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ABSTRACT

De novo drug design with desired biological activities is crucial for developing novel therapeu-
tics for patients. The drug development process is time and resource-consuming, and it has a low
probability of success. Recent advances in machine learning and deep learning technology have
reduced the time and cost of the discovery process and therefore, improved pharmaceutical re-
search and development. In this paper, we explore the combination of two rapidly-developing fields
with lead candidate discovery in the drug development process. First, Artificial intelligence has
already been demonstrated to successfully accelerate conventional drug design approaches. Sec-
ond, quantum computing has demonstrated promising potential in different applications, such as
quantum chemistry, combinatorial optimizations, and machine learning. This manuscript explores
hybrid quantum-classical generative adversarial networks (GAN) for small molecule discovery. We
substituted each element of GAN with a variational quantum circuit (VQC) and demonstrated
the quantum advantages in the small drug discovery. Utilizing a VQC in the noise generator of a
GAN to generate small molecules achieves better physicochemical properties and performance in
the goal-directed benchmark than the classical counterpart. Moreover, we demonstrate the poten-
tial of a VQC with only tens of learnable parameters in the generator of GAN to generate small
molecules. We also demonstrate the quantum advantage of a VQC in the discriminator of GAN. In
this hybrid model, the number of learnable parameters is significantly less than the classical ones,
and it can still generate valid molecules. The hybrid model with only tens of training parameters
in the quantum discriminator outperforms the MLP-based one in terms of both generated molecule
properties and the achieved KL divergence.
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I. INTRODUCTION

The drug development process includes discovery and development, pre-clinical research, clinical
research, Food and Drug Administration (FDA) review, and FDA post-market safe monitoring.
The entire process is time and resource-consuming and has a low probability of success with ap-
proximately 4% of pre-clinical drugs eventually granted license [1]. The average time for a new
medicine to complete the journey from initial discovery to the marketplace takes at least ten years
[2]. The estimated median capitalized research and design (R&D) cost per new drug (accounting
for the cost of failures) was $985 million between 2009 and 2018 [3]. Recent advances in machine
learning and deep learning technology have improved and reduced the cost of pharmaceutical R&D
[4–9]. For example, some of us [10] discovered potent inhibitors of discoidin domain receptor 1
(DDR1), a kinase target implicated in fibrosis and other diseases, in 21 days. Chan et al. [11]
estimated their machine learning algorithms would shrink the drug candidate identification phase
from a few months to one year.
De novo drug design refers to a novel chemical compound design with desired pharmacological

and physicochemical properties [12]. The discovery of novel chemical compounds with desired
biological activities is a critical step to keep the drug discovery pipeline moving forward [13]. It
is also crucial for developing novel therapeutics for patients [14]. Conventional approaches include
ligand-based drug design (LBDD), fragment-based drug design (FBDD), and structure-based drug
design (SBDD). LBDD is based on known active binders of a biological target, and FBDD identifies
small molecular fragments with weak affinity for a biomolecular target of interest and assembles
them into fully drug-like compounds [15]. Aside from LBDD and FBDD, SBDD is based on the
properties of the active site of a biological target.

Artificial intelligence (AI) has made a breakthrough in the recent de novo molecule design [16–
18]. We identify four well-known generative machine learning algorithms in the field: evolutionary
algorithms (EA), recurrent neural network (RNN) such as gated recurrent unit (GRU) and long
short-term memory (LSTM), autoencoders such as adversarial autoencoder (AAE) and variational
autoencoder (VAE), and generative adversarial network (GAN) [19]. GAN [20] has become a
popular network architecture for generating highly realistic data [21], and it has shown remarkable
results for generating data that mimics a data distribution in different tasks [22–25]. GAN consists
of a generator and a discriminator defined by an artificial neural network (ANN). The parameters
of a GAN can be learned by backpropagation. The generator takes random noises as input and
tries to imitate the data distribution, and the discriminator tries to distinguish between the fake
and real samples. A GAN is trained until the discriminator cannot distinguish the generated data
from the real data.

