cases by logstic function 
(United Kingdom) 

 
Figure 12  Prediction of deaths cases by logstic function (United 
Kingdom) 

 
Figure 13  Prediction of confirmed cases by logstic function 

(Italy) 

 
Figure 14  Prediction of deaths cases by logstic function (Italy) 

 184 

 185 



14 
 

Figures 15–17 present the results of the classic SIR model. As previously mentioned, 186 

controlling β  parameters indicate the level of disease transmission, and γ  is the recovery 187 

(removal) period indicating how much peope could recover in a period. First, all parameters 188 

were initially added to the SIR model and applied it to real data, but it can be seen from Figures 189 

15–17 and Table 3 (RMSE values) in which the classic form was not suitable for prediction of 190 

the COVID-19 pandemic in these three countries. In order to fit the SIR models to Australia, 191 

Italy, and the United Kingdom, an optimizer was needed to find the unknown parameters ( β  192 

andγ ) from equation 0R ( 0R β
γ

= ) since these parameters could be estimated. Before the start 193 

of the outbreak, it is essential to address whether the number of susceptible cases is equal to the 194 

number of people in these countries because no antibodies exist, and no vaccines for the disease 195 

have been developed. At first, 0R =2.7 was fixed (reported by Australian Government: 196 

Department of Health) as the the median number, 0.378β = , and 0.14γ = . Figure 19 197 

(a-c) present the confirmed cases provided by the optimized SEIR model with the above-198 

mentioned decriptions  in the three countries (See Figure 18).  199 

 200 

 201 

 202 

 Figure 15  Predicted cases in Australia using the susceptible, infected, recovered (SIR) model (blue: real confirmed cases, 203 
red: SIR model) 204 
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 205 

                      Figure 16  Predicted cases in Italy based on the SIR model (blue: real confirmed cases, red: SIR model) 206 

 207 

Figure 17  Predicted cases in UK based on the SIR model (blue: real confirmed cases, red: SIR model) 208 

 Table 3  RMSE values obtained by SIR model (before optimization of parameters) 209 

Italy United Kingdom Australia 

18.75 15.45 831.84 

 210 

 211 

Real data were used to estimate the values of β  and γ . An optimizer was used to find the best 212 

estimation of β  and γ . The optimization algorithms were the Broyden–Fletcher–Goldfarb–213 

Shanno (BFGS) algorithm (Fletcher 1987), L-BFGS-B (Byrd, Lu et al. 1995), conjugate 214 

gradients (CG), (Fletcher and Reeves 1964), and Nelder-Mead (Nelder and Mead 1965). The 215 

parameter settings are provided in Table 3. The flowchart of the improved SIR and SEIR 216 
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versions and parameter settings for the above-mentioned algorithms are addressed in Figure 18 217 

and Table 4, respectively. 218 

 219 

Figure 18  Flowchart of improved version of SIR and SEIR models 220 

 221 

 Table 4  Parameter settings 222 

Algorithm Parameters setting 

BFGS Maxit=100, reltol*=1e-8 

Nelder-Mead Maxit=500, reltol=1e-8, alpha=1, beta=0.5, gamma=2.0 

L-BFGS-B Maxit=100, reltol=1e-8, lmm**=5, factr***=1e7 

CG Maxit=100, reltol=1e-8 
*Reltol= Relative convergence tolerance, **lmm= number of BFGS updates retained, ***factr=convergence factor                  223 

 224 

Table 5 shows the optimized values obtained by different algorithms (SIR model). The best values for 225 

the parameters were found using the Nelder—Mead algorithm (for SIR model) and L-BFGS-B 226 

algorithm (for SEIR model). This method is illustrated in Figure 18. As was mentioned earlier, before 227 

the start of the outbreak, the number of susceptible cases was equal to the number of people in these 228 

countries because no antibodies exist, and no vaccine for the disease is available. From Wikipedia, the 229 

populations of Australia, Italy, and the United Kingdom are 2506, 6006, and 6706, respectively. Table 6 230 

illustrates the RMSE values obtained by the algorithms (for SIR and SEIR models) showing 231 

improvements in significantly reducing the values.  232 

•Defining initial values for 
the parameters and 
variables. 

