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We introduce and analyse approximate quantum secret sharing in a formal cryptographic setting,
wherein a dealer encodes and distributes a quantum secret to players such that authorized struc-
tures (sets of subsets of players) can approximately reconstruct the quantum secret and omnipotent
adversarial agents controlling non-authorized subsets of players are approximately denied the quan-
tum secret. In particular, viewing the map encoding the quantum secret to shares for players in
an authorized structure as a quantum channel, we show that approximate reconstructability of the
quantum secret by these players is possible if and only if the information leakage, given in terms
of a certain entanglement-assisted capacity of the complementary quantum channel to the players
outside the structure and the environment, is small.

Quantum resources enable cryptographic tasks be-
yond what is classically possible. For instance, quantum
key distribution [1, 2] provides an information-theoretic
means for generating shared classical keys. Secret shar-
ing (SS) is another fundamental cryptographic primitive,
wherein a dealer D distributes a secret as shares to a
set of players ℘ such that any group in the authorised
structure Γ ⊆ 2℘ (sets of authorised subsets of the play-
ers) reconstructs the secret by combining shares and de-
coding, whereas groups in the complementary adversar-
ial structure Γ̄ = 2℘ \ Γ cannot obtain any information
about the secret. SS has been quantised in two ways:
quantum-safe classical SS [3] and the version we employ
here—quantum-secret sharing (QSS) [4] as a special case
of quantum error correction [5]—which can be partially
unified via quantum graph states for qubits [6] and sub-
sequently for qudits [7]. Quantum secret sharing has
applications in quantum Byzantine agreements [8] and
distributed quantum computation [9], amongst others.

Ideal (t, n)-threshold QSS features perfect recon-
structability and perfect secrecy as elucidated in
Fig. 1(a); i.e., any t out of n players can reconstruct the
secret perfectly, and perfect secrecy means that fewer
than t players do not gain any information about the
secret. From this foundation, generalised QSS can be
constructed from threshold QSS by evenly or unevenly
distributing shares to players [4, 10, 11]. In (t, n)-
QSS [4, 10, 12], a dealer D employs an encoding map E
to encode a quantum secret % ∈ D(H ) (trace-class posi-
tive density operator) into n q-dimensional qudits, i.e.,
onto Hilbert space H ⊗n

q (n-fold tensor product of q-
dimensional Hilbert spaces). Each share of one qudit is
sent to one of n players, such that Γ comprises all groups
of at least t players and Γ̄ is the complement, namely, all

groups of fewer than t players.

Here, we construct a theory of approximate secrecy and
reconstructability by introducing an adversary model as
shown in Fig. 1(b). In our model, the adversary struc-
ture comprises omnipotent adversaries who are denied
control over Γ but can collaborate with players in Γ̄. Im-
perfect SS has been considered, but strong assumptions
on the adversary’s capability are required [13]. In con-
trast, the dichotomy between reconstructability and se-
crecy is quite general and is inherently quantum due to
the no-cloning principle [14, 15], devoid of any classical
analogue: classically, the ability to copy a secret allows
an authorised set to reconstruct the secret exactly but
cannot provide a guarantee that an adversary who could
have intercepted the communication cannot do the same.
Approximate QSS relaxes the requirements of perfect
reconstructability for Γ and perfect secrecy for Γ̄. Ap-
proximate quantum secret sharing schemes derived from
quantum Reed-Solomon codes were investigated in [16],
but this leaves open the question of how more general
approximate quantum secret sharing schemes perform.
The dichotomy between approximate recoverability an
approximate secrecy has also been investigated [17–20],
but it remains unclear how these quantities relate to the
maximum rate at which the secret is transmitted to the
adversary.