GANs are one of the most successful generative models in the drug discovery field, and several
different GAN architectures have been proposed in the past decades in de novo drug discovery
[26–28]. Zhavoronkov et al. [10] proposed a deep generative model called generative tensorial re-
inforcement learning (GENTRL) for de novo small molecule generation. The GENTRL generates
novel drugs with better synthetic feasibility and biological activity. Guimaraes et al. [29] pro-
posed an objective-reinforced generative adversarial network (ORGAN) that combines the GAN
and reinforcement learning (RL) algorithm. ORGAN is built on SeqGAN [30] and is the first GAN
architecture in the de novo molecule generation. It is a sequential generative model operating on
simplified molecular-input line-entry system (SMILES) string representations of molecules. The
generated samples of ORGAN maintain information originally learned from data, retain sample
diversity, and show improvement in the desired drug properties. Prykhodko et al. [31] presented
a novel neural network architecture called LatentGAN for de novo molecular design. It combines
an autoencoder and a generative adversarial neural network. The generator and discriminator of
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LatentGAN take n-dimensional vectors as inputs. These inputs derived from the code layer of an
autoencoder are trained as a SMILES heteroencoder [32]. This method allows LatentGAN to focus
on optimizing the sampling without worrying about SMILES syntax issues. Cao and Kipf intro-
duced MolGAN [33] for small molecule de novo design which operates directly on graph-structured
data. It is the first GAN to address the generation of graph-structured data in the context of
molecular generation. MolGAN is demonstrated to generate close to 100% valid compounds in
experiments on the quantum machines 9 (QM9) chemical database. The generated molecules of
MolGAN have better chemical properties particularly in synthesizability and solubility than the
generated compounds of ORGAN. Neither ORGAN nor MolGAN is directly compared with La-
tentGAN in the paper. These generative models have the potential to be improved with quantum
machine learning algorithms.

AI-driven strategies have the potential to explore adjacent chemical space compared to classical
discovery efforts in de novo drug design [34]. However, the traditional generative machine learning
algorithms have difficulty exploring the new chemical space different from the training dataset. The
Hilbert space of the molecule scales exponentially with molecule size. It increases the difficulty for
the classical generative model on sampling as the landscape becomes extremely large and impossible
to screen all possible configurations. Thus, an efficient sampling method is needed.

The applications of quantum computing can be found in different fields, such as solving routing
problems [35, 36], stock price forecasting [37, 38], multi-task classification [39], two-player zero-sum
game [40], high-resolution handwritten digits generation [41], the discovery of molecular properties
[42–49], tautomeric state prediction [50], and drug design [51, 52]. We can obtain more efficient
and accurate results by utilizing the technique of quantum annealer, quantum machine learning,
and quantum algorithm. These advantages that utilize the fundamental properties of quantum
mechanics to achieve better performances compared to the classical methods are called quantum
advantages. These performances can be on the computational resources requirement in simula-
tion, computational efficiency in algorithm development, and measurement precision in metrology.
More specifically, quantum advantages can be identified in three aspects: scalability, complexity,
and accuracy. The idea of utilizing the intrinsic quantum properties of quantum processors to
simulate quantum systems was proposed by Feynman in 1982 [53], allowing us to understand the
characteristics of large quantum systems with a feasible computational resource and achieving the
quantum advantage of scalability. For complexity, researchers found that the complexity of many
algorithms [54–57] can be significantly reduced by the quantum properties. Better measurement
accuracy can be achieved by sophisticated designed protocols that enhance the accuracy from the
standard quantum limit to the Heisenberg limit [58–61]

Although quantum computing seems to lead a significant leap in solving resource-demanding
problems, a few challenges remain to be overcome, such as the imperfect reliability of the qubits
prohibits the physical implementation of large-scale quantum computers [62]. Nevertheless, noisy
intermediate-scale quantum (NISQ) computers can still perform classical challenge tasks accompa-
nied by quantum advantages [63]. For example, the advantages are shown in sampling the output of
a pseudo-random quantum circuit [64], the sampling time complexity of a Torontonian of a matrix
[65, 66], expressively in unsupervised learning [67], and parameter space complexity in reinforcement
learning [68].

Although the idea of data conversion in the quantum circuit through gate operators is similar
to the classical neural network, efficient sampling that can be achieved by quantum circuits as
the fundamental principle of quantum mechanics enables computational processes that are beyond
what is possible on classical computers. Several studies have demonstrated that variational quantum
circuit (VQC) [63] performs the advantages in expression power [69], learnability [70], and robustness
[71]. It indicates that VQC can greatly boost the solution to the problem, e.g., drug discovery, which
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is hard to tackle by the classical neural network. In addition, Blunt et al. [72] discuss that using
the current best theoretical algorithms on a quantum computer would reduce the pharmaceutical
R&D period from many years to only a week.