•Solving the SIR and SEIR  
models, numerically. 

Step 1

•Comparing the model's 
prediction with data

•Writing a function to take 
the parameters values from 
data.

•Estimating the model's 
parameters.

Step 2 •Using an optimization 
algorithm to estimate 
the best values for the 
paramters. 

•Estimating R0.

Step 3
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 233 

 234 

Table 5 Median values of SIR parameters determined by the departments of health in each country 235 

COUNTRY  β  γ  
0R  

Algorithm BFGS Nelder-Mead L-BFGS-B CG BFGS Nelder-Mead L-BFGS-B CG BFGS Nelder-Mead L-BFGS-B CG 

Australia 0.014 0.014 0.378 0.37 0.22 0.22 0.14 0.14  0.063 0.063 2.64 2.64 

United Kingdom 0.37 3.84701-3 0.37 0.37 0.14 1.94-1 0.14 0.14 2.64 0.02 2.64 2.64 

Italy 0.37 1.083555-3  0.37 0.37 0.14 3.9088-1 0.14 0.37 2.64 0.01 2.64 2.64 

 236 

Table 6  RMSE values obtained based on the improved  SIR model considering a 0.99 confidence interval 237 

Model  Italy United Kingdom Australia 
SIR model 1.41 1.01 1.13 
SEIR model 1.12 1.23 1.04 

 238 

 239 

  240 

 241 
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(a) Australia 

 
(b) Italy 

 
(c) UK 

Figure 19  Prediction done by optimized SEIR model 242 
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 243 

     Table  7 Predicted cumulative confirmed cases in Australia (cross-validation matrix) 244 

y ds ^
y  

^

lowery  
^

uppery  
cutoff 

7095 
 

2020-05-21 
 

21309.752 
 

18998.140 
 

23829.955 
 

2020-04-04 
 

7099 
 

2020-05-22 
 

21630.708 
 

19245.072 
 

24269.904 
 

2020-04-04 
 

7114 
 

2020-05-23 
 

21959.985 
 

19424.097 
 

24640.939 
 

2020-04-04 
 

7114 2020-05-24 22326.688 19766.194 25093.353 2020-04-04 
 

 245 

     Table  8  Predicted cumulative confirmed cases in the United Kingdom (cross-validation matrix) 246 

y ds ^
y  

^

lowery  
^

uppery  
cutoff 

252246 
 

2020-05-21 
 

143776.53 
 

126702.28 
 

162413.93 
 

2020-04-04 
 

255544 
 

2020-05-22 
 

146462.83 
 

128526.68 
 

165539.80 
 

2020-04-04 
 

258504 
 

2020-05-23 
 

148818.88 
 

130813.85 168216.41 
 

2020-04-04 
 

260916 
 

2020-05-24 
 

150344.39 
 

131476.87 
 

170004.00 
 

2020-04-04 
 

 247 

Tables 7–9 present the results of the predicted cumulative confirmed cases obtained using the Prophet 248 

algorithm in the three countries. In the presented tables, y represents the true values of confirmed cases, 249 

ds is time, 
^
y is the forecasted values, 

^

lowery  and 
^

uppery are the lower and upper bounds for the 250 

forecasted values, respectively. It should be noted , the forecasted values were made between the cutoff 251 

and cutoff + horizon. Tables 7–9 are also called cross-validation matrices that are used to find the error 252 

values between y and 
^
y after which the RMSE values can be obtained (Figure 23 a–c). Figures 20–22 253 

visualize forcasted values obtained using the Prophet algorithm, indicating the mentioned algorithm is 254 

fitted for the cases of Italy and the United Kingdom but with errors for Australia. 255 