Consider now a (t, n)-threshold QSS scheme where a q-
dimensional secret is shared with players holding qudits
(d-dimensional quantum systems). In our model, given
any A ∈ Γ, the adversary can attack all qudits after the
dealer applies the encoding map E and prior to recon-
struction. The effect of the adversary’s action amounts
to applying an effective channel ZA. Thus, the quan-
tum channel mapping the quantum secret to the quan-
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FIG. 1: (a) Ideal threshold QSS scheme. The
dealer encodes the secret with channel E , and
distributes the shares to players 1,2,3,4 and 5. Players
in the set A = {3, 4, 5} collaborate in the decoding
using the map RA and reconstruct the secret. We label
the players outside A as Ā = {1, 2}. (b) Adversarial
attack on a threshold QSS scheme. The adversary
colludes with players 1 and 2. They apply the map ZA
on the players’ qudits, potentially adding noise to the
systems of any player. Depending on the attack, the
legitimate players can still approximately recover the
secret |ψ〉.

tum state on A just before reconstruction is

NA = trĀ ◦ZA ◦ E , (1)

with trĀ denoting the partial-trace that removes the play-
ers in Ā = {1, . . . , n} \ A. The |A| authorised players
then apply a recovery channel RA that maps the qudits
labelled by A to a single q-dimensional system.

We then define our (t, n)-threshold QSS scheme to be
δ-reconstructable if

δ = max
A:t≤|A|

min
RA

D�(RA ◦ NA, I), (2)

where the reconstruction channels RA is of the form
above, I denotes the identity channel, and D� denotes
the diamond (or stabilised) norm distance between quan-
tum channels (see below). Here the maximisation is over
all authorised groups, but without loss of generality we
can restrict to structures with |A| = t. The diamond
norm distance between two channels E and F is defined
as

D�(E ,F) = max
|ψ〉∈H⊗H′

1

2

∥∥E ⊗ I(|ψ〉〈ψ|)−F ⊗ I(|ψ〉〈ψ|)
∥∥

1
,

(3)

where ‖ · ‖1 is the Schatten 1-norm and the optimisa-
tion goes over all auxiliary Hilbert spaces H′. The use
of a stabilised distance here is crucial as it ensures that
arbitrary secrets can be restored, inclusive of their corre-
lations with a quantum memory held by a third party.

Alternatively, we can replace D� with a fidelity-based
stabilised distance, namely

F�(E ,F) = min
|ψ〉∈H⊗H′

F
(
E ⊗ I(|ψ〉〈ψ|),F ⊗ I(|ψ〉〈ψ|)

)
(4)

where F is the Uhlmann fidelity, F (ρ, τ) = ‖√ρ
√
τ‖21.

We say that the scheme is ε-reconstructable in fidelity if

ε = 1− min
A:t≤|A|

max
RA

F�(RA ◦ NA, I). (5)

We can relate the two notions of recoverability using
Fuchs-van de Graaf inequalities, namely, for any quan-
tum channel F , we show in the Supplemental Material
that

D�(F , I) ≥ 1− F�(F , I) ≥ D�(F , I)2. (6)

From this we can immediately conclude that γ-
recoverability in fidelity implies

√
γ-recoverability in dia-

mond norm, and conversely δ-recoverability in diamond
norm implies also δ-recoverability in fidelity.

Next, we establish the notion of approximate secrecy.
For this, we need to introduce complementary chan-
nels [21] for the channels NA, which intuitively model
how much information the adversary retains after the at-
tack. In particular, for a channel NA we introduce its
Stinespring isometry U and define N̂A = trA ◦ U , where
trA is the partial trace removing the authorized set.

With this, we say that a (t, n)-threshold QSS scheme
has ε-secrecy if

ε = 1− min
A:t≤|A|

max
σ

F�(N̂A,VA,σ), (7)

where VA,σ is a preparation channel that prepares a fixed
density matrix σ. Namely, VA,σ traces out the qudits of
the players in A and prepares a quantum state described
by the density matrix σ, where the output σ does not
contain any information about the input state, i.e., the
input state is completely hidden. Hence, when N̂A =
VA,σ for some σ, we have ε = 0: a condition for perfect

secrecy. The other extreme case is when N̂A = I, i.e.,
all the information is leaking through N̂A. In this case it
can be seen that ε = 1.

