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Quantum neural networks (QNNs) have become an important tool for understanding the physical
world, but their advantages and limitations are not fully understood. Some QNNs with specific en-
coding methods can be efficiently simulated by classical surrogates, while others with quantum mem-
ory may perform better than classical classifiers. Here we systematically investigate the problem-
dependent power of quantum neural classifiers (QCs) on multi-class classification tasks. Through
the analysis of expected risk, a measure that weighs the training loss and the generalization error of
a classifier jointly, we identify two key findings: first, the training loss dominates the power rather
than the generalization ability; second, QCs undergo a U-shaped risk curve, in contrast to the
double-descent risk curve of deep neural classifiers. We also reveal the intrinsic connection between
optimal QCs and the Helstrom bound and the equiangular tight frame. Using these findings, we
propose a method that uses loss dynamics to probe whether a QC may be more effective than a
classical classifier on a particular learning task. Numerical results demonstrate the effectiveness of
our approach to explain the superiority of QCs over multilayer Perceptron on parity datasets and
their limitations over convolutional neural networks on image datasets. Our work sheds light on the
problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.

I. INTRODUCTION

The advent of hardware fabrication pushes the bound-
ary of quantum computing from verifying its superiority
on artificial tasks [1–3] to conquering realistic problems
with merits [4–6]. This has led to the emergence of a
popular paradigm known as quantum neural networks
(QNNs), which combine variational quantum Ansätze
with classical optimizers [7, 8]. So far, various QNN-
based methods have been proposed to address difficult
problems in areas such as quantum physics [9–12], quan-
tum information theory [13–16], combinatorial optimiza-
tion [17–21], and machine learning [22–26]. Among these
applications, QNNs are often deployed as quantum clas-
sifiers (QCs) to predict correct labels of the input data
[27–32], e.g., categorize image objects [33–35], classify
phases of quantum matters [36–39], and distinguish en-
tangled states from separable states [40, 41].

To comprehend the full potential of existing quantum
classifiers (QCs) and to spur the development of novel
QCs, huge efforts have been made to unveil the learnabil-
ity of QCs [42–44]. Prior literature establishes the foun-
dations of QCs from three primary aspects, i.e., model
capacity [45–48], trainability [49–51], and generalization
[52–57]. Nevertheless, the advantages and constraints of
QCs have rarely been proven [57–62]. Meanwhile, pre-
vious results cannot rigorously explain the empirical ob-
servations such that QCs generally outperform classical
classifiers (CCs) on handcraft or quantum data [44, 63]
but are inferior to them on realistic problems [64]. As
a result, the need for QCs to address classical issues re-
mains highly questionable.

∗ duyuxuan123@gmail.com

A principal criteria in characterizing the power of a
classifier is the expected risk [65], which weighs the em-
pirical risk (i.e., training loss) and the generalization er-
ror (i.e., test loss) jointly. An optimal classifier is one
which achieves zero expected risk. As shown in Fig. 1(a),
the success of deep neural classifiers is attributed to their
double-descent risk curves [66, 67]. This means that as
the hypothesis space is continually expanded, the ex-
pected risk of a trained deep neural classifier initially
decreases, increases, and when it overfits the train set,
undergoes a second descent. As such, to show the supe-
riority of QCs over CCs, it demands to distill ubiquitous
rules that capture the risk curve of diverse QCs in addi-
tion to conditions where the expected risk of QCs can be
lower than CCs.

In this study, we unify a broad class of QCs in
the same framework and understand their problem-
dependent ability under the expected risk (see Fig. 1(b)).
Our analysis reveals two substantial outcomes: (i) train-
ability dominates QCs’ ability more than generalization
ability; (ii) QCs undergo a U-shape risk curve instead
of the double-descent curve for CCs. These outcomes
consolidate and refine previous observations. Concretely,
the first outcome suggests that the deficiency of QCs on
classical data stems from their limited ability to fit the
train set, resulting in a larger training loss compared to
CCs. The second outcome highlights the distinct learn-
ing behavior of QCs and CCs. Despite the fact that over-
parameterization is fundamental to enhance the perfor-
mance of CCs, it adversely affects the power of QCs.
In line with the diverse dynamics of the risk curves for
QCs and CCs, we devise an efficient problem-dependent
method to recognize potential merits of QCs, as shown
in Fig. 1(a). Conceptually, for a given learning task, our
method fits the loss (risk) dynamics of QC and CC under
the prior (i.e., U-shape versus double descent) and then
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FIG. 1. Risk curve and geometry of the unified QCs. (a) The risk curve of QCs and CCs are highlighted by the solid red
and blue lines (labeled by ‘Q-R’ and ‘C-R’), respectively. The former yields a ‘U’ shape while the latter yields a double-descent
tendency. Potential advantages of QCs are dominated by the empirical risk, highlighted by the dashed curve. The shaded
region refers to the potential merits of QCs. (b) The unified QC consists of two parts, the feature state ρ and the measure

operator o. This model covers diverse QCs. (c) Geometric relationship between {ρ(i,k)} and o of QCs with (near) zero training
loss: (i) the feature states associated with train samples belonging to the same class concentrate around their class-feature

mean, i.e., ρ̄∗(k) := ρ∗(1,k) = ... = ρ∗(nc,k) for ∀k ∈ [K]; (ii) the class-feature means are maximally distant with each other, i.e.,

Tr(ρ̄∗(k)ρ̄∗(k
′)) ∼ δk,k′ ; (iii) the measure operator should align with class-feature means, i.e., Tr(ρ̄∗(k)o∗(k

′)) ∼ δk,k′ .

identify the ‘advantage’ regime where the risk of QC is
lower than CC. Numerical simulations are conducted to
support our theoretical results.

On the technical level, we approach the two outcomes
by separately quantifying the empirical risk and gener-
alization error of QCs. Specifically, we first prove con-
ditions of QCs that lead to near-zero empirical risk, the
geometric interpretation of which is depicted in Fig. 1(c).
As a byproduct, we elucidate how such conditions are
inherently linked to quantum state discrimination and
quantum measurement theory. In addition, we prove
that deep QCs can never reach the vanished empirical
risk by utilizing the concentration property of quantum
observables [68, 69]. We next analyze the generalization
error of QCs by exploiting algorithmic robustness [70].
The derived bound surpasses prior results because it is
the first non-vacuous bound in the over-parameterized
regime. By combining the unreachable zero empirical
risk with the manipulatable generalization error, we ob-
tain the first outcome. The second outcome is gained by
integrating the fact that deep QCs are unable to reach
the vanished empirical risk with the first outcome.

II. MAIN RESULTS

Expected risk.— Let us first introduce a K-class (K ≥
2) classification task. Denote the input space as X , the
label (class) space as Y = {1, · · · ,K}, and the train set

as D =
⋃K
k=1{(x(i,k), y(i,k))}nki=1 with |D| samples drawn

i.i.d. from an unknown probability distribution D on
Z = X × Y. In standard scenarios, the number of train
samples in each class is the same, i.e., n1 = ... = nk ≡ nc
and |D| := n = Knc. The purpose of a classification

algorithm A is using D to infer a hypothesis (a.k.a., a
classifier) hAD : X → RK from the hypothesis space H
to separate train examples from different classes. This
is equivalent to identifying an optimal hypothesis in H
minimizing the expected risk R(h) = E(x,y)∼D[`(h(x), y)],
where `(·, ·) is the per-sample loss and for clarity we spec-
ify it as the square error with `(a, b) = 1

2‖a − b‖
2
2 [71].

Unfortunately, the inaccessible distribution D forbids us
to assess the expected risk directly. In practice, A al-

ternatively learns an empirical classifier ĥ ∈ H, as the
global minimizer of the (regularized) loss function

L(h,D) =
1

n

nc∑
i=1

K∑
k=1

`(h(x(i,k)), y(i,k)) + E(h), (1)

where E(h) is an optional regularizer.
The foremost role of the risk means that quantum ad-

vantages can be ascertained if R(ĥQ) < R(ĥC), where ĥQ
and ĥC are the empirical QC and CC on D. Unlike con-
ventions merely focusing on a QC on one specific task,
the above criteria orients to unearth ubiquitous rules of
QCs with computational advantages. To reconcile the

intractable issue of R(ĥ) and proceed the following anal-
ysis, we decomposed it into two measurable terms, i.e.,

R(ĥ) = RERM(ĥ) + RGene(ĥ), (2)

where RERM(ĥ) = 1
n

∑n
i=1

∑K
k=1 `(ĥ(x(i,k)), y(i,k)) is the

empirical risk and RGene(ĥ) = R(ĥ)−RERM(ĥ) is the gen-
eralization error. Based on Eq. (2), detecting advances
of QCs is translated to deriving under what conditions
do QCs commit both lower RERM and RGene than CCs.

To better elucidate our results, let us recall that the

general form of QC is ĥQ = arg minhQ∈HQ L(hQ,D),
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where L is defined in Eq. (1) and HQ is the hypothe-
sis space. For an N -qubit QC, its hypothesis space is

HQ =
{[
hQ(·, U(θ), O(k))

]
k=1:K

∣∣∣θ ∈ Θ
}
, (3)

where [·]k=1:K is a K-dimensional vector, its k-th entry
hQ(x, U(θ), O(k)) = Tr(O(k)U(θ)σ(x)U(θ)†) for ∀k ∈
[K] refers to the output (prediction) of quantum cir-
cuits, σ(x) = UE(x)(|0〉 〈0|)⊗NUE(x)† is the input state
of x with the encoding circuit UE(·), O = {O(k)}Kk=1
is a set of measure operators, and U(θ) is the adopted
Ansatz with trainable parameters θ living in the pa-
rameter space Θ. Without loss of generality, we define

U(θ) =
∏Nt
l=1(ul(θ)ue) ∈ U(2N ), where ul(θ) ∈ U(2m)

is the l-th parameterized quantum gate operated with at
most m qubits (m ≤ N) and ue refers to fixed quan-

tum gates. Similarly, we define UE(x) =
∏Ng
g=1 ug(x) ∈

U(2N ), where ug(x) ∈ U(2m) refers to the g-th quan-
tum gate operated with at most m qubits, and Ng gates
contain Nge tunable gates and Ng −Nge fixed gates.