The innate advantages of VQC are suited for computational resource-demanding tasks, such as
identifying possible chemical reaction pathways and predicting molecule structures. The ground
state energy of different molecule configurations reveals the most plausible reaction mechanism.
It is demonstrated that the ground state energy of small molecules, such as H2, LiH, BeH2 [46],
H12, and diazene [48], can be obtained by VQC, where the parameterized angles in the circuit are
updated iteratively on the classical computer until the minimum energies are achieved under the
given molecule configuration. Furthermore, the obtained ground state energies are shown to be
consistent with the results from the classical Full-CI calculation [49]. In addition, Gircha et al. [73]
trained a discrete variational autoencoder (DVAE) for generative chemistry and drug design. Their
model is small enough to fit an annealer and produce drug-like molecules.

Quantum generative adversarial network (QuGAN) [74] provided the first theoretical framework
of quantum adversarial learning. QuGAN’s exponential advantages over classical GANs directly
result from the ability of quantum information processors to represent N -dimensional features
using logN qubits with a time complexity of O(poly(logN)). Recent studies also showed that
generative models implemented by quantum circuits with fewer architectural complexities could
easily bypass their classical counterparts [52, 75]. Dallaire-Demers et al. provided the first feasible
implementation of QuGAN using quantum circuits in a simulator [76]. Analogous proposals of
QuGAN for continuous functions have been proposed during the same period [77]. Later on,
QuGANs demonstrated its first successful training on the MNIST dataset on a physical quantum
device [75]. Li et al. [52] pushed the research to the real world further by showing the QuGANs
can learn or generate the distribution of the QM9 dataset, which provides the quantum chemical
properties for small organic molecules in drug design. However, the source code (https://github.
com/jundeli/quantum-gan) they provided struggles with generating training-set-like molecules. In
addition, it lacks a detailed comparison between the generated samples from QuGAN and those
from classical GAN.

In this work, we perform the training tasks on the QM9 dataset using the classical and quantum
GAN. We not only demonstrate that the quantum GAN outperforms the classical GAN in the
drug properties of generated compounds and the goal-directed benchmark but ensure that the
trained quantum GANs can generate training-set-like molecules by using the variational quantum
circuit as the noise generator. In addition, we show the potential of the variational quantum
circuit in the generator of GAN to generate small molecules. In the end, we demonstrate that
the quantum discriminator of GAN outperforms the classical counterpart in terms of generated
molecule properties and KL-divergence score. The source codes will be publicly available once this
manuscript is accepted. In addition, the hybrid models are planned to be integrated into the Insilico
Medicine Chemistry42TM [78] shortly.

II. METHODOLOGY

Generative adversarial net (GAN) [20] was first proposed in 2014. It consists of two elements: a
generator and a discriminator. The objective of the generator is to generate fake data which mimics
the real training data, and the goal of the discriminator is to distinguish real data from fake data.
To achieve these goals, the generator and discriminator are trained at the same time using the
training data. During the training process, both elements compete with each other and iteratively
improve with one another. By the end, the generator can generate novel data highly similar to the

https://github.com/jundeli/quantum-gan
https://github.com/jundeli/quantum-gan
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data from the training dataset. More details of GAN can be found in the original GAN [20] paper.
Quantum generative adversarial networks (QuGANs) [74, 76] were first introduced around late July
2018. Dallaire-Demers and Killoran [76] extended adversarial training to the quantum domain, built
generative adversarial networks using quantum circuits, and demonstrated that QuGANs can be
trained successfully. Romero and Aspuru-Guzik proposed analogous construction of QuGAN for
learning continuous functions [77]. Lloyd and Weedbrook [74] demonstrated that when the data
consists of samples of measurements made on high-dimensional spaces, QuGANs may exhibit an
exponential advantage over classical GANs.