Finally, we define the strength C of the adversarial
model for a (t, n)-threshold QSS scheme:

C = max
A:|A|≥t

C
(
N̂A
)
, (8)

where C(N̂A) is the entanglement-assisted classical ca-
pacity of N̂A, which is defined for a channel N with input
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labeled by X and output labeled by Y as

C(N ) = max
|ψ〉∈HX⊗HX

I(X : Y )τ (9)

where τ = I ⊗ N (|ψ〉〈ψ|) and I(X : Y )τ is the quantum
mutual information evaluated for the state τ . The mu-
tual information itself can be expressed in terms of the
Umegaki relative entropy, denoted D(·‖·), namely

I(X : Y )τ = min
ρY

D(τ‖ρX ⊗ ρY ) , (10)

where ρX and ρY are the marginals of τ . Using this, we
can introduce a modified entanglement-assisted capacity,
where I(X : Y )ρ is replaced by

Ĩ(X : Y )τ = −max
ρY

logF (τ, ρX ⊗ ρY ) , (11)

which is a variant of the mutual information based on the
sandwiched Rényi relative entropy of order 1/2 [22, 23],
given by

D̃α(ρ‖σ) =
1

α− 1
tr
(

(σ
1−α
2α )αρσ

1−α
2α )α

)α
, (12)

where ρ and σ are quantum states and α > 1.
The corresponding generalized mutual information is
Ĩα(X : Y )τ = minρY D̃α(τ‖ρX ⊗ ρY ) [24], and Ĩ(X :

Y )τ = Ĩ1/2(X : Y )τ . The quantity Cα(N ) = maxτ Ĩα(X :
Y )τ is a generalized entanglement assisted capacity be-
cause C(N ) = limα→1 Cα(N ). Next, we define the
modified strength of the adversarial model as C̃ =
max|A|≤t C1/2(N̂A), which corresponds to setting α = 1/2.

Since D̃α is monotone nondecreasing in α [22], we can de-
duce that C ≥ C̃.

With all this preparation in hand, we can now state
our main result.

Theorem 1. Consider any (t, n) QSS scheme with an
adversarial model. The following are equivalent:

• The adversarial model has modified strength C̃.

• The scheme has ε-secrecy with ε = 1− exp(−C̃).

• The secret is ε-reconstructable in terms of fidelity.

An immediate corollary of this, given the relations dis-
cussed above, is that if the adversarial model has strength
at most C, then the secret is δ-recoverable in diamond
distance with δ ≤

√
1− exp(−C).

Proof of Theorem 1. From Beny-Oreshkov duality [25]
between channels and complementary channels, we have

max
R

F�(R ◦N ,M) = max
S

F�(N̂ ,S ◦ M̂), (13)

where optimizations are over all quantum channels with
appropriate input and output dimensions. Suppose that

our scheme is ε-reconstructable in fidelity. By apply-
ing Beny-Oreshkov duality, we get that for any A ⊂
{1, . . . , n} that

ε = min
A:|A|≥t

max
RA

F�(RA ◦ NA, I)

= min
A:|A|≥t

max
SA

F�(N̂A,SA ◦ Î). (14)

As Î is the trace channel, SA ◦ Î is without loss of gener-
ality a preparation channel VA,σ which prepares a state
σ. Since this applies for all A such that |A| ≥ t, it follows
that the QSS scheme also has ε-secrecy.

The crucial step in our proof relates
maxσ F�(N̂A,VA,σ) to the entanglement-assisted ca-

pacity of N̂A using the following lemma.

Lemma 2. For any A ⊂ {1, . . . , n},

max
σ

F�(N̂A,VA,σ) = e−C̃A , (15)

where C̃A = C1/2(N̂A).

In essence, Lemma 2 connects the worst-case entangle-
ment fidelity with a variant of the entanglement-assisted
capacity that arises from generalized sandwiched Rényi
divergences.