Due to the diverse constructions of U(θ) and UE(·), it
is necessary to unify various QCs into the same frame-
work to obtain the generic results. Notably, the unified
QC should be agnostic to particular forms of these two
terms. A feasible way is rewritten hQ(·, U(θ), O(k)) as

hQ(ρ(i,k), o(k)) := Tr(ρ(i,k)o(k)) ∀k ∈ [K], (4)

where O(k) = I2N−D ⊗o(k) with the nontrivial local oper-

ator o(k) ∈ C2D×2D , D describes the locality, and ρ(i,k) =
TrD(U(θ)σ(x(i,k))U(θ)†) corresponds to the state before
measurements, named as feature state. An intuition of
the unified QC is shown in Fig. 1(b).

We are now ready to exploit the unified framework
to analyze the expected risk of QCs. Let ρ = {ρ(i,k)}
and o = {o(k)} be two sets collecting all feature states
and measure operators. The following theorem exhibits
conditions in which QCs allow a low expected risk, where
the formal statement and the proof are deferred to SM A.

Theorem 1 (informal). Following notations in Eqs. (1)-

(4), when the train data size is nO(KNge log
KNg
εδ ) with ε

being the tolerable error, and the optimal sets of ρ∗ and
o∗ satisfy three conditions: (i) the feature states have
the vanished variability in the same class; (ii) all feature
states are equal length and are orthogonal in the varied
classes; (iii) any feature state is alignment with the mea-
sure operator in the same class, with probability 1−δ, the

expected risk of QC tends to be zero, i.e., R(ĥQ)→ 0.

Conditions (i)-(iii) visualized in Fig. 1(c) sculpt the ge-
ometric interpretations of ρ∗ and o∗. These properties
come across the design philosophy of CCs, e.g., linear dis-
criminant analysis and neural collapse phenomenon ap-
peared in most deep neural classifiers [71–73]. Moreover,
these conditions unveil the intrinsic connection between
optimal QCs and the quantum state discrimination [74],
since ρ∗ and o∗ should maximize the Helstrom bound

[75], which explains the ultimate limit of QCs observed
in [76]. However, as will be explained later (see Corol-
lary 1 and Lemma 1), under certain scenarios, it is hard
for QCs to meet these conditions. A typical instance is
applying QC to learn the image dataset, where the dif-
ficulty stems from the limited nonlinearity of QC to fit
the train set, thereby inducing a large empirical risk.

Conditions (i)-(iii) also imply how the quantum mea-
surement theory can be used to guide the design of QCs.
Namely, the mean feature states of each class {ρ̄∗(k)}
compose the equiangular tight frame (ETF) and Con-
dition (iii) suggests that the optimal measure operators
{o∗} also satisfy this ETF [77]. Due to the relation be-
tween symmetric informationally complete (SIC) mea-
surements and ETF [78, 79], the optimal measure op-
erators could be estimated by various SIC construction
strategies [80]. Besides, the locality D of {o∗} should
be carefully selected in QCs in which a small D pre-
cludes the acquisition of the optimal QCs (i.e., the com-
plex ETF does not exist when 2D = K [81, 82]), while an
extremely large D may incur the barren plateaus [83, 84].
Furthermore, whenK is large, Pauli-based measurements
are preferable than computational basis measurements in
QCs, since the former allows classical shadow techniques
to accelerate the training of QCs [85, 86].

The scaling behavior of n indicates that it is data-
efficient for QCs to attain a low generalization error,
where the size of train set only linearly depends on the
class number K and the number of encoding gates Nge
(see Lemma 3 for the technical elaboration). In other
words, the generalization error of QCs can be well con-
trolled by the modest-size train data.

According to Theorem 1, the challenges in satisfying
Conditions (i)-(iii) and the well controlled generalization
error pinpoint that the risk of a QC is mostly dominated
by its empirical loss rather than its generalization error.
In this view, the core in devising advanced QCs is tailor-

ing HQ in Eq. (3) so that ĥQ has a (near) zero empirical
risk on D, or equivalently examining whether the em-
ployed QCs can fulfill Conditions (i)-(iii).

U-shape risk curve.—The risk curve concerns how
the expected risk of a classifier behaves with the varied
hypothesis space. It is desired that as with deep neu-
ral classifiers, QCs undergo a double-descent risk curve
in the sense that the over-parameterized QCs consent
a low expected risk when the trainable parameters Nt
is much greater than the train data n. If so, ‘over-
parameterization’ could serve as a golden law in designing
QCs. However, the following corollary refutes the exis-
tence of the double-descent risk curve for QCs.

Corollary 1. Following notations in Theorem 1,
when {UE(x)|x ∈ X} follows the Haar distribu-
tion, with probability 1 − δ, the empirical QC follows

|Tr
(
σ(x(i,k))σ(x)

)
− 1

2N
| ≤

√
3

22Nδ
. When {U(θ)|θ ∈ Θ}

follows the Haar distribution, with probability 1 − δ,

the empirical QC follows |Tr(ρ(i,k)o(k′)) − Tr(o(k
′))

2D
| <



4√
Tr(o(k′))2+2 Tr((o(k′))2)

22Dδ
.

The proof is deferred to SM B. The achieved results re-
veal the caveat of deep QCs. Specifically, when UE(x)

is deep, two encoded states σ(x(i,k)) and σ(x(i′,k)) from
the same class tend to be orthogonal, which contradicts
with Conditions (i) in Theorem 1. Besides, when U(θ)
is deep, the output of QC concentrates to zero, regard-
less how o(k′) and ρ(i,k) are selected. This violates Con-
dition (iii) in Theorem 1. Overall, over-parameterized
QCs encounter the high empirical risk and thus the high
expected risk, which suggests that QCs experience a U-
shape risk curve. This observation differs the dynamics
of QCs from variational quantum Eigensolvers, since the
latter can benefit from over-parameterization, e.g., better
trainability and convergence rate [87–90]. Moreover, the
rule of thumb in QCs’ construction is slimming HQ to
find the valley region. Intriguingly, tailoring the feature
states echoes with quantum metric learning and quantum
self-supervised learning [91–95].

Probe power of QCs via loss dynamics.—The dis-
tinct tendency of the risk curves between QCs and CCs
provides a succinct way to recognize the potential quan-
tum advantages. As shown in Fig. 1(a), given a specific
data set, the U-shape risk curve of QCs indicates that its
advantages mostly appear in the valley region. Precisely,
if the risk values of QC around the basin are lower than
those of CC, potential merits may exist; otherwise, QC
is inferior to CC. The proved learning behavior of QCs,
accompanied with the tight generalization bound, allows
us to effectively fit its risk curve according to their loss
dynamics. Specifically, our method contains three steps.
First, W tuples of {n,Nt, T} are initialized based on The-
orem 1 so that the collected risk points of QC span the
basin area with low generalization error. Second, we ex-
ecute QC and CC under these W hyper-parameter set-
tings and fit their loss dynamics to attain the risk curve.
Last, we compare two risk curves and probe potential
advantages. See SM F for the implementation details.

Technical analysis.—Theorem 1 is achieved by ana-

lyzing when RERM(ĥQ) and RGene(ĥQ) are (near) zero.

In the analysis of RERM(ĥQ), we first consider the most
general case in which both ρ and o are tunable, where

ĥQ ≡ hQ(ρ∗,o∗) with (ρ∗,o∗) = minρ,o L(ρ,o).

Lemma 1 (Informal). When the regularizer E is consid-
ered and (ρ∗,o∗) meets the three conditions in Theorem

1, the global minimizer leads to RERM(ĥQ) = C2
1/2 with

C1 depending on the hyper-parameters in E.

The achieved properties of o∗ can be used as a priori to
simplify QCs. To this end, the following lemma quantifies

RERM(ĥQ) when o is predefined and E = 0, where ĥQ ≡
hQ(ρ∗,o) with ρ∗ = minρ L(ρ,o).

Lemma 2 (Informal). When the predefined {o(k)} are
mutually orthogonal with each other and the conditions

in Theorem 1 are satisfied, we have RERM(ĥQ) = 0.

The proofs of Lemmas 1 and 2 are given in SM C&D.

We next analyze RGene(ĥQ). Prior results cannot be
used to prove Theorem 1, since such bounds polynomially
scale with the trainable parameters and become vacuous
in the over-parameterized regime. To remedy this issue,
we utilize the concept of algorithmic robustness [70].

Definition 1 (Robustness). A learning algorithm A is
(R, ν(·))-robust with R ∈ N and ν(·) : Zn → R, if Z can
be partitioned into R disjoint sets, denoted by {Cr}Rr=1,
such that the following holds for all D ⊂ Zn : ∀s =
(x(i), y(i)) ∈ D, ∀z = (x, y) ∈ Z, ∀r ∈ [R],

s, z ∈ Cr ⇒ |l(hAD (x(i)), y(i))− l(hAD (x), y)| ≤ ν(D).

Concisely, robustness measures how much the loss value
can be varied with respect to the input space Z. A higher
robustness of a classifier admits lower R, ν(·), and RGene

[70]. The following lemma quantifies the upper bound of

RGene(ĥQ) whose proof is given in SM E.

Lemma 3. Suppose the measure operator is bounded by
C2 with maxk∈[K] ‖o(k)‖ ≤ C2. Define ε as the tolerable
error. Following notations in Definition 1, the empiri-
cal QC is (K(28Nge/ε)

4mNge , 4L1KC2ε)-robust, and with
probability 1− δ we have

RGene(ĥQ) ≤ 4L1KC2ε+ 5ξ(ĥQ)

√
|TD|4mNge ln

56KNge
εδ

n
,

where L1 is the Lipschitz constant of ` with respect to

hQ, IDr = {i ∈ [n] : z(i) ∈ Cr}, ξ(ĥ) := maxz∈Z(`(ĥ, z)),
and TD := {r ∈ [R] : |IDr | ≥ 1}.

The achieved results convey threefold insights. First, our
bound does not explicitly depend on the number of train-
able parameters [96]. This unlocks a new way to under-
stand the generalization ability of QCs, especially for the
over-parameterized ones. Next, our bound hints that a
carefully designed UE can enhance performance of QCs

[53, 97]. Last, RGene(ĥQ) → 0 requires n � |TD|4mNge.
Fortunately, a reasonable value of n is sufficient to war-
rant this condition, because in general m ≤ 2, Nge ∝ |x|,
and |TD| is continuously decreased from n to K with re-
spect to the reduced empirical loss.

