
Hindawi Publishing Corporation
The Scientific World Journal
Volume 2013, Article ID 346285, 8 pages
http://dx.doi.org/10.1155/2013/346285

Research Article
Decision Tree Approach for Soil Liquefaction Assessment

Amir H. Gandomi,1 Mark M. Fridline,2 and David A. Roke1

1 Department of Civil Engineering, The University of Akron, Akron, OH 44325, USA
2Department of Statistics, The University of Akron, Akron, OH 44325, USA

Correspondence should be addressed to David A. Roke; roke@uakron.edu

Received 30 August 2013; Accepted 1 October 2013

Academic Editors: G.-C. Fang and S. Kazemian

Copyright © 2013 Amir H. Gandomi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction
assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree
techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules.The
DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully
predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an
engineering point of view.

1. Introduction

Empirical classification techniques remain a highly
researched topic, especially for real-world problems. In
general, there are two types of classification techniques,
statistical techniques and soft computing-based techniques.
Themost well-known soft computing techniques are artificial
neural networks (ANNs), support vector machines (SVMs),
and genetic programming (GP) [1]. These techniques are
heuristic and mostly have a random nature; therefore,
several runs are required to achieve useful results, even for a
constant parameter setting. In contrast, statistical classifiers
do not have a random nature and they are mathematically
proven. The most common statistical techniques are logistic
regression (LR) and decision tree (DT). Although DT
techniques have been successfully applied to several real-
world problems, they have been rarely used in engineering,
especially geotechnical engineering (e.g., [2]).

Soil liquefaction is a process by which intergranular
stresses vanish within the soil. Generally, loose and saturated
sandy soils are susceptible to liquefaction. Seismic shaking,
nonseismic vibration, or waved-induced shear stresses can
cause dynamic liquefaction. The application of noncyclic
shear stresses can cause static liquefaction in some loose
sediments [3]. During the liquefaction process, a mass of
saturated sandy soil tends to decrease in volume. If drainage

conditions are not met or the drainage velocity is low, this
decrease in volume will be accompanied with increased pore
water pressure. Thereafter, the pore water pressure (𝑢) will
gradually equal the total stress (𝜎) in the soil. Then, the value
of effective stress (𝜎) becomes zero; consequently, shear
strength (𝜏) approaches zero:

𝜎

= 𝜎 − 𝑢,

𝜏 = 𝜎

⋅ tan 𝑢.

(1)

In such a case, the saturated sandy soil functions as a liquid
and cannot bear any shear strength, resulting in flow of the
sand [4].

The potential failure of critical structures due to liquefac-
tion is a major concern in geotechnical engineering. Thus,
extensive research has been conducted to understand the
liquefaction phenomenon. The results obtained from in situ
tests such as the standard penetration test (SPT) and the cone
penetration test (CPT) are widely used for the evaluation
of the soil liquefaction potential (e.g., [5, 6]). As the most
common in situ test, SPT provides an approximate measure
of the dynamic soil resistance, as well as a disturbed drive
sample. In order to perform this test, a hollow thick-walled
tube is driven into the ground and the number of blows to
advance the split-barrel sampler a vertical distance of 300mm
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is measured. Using a drop weight system, a 63.5 kg (140 lb)
hammer is repeatedly dropped from 0.76m to achieve three
successive increments of 150mm [7]. The 𝑁 value (“blow
count”) or SPT resistance is the sumof the number of blows to
advance the second and third increments. SPT can be used for
characterizing a wide range of soil types. CPT is another fast
and economical in situ test that provides continuous profiling
of geostratigraphy and soil property evaluation [7]. The test
is performed by pushing a cylindrical steel probe into the
ground at a constant rate of 20mm/s and measuring the
resistance to penetration. The standard penetrometer has a
conical tip with 60∘ angle apex, 35.7mm diameter body, and
150 cm2 friction sleeve. This test can be used in soils ranging
from very soft clays to dense sands. CPT provides more
accurate and reliable data for liquefaction analysis compared
to more conventional soil tests, such as cyclic triaxial and
simple shear tests. Thus, it can be considered as a very good
complement to SPT measurements.