20 
 

 256 

  257 

 Table  9  Predicted cumulative confirmed cases in Italy (cross-validation matrix) 258 

y ds ^
y  

^

lowery  
^

uppery  
cutoff 

228006 
 

2020-05-21 
 

373982.5 
 

336940.1 
 

415612.7 
 

2020-04-04 
 

228658 
 

2020-05-22 
 

379300.7 
 

340862.6 
 

422338.4 
 

2020-04-04 
 

229327 
 

2020-05-23 
 

384792.4 
 

344957.8 
 

429120.3 
 

2020-04-04 
 

229858 
 

2020-05-24 
 

390481.8 
 

349482.8 
 

436663.2 
 

2020-04-04 
 

 259 

 260 

 261 

Figure 20  Forcasting by Prophet for the next year (Confirmed cases in Australia) 262 
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 263 

Figure 21  Forcasting by Prophet by the next year (Confirmed cases in Italy) 264 

265 
Figure 22  Forcasting by Prophet for the next year (Confirmed cases in United Kingdom) 266 

   267 
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 268 

Figure 23 Visualization of performance metric for Prophet for the countries (considering RMSE) 269 

 270 
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 272 

 273 
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 276 

VI. Conclusion and discussion  277 

COVID-19 is a family of Coronaviruses  that has affected the life of billions of people worldwide. 278 

The first phase of the paper started with a short analysis of COVID-19, focusing on Australia, Italy, 279 

and the United Kingdom. The analysis presents confirmed and death growth rates in Australia, a 280 

comparison between Australia, Italy, and the United Kingdom, and also, a short analysis in different 281 

states of Australia. The analysis shows that generally Australia is in a good position compared with 282 

two other countries. However, the situation in different cities of Australia are completely 283 

complicated; for example, New South Wales has the most confirmed and deaths cases, while 284 

Northern Territory shows the least confirmed and death cases (it is valuable to mention that New 285 

South Wales has more population). 286 

Mathematical approaches based on SIR and SEIR were proposed to predict the epidemiology in 287 

Australia, Italy, and the United Kingdom. Since the classic form of SIR and SEIR are deterministic, 288 

an improved version based on parameter optimization was suggested to improve the prediction. 289 

The results are compared with logistic function and Prophet algorithm and summarized as follows: 290 

• Comparison between the classic form of SIR model with real data showed a significant 291 

gap. However, initializing the parameters of the SIR model significantly improved the 292 

prediction.    293 

• The classic form of SIR model worked better for the United Kingdom, while the SIR model 294 

was not suitable for Australia case (regarding RMSE values). 295 

• The logistic function was a good model for the United Kingdom with an r2_score of 0.97, 296 

while this score for Australia was 0.67 and Italy was 0.95. 297 

• The best RMSE value belonged to the Australia cases (confirmed and deaths). 298 

• Optimization of parameters of the SIR and SEIR models significantly improved the 299 

prediction accuracy of the models.  300 
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• Improved version of SEIR has better performance compared with SIR model (Regarding 301 

RMSE values and Figures). 302 

• Optimized SEIR model has better prediction for UK and Italy compared with Australia. 303 

• The best values for the parameters were found using the Nelder—Mead algorithm for SIR 304 

model and L-BFGS-B algorithm for SEIR model. 305 

• The Prophet algorithm worked better for Italy and the United Kingdom cases than for 306 

Australian cases. 307 

• Logistic function compared with Prophet algorithm had a better performance in these cases. 308 

• The improved version of the SIR and SEIR model had a better performance compared with 309 

logistic function, Prophet algorithm, and classic form of SIR model. 310 

 311 

 In this paper, all forecasting was addressed without considering of scenario of social distancing 312 

and quarantine that makes it valuable as a future direction. This paper presents SIR and SEIR as 313 

epidemiology models; it would interesting to test other epidemiology models. Moreover, it is 314 

worthwhile to combine the mathematical model with other observations such as Policy 315 

intervention, human behavior, and constraints. 316 
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