III. NUMERICAL SIMULATIONS

We conduct numerical simulations to exhibit that the
advantages and limitations of QCs on different classifica-
tion tasks can be interpreted by the derived risk curve
and feature states. The omitted construction details and
results are deferred to SM G.

We first apply QC to accomplish the binary classifica-
tion on the parity dataset [98–100]. The number of qubits
is N = 6 and the hardware-efficient Ansatz is adopted
to realize U(θ). The gradient descent method is used
as the classical optimizer. Two measure operators are
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(a)

(b)

FIG. 2. Binary classification on the parity dataset. (a)
The learning performance of QC when the layer number is
3. The x-axis denotes the epoch numbers. Shaded region
represents variance. The Bloch spheres display the quantum
feature states at different epochs. (b) The fitted risk curve
of QC and MLP. The x-axis denotes the number of trainable
parameters. The label ‘QC-risk ’ (‘MLP-risk ’) refers to the
fitted risk curve of QC and MLP. The label ‘QC-res’ (‘MLP-
res’) refers to the collected results used for fitting the curves.

o(1) = |0〉 〈0| and o(2) = |1〉 〈1|. The simulation results of
QC with Nt = 54 are displayed in Fig. 2(a). Particularly,
the averaged train (test) accuracy steadily grows from
44.1% to 100% within 22 epochs, and the corresponding
loss decreases from 0.26 to 4 × 10−5. The dynamics of
the feature states {ρ(i,t)} with t ∈ {0, 10, 20, 30, 40} vi-
sualized by Bloch spheres echo with Lemma 2. Besides,
QC becomes more robust when we continue the training.
Although the train (test) accuracy reaches the optimum,
the loss can be further reduced and suggests a lower risk
warranted by Theorem 1. We further compare the risk
curve between QC and multilayer Perceptron (MLP) on
this dataset. We fit their risk curves following the pro-
posed method to probe potential quantum merits. As
shown in Fig. 2(b), QC clearly outperforms MLP when
the trainable parameters ranges from 20 to 140 and the
valley of the risk curve is around Nt = 70 [101].

We then apply QC to learn the Fashion-MNIST im-
age dataset with K = 9 [102]. The employed number of
qubits is N = 10 and the Pauli-based measure operators
are employed. Convolutional neural networks (CNNs)
are exploited as the reference. For all classifiers, the num-
ber of epochs is fixed to be T = 50 and the number of
trainable parameters Nt ranges from 60 to 9000. Each
setting is repeated with 3 times. As shown in Fig. 3,
when the layer number is 50 with Nt = 1500, both the
train and test accuracies of QC are about 50%. This
performance is inferior to CNN under the similar setting.
To explore whether QC has the potential to outperform

CNN on this dataset, we compare their risk curves. As
shown in Fig. 3(b), unlike the parity dataset, QC is evi-
dently inferior to CNN on Fashion-MNIST dataset.
(a)

(b)

FIG. 3. Multi-class classification on the image dataset
with K = 9. (a) The learning performance of QC when the
layer number is 50. (b) The fitted risk curve of QC and CNN.
All labels have the same meaning with those used in Fig. 2.

IV. DISCUSSIONS AND OUTLOOK

We understand the potential of diverse QCs in terms of
the expected risk. Our theoretical findings demonstrate
that the efficacy of QCs is dependent on the problem at
hand, which explains the empirical evidence of their supe-
riority on synthetic and quantum datasets, yet inferiority
on realistic tasks. With the clear difference between the
risk curve of QCs and deep neural classifiers, we present a
concise technique to investigate potential quantum ben-
efits by fitting their loss dynamics. Numerical results
validate our theoretical results and the effectiveness of
our method.

There are several interesting future research directions.
The U-shape curve of QCs poses two open questions.
First, can contemporary QCs attain quantum benefits
on certain classical data when only limited data and re-
stricted computing resources are available? Secondly,
is it necessary to redesign QCs such as nonlinear QCs
[103, 104] that can also exhibit a double-descent risk
curve? Besides, the unearthed connection between the
conditions towards optimal empirical risk and quantum
state discrimination opens a new research avenue that
amplifies the potential of QCs on quantum data aided
by quantum information theory. Finally, it is intrigu-
ing to extend the developed non-vacuous generalization
error bound of QCs to other scenarios, such as out-of-
distribution data, in order to identify potential quantum
advantages.
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Yiğit Subaşı. On nonlinear transformations in quantum
computation. arXiv preprint arXiv:2112.12307, 2021.

[105] Kenji Kawaguchi, Zhun Deng, Kyle Luh, and Jiaoyang
Huang. Robustness implies generalization via data-
dependent generalization bounds. In International
Conference on Machine Learning, pages 10866–10894.
PMLR, 2022.

[106] Thomas Barthel and Jianfeng Lu. Fundamental limita-
tions for measurements in quantum many-body systems.
Phys. Rev. Lett., 121:080406, Aug 2018.

[107] Amit Daniely and Eran Malach. Learning parities with
neural networks. Advances in Neural Information Pro-
cessing Systems, 33:20356–20365, 2020.

[108] Boaz Barak, Benjamin L Edelman, Surbhi Goel, Sham
Kakade, Eran Malach, and Cyril Zhang. Hidden
progress in deep learning: Sgd learns parities near the
computational limit. arXiv preprint arXiv:2207.08799,
2022.

[109] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. MIT press, 2016.

[110] John Duchi, Elad Hazan, and Yoram Singer. Adaptive
subgradient methods for online learning and stochas-
tic optimization. Journal of machine learning research,
12(7), 2011.



10

The organization of the supplementary material (SM) is as follows. In SM A, we present the proof of Theorem 1.
Then, we provide the proof of Corollary 1 in SM B. Subsequently, we demonstrate the proof of Lemma 1 and Lemma
2 in SM C and SM D, respectively. Next, in SM E, we exhibit the proof of Lemma 3. In the end, we elucidate the
details of numerical simulations in SM G.

SM A: Proof of Theorem 1

For convenience, let us first recall the settings and notations introduced in the main text. When QCs are applied to
accomplish the multi-class classification task, the training dataset D contains n examples and the number of examples
in each class is the same with n = ncK. Moreover, the per-sample loss is specified as the mean square error.

We next introduce the formal description of Theorem 1. In particular, Theorem 1 is established on Lemma 2, where
the regularization term is set as zero (i.e., E = 0) and the set of measure operator is predefined, i.e., o spans the

space C2D×2D and satisfies Tr(o(k)o(k′)) = Bδk,k′ where B ≥ 1 is a constant. The requirements of o aims to preserve
Condition (iii) in Lemma 1. Note that the focus on these specific settings adopted in Lemma 1 instead of the most
general settings (i.e., o is tunable and E is nonzero) is motivated by Lemma 1, which promises a lower expected risk.
Following the above elaboration, the loss function of QC to be minimized can be explicitly written as

L(ρ) =
1

2n

nc∑
i=1

K∑
k=1

(
[Tr(ρ(i,k)o(k))]k=1:K − y(i,k)

)2

, (A1)

where y(i,k) is the unit basis whose k-th entry is 1 for ∀i ∈ [nc], ∀k ∈ [K]. Denote ρ∗ = minρ L(ρ) and the empirical

risk of QC as RERM(ĥQ) with ĥQ ≡ ĥQ(ρ∗). The formal statement of Theorem 1 is as follows.

Theorem (Formal statement of Theorem 1). Following notations in Lemmas 2 and 3, with probability 1 − δ, the

expected risk of QC tends to be zero, i.e., RERM(ĥQ) = 0, when the size of train dataset satisfies n� O(KNge log
KNg
εδ )

and the global minimizer ρ∗ in Eq. (A1) satisfies

(i)ρ̄∗(k) := ρ∗(1,k) = ... = ρ∗(nc,k); (ii) Tr(ρ̄∗(k)ρ̄∗(k
′)) = Bδk,k′ ; (iii) Tr(ρ̄∗(k)o(k′)) = δk,k′ . (A2)

Proof of Theorem 1. Following Eq. (2) and the results in Lemma 3, with probability 1 − δ, the expected risk of an
optimal empirical QC is upper bounded by

R(ĥQ) ≤ RERM(ĥQ) + 4L1KC2ε+ 3ξ(ĥ)

√
|TD|4mNge ln(56KNge/(εδ))

n
+ ξ(ĥ)

2|TD|4mNge ln(56KNge/(εδ))

n
. (A3)

Then, when ρ∗ satisfies Eq. (A2), Lemma 2 warrants RERM(ĥQ) = 0, which gives

R(ĥQ) ≤ 4L1KC2ε+ 3ξ(ĥ)

√
|TD|4mNge ln(56KNge/(εδ))

n
+ ξ(ĥ)

2|TD|4mNge ln(56KNge/(εδ))

n
. (A4)

This bound can be further simplified when the training of QC is perfect. Note that Condition (i) implies |TD| = K,

since all feature states from the same class collapse to the same point. Meanwhile, since ξ(ĥ) and C2 are bounded,
and m and ε are small constant, we can conclude that when n � O(KNge log(KNg/(εδ))), the expected risk can
approach to zero.

SM B: Proof of Corollary 1

The proof leverages the following two lemmas related to the Haar measure and the unitary t-design.

Lemma 4. Let {Wy}y∈Y ⊂ U(d) form a unitary t-design with t > 1, and let A,B : Hd → Hd be arbitrary linear
operators. Then

1

|Y |
∑
y∈Y

Tr[WyAW
†
yB] =

∫
Haar

dµ(W ) Tr[WyAW
†
yB] =

Tr[A] Tr[B]

d
. (B1)
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Lemma 5. Let {Wy}y∈Y ⊂ U(d) form a unitary t-design with t > 1, and let A,B,C,D : Hd → Hd be arbitrary
linear operators. Then

1

|Y |
∑
y∈Y

Tr[WyAW
†
yB] Tr[WyCW

†
yD] =

∫
Haar

dµ(W ) Tr[WyAW
†
yB] Tr[WyCW

†
yD]

=
1

d2 − 1
(Tr[A] Tr[B] Tr[C] Tr[D] + Tr[AC] Tr[BD])

− 1

d(d2 − 1)
(Tr[AC] Tr[B] Tr[D] + Tr[A] Tr[C] Tr[BD]) . (B2)

Corollary (Restatement of Corollary 1). Following notations in Lemmas 2 and 3, when the encoding unitary
{UE(x)|x ∈ X} follows the Haar distribution, with probability 1 − δ, the empirical QC follows |Tr

(
σ(x(i,k))σ(x)

)
−

1
2N
| ≤

√
3

22Nδ
. When the adopted Ansatz {U(θ)|θ ∈ Θ} follows the Haar distribution, with probability 1 − δ, the

empirical QC follows |Tr(ρ(i,k)o(k′))− Tr(o(k
′))

2D
| <

√
Tr(o(k′))2+2 Tr((o(k′))2)

22Dδ
.