Classification techniques have beenwidely used for lique-
faction modelling. Table 1 shows the techniques and the soil
test used in each of them. From the table, it is clear that soft
computing techniques have been widely used for liquefaction
modeling. However, statistical methods such as LR and DT
have been only used for liquefaction assessment based on
CPT data.This paper presents liquefaction assessments based
on SPT data using both LR and DT.

Generally, statistical and soft computing techniques are
not based on engineering fundamentals, as they are empir-
ically developed based on experimental data. In the current
study, we have forced the liquefaction assessment DTs to
use SPT results as the first variable to corroborate with the
engineering point of view.Another commonproblemofmost
classification techniques is that they are not interpretable.
However, DT does not have this issue and its built models
can be easily interpreted based on the nature of the param-
eters. In this study, three different DT methodologies are
used, including chi-squared automatic interaction detection
(CHAID), exhaustive CHAID (E-CHAID), and classification
and regression tree (CART) algorithms. The DT results are
further compared with logistic regression (LR) analysis as a
classical benchmark.

2. Predictive Modeling Techniques

2.1. Decision Tree Algorithms. Decision trees are becoming
a more attractive predictive modeling procedure because
of the easy interpretation by nonstatisticians. One of the
advantages of DT analysis is that the relationship between
the binary dependent variable and the related independent
variables is clearly illustrated using a tree structure. DT
analysis is especially useful when the independent variables
are expressed as both categories and continuous values. This
nonparametric modeling procedure makes no assumptions
about the underlying data. DT analysis determines how
independent variables best combine to explain the outcome
of a given binary dependent variable. In simple terms, DTs
break down to “yes” or “no” statements according to “if-then”
logic. In DT algorithms, the data set is partitioned into two

or more mutually exclusive subsets in each split. The goal is
to produce subsets of the data which are as homogeneous as
possible with respect to the target (dependent) variable.

Kass [8] proposed the CHAID (chi-squared automatic
interaction detection) algorithm as the first tree-based classi-
fication technique. Continuous predictors are discretized into
several groups and changed to ordinal predictors. The main
steps of the algorithm are themerging, splitting, and stopping
steps. Merging is useful for any potential parent node that has
more than two categories; in this step, potential parent nodes
aremerged until all adjusted𝑃 values are less than the defined
𝛼merge. Splitting of potential parents is the process used to find
the best split, using the lowest𝑃 value; the splitting step selects
which independent variable to be used to optimally split the
node. The stopping step checks if the tree growing process
should be stopped according to certain stopping rules (e.g.,
reaching the maximum tree depth level or minimum parent
or child nodes).

Biggs et al. [9] proposed a new CHAID algorithm
called exhaustive CHAID (E-CHAID). In E-CHAID, the
basic CHAID algorithm is changed to improve merging and
testing of dependent variables; as a consequence, E-CHAID is
more computationally intensive. In the E-CHAID algorithm,
there is no reference to any 𝛼merge value; category merging
continues until only two categories remain. Therefore, E-
CHAID may not suitable for large data sets with many
continuous predictor variables. The program then follows
the splitting and stopping steps as described for the CHAID
algorithm.

Breiman et al. [10] proposed the CART (classification and
regression trees) algorithm.The main difference between the
CART and CHAID algorithms is that the CART procedure
will grow as a purely binary tree.Therefore, CART results are
easier to understand, as parent nodes are always split into 2
child nodes. A complete binary tree algorithm partitions data
and produces homogeneous subsets. In the CART procedure,
we first develop the maximum tree and then prune it to avoid
overfitting.