In the classical GAN [20] model, the inputs to the generator are randomly sampled from a
distribution, e.g., uniform distribution or Gaussian distribution, and the generator and discriminator
consist of neural networks. To demonstrate the quantum advantage of different components of GAN
in small drug discovery, we alter each component into a variational quantum circuit (VQC) step by
step. In the first experiment, we replace the sampling part of GAN with a VQC to generate the
noise for the generator. In the second experiment, we substitute the classical generator of GAN
with a VQC. This quantum generator takes the noises from the Gaussian distribution as input and
outputs the molecular graph to the classical discriminator. In the last experiment, we replace the
classical discriminator with a VQC. This quantum discriminator takes the molecular graph as input
and predicts if the molecules are real or fake using the measurement from only one qubit.

In this work, MolGAN [33] is used as the base model. MolGAN with VQC (QuMolGAN) as
the noise generator, MolGAN with a quantum generator [75] (MolGAN-QC), and MolGAN with a
quantum discriminator (MolGAN-CQ) are used to demonstrate the quantum advantage in the small
molecule drug discovery. All the combinations of the classical/quantum noise/generator/discriminator
and their corresponding model name are shown in Table I. The whole pipeline is implemented by
using Pennylane [79] and PyTorch [80]. The details of VQC, VQC of the noise generator, VQC of
the generator, and VQC of the discriminator will be introduced as follows.

TABLE I: All the combinations of the classical/quantum noise/generator/discriminator and their
corresponding model name.

Model Name Noise Generator Discriminator
MolGAN [33] classical classical classical graph-based
QuMolGAN quantum classical classical graph-based
MolGAN-QC classical quantum classical graph-based
MolGAN-CQ classical classical quantum
MolGAN-CC classical classical classical MLP-based

A. Variational Quantum Circuits (VQCs)

A Quantum gate is a basic quantum circuit operating on a small number of qubits. In this work,
two controlled gates (Controlled-X gate and Controlled-Z gate) and four single-qubit rotations (Rx,
Ry, Rz, and R) are used to construct the variational quantum circuit. Controlled-X (CNOT) gate
is a two-qubit operation, where the first qubit is usually referred to as the control qubit and the
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second qubit as the target qubit.

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1)

A Controlled-Z (CZ) gate is a two-qubit operation defined as:

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2)

The Rx, Ry, and Rz gates are the essential rotation operators in the quantum circuit. The Rx gate
is a single-qubit rotation through an angle θ in radians around the x-axis, and it is defined as:

Rx(θ) =

(
cos(θ/2) −isin(θ/2)
−isin(θ/2) cos(θ/2)

)
(3)

The Ry gate is a single-qubit rotation through an angle θ in radians around the y-axis, and it is
defined as:

Ry(θ) =

(
cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

)
(4)

The Rz gate is a single-qubit rotation through an angle θ in radians around the z-axis, and it is
defined as:

Rz(θ) =

(
e−i

θ
2 0

0 ei
θ
2

)
(5)

The R gate is a single-qubit rotation through arbitrary angles α, β, γ in radians, and it can be
decomposed into Ry and Rz gates. It is defined as:

R(α, β, γ) = Rz(γ)Ry(β)Rz(α) =

(
e−i

(α+γ)
2 cos(β/2) −e−i

(α−γ)
2 sin(β/2)

e−i
(α−γ)

2 sin(β/2) ei
(α+γ)

2 cos(β/2)

)
(6)

A variational quantum circuit (VQC) shown in Figures 2 and 4consists of three ingredients: (1)
the preparation of a fixed initial state, (2) a quantum circuit, and (3) the measurement. The
initialization layer may contain Rx, Ry, Rz, and R gates, and the rotation angles are sampled
from a uniform distribution or Gaussian distribution. The parameterized layers which could be
repeated for L times could have CNOT gates, CZ gates, and parameterized rotational gates whose
parameters (rotation angle) can be learned through the back-propagation. The measurement takes
the expected value of each qubit.

B. VQC of Noise Generator

In this work, MolGAN [33] is used as the base model for small molecule generation. We extend
its noise generation part to the quantum domain and demonstrate the quantum advantage in
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the small molecule generation. MolGAN [33] is an implicit and likelihood-free generative model
for the small molecular graph generation. In contrast to the sequence-based models, MolGAN
directly works on the graph representation of molecules. MolGAN also bypasses the requirement of
expensive graph-matching procedures and node-ordering heuristics of likelihood-based methods. In
the classical GANs [20], the inputs to the generator are sampled from a distribution, e.g., uniform
distribution or Gaussian distribution. Here, we would like to demonstrate the quantum advantage
in the small molecule generation by utilizing a variational quantum circuit to generate the inputs of
the generator, and we call this hybrid model QuMolGAN. The schema of MolGAN and QuMolGAN
is shown in Figure 1.