Proof of Corollary 1. We complete the proof by separately analyzing the concentration behavior of the encoding
unitary and the Ansätze.

Concentration of the encoding unitary. Recall that Condition (iii) in Lemma 2 concerns the distance between two

feature states ρ(i,k) and ρ(i′,k′) for ∀i, i ∈ [nc] and ∀k, k′ ∈ [K]. In this regard, we quantify the distance between the
encoded state σ(x(i,k)) and σ(x) with x ∼ X when the deep encoding Ansatz UE is employed. In particular, we have

Ex∼X
(

Tr
(
σ(x(i,k))σ(x)

))
=Ex∼X

(
Tr
(
σ(x(i,k))UE(x)(|0〉 〈0|)⊗NUE(x)†

))
=

∫
Haar

dµ(U) Tr
(
σ(x(i,k))U(|0〉 〈0|)⊗NU

)
=

Tr(σ(x(i,k))) Tr(|0〉 〈0|)⊗N )

2N

=
1

2N
, (B3)

where the third equality uses Lemma 4. Moreover, the variance of the term Tr(σ(x(i,k))σ(x)) yields

Varx∼X

(
Tr
(
σ(x(i,k))σ(x)

))
=Ex∼X

(
Tr
(
σ(x(i,k))σ(x)

)2
)
− Ex∼X

(
Tr
(
σ(x(i,k))σ(x)

))2

=

∫
Haar

dµ(U) Tr
(
σ(x(i,k))U(|0〉 〈0|)⊗NU

)
Tr
(
σ(x(i,k))U(|0〉 〈0|)⊗NU

)
− 1

22N

=
1

22N − 1

(
1 + Tr(σ(x(i,k))2)

)
− 1

22N (22N − 1)

(
Tr(σ(x(i,k))2) + 1

)
− 1

22N

≤ 1

22N−2
− 1

22N

=
3

22N
, (B4)

where the second equality uses the property that the deep encoding unitary follows the Haar distribution and the
result in Eq. (B3), the third equality comes from Lemma 4, the inequality adopts Tr(σ2) ≤ 1 and 22N − 1 > 22N−1,
and the last equality is obtained via simplification.

Supported by the Chebyshev’s inequality Pr(|X − E[X]| ≥ a) ≤ Var[X]/a2, Eqs. (B3) and (B4) indicate

Pr

(∣∣∣Tr
(
σ(x(i,k))σ(x)

)
− 1

2N

∣∣∣ ≥ τ) ≤ 3

22Nτ2
.

Equivalently, with probability 1− δ, we have∣∣∣Tr
(
σ(x(i,k))σ(x)

)
− 1

2N

∣∣∣ ≤√ 3

22Nδ
. (B5)
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Concentration of the deep Ansatze. Recall Condition (ii) in Lemma 2. Given a feature state ρ(i,k), for ∀i ∈ [nc] and

∀k ∈ [K] and a measure operator o(k), the optimal feature state should satisfy

Tr(ρ∗(i,k)o(k′)) = δk,k′ .

In other words, we should examine the value of Tr(ρ(i,k)o(k′)) when ρ(i,k) is prepared by a deep Ansatze U(θ).
Specifically, we have

Eθ∼Θ

(
Tr(ρ(i,k)o(k′))

)
=Eθ∼Θ

(
Tr(U(θ)σ(x(i,k))U(θ)†(o(k′) ⊗ I2N−D )

)
=

∫
Haar

dµ(U) Tr
(
Uσ(x(i,k))U†(o(k′) ⊗ I2N−D )

)
=

Tr(o(k′))(2N−D)

2N

=
Tr(o(k′))

2D
, (B6)

where the first equality comes from the explicit form of QC in Eq. (4), the second equality uses the fact that U follows
the Haar distribution, and the last second equality comes from Lemma 4.

We then quantify the variance of Tr(ρ(i,k)o(k′)), i.e.,

Varθ∼Θ

(
Tr(ρ(i,k)o(k′))

)
=Eθ∼Θ

(
Tr(ρ(i,k)o(k′))2

)
−
(
Eθ∼Θ

(
Tr(ρ(i,k)o(k′))

))2

=

∫
Haar

dµ(U) Tr
(
Uσ(x(i,k))U†(o(k′) ⊗ I2N−D )

)2

− Tr(o(k′))2

22D

=
1

22N − 1

(
Tr(σ(x(i,k))) Tr(o(k′) ⊗ I2N−D ) Tr(σ(x(i,k))) Tr(o(k′) ⊗ I2N−D ) + Tr(σ(x(i,k))2) Tr((o(k′) ⊗ I2N−D )2)

)
− 1

2N (22N − 1)

(
Tr(σ(x(i,k))2) Tr(o(k′) ⊗ I2N−D )2 + Tr(σ(x(i,k)))2 Tr((o(k′) ⊗ I2N−D )2)

)
− Tr(o(k′))2

22D

≤ 1

22N − 1

(
Tr(o(k′) ⊗ I2N−D )2 + Tr((o(k′) ⊗ I2N−D )2)

)
− Tr(o(k′))2

22D

=
1

22N − 1

(
Tr(o(k′))222N−2D + Tr((o(k′))2)22N−2D

)
− Tr(o(k′))2

22D

≤Tr(o(k′))2 + Tr((o(k′))2)

22D−1
− Tr(o(k′))2

22D

=
Tr(o(k′))2 + 2 Tr((o(k′))2)

22D
. (B7)

where the second equality uses the fact that U follows the Haar distribution and Eq. (B6), the the third equality
comes from Lemma 5, the first inequality arises from dropping some positive terms, the last second equality employs
Tr(A⊗B) = Tr(A) Tr(B) and (A⊗B)(C⊗D) = (AC)⊗(BD), and the last inequality exploits (22N−1)−1 > (2N−1)−1,
and the last equalities is obtained via simplification.

Supported by the Chebyshev’s inequality Pr(|X − E[X]| ≥ a) ≤ Var[X]/a2, Eqs. (B6) and (B7) indicate

Pr
(∣∣∣Tr(ρ(i,k)o(k′))− E

(
Tr(ρ(i,k)o(k′))

) ∣∣∣ ≥ τ) ≤ Tr(o(k′))2 + 2 Tr((o(k′))2)

22Dτ2
.

Equivalently, with probability 1− δ, we have

∣∣∣Tr(ρ(i,k)o(k′))− Tr(o(k′))

2D

∣∣∣ <√Tr(o(k′))2 + 2 Tr((o(k′))2)

22Dδ
. (B8)



13

SM C: Proof of Lemma 1

In this section, we derive the geometric properties of the global optimizer under the unconstraint loss function
L(ρ,o) in which both ρ and o are tunable and the regularization term is considered. Mathematically, the regularizer

in Eq. (1) is defined as E =
λρ
2

∑nc
i=1

∑K
k=1 ‖ρ(i,k)‖2F + λo

2

∑K
k=1 ‖o(k)‖2F with λρ and λo being hyper-parameters. The

explicit form of the loss function is

L(ρ,o) =
1

2n

nc∑
i=1

K∑
k=1

([
Tr(ρ(i,k)o(k))

]
k=1:K

− y(i,k)
)2

+
λρ
2

nc∑
i=1

K∑
k=1

‖ρ(i,k)‖2F +
λo
2

K∑
j=1

‖o(j)‖2F . (C1)

Denote the global optima as (ρ∗,o∗) = minρ,o L(ρ,o) and the empirical QC as ĥQ ≡ hQ(ρ∗,o∗). The restatement of
Lemma 1 is as follows.

Lemma (Formal statement of Lemma 1). Define C1 := K
√
ncλoλρ. If 2D ≥ K, C1 ≤ 1, and λo ≤ ncλρ, the global

minimizer (ρ∗,o∗) of L(ρ,o) in Eq. (C1) satisfies for ∀k, k′ ∈ [K]:

(i)ρ̄∗(k) := ρ∗(1,k) = · · · = ρ∗(nc,k);

(ii) Tr(ρ̄∗(k)ρ̄∗(k
′)) = (1− C1)

√
λo
nλρ

δk,k′ ;

(iii)o∗(k) =

√
nλρ
λo

ρ̄∗(k). (C2)

The corresponding empirical risk is RERM(ĥQ) = C1.

Proof of Lemma 1. Conceptually, the global optimizer can be identified by lower bounding L(ρ,o), where the equality
conditions of ρ amount to the properties of global minimizer. In particular, the lower bound of L(ρ,o) yields

1

2Knc

nc∑
i=1

K∑
k=1

(
[Tr(ρ(i,k)o(j))]j=1:K − y(i,k)

)2

+
λρ
2

nc∑
i=1

K∑
k=1

‖ρ(i,k)‖2F +
λo
2

K∑
j=1

‖o(j)‖2F

≥ 1

2Knc

nc∑
i=1

K∑
k=1

(
Tr(ρ(i,k)o(k))− 1

)2

+
λρ
2

nc∑
i=1

K∑
k=1

‖ρ(i,k)‖2F +
λo
2

K∑
j=1

‖o(j)‖2F

=
1

2Knc

K∑
k=1

nc∑
i=1

nc
1

nc

(
Tr(ρ(i,k)o(k))− 1

)2

+
λρ
2

K∑
k=1

nc∑
i=1

nc
1

nc
‖ρ(i,k)‖2F +

λo
2

K∑
j=1

‖o(j)‖2F

≥ 1

2K

K∑
k=1

(
Tr

(
nc∑
i=1

1

nc
ρ(i,k)o(k)

)
− 1

)2

+
λρ
2

K∑
k=1

nc

∥∥∥∥∥
nc∑
i=1

1

nc
ρ(i,k)

∥∥∥∥∥
2

F

+
λo
2

K∑
j=1

‖o(j)‖2F , (C3)

where the first inequality uses the fact ‖a− b‖2 =
∑
i(a

(i)− b(i))2 ≥ (a(k)− b(k))2 and the k-th entry of y(i,k) equals
to 1, and the second inequality comes from the Jensen’s inequality f(E(x)) ≤ E(f(x)). The equality condition of the
first inequality holds if and only if

Tr
(
ρ(i,k)o(j)

)
= 0, (∀j ∈ [K] \ {k}) ∧ (∀i ∈ [nc]) ;

and the equality condition of the second inequality holds if and only if

ρ(1,k) = · · · = ρ(i,k) = · · · = ρ(nc,k), ∀k ∈ [K].