2.2. Logistic Regression. Logistic regression models are used
when the dependent variable (𝑦) is binary (e.g., the depen-
dent variable can take the value of 1 with probability of
success 𝜋 or the value of 0 with probability of failure 1 − 𝜋),
and the independent variables (𝑥

𝑖
) are either categorical or

continuous values. The following is a representation of the
binary multiple LR model:

ln[
𝜋 (𝑥
𝑖
)

1 − 𝜋 (𝑥
𝑖
)

] = ln[
𝑃 (𝑦
𝑖
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𝛽
𝑖
𝑥
𝑖
, (2)

where 𝛽
0
is a constant and 𝛽

𝑖
are the coefficients of the

independent variables in the model. Equation (2), called the
likelihood function, is used for estimating the LR coefficients
in the model. The maximum likelihood estimation method
uses an iterative procedure to find the model coefficients
that best match the pattern of observations in the sample
data. Interpretation of the model comes from transforming
the LR coefficients for each independent variable. Simply
take the exponential of the coefficients (𝑒𝛽𝑖) to determine
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Table 1: Different liquefaction models proposed in the literature.

Type of technique Reference Year Soil test Classification technique Number of records

Soft computing

[11] 1994 SPT ANN 85
[12] 1996 CPT ANN 109
[13] 1998 SPT ANN 105
[14] 2002 CPT ANN 170
[15] 2006 CPT and SPT SVM 109 and 85
[16] 2007 CPT and SPT SVM 170 and 105
[17] 2007 SPT ANN 620
[18] 2007 CPT SVM 226
[19] 2009 CPT ANN 226
[20] 2011 CPT GP 170
[21] 2011 SPT GP and ANN 569
[22] 2012 CPT GP 170
[23] 2013 CPT GP 170
[24] 2013 CPT GP 170

Statistical [25] 2006 CPT LR 396
[26] 2008 CPT DT 178

the influences of each independent variable on the dependent
variable in terms of the odds ratio. To determine if eachmodel
coefficient is statistically significant, the Wald test will be
used.

3. Liquefaction Modeling

3.1. Experimental Database and Data Preprocessing. A
database [17] with 620 postearthquake observations and
12 variables has been used in this study. In addition to the
seismic parameters, the database includes soil properties and
the standard penetration test (SPT) results of the soil. The
binary dependent variable is liquefaction and we selected a
value of 0 for nonliquefied soils and a value of 1 for liquefied
soils. The database includes the values of the following
independent variables:

𝑍: soil specimen depth (m);
(𝑁
1
)
60
: corrected PST number (%);
𝐹
75
: percent fines less than 75𝜇m (%);
𝑑
𝑤
: ground water table depth (m);
𝜎vo: total vertical stress (kPa);
𝜎


vo: effective vertical stress (kPa);
𝑎
𝑡
: threshold acceleration, which contributes to the
strain-based procedure and along with strain-based
safety factor indicates the exceedance of the threshold
strain (Hanna et al. 2007) (g);

𝜏av/𝜎


vo: cyclic stress ratio, which illustrates the seismic
demand on soil;
𝑉
𝑠
: shear wave velocity (m/s);
𝜑
: initial soil friction angle (∘);
𝑀V: earthquake magnitude (Richter);

PHA: peak horizontal acceleration at ground surface (g).

The database was randomly divided into training and
testing subsets. The training data were used for the model
development using the algorithms. The testing data were
used to evaluate the generalization capability of the obtained
models on the unseen data. In order to obtain a consistent
data division, several combinations of the training and testing
sets were considered. Out of the 620 records, 80% was used
as the training data and the remaining 20% of the data sets
were taken for the testing of the generalization capability of
the DTs and LR.

The descriptive statistics of the data used in this study
are given in Table 2. From this table, it can be seen that
the database contains only high magnitude earthquakes.
The records indicate that 256 sites were liquefied and the
remaining 364 were not liquefied.

The correlationmatrix is computed for all parameters and
is presented in Table 3. As expected, the total and effective
vertical stresses have strong correlation, and specimen depth
correlates strongly with both stresses. From this table, SPT
results have high correlation with initial soil friction angle.
This is expected as the friction angle represents the shear
capacity of soil, which is the most important parameter in
SPT results.