The first step in proving Lemma 2 is to show that

F�(N̂A,VA,σ) = min
ρ
q(ρ, σ)2 (16)

where

q(ρ, σ) = F ((
√
ρ⊗ I)J(

√
ρ⊗ I), ρ⊗ σ)

1/2. (17)

Here

J = (1⊗ N̂A)
∑
i,j

|ψi〉|ψi〉〈ψj |〈ψj | (18)

is the Choi-Jamiolkowski matrix [26, 27] of the channel
N̂A, and I denotes an identity matrix. To show (16), we
initially write the spectral decomposition of any density
matrix ρ as ρ =

∑
i λi|ψi〉〈ψi|, where |ψi〉 denotes an

orthonormal basis. Since λi are non-negative, we can
write

√
ρ =

∑
i

√
λi|ψi〉〈ψi|. Next, the purification of %

is |ψ%〉 =
∑
i

√
λi|ψi〉|ψi〉. If we trace out either the first

or second part of the system of the purified state |ψ%〉,
we will reconstruct the state ρ. Using this notation, note
that when N̂A takes as input the state ρ, we have

τ =(1⊗ N̂A)(|ψ%〉〈ψ%|)

=
∑
i,j

√
λi
√
λj(1⊗ N̂A)(|ψi〉|ψi〉〈ψj |〈ψj |)

=(
√
ρ⊗ I)(1⊗ N̂A)(

∑
i,j

|ψi〉|ψi〉〈ψj |〈ψj |)(
√
ρ⊗ I)

=(
√
ρ⊗ I)J(

√
ρ⊗ I). (19)
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Hence we can see that

F�(N̂A,VA,σ)

=F ((1⊗ N̂A)(|ψ%〉 〈ψ%|), ρ⊗ σ)

=F ((
√
ρ⊗ I)J(

√
ρ⊗ I), ρ⊗ σ)

=
(
tr
√

(
√
ρ⊗
√
σ)(
√
ρ⊗ I)J(

√
ρ⊗ I)(

√
ρ⊗
√
σ)
)2

=
(
tr

√
(ρ⊗

√
σ)J(ρ⊗

√
σ)
)2
. (20)

Using the definition of the fidelity, we note that

q(ρ, σ) = tr
√

(ρ⊗ σ1/2)J(ρ⊗ σ1/2) (21)

= tr
√
J1/2(ρ2 ⊗ σ)J1/2 (22)

=
∥∥∥J1/2(ρ⊗

√
σ)
∥∥∥

1
. (23)

Here in the penultimate equality, we use the fact
tr(XJX)1/2 = tr(J1/2X2J1/2)1/2 for positive semi-definite
X and J . From (20) and (21), we can establish (16).

The second step in the proof of Lemma 2 is to show
that the function q(ρ, σ) is convex in the density matrix
ρ and concave in the density matrix σ. Concavity of
q(ρ, σ) in σ is immediate from the fact that the expression
in (22) ω 7→ tr

√
ω is concave and the linearity of the

expression under the square root in σ. To show convexity
in ρ we simply note that any norm as in (23) is convex,
and the expression inside the norm is linear in ρ. Since
q(ρ, σ) is convex in ρ and concave in σ, we can apply the
minimax theorem [28] to interchange the maximization
and minimization, in the sense that

max
σ

min
ρ
q(ρ, σ) = min

ρ
max
σ

q(ρ, σ). (24)

Third, we use (24) along with the identity (16) to es-
tablish the equivalence between a fidelity and Rényi mu-
tual information.

Denoting the input and output registers of N̂A as X
and Y respectively, we see that

Ĩ(X : Y )τ = min
σ
D̃1/2

(
(1⊗ N̂A)(|ψ%〉 〈ψ%|

∥∥ρ⊗ σ)
)

= min
σ

(
− logF

(
(1⊗ N̂A)(|ψ%〉 〈ψ%|, ρ⊗ σ)

))
= min

σ

(
− log q(ρ, σ)2

)
. (25)

Because − log is a monotone decreasing function, we de-
duce that Ĩ(X : Y )τ = − log

(
maxσ q(ρ, σ)2

)
. Applying

the definition of the generalized entanglement assisted
capacity, we get C̃A = − log

(
minρ maxσ q(ρ, σ)2

)
. Next,

the minimax result (24) implies that

C̃A = − log
(
max
σ

min
ρ
q(ρ, σ)2

)
. (26)