Denote the mean of the feature state for the k-th class as ρ̄(k) =
∑nc
i=1

1
nc
ρ(i,k) for ∀k ∈ [K]. The above two equality

conditions suggest that the global minimizer (ρ∗,o∗) satisfies

ρ̄∗(k) ≡ ρ∗(1,k) = · · · = ρ∗(nc,k), ∀k ∈ [K]

Tr(ρ̄∗(k)o∗(j)) = 0, ∀j ∈ [K] \ {k}. (C4)

To thins end, we obtain Conditions (i) in Lemma 1, which describe the geometric properties of ρ∗, i.e.,

(i)ρ̄∗(k) := ρ∗(1,k) = · · · = ρ∗(nc,k). (C5)
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The next part of the proof is showing that the global minimizer satisfies Condition (iii). Combining Eqs. (C3) and
(C4), the lower bound of the loss function in Eq. (C3) follows

L(ρ,o)

≥ 1

2K

K∑
k=1

(
Tr
(
ρ̄(k)o(k)

)
− 1
)2

+
λρ
2

K∑
k=1

nc

∥∥∥ρ̄(k)
∥∥∥2

F
+
λo
2

K∑
j=1

‖o(j)‖2F

=
1

2K

K∑
k=1

(
Tr
(
ρ̄(k)o(k)

)
− 1
)2

+
λρ
2
K

K∑
k=1

1

K
nc

∥∥∥ρ̄(k)
∥∥∥2

F
+
λo
2
K

K∑
j=1

1

K
‖o(j)‖2F

≥1

2

(
K∑
k=1

1

K
Tr
(
ρ̄(k)o(k)

)
− 1

)2

+
λρ
2
Knc

∥∥∥∥∥
K∑
k=1

1

K
ρ̄(k)

∥∥∥∥∥
2

F

+
λo
2
K‖

K∑
j=1

1

K
o(j)‖2F , (C6)

where the second inequality comes from the Jensen’s inequality and the equality condition holds if and only if for
∀k, k′ ∈ [K],

Tr
(
ρ̄(k)o(k)

)
= Tr

(
ρ̄(k′)o(k′)

)
, ‖ρ̄(k)‖F = ‖ρ̄(k′)‖F , ‖o(k)‖F = ‖o(k′)‖F . (C7)

Then, supported by the inequality a+ b ≥ 2
√
ab, the loss L(ρ,o) can be further lower bounded by

1

2

(
Tr
(
ρ̄(k)o(k)

)
− 1
)2

+
λρ
2
Knc

∥∥∥ρ̄(k)
∥∥∥2

F
+
λo
2
K‖o(j)‖2F

≥1

2

(
Tr
(
ρ̄(k)o(k)

)
− 1
)2

+K
√
ncλoλρ

∥∥∥ρ̄(k)
∥∥∥
F
‖o(j)‖F , (C8)

where the equality condition holds if and only if

λo‖o(j)‖2F = ncλρ

∥∥∥ρ̄(k)
∥∥∥2

F
,∀k ∈ [K]. (C9)

Note that the requirements C1 ≤ 1 and λo ≤ ncλρ in Lemma 1 imply ‖ρ̄∗(k)‖ ≤ 1 and hence ensure that ρ̄∗(k) is a
meaningful quantum state for ∀k ∈ [K].

Since Tr
(
ρ̄(k)o(k)

)
= ‖ρ̄(k)‖‖o(k)‖ cos(∠(ρ(k), o(k))), the lower bound of L(ρ,o) in Eq. (C8) is equivalent to

1

2

(
‖ρ̄(k)‖‖o(k)‖ cos(∠(ρ(k), o(k)))− 1

)2

+ C1

∥∥∥ρ̄(k)
∥∥∥
F
‖o(j)‖F .

Define ‖ρ̄(k)‖‖o(k)‖ = a and ∠(ρ(k), o(k)) = α. The above equation is described by the function f(a, α) = (a cosα −
1)2/2+C1a and its minimum is C1−C2

1/2 when α∗ = 0 and a∗ = 1−C1. The derivation is as follows. Since a > 0 and
its maxima is unbounded, we first consider the case 0 < a < 1. In this case, the minimum of f(a, α) is C1−C2

1/2 with
α∗ = 0 and a∗ = 1 − C1. Otherwise, when a ≥ 1, the minimum of f(a, α) is C1 with α∗ = arccos(1/a) and a∗ = 1.
Note that the minimum value of f(a, α) in the second case is always larger than that of the first case. Therefore, the
minimum of f(a, α) is C1 −C2

1/2 with α∗ = 0 and a∗ = 1−C1. Combining the observation that ρ̄∗(k) and o(k) are in
the same direction with Eq. (C9), we achieve Condition (iii), i.e.,

o∗(k) =

√
ncλρ
λo

ρ̄∗(k).

The last part is proving Condition (ii). Combining the result ‖ρ̄∗(k)‖‖o∗(k)‖ = 1 − C1 for ∀k ∈ [K] with Eq. (C4)
and Condition (iii), we immediately obtain condition (ii), i.e.,

(ii)

√
ncλρ
λo
‖ρ∗(k)‖‖ρ∗(k

′)‖ = (1− C1)δk,k′ ⇒ Tr(ρ̄∗(k)ρ̄∗(k
′)) = (1− C1)

√
λo
ncλρ

δk,k′ . (C10)

To summarize, given the global optima satisfying the above three conditions, the corresponding empirical risk is

RERM(ĥQ) =
1

2n

nc∑
i=1

K∑
k=1

(
[Tr(ρ∗(i,k)o∗(k))]k=1:K − y(i,k)

)2

=
C2

1

2
(C11)
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SM D: Results related to Lemma 2

This section is composed of two parts. In SM D 1, we present the proof of Lemma 2. In SM D 2, we explain that
the requirements in Lemma 2 are mild.

1. Proof of Lemma 2

Different from Lemma 1, here we focus the setting such that the regularization term is set as E = 0 and the operator
o is predefined. The explicit form of the loss function L is defined in Eq. (A1). Denote the optimal feature states

ρ∗ = minρ L(ρ), we quantify the value of RERM(ĥQ) with ĥQ ≡ hQ(ρ∗).
We emphasize that the modifications of E and o allow a lower optimal empirical risk. Recall the results of Lemma

1. In the most general case, the optimal empirical risk depends on the regularization term, i.e., RERM(ĥQ) → C2
1/2.

The dependance on C1 motivates us to explore the empirical risk of QC when E = 0. Furthermore, Condition (iii)
in Lemma 1 delivers the crucial properties of the optimal measure operator, i.e., the optimal measure operators are
orthogonal with each other. Such properties contribute to construct a more effective QCs. Instead of optimizing,
the measure operator o can be predefined by inheriting the properties proved in Lemma 1, that is, o are required to

span the space C2D×2D and satisfy Tr(o(k)o(k′)) = Bδk,k′ with B ≥ 1 being a constant. Notably, these requirement
are mild, covering frequently used measures such as computational basis and Pauli-based measures, as explained in
SM D 2.

Lemma (Formal statement of Lemma 2). Suppose that the adopted measure operator o spans the space C2D×2D and

satisfies Tr(o(k)o(k′)) = Bδk,k′ where B ≥ 1 is a constant. The empirical risk of ĥQ is RERM(ĥQ) = 0 when the global
minimizer ρ∗ satisfies

(i)ρ̄∗(k) := ρ∗(1,k) = ... = ρ∗(nc,k); (ii) Tr(ρ̄∗(k)ρ̄∗(k
′)) = Bδk,k′ ; (iii) Tr(ρ̄∗(k)o(k′)) = δk,k′ . (D1)

Proof of Lemma 2. The concept of the proof is analogous to Lemma 1, i.e., the global optimizer is identified by lower
bounding the loss L(ρ). To this end, the lower bound of L(ρ) yields

1

2Knc

nc∑
i=1

K∑
k=1

(
[Tr(ρ(i,k)o(j))]j=1:K − y(i,k)

)2

≥ 1

2Knc

nc∑
i=1

K∑
k=1

(
Tr(ρ(i,k)o(k))− 1

)2

=
1

2Knc

K∑
k=1

nc∑
i=1

nc
1

nc

(
Tr(ρ(i,k)o(k))− 1

)2

≥ 1

2K

K∑
k=1

(
Tr

(
nc∑
i=1

1

nc
ρ(i,k)o(k)

)
− 1

)2

, (D2)

where the first inequality uses the facts n = Knc, ‖a − b‖2 =
∑
i(a

(i) − b(i))2 ≥ (a(k) − b(k))2, and only the k-th

entry of y(i,k) equals to 1, and the second inequality comes from the Jensen’s inequality E(f(x)) ≥ f(E(x)) when f(·)
is convex. Note that the equality condition of the first inequality holds if and only if

Tr(ρ(i,k)o(j)) = 0, (∀j ∈ [K] \ {k}) ∧ (∀i ∈ [nc]) ;

And the equality condition of the second inequality holds if and only if

ρ(1,k) = · · · = ρ(i,k) = · · · = ρ(nc,k),∀k ∈ [K].