3.2. Model Construction Using DTs. The procedure of the
CART algorithm ranks the independent variables in terms of
their predictive power; the CART algorithm therefore serves
as a powerful exploratory tool for understanding the underly-
ing structure of the data [27].The relative importance of the 12
independent variables is shown in Figure 1. Figure 1 indicates
that the most important predictor variable is friction angle
(𝜑). Therefore, the first split of the CART algorithm is based
on friction angle. In the CHAID and E-CHAID algorithms
the lowest adjusted 𝑃 value in each level determines the most
associate independent variable. After calculation, the friction
angle has the lowest adjusted 𝑃 value at the beginning of
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Table 2: Descriptive statistics of variables used in the model development.

Predictor Minimum Mean Maximum Standard deviation
𝑍 0.8 7.66 19.8 4.90
(𝑁
1
)60 1 14.48 75 11.39
𝐹 ≤ 75 𝜇m 1 62.99 100 34.28
𝑑
𝑤

0.35 1.45 10 1.20
𝜎vo 12.1 144.60 408.9 98.20
𝜎


vo 7.5 82.48 233.7 52.84
𝑎
𝑡

0 0.07 0.85 0.07
𝜏av/𝜎


vo 0.12 0.37 0.77 0.15
𝑉
𝑠

37 166.98 500 67.09
𝜑
 23.46 31.96 52.08 4.85
𝑀V 7.4 7.49 7.6 0.10
PHA 0.18 0.38 0.67 0.15

Table 3: Correlation matrix.

𝑍 (𝑁
1
)60 𝐹

75
𝑑
𝑤

𝜎vo 𝜎


vo 𝑎
𝑡
𝜏av/𝜎


vo 𝑉
𝑠

𝜑

𝑀

V PHA Liq.
𝑍 1 0.39 −0.25 0.08 1.00 0.98 −0.23 −0.12 0.58 0.53 0.49 −0.11 −0.30
(𝑁
1
)60 0.39 1 −0.57 0.08 0.41 0.42 0.03 0.15 0.40 0.85 0.15 0.17 −0.27
𝐹
75

−0.25 −0.57 1 −0.18 −0.27 −0.30 −0.12 −0.07 −0.30 −0.54 −0.28 −0.16 −0.06
𝑑
𝑤

0.08 0.08 −0.18 1 0.07 0.21 0.14 −0.27 0.16 0.13 0.21 −0.02 −0.13
𝜎vo 1.00 0.41 −0.27 0.07 1 0.99 −0.22 −0.09 0.59 0.55 0.50 −0.07 −0.29
𝜎


vo 0.98 0.42 −0.30 0.21 0.99 1 −0.19 −0.10 0.61 0.56 0.55 −0.03 −0.28
𝑎
𝑡

−0.23 0.03 −0.12 0.14 −0.22 −0.19 1 −0.06 0.44 −0.02 0.00 0.11 −0.08
𝜏av/𝜎


vo −0.12 0.15 −0.07 −0.27 −0.09 −0.10 −0.06 1 −0.03 0.09 −0.20 0.90 0.25
𝑉
𝑠

0.58 0.40 −0.30 0.16 0.59 0.61 0.44 −0.03 1 0.47 0.32 0.04 −0.21
𝜑
 0.53 0.85 −0.54 0.13 0.55 0.56 −0.02 0.09 0.47 1 0.29 0.12 −0.35
𝑀V 0.49 0.15 −0.28 0.21 0.50 0.55 0.00 −0.20 0.32 0.29 1 −0.11 −0.15
PHA −0.11 0.17 −0.16 −0.02 −0.07 −0.03 0.11 0.90 0.04 0.12 −0.11 1 0.19
Liq. −0.30 −0.27 −0.06 −0.13 −0.29 −0.28 −0.08 0.25 −0.21 −0.35 −0.15 0.19 1
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Figure 1: Importance of independent variables.

the CHAID and E-CHAID algorithms, and again serves as
the first split.