Next, from (16), we can see that maxσ F�(N̂A,VA,σ) =
maxσ minρ q(ρ, σ)2. Hence

exp(−C̃A) = max
σ

F�(N̂A,VA,σ), (27)

and the proof of Lemma 2 follows. Putting Lemma 2 and
(14) together, we complete the proof of Theorem 1. �

Conclusion, discussion, and open questions. We have
established that the entanglement-assisted capacity of a
channel connecting the quantum secret to the quantum
systems of the adversary determines both the approxi-
mate reconstructability and the approximate secrecy of
a threshold QSS scheme. In some sense, our result can
be intuitively understood from the mantra “Quantum in-
formation cannot be learnt without disturbing it.” This
mantra can be used to obtain interpretations of multi-
tude of topics in quantum theory, such as approximate
quantum error correction [29–33], monogamy of entan-
glement [34], and the quantum information of black hole
evaporation [35]. Particularly for quantum error cor-
rection, the encoding map in a QSS scheme takes the
quantum secret to a quantum error correction code, and
the approximate reconstructability of the secret is pre-
cisely the approximate reconstructability of the code. In
this regard, our theorem implies that, if the adversaries
trying to learn the secret have access to a channel with
entanglement-assisted capacity of C, then there exists a
decoding operation that reconstructs the secret up to an
error of δ, quantified in terms of the diamond distance,
where δ ≤

√
1− exp(−C). It remains an open question

as to how different types of capacities other than the
entanglement-assisted capacity influences the theory of
approximate QSS.
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Supplemental Material

First we define some notation. Given a Hilbert space
H , let |H | denote its dimension. We restrict our at-
tention to finite dimensional Hilbert spaces. Let M(H )
denote the set of matrix representations of linear opera-
tors on Hilbert space H . Let D(H ) denote the set of
operators in M(H ) that have unit trace and are positive
semidefinite. A quantum channel is a completely positive
and trace preserving map from M(H ) to M(K ) where
H and K are Hilbert spaces.
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Proof of (6). Note that for a channel F : M(H ) →
M(H ),

F (F ,1) = min
|ψ〉∈H ⊗H
‖|ψ〉‖=1

F (|ψ〉〈ψ|, (I ⊗ F)(|ψ〉〈ψ|)). (28)

Now for any pure state |ψ〉〈ψ| and mixed state σ, we have

F (|ψ〉〈ψ|, σ) = 〈ψ|σ|ψ〉 (29)

From the Fuchs-van de Graaf inequalities we have

(
1− 1

2
‖|ψ〉〈ψ| − σ‖1

)2 ≤ F (|ψ〉〈ψ|, σ)

F (|ψ〉〈ψ|, σ) ≤ 1− 1

4
‖|ψ〉〈ψ| − σ‖21. (30)

We thereby deduce that

F (F ,1)

≤1− max
|ψ〉∈H ⊗H
‖|ψ〉‖=1

1

4
‖|ψ〉〈ψ| − (I ⊗ F)(|ψ〉〈ψ|)‖21

=1− 1

4
‖1−F‖2�

=1−D�(1,F)2, (31)

and

F (F ,1)

≥(1− max
|ψ〉∈H ⊗H
‖|ψ〉‖=1

1

2
‖|ψ〉〈ψ| − (I ⊗ F)(|ψ〉〈ψ|)‖1)2

=(1− 1

2
‖1−F‖�)2

=(1−D�(1,F))2. (32)

Hence,

(1−D�(1,F))2 ≤ F (F ,1) ≤ 1−D�(1,F)2. (33)

For a tighter lower bound, note that [36, Lemma 9.1.1]

1

2
‖ψ〉〈ψ| − σ‖1 = max

0≤P≤I
trP (|ψ〉〈ψ| − σ), (34)

and by picking P = |ψ〉〈ψ|, we get

1

2
‖ψ〉〈ψ| − σ‖1 ≥ 1− 〈ψ|σ|ψ〉 = 1− F (|ψ〉〈ψ|, σ), (35)

and hence

1−D�(1,F) ≤ F (F ,1) ≤ 1−D�(1,F)2, (36)

and this proves (6).
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