Denote the mean of the feature state for the k-th class as ρ̄(k) =
∑nc
i=1

1
nc
ρ(i,k) for ∀k ∈ [K]. The above two equality

conditions suggest that the global minimizer yields

ρ̄∗(k) ≡ ρ∗(1,k) = · · · = ρ∗(nc,k), ∀k ∈ [K] (D3)

Tr(ρ̄∗(k)o(j)) = 0,∀j ∈ [K] \ {k}. (D4)
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Combining Eqs. (D2)-(D4), the lower bound of the loss function L(ρ) satisfies

1

2K

K∑
k=1

(
Tr
(
ρ̄(k)o(k)

)
− 1
)2

≥ 1

2

(
K∑
k=1

1

K
Tr
(
ρ̄(k)o(k)

)
− 1

)2

, (D5)

where the inequality comes from the Jensen’s inequality and the equality condition holds if and only if ∀k, k′ ∈ [K],

Tr
(
ρ̄(k)o(k)

)
= Tr

(
ρ̄(k′)o(k′)

)
. (D6)

Supported by Eq. (D6), we can further lower bound L(ρ) with

1

2

(
Tr
(
ρ̄(k)o(k)

)
− 1
)2

≥ 0, (D7)

where the equality condition is achieved when Tr(ρ̄(k)o(k)) = 1 for ∀k ∈ [K].
Taken together, the global optimizer ρ∗ should satisfy Condition (i)&(iii) in Lemma 2, where

(i)ρ̄∗(k) := ρ∗(1,k) = ... = ρ∗(nc,k);

(iii) Tr(ρ̄∗(k)o(k′)) = δk,k′ . (D8)

We last prove that Condition (iii) and the requirements of o lead to Condition (ii). In particular, denote the
vectorization of ρ∗(k) and o(k) as |ρ∗(k)〉〉 and |o(k)〉〉, respectively. Condition (iii) can be rewritten as〈〈

ρ̄∗(k), o(k′)
〉〉

= δk,k′ . (D9)

Moreover, since the set of measure operators {o(k)} is required to be complete in the space of C2D and Tr(o(k)o(k′)) =
Bδk,k′ with B ≥ 1 for ∀k, k′ ∈ [K], we have ∑

k

∣∣∣o(k)
〉〉〈〈

o(k)
∣∣∣ = BI2D .

Then, Condition (ii) can be derived as follows, i.e.,

Tr(ρ∗(k)ρ∗(k
′))

=〈〈ρ̄∗(k)|I2D |ρ∗(k
′)〉〉

=
1

B

〈〈
ρ̄∗(k)

∣∣∣∑
k′′

|o(k′′)〉〉〈〈o(k′′)|
∣∣∣ρ∗(k′)〉〉

=
1

B

〈〈
ρ̄∗(k)

∣∣∣|o(k)〉〉〈〈o(k)|
∣∣∣ρ∗(k′)〉〉+

〈〈
ρ̄∗(k)

∣∣∣ ∑
k′′ 6=k

|o(k′′)〉 〈o(k′′)|
∣∣∣ρ∗(k′)〉〉

=
1

B
δk,k′ . (D10)

2. Requirement of o used in Lemma 2

Here we elucidate that the requirements adopted in Lemma 2, i.e., o spans the complex space 2D× 2D and satisfies
Tr(o(k)o(k′)) = Bδk,k′ with B ≥ 1, are mild. Specifically, the employed measurements in most QNN-based classifiers
satisfy these requirements, including the computational basis measurements and Pauli measurements.
Computational basis measurements. In this setting, the local measurement o(k) is set as |k〉 〈k| with |k〉 being the

k-th computational basis for ∀k ∈ [K]. When 2D = K, {|k〉} spans the whole space of C2D×2D and we have

Tr(o(k)o(k′)) = (〈k|k′〉)2 = δk,k′ with B = 1. The assumptions are satisfied.

Pauli measurements. Denote the Pauli operation applied to the i-th qubit as P
(i)
a with a ∈ {X,Y, Z, I} for ∀i ∈ [D].

Then, there are in total 4D Pauli strings P = ⊗Di=1P
(i)
a that form a orthogonal basis for the space C2D×2D . With

setting 2D = K, each o(k) corresponds to one Pauli string with Tr(o(k)o(k′)) = Kδk,k′ with B = K.
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SM E: Proof of Lemma 3

For elucidating, let us restate Lemma 3 below and introduce the proof sketch before moving on to present the proof
details.

Lemma (Formal statement of Lemma 3). Denote L1 as the Lipschitz constant of ` in Eq. (1) with respect to h. Given
a QC defined in Eq. (3), let E be a quantum channel with

hQ(x, U(θ), O(k)) ≡ Tr(o(k)E(σ(x))), ∀k ∈ [K]. (E1)

Suppose the measure operator follows maxk∈[K] ‖o(k)‖ ≤ C2. The explicit form of the encoding unitary follows UE(x) =∏Ng
g=1 ug(x) ∈ U(2N ) with the g-th quantum gate ug(x) ∈ U(2m) operating with at most m qubits with m ≤ N and Ng

gates consisting of Nge variational gates and Ng −Nge fixed gates,

Following above notations and Definition 1, the empirical QC is (K(
28Nge
ε )4mNge , 4L1KC2ε)-robust and with prob-

ability 1− δ, its generalization error yields

RGene(ĥ) ≤ 4L1KC2ε+ 3ξ(ĥ)

√
|TD|4mNge ln(56KNge/(εδ))

n
+ ξ(ĥ)

2|TD|4mNge ln(56KNge/(εδ))

n
,

where L1 is the Lipschitz constant of ` with respect to h, IDr = {i ∈ [n] : z(i) ∈ Cr}, ξ(ĥ) := maxz∈Z `(ĥ, z), and
TD := {r ∈ [R] : |IDr | ≥ 1}.

The proof of Lemma 3 is established on the following lemma, which leverages the algorithmic robustness to quantify
the upper bound of the generalization error.

Lemma 6 (Theorem 1, [105]). If the learning algorithm A is (R, ν(·))-robust with {Cr}Rr=1, then for any δ > 0, with
probability at least 1−δ over an i.i.d drawn of n samples D = {z(i)}ni=1 with z(i) = (x(i), y(i)), the returned hypothesis

ĥ by A on D satisfies

RGene(ĥ) ≤ ν(D) + ξ(ĥ)

(
(
√

2 + 1)

√
|TD| ln(2R/δ)

n
+

2|TD| ln(2R/δ)

n

)
, (E2)

where IDr = {i ∈ [n] : z(i) ∈ Cr}, ξ(ĥ) := maxz∈Z(`(ĥ, z)), and TD := {r ∈ [R] : |IDr | ≥ 1}.

The above result hints that given a hypothesis ĥ, its generalization error is upper bounded by the disjoint sets {Cr}Rr=1,
where a lower cardinality R allows a lower generalization error. A natural approach to realize these disjoint partitions
is covering number [70].

Definition 2 (Covering number, [65]). Given a metric space (U , ‖ · ‖), the covering number N (U , ε, ‖ · ‖) denotes the
least cardinality of any subset V ⊂ U that covers U at scale ε with a norm ‖ · ‖, i.e., supA∈U minB∈V ‖A−B‖ ≤ ε.

In conjunction with Lemma 6 and Definition 2, the analysis of RGene(ĥ) of an N -qubit QC amounts to quantifying
the covering number of the space of the input quantum states, i.e.,

XQ =
{
UE(x)(|0〉 〈0|)⊗NUE(x)†

∣∣x ∈ X} . (E3)

The following lemma connects the robustness and covering number of XQ of QCs whose proof is provided in Sec. E 1.

Lemma 7. Following the settings in Eqs. (E1)-(E3), the corresponding QC is (K(
28Nge
ε )4mNge , 4L1KC2‖E‖�ε)-robust.

We are now ready to prove Lemma 3.

Proof of Lemma 3. The generalization error bound can be acquired by combining Lemmas 6 and 7, i.e.,

RGene(ĥ) ≤4L1KC2‖E‖�ε+ ξ(ĥ)

(
√

2 + 1)

√
|TD| ln(2K(

28Nge
ε )4mNge/δ)

n
+

2|TD| ln(2K(
28Nge
ε )4mNge/δ)

n


≤4L1KC2‖E‖�ε+ ξ(ĥ)

(
3

√
|TD|4mNge ln(56KNge/(εδ))

n
+

2|TD|4mNge ln(56KNge/(εδ))

n

)

≤4L1KC2ε+ ξ(ĥ)

(
3

√
|TD|4mNge ln(56KNge/(εδ))

n
+

2|TD|4mNge ln(56KNge/(εδ))

n

)
, (E4)

where IDr = {i ∈ [n] : z(i) ∈ Cr}, ξ(ĥ) := maxz∈Z(`(ĥ, z)), and TD := {r ∈ [R] : |IDr | ≥ 1}.
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1. Proof of Lemma 7

The proof uses the following lemma to quantify the covering number of XQ whose proof is given in SM E 2.

Lemma 8. Following the settings in Eq. (E1), the covering number of XQ in Eq. (E3) is

N (XQ, ε, ‖ · ‖F ) ≤
(

28Nge
ε

)4mNge

. (E5)

Proof of Lemma 7. When QC is applied to accomplish the K-class classification task, the sample space is Z = XQ×Y
with Y = {1, 2, ...,K}. Denote X̃Q as the ε-cover set of XQ with the covering number N (XQ, ε, ‖ · ‖F ) in Definition 2.

Supported by the ε-cover set X̃Q, the space XQ × {i} can be divided into N (XQ, ε, ‖ · ‖F ) sets for ∀i ∈ [K]. In other

words, we can divide Z into KN (XQ, ε, ‖ · ‖F ) sets denoted by {Zi}
KN (XQ,ε,‖·‖F )
i=1 .