Based on geotechnical engineering theory, the SPT test
results ((𝑁

1
)
60
) should be the most associated parameter and

should therefore be the first split in theDT algorithms.There-
fore, for DT modeling, each algorithm was implemented in
two ways:

(1) let the DT algorithm determine the first split based on
its own statistical method;

(2) force the DT algorithm to use SPT test results as its
first split.

The performance of a DT model mainly depends on
the architecture and parameter settings. There are many
parameters that are involved in the DT algorithms. For the
CHAID and E-CHAID algorithms, the choices of maximum
tree depth and minimum number of cases in the parent and
child nodes play an important role in model construction.
After evaluating different values for themaximum tree depth,
it is apparent that only training results (not the results for
unseen data) improve for maximum depths greater than
4. Therefore, to avoid overfitting, we have set the maxi-
mum tree depth as 4. Products of ten are considered for
the minimum number of cases in the parent nodes; the
minimum number of cases in the child nodes is always set as
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half of the parent nodes’ minimum. For this study, 30 and 15
are set as the values for the parent and child node maximum
number of cases. Two chi-square statistics are commonly
used in the CHAID and E-CHAID algorithms: Pearson and
likelihood ratio. Pearson is faster than the likelihood ratio
and is more suitable for very large databases. The likelihood
ratio is more robust than Pearson, but its calculation is more
time consuming and it is therefore more suitable for a small
database [28]. Due to its robustness, the likelihood ratio is
used in this study as the chi-square statistic for both the
CHAID and E-CHAID algorithms.

For the CART algorithm, the minimum number of cases
in the parent and child nodes is set just like the other DT
algorithms. The maximum tree depth is set as 7 and pruning
is used to avoid overfitting (pruning at least one level in this
problem). IBM SPSS software package version 21 [29] was
used to perform the analysis.

3.3. Model Construction Using LR. In the conventional clas-
sification process, logistic regression analysis is an important
tool for building a model. In this study, the LR algorithm
was performed to approximate the predictive power of
the DT techniques in comparison with another statistical
classification technique.

The LR models cannot be developed using the same
input variables and data divisions as DTs. Before finding
the final LR model, any multicollinearity problems between
the independent variables were solved by removing the
highly correlated independent variables from the model.
Severe multicollinearity can cause instability in the model
coefficients, especially when highly correlated variables are
included in the model.

4. Results and Discussion

As described above and indicated in Table 4, six different DT-
based models were obtained for the assessment of the soil
liquefaction. The DT models for which the SPT results were
the first variable are indicated with the suffix “SPT.” Overall
performance of the DT and LR-based models in terms of
misclassification rate (risk) on the training data and testing
data subsets and the full data set are summarized in Table 4.

Two important characteristics of a classification model
are sensitivity and specificity. Sensitivity quantifies the pro-
portion of correctly identified positives (liquefied soils) and
specificity gives the proportion of correctly identified nega-
tives (nonliquefied soils). Sensitivity and specificity of all DT
and LR models are also presented in Table 5. Comparing the
performance of DTs and LRs, as tabulated in Tables 4 and
5, the DT results are clearly better than the LR results: the
DTs generally have lower risk values and higher sensitivity
and specificity values on the training, testing, and complete
datasets. An interesting point from these tables is that when
the DT algorithms are forced to used SPT results as the
first variable, the model performances on the testing datasets
(unseen data) are always improved. This suggests that the
strategy of using SPT as the first variable is very effective for
future prediction of new datasets. However, as expected, if
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Figure 2: Gain plot of the CHAID and CHAID-SPT models.

the DTs use their own criteria for choosing the first variable
during the training process, performance is improved on the
training datasets but not the testing datasets.

As shown in Table 4, CHAID models (CHAID and
CHAID-SPT) produce the lowest risks among all DTs and
LRs. CHAID-SPThas the best performance on unseen testing
data sets (risk equal to 0.169) and regular CHAID has the best
performance on the training dataset (risk equal to 0.141). As
predicting liquefied soil after earthquakes is very important,
the highest sensitivity value for each set is bolded in Table 5.
From this table, it can be seen that CHAID-SPT has the
highest sensitivity on the testing datasets (sensitivity equal to
0.867) and CHAID has the highest sensitivity on the training
datasets (sensitivity equal to 0.806). Therefore, these two
models have been chosen as the final models.