We then utilize the divided sets of Z to connect the robustness with covering number according to Definition 1.
Given a training example (x(i), y(i)) and a test example (x, y), suppose that the corresponding quantum examples

(σ(x(i)), y(i)) and (σ(x), y) are in the same set of {Zi}
KN (XQ,ε,‖·‖F )
i=1 . For convenience, we abbreviate σ(x(i)) and σ(x)

as σ(i) and σ, respectively. Following the definition of covering number, we have

y(i) = y and ‖σ(i) − σ‖F ≤ 2ε. (E6)

Since the encoded state takes the form σ = UE(x)(|0〉 〈0|)⊗NUE(x)†, we have

rank(σ(i) − σ) ≤ 2. (E7)

Then, in accordance with the definition of robustness, we bound the discrepancy of the loss values for σ(i) and σ, i.e.,∣∣∣l(hQ(σ(i)), y(i))− l(hQ(σ), y)
∣∣∣

≤L1

∥∥∥[Tr(E(σ(i))o(k))]k=1:K − [Tr(E(σ))o(k))]k=1:K

∥∥∥
2

≤L1K max
k∈K
|Tr(E(σ(i)))o(k))− Tr(E(σ)o(k))|

≤L1K max
k

∥∥∥o(k)
∥∥∥

2
Tr(|E(σ(i) − σ)|)

≤2L1KC2‖E‖�‖σ(i) − σ‖F
≤4L1KC2‖E‖�ε, (E8)

where the first inequality uses the Lipschitz property of the loss function with `(a, b)− `(c,d) ≤ L1‖a− c‖2 and the
form of E in Lemma 7, the second inequality comes from the definition of l2 norm, the third inequality exploits von
Neumann’s trace inequality |Tr(AB)| ≤ ‖A‖p‖B‖q with 1/p + 1/q = 1 and the linear property of CPTP map with

E(ρ)−E(σ) = E(ρ−σ), the last second inequality employs maxk
∥∥o(k)

∥∥
2
≤ C2, the relation ‖E(ρ−σ)‖1 ≤ ‖E‖�‖ρ−σ‖1

and ‖A‖1 ≤ rank(A)‖A‖F , and the last inequality adopts the result in Eq. (E6).
The above result exhibits that the learned QC is (KN (XQ, ε, ‖ · ‖), 4L1KC2‖E‖�ε)-robust. In this regard, the proof

can be completed when the upper bound of the covering number N (XQ, ε, ‖ · ‖F ) is known. Supported by Lemma 8,

we obtain N (XQ, ε, ‖ · ‖F ) ≤ (
28Nge
ε )4mNge . Taken together, the learned QC is(

K

(
28Nge
ε

)4mNge

, 4L1KC2‖E‖�ε

)
− robust.

2. Proof of Lemma 8

The derivation of the covering number of XQ in Eq. (E3) uses the following lemma.

Lemma 9 (Lemma 1, [106]). For 0 < ε < 1/10, the ε-covering number for the unitary group U(2m) with respect to
the Frobenius-norm distance in Definition 2 obeys(

3

4ε

)4m

≤ N (U(2m), ε, ‖ · ‖F ) ≤
(

7

ε

)4m

. (E9)
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Proof of of Lemma 8. Recall the input state space is XQ = {UE(x)(|0〉 〈0|)⊗NUE(x)†|x ∈ X}, where the encoding

unitary UE(x) =
∏Ng
g=1 ug(x) ∈ U(2N ) consists of Nge variational gates and Ng − Nge fixed gates. To quantify the

covering number N (XQ, ε, ‖ · ‖F ), we define S̃ as the ε-covering set for the unitary group U(2m), X̃Q as the ε′-covering
set of XQ, and define a set

ŨE :=

 ∏
i∈{Nge}

ui(x)
∏

j∈{Ng−Nge}

uj(x)
∣∣∣ui(x) ∈ S̃

 , (E10)

where ui(θi) and uj specify to the variational and fixed quantum gates, respectively. Note that for any encoding circuit

UE(x), we can always find a unitary UE,ε(x) ∈ ŨE where each ug(x) is replaced by the nearest element in the covering

set S̃. To this end, following the definition of covering number, the discrepancy between UE(x)(|0〉 〈0|)⊗NUE(x)† ∈ XQ
and UE,ε(x)(|0〉 〈0|)⊗NUE,ε(x)† ∈ X̃Q under the Frobenius norm satisfies∥∥UE(x)(|0〉 〈0|)⊗NUE(x)† − UE,ε(x)(|0〉 〈0|)⊗NUE,ε(x)†

∥∥
F

≤2
∥∥UE(x)(|0〉 〈0|)⊗NUE(x)† − UE,ε(x)(|0〉 〈0|)⊗NUE,ε(x)†

∥∥
≤2‖UE(x)− UEε(x)‖‖(|0〉 〈0|)⊗N‖
≤4Ngeε, (E11)

where the first inequality uses ‖X‖F ≤ rank(X)‖X‖ and the relation in Eq. (E7), the second inequality comes from
the Cauchy–Schwarz inequality, and the last inequality follows ‖UE(x)− UE,ε(x)‖ ≤ Ngeε and ‖(|0〉 〈0|)⊗N‖ = 1. In

other words, ε′ = 2Ngeε and X̃Q is a (4Ngeε)-covering set for XQ. In conjunction with the observation that there are

|S̃|Nge combinations for the gates in ŨE and the results in Lemma 9, we obtain the cardinality of the set ŨE is upper

bounded by |ŨE | ≤
(

7
ε

)4mNge
. Accordingly, supported by Eq. (E11), the covering number of XQ satisfies

N (XQ, 4Ngeε, ‖ · ‖F ) ≤
(

7

ε

)4mNge

. (E12)

After simplification, we have

N (XQ, ε, ‖ · ‖F ) ≤
(

28Nge
ε

)4mNge

. (E13)

SM F: Implementation of the algorithm to probe potential advantages of QCs

The expected risk is the most principal criteria to quantify the power of a classifier. As a result, to probe whether
a QC holds potential advantages over a CC on a specific learning task, the simplest way is comparing their risk
curves. Nevertheless, capturing these two risk curves are difficult, because of many flexible hyper-parameter settings
to initiate a classifier.

The developed theories in Theorem 1 and Lemmas 1-3 deliver concrete rules to set up these hyper-parameters and
thus allow an efficient way to estimate these risk curves. In particular, the derived U -shape curve of QCs indicates
that the minimum risk of QC locates at the modest size of the hypothesis space HQ. In other words, the number
of trainable parameters NT should be lower than O(poly(N)), with N being the number of qubits in QC. Moreover,
Lemma 3 hints that the generalization error of QC can be well suppressed by using the modest number of train
examples. As such, if the available number of training examples in D is tremendous, we can distill a subset from D
to better recognize quantum advantages.

The Pseudo code of the proposed method is presented in Alg. 1. To make a fair comparison, the hyper-parameter
settings applied to QC and CC, especially for those relating to the computational resources, are required to keep
to be the same. Specifically, in each comparison, the employed loss function, the train examples n, the number of
trainable parameters Nt, and the number of epochs T applied to QC and CC should be identical. Note that the
learning rate, the adopted optimizer, and the batch size can be varied of different classifiers to better estimate the
empirical hypothesis. To ensure that the collected results of QC span its basin of the risk curve, the employed W
settings of Nt can be acquired by uniformly interpolating from O(1) to O(poly(N)). The iteration T should ensure

the convergence of QC. Once the loss values of QC and CC under {n(w), N
(w)
t , T (w)}Ww=1 are obtained, we can apply

certain fitting algorithms to attain their risk curves.
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Algorithm 1: Estimate risk curves of quantum and classical classifiers

Data: The train dataset D, the test dataset DTest, QC hQ associated with the hypothesis space HQ, CC hC associated
with the hypothesis space HQ, the loss function L(·, ·).

Result: The estimated risk curves of QC and CC.

Initialization: W tuples of hyper-parameter settings {n(w), N
(w)
t , T (w)}Ww=1 with n being train examples, Nt being the

number of trainable parameters, and T being the number of epochs;
for w = 1, w ≤W , w + + do

Initialize train data as D(w) by distilling n(w) examples from D;
# Collect loss dynamics of QC ;

Minimize the loss function L(·, ·) via gradient descent methods to obtain the empirical quantum classifier h̄
(w)
Q ∈ HQ

using D(w) within T (w) epochs and NT trainable parameters;

Record the loss value L(h̄
(w)
Q ,DTest) ;

# Collect loss dynamics of CC ;

Minimize the loss function L(·, ·) via gradient descent methods to obtain the empirical classical classifier h̄
(w)
C ∈ HC

using D(w) within T (w) epochs and NT trainable parameters;

Record the loss value L(h̄
(w)
C ,DTest) ;

end

Fitting the loss dynamics of {L(h̄
(w)
Q ,DTest)}Ww=1 to obtain the estimated risk curve of QC ;

Fitting the loss dynamics of {L(h̄
(w)
C ,DTest)}Ww=1 to obtain the estimated risk curve of CC.

Ul(✓)

RZ(✓(l,1,1)) RY (✓(l,1,2)) RZ(✓(l,1,3))

RZ(✓(l,2,1)) RY (✓(l,2,2)) RZ(✓(l,2,3))

RZ(✓(l,3,1)) RY (✓(l,3,2)) RZ(✓(l,3,3))

RZ(✓(l,4,1)) RY (✓(l,4,2)) RZ(✓(l,4,3))
×𝐿

(a) (b)

Class 1:

Class 2:

Class 3:

FIG. G.4. Visualization of image dataset and hardware-efficient Ansatz. (a) Image instances sampled from the
Fashion-MNIST dataset. (b) The circuit architecture of the employed Hardware-efficient Ansatz. The label ‘×L’ denotes the
layer number, which means repeating the gates in the dashed box with L times.

SM G: Numerical simulation details

Dataset. The construction of the parity dataset mainly follows from Ref. [98]. Note that this task has also been
broadly studied in the field of deep learning to show the limits of deep neural classifiers [107, 108]. The constructed
dataset contains in total 64 examples. Each example corresponds to a bit-string with the length 6, i.e., x ∈ {0, 1}6.
The label of x is assigned to be 1 if the number of ‘0’ in x is even; otherwise, the label is 0. We split it into train dataset
and test dataset with the train-test-split ratio being 0.75. The number of train examples in each class is controlled to
be the same. For each example, its feature dimension is 10. The image dataset is adapted from Ref. [102]. Specifically,
the data from the first nine classes are preserved and the total number of examples is 180. The train-test-split ratio is
set as 0.5 to construct the train and test dataset. Each example corresponds to an image with 28× 28 pixels. In the
preprocessing stage, we flatten all examples followed by padding and normalization. The processed example yields an

10-qubit state with x ∈ R210

and ‖x‖22 = 1. Some examples after preprocessing are illustrated in Fig. G.4(a).
Construction of QCs. The quantum subroutine of QC consists of the encoding circuit UE and the Ansatz U(θ).