Percentage of total records in the target category in each
node is recognized as gain. The gains plot is a line chart
of cumulative percentile gains calculated using cumulative
percentile target over total target [28]. The gains plot of the
selected models (CHAID and CHAID-SPT) for the training
results is presented in Figure 2. In this figure the straight line
shows the random selection model, and the area between it
and the model curve shows the model benefit area. Figure 2
shows the effectiveness of the CHAID and CHAID-SPT
models. From this figure, it is clear that the CHAID model
has the better benefit on the training data.

The final decision tree for the CHAID-SPT model is
presented in Figure 3. This tree has 22 nodes, 14 of which are
terminal nodes. The first level of the tree was split into four
initial branches, corresponding to four ranges of SPT values.
As seen in the first level of the tree, the two nodes for the
highest SPT values are terminal nodes, which are interesting
and show the importance of the SPT variable. For these two
nodes (nodes 3 and 4), the chance of liquefaction is very low,
which corresponds with geotechnical engineering theory.

In the second level, the percentage of fines is the best
predictor for the soils with the lowest SPT values and its
three splits show that liquefaction probability decreases with
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Table 4: Risk estimation of the DT and LR models.

Model Testing Training All
CHAID 0.234 0.141 0.160
E-CHAID 0.234 0.161 0.176
CART 0.194 0.163 0.169
CHAID-SPT 0.169a 0.188 0.184
E-CHAID-SPT 0.177 0.161 0.165
CART-SPT 0.185 0.165 0.169
LR 0.258 0.270 0.268
aBold sets are the lowest risk values for each set.

Table 5: Sensitivity and specificity of the DT and LR models.

Model Testing Training All
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

CHAID 0.622 0.848 0.806 0.898 0.773 0.887
E-CHAID 0.644 0.835 0.754 0.902 0.734 0.887
CART 0.667 0.886 0.739 0.909 0.727 0.904
CHAID-SPT 0.867a 0.810 0.763 0.849 0.781 0.841
E-CHAID-SPT 0.711 0.886 0.768 0.891 0.758 0.890
CART-SPT 0.800 0.823 0.796 0.863 0.797 0.854
LR 0.822 0.696 0.673 0.772 0.699 0.755
aBold sets are the highest sensitivity values for each set.

increasing percentage of fines. For larger SPT values (14 <
SPT ≤ 24), peak ground surface horizontal acceleration is the
best predictor. In this range, increasing peak horizontal accel-
eration substantially raises the chance of liquefaction, which
corresponds with earthquake engineering fundamentals.

The third level consists largely of terminal nodes and has
branches based on four different variables: earthquake mag-
nitude, cyclic stress ratio, total vertical stress, and percentage
of fines. In this level, the liquefaction probability decreases
with increasing total vertical stress and increasing cyclic
stress ratio. Like in the second level, liquefaction probability
decreases with increasing percentage of fines.

In the fourth level, there are five terminal nodes: one
node is split into three ranges of soil friction angle and one
node is split using two ranges of effective vertical stress.
In this level, the liquefaction probability decreases with
increasing effective vertical stress, which corresponds to the
trend of total vertical stress in the third level and geotechnical
engineering fundamentals.

The final decision tree for the CHAID model is shown in
Figure 4.This tree hasmore terminal nodes than theCHAID-
SPT tree, with 26 nodes (17 of which are terminal nodes).The
first level of the tree was split to six initial branches according
to the initial soil friction angle, which was indicated as the
variable most associated with liquefaction, according to the
CHAID algorithm. As seen in the first level of the tree, the
node for the highest angles (𝜑 > 39.29∘) is a terminal node
that indicates zero probability of liquefaction.

In the second level, nodes 1 and 2, related to the lowest
initial soil friction angle (𝜑 ≤ 27.34∘), are split using the
percentage of fines. This indicates that percentage of fines
is most associated with liquefaction prediction for low soil
friction angles. From the branches of the nodes 1 and 2 of the

CHAID tree (in the third level), the liquefaction probability
decreases with increasing percentage of fines, which agrees
with the previous results.The soil with an initial friction angle
between the 28.49∘ and 33.5∘, the cyclic stress ratio is the
best predictor of liquefaction. The probability of liquefaction
increases significantly with an increasing cyclic stress ratio.

In the third level, only one node is a parent node; the
other six nodes are terminal nodes. In the fourth level, there
are only two terminal nodes split using the percentage of
fines. From the third and forth levels, it can be noted that
liquefaction probability decreases with increasing percentage
of fines.

Froma comparison of theCHAID-SPT andCHAID trees,
it can be seen that percentage of fines is the best second-level
predictor for the lowest SPT values ((𝑁

1
)
60
≤ 14) and for the

lowest initial soil friction angle values (𝜑 ≤ 27.34∘). Another
similarity of the developed CHAID and CHAID-SPT trees in
the second level is that peak horizontal acceleration is the best
predictor for midrange values of SPT (14 < (𝑁

1
)
60
≤ 24) and

midrange values of soil friction angle (33.5∘ < 𝜑 ≤ 39.29∘).
In the second level, for the highest values of SPT and initial
soil friction angle, there is zero liquefaction probability. From
these similarities, there appears to be a strong correlation
between SPT and initial soil friction angle. This general
conclusion can be also verifiedwith the correlation coefficient
of these two parameters (presented in Table 3). From these
data, SPT and initial soil friction angle are high correlated
parameters.

5. Summary and Conclusions

Six decision tree models were successfully developed in this
study to classify the liquefied and nonliquefied soil using
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PHA ≤ 18 g 18 g < PHA

Liquefaction
No: 57.5%
Yes: 42.5% 
Root node

No: 52.4%
Yes: 47.6% 

Node 1

No: 25%
Yes: 75% 

Node 5

No: 6.5%
Yes: 93.5% 

Node 10

No: 42%
Yes: 58% 
Node 11

No: 43.2%
Yes: 56.8% 

Node 6

No: 80.8%
Yes: 19.2% 

Node 12

No: 25.5%
Yes: 74.5% 

Node 13

No: 76.8%
Yes: 23.2% 

Node 7

No: 72.4%
Yes: 27.6% 
Node 14

No: 76.1%
Yes: 23.9% 
Node 18

No: 53.8%
Yes: 46.2% 

Node 19

No: 90.3%
Yes: 9.7% 
Node 20

No: 100%
Yes: 0% 
Node 15

No: 41%
Yes: 59% 
Node 2

No: 92.3%
Yes: 7.7% 
Node 8
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Figure 4: Final CHAID tree.

three different techniques. Based on geotechnical engineering
theory, three of the decision trees were developed using
SPT as the first variable. The results of the DT models were
compared with those of an LR model; the results show that
DT models generally have better performance than the LR
model for this problem.

The two best models (CHAID and CHAID-SPT) were
chosen based on the risk values and the sensitivity of the
liquefaction prediction. The CHAID-SPT tree has better
performance on the unseen (testing) dataset, indicating that
basing DTmodels on engineering fundamentals can improve
model performance. The general interpretation of the trees
corresponds well with engineering theory, which indicates
the reliability of themodels. From the interpretation results of
the trees, the SPT values and initial soil friction angle values
(used as first variables of the trees) have strong correlation.

Some terminal nodes have small sample sizes, which
may lead to results that are anecdotal. However, these
anecdotal conclusions about soil liquefaction assessment are
highly informative from an exploratory point of view. As
the earthquake parameters do not have a wide range, their
interpretation may not be accurate enough. Therefore, for

future research, the database used in this study should be
expanded to a wider range of earthquake parameters.
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