For all learning tasks, the hardware-efficient Ansatz is employed whose mathematical expression is U(θ) =
∏L
l Ul(θ).

The layout of the hardware-efficient Ansatz follows the layer-wise structure and the gate arrangement at each layer

is the same. For ∀l ∈ [L], Ul(θ) =
⊗N

i=1(RZ(θ(l,i,1)) RY(θ(l,i,2)) RZ(θ(l,i,3)))Uent with Uent being the entanglement
layer formed by CNOT gates. Fig. G.4(b) depicts the adopted hardware-efficient Ansatz with L layers.

The encoding methods for the parity dataset classification and the digit images classification are different. The
former uses the basis encoding method. Specifically, for a classical example x ∈ Rd, the employed encoding unitary
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(a) (b)

FIG. G.5. Geometric properties of the quantum feature states on parity dataset. (a) The averaged performance of

QC evaluated by M1 defined in Eq. (G1). The label ‘Init-C-k’ with k = 1, 2 refers that the value of M(k)
1 at the initialization.

Similarly, the label ‘Final-C-k’ with k = 1, 2 refers that the value of M(k)
1 when the training of QC is completed. (b) The

averaged performance of QC evaluated by M2 defined in Eq. (G2). The label ‘Init-C-1-2’ (‘Final-C-1-2’) refers that the value
of M2 before and after training of QC. The label ‘L = a’ in the x-axis stands for that the layer number of hardware-efficient
Ansatz is a.

is UE(x) |0〉⊗d = |x〉, which maps x to a 2d dimensional quantum state UE(x) |0〉⊗d. The latter uses the amplitude
encoding method. Given a normalized image x ∈ R64 with ‖x‖22 = 1, the corresponding unitary encodes it into a

6-qubit state with UE(x) |0〉⊗6
=
∑64
j=1 xj |j〉.

The Pauli-based measure operators are used in learning Fashion-MNIST dataset. Since the preprocessed dataset
contains 9 classes, there are in total 9 measure operators, i.e., o(1) = X⊗X⊗I⊗8, o(2) = X⊗Y ⊗I⊗8, o(3) = X⊗Z⊗I⊗8,
o(4) = Y ⊗X⊗ I⊗8, o(5) = Y ⊗Y ⊗ I⊗8, o(6) = Y ⊗Z⊗ I⊗8, o(7) = Z⊗X⊗ I⊗8, o(8) = Z⊗Y ⊗ I⊗8, o(9) = Z⊗Z⊗ I⊗8.

Multilayer Perceptron. To better justify the capability and performance of QCs, we apply the multilayer
perceptron (MLP) as the reference [109]. MLP is composed of an input layer, L hidden layers with L ≥ 1, and an
output layer. The dimension of the input layer is equivalent to the feature dimension of the input. ReLU activations
are added in the hidden layer to perform nonlinear transformation. In the output layer, the activation function,
Softmax, is employed. The number of layers L depends on the assigned tuples {n,Nt, T}.

Convolutional neural network. In the task of image classification, convolutional neural networks (CNNs) is
employed as the reference [109]. The employed CNN is formed by two convolutional layers and one fully-connected
layer. ReLU activations and the pooling operation are added in the hidden layer to perform nonlinear transformation.
The number of channels for the first convolutional layer is fixed to be 8 and the corresponding kernel size is 9 × 9.
The kernel size of the pooling operation applied to the two convolutional layers is 2×2. The kernel size for the second
convolutional layer is fixed to be 5×5 but the number of output channels is varied depending on the settings in Alg. 1.
For the sake of fair comparison, the number of output channels is set as 2, 6, 15, 30, 50, 75, where the corresponding
number of parameters is 860, 1284, 2238, 3828, 5948, and 8598, respectively.

Optimizer and other hyper-parameters. The adaptive gradient descent method, named AdaGrad optimizer
[110], is used to optimize QCs and MLPs. Compared to the vanilla gradient descent method, AdaGrad permits better
performance, since it adapts the learning rate for each feature depending on the estimated geometry of the problem.
In the task of parity learning, the initial learning rate is set as η = 0.5 for QC and η = 0.01 for MLP, respectively.
For both classifiers, the batch size is fixed to be 4. In the task of image classification, the initial learning rate is set
as η = 0.05 for QC and η = 0.01 for CNN, respectively. The batch size for both classifiers is set as 1.

Curve fitting method. To capture the risk curve, Alg. 1 requests a curve fitting method. For all experiments,
we adopt the polynomial fitting to derive the risk curve by using the collected results. The least squares method in
determining the best fitting functions.

Source code. The source code used in numerical simulations will be available at Github repository https:
//github.com/yuxuan-du/Problem-dependent-power-of-QNNs.
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(a) (b)

FIG. G.6. Train (test) accuracy versus epoch on parity dataset. (a) Train accuracy and test accuracy of QC with the
varied layer number. The label ‘L = a’ refers that the layer number used in hardware-efficient Ansatz is a. The solid line and
the dashed line separately correspond to the train and test accuracies of QC. (b) Train accuracy and test accuracy of MLP
with the varied number of hidden neurons. The label ‘h = a’ refers that the number of neurons is a. The solid and dashed
lines have the same meaning with those in QC.

1. Simulation results of the binary classification for the parity dataset

The feature states before and after training. We explore the geometric properties of feature states when the
layer number of hardware-efficient Ansatz varies from L = 1 to L = 7. Other settings are identical to those introduced
in the main text. Condition (i) in Lemma 2 is evaluated by the metric

M(k)
1 =

nc∑
i=1

‖ρ(i,k) − ρ̄(k)‖, (G1)

where the number of train examples {ρ(i,k)}nci=1 belonging to the k-th class is nc and ρ̄(k) refers to their class-feature
mean. Since parity learning is a binary classification task, Condition (ii) in Lemma 2 is evaluated by

M2 = Tr(ρ̄(0)ρ̄(1)). (G2)

The geometric properties of the feature states in the measure of M(k)
1 and M2 are visualized in Fig. G.5. The left

panel shows that when L ∈ {2, 3, 4, 5}, both the value ofM(1)
1 (highlighted by the green color) andM(2)

1 (highlighted
by the pink color) decrease from ∼ 3.2 (epoch t = 0) to ∼ 0.5 (epoch t = 40). These results comply with Condition
(i) in the sense that the feature states in the same class concentrates to the class-feature mean and leads to the low

empirical risk. By contrast, when L is too small or too large, the value of M(1)
1 changes subtly before and after

optimization, which is above 3.2. The large deviation of feature states incurs the degrade performance of QC. The

right panel depicts that when L ∈ {2, 3, 4, 5}, the value of M(2)
1 decreases from 0.5 (epoch t = 0) to 0.05 (epoch

t = 40). This reduction means that the class-feature means are maximally separated and thus ensure a good learning

performance. On the contrary, when L ∈ {1, 6, 7}, the the value ofM(2)
1 oscillates around 0.5, which implies that the

class-feature means ρ̄(1) and ρ̄(2) are highly overlapped.
The learning dynamics of QC and MLP. Fig. G.6 visualizes the learning dynamics of QC and MLP with

respect to the varied trainable parameters. The left panel indicates that when the layer number is L = 2, 3, 4, both
train and test accuracies of QC fast converge to 100% with 25 epochs. When L = 1, both train and test accuracies
oscillate to 50%. When L = 7, the number of train data becomes insufficient and the overfitting phenomenon appears.
These results accord with the U -shape risk curve of QCs. The right panel shows that when the number of hidden
neurons ranges from h = 1 to h = 18, the test accuracy of MLP is no higher that 55%. These results reflect the
incapability of MLP in learning parity dataset compared with QCs.

2. Simulation results of multi-class classification for the Fashion-MNIST images dataset

The feature states before and after training. Here we discuss the geometric properties of feature states when

the layer number of hardware-efficient Ansatz varies from L = 2 to L = 150. The metrics M(k)
1 and M2 defined in
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(a) (b)

FIG. G.7. Geometric properties of the quantum feature states on Fashion-MNIST dataset. (a) The averaged
performance of QC evaluated by M1 defined in Eq. (G1). (b) The averaged performance of QC evaluated by M2 defined in
Eq. (G2). All labels have the same meaning with those introduced in Fig. G.5.

(a) (b)

FIG. G.8. Train (test) accuracy versus epoch on Fashion-MNIST dataset. (a) Train accuracy and test accuracy of
QC with the varied layer number. The labels have the same meaning with those presented in Fig. G.6. (b) Train accuracy
and test accuracy of CNN with the varied number of trainable parameters. The label ‘h = a’ refers that the number of output
channels at the second layer is a. The solid and dashed lines have the same meaning with those in QC.

Eqs. (G1) and (G2) are employed. In the measure ofM2, since the performance of QC for any two classes is similar,
we only study the first two classes for ease of visualization.

Fig. G.7 depicts the geometric properties of the feature states in the measure of M(k)
1 and M2. The left panel

shows that for all settings with L ∈ {2, 5, 25, 50, 100, 150}, the valueM(k)
1 at the initial step and the final step is very

similar and M(k)
1 is larger than 0.2 for ∀k ∈ {1, 2, ..., 9}. These results indicate that QC cannot satisfy Condition

(i) when learning Fashion-MNIST dataset, where the feature states from the same class cannot collapse to a unique
point. Moreover, when we examine the performance of intra-class, the right panel implies that after training, the
class-feature means of QC are still highly overlapping. The distance for all settings of L is above 0.3. The inability
to achieve the optimal training loss shows the the limited power of QC on learning Fashion-MNIST dataset.

The learning dynamics of QC and CNN. Fig. G.8 depicts the learning dynamics of QC and CNN with the
varied number of trainable parameters. The left panel indicates that QC achieves the best performance when the layer
number is L ∈ [25, 100], where the corresponding number of parameters ranges from 750 to 3000. In these settings,
both train and test accuracies of QC are around 30% after 50 epochs. When L < 25 or L > 100, both train and test
accuracies oscillate at 15%. These results accord with the U -shape risk curve of QCs. The right panel shows that
the train and test accuracies of CNN are steadily growing with the increased number of channels. That is, when the
number of channels at the second layer is not less than 6, both the train and test accuracies are higher than 60%.
These results indicate that the employed QC does not have potential advantages in learning image dataset compared
with CNN.