FIG. 1: Schema of MolGAN and QuMolGAN. The generator takes the noise as input and
generates the molecular graph including the atom vector and bond matrix. The discriminator

tries to distinguish between the fake molecular graph from the generator and the real molecular
graph from the data distribution.

The generator takes the noise as input and generates the molecular graph including the atom
vector and bond matrix. The noise is sampled from the Gaussian distribution for the MolGAN,
and the noise is generated from the VQC in Figure 2 for the QuMolGAN.

The discriminator tries to distinguish between the fake molecular graph from the generator and
the real molecular graph from the data distribution. More details of MolGAN can be found in the
original MolGAN [33] paper.

C. VQC of Quantum Generator

We implement the patch method [75] in the quantum generator of MolGAN (MolGAN-QC). This
method uses multiple VQCs as sub-generators, and each sub-generator is responsible for construct-
ing a partial part of the final output, e.g., the molecular graph in this study. The final molecular
graph which consists of the atom vector and bond matrix is constructed by concatenating all the
partial patches together as shown in Figure 3. The sub-generator shares the same ansatz architec-
ture as shown in Figure 4. Each ansatz circuit consists of the preparation of the initialization state,
a single layer of a 4-qubit circuit, and the measurement. The initialization layer contains Ry gates,
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Initialization Layer Parameterized Layers (Repeated for L times)

|0〉 Ry(z1) Rz(z2) Ry(θ1) • •

|0〉 Ry(z1) Rz(z2) Ry(θ2) Rz(θ5) • •

|0〉 Ry(z1) Rz(z2) Ry(θ3) Rz(θ6) • •

|0〉 Ry(z1) Rz(z2) Ry(θ4) Rz(θ7)

FIG. 2: The VQC consists of the preparation of the initialization state, a single layer of the
4-qubit ansatz circuit, and the measurement. The initialization layer contains Ry and Rz gates,
and the rotation angles (z1 and z2) are sampled from a uniform distribution. The parameterized

layers (could be repeated for L times) have CNOT gate and two types of parameterized rotational
gates, Ry and Rz gates whose parameters (θk) can be learned through back-propagation. The

measurement takes the expected value of each qubit.

FIG. 3: The patch method [75] uses multiple VQCs as sub-generators. Each sub-generator takes
noise as input and outputs a partial part of the final molecular graph. The final molecular graph

is constructed by concatenating all the partial patches together.

and the rotation angles (zi) are sampled from a uniform distribution. The parameterized layers
(could be repeated for L times) have CZ gates and one type of parameterized rotational gates, Ry
whose parameters (θk) can be learned through back-propagation.

D. VQC of Quantum Discriminator

The quantum discriminator takes the molecular graph as input and classifies if this molecular
graph is fake (from the generator) or real (from the data distribution). The VQC of the quantum
discriminator consists of the amplitude encoding layer [81] (Sx), the strongly entangling layers (Uθ)
inspired by [82] and the measurement as shown in Figure 5. Amplitude encoding is used to encode
the atom vector and bond matrix. The strongly entangling layers [82] have multiple CNOT gates
and parameterized rotational gates R(α, β, γ) as shown in Figure 6. In each layer, each qubit starts
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Initialization
Layer

Parameterized Layers
(Repeated for L times)

|0〉 Ry(z1) Ry(θ1) •

|0〉 Ry(z2) Ry(θ2) Z •

|0〉 Ry(z3) Ry(θ3) Z •

|0〉 Ry(z4) Ry(θ4) Z

FIG. 4: The VQC of the quantum generator consists of the preparation of the initialization state,
a single layer of the 4-qubit circuit, and the measurement. The initialization layer contains Ry
gates, and the rotation angles (zi) are sampled from a uniform distribution. The parameterized
layers (could be repeated for L times) have CZ gates and one type of parameterized rotational
gates, Ry whose parameters (θk) can be learned through back-propagation. The measurement

takes the expected value of each qubit.

with parameterized rotational gates R(αi, βi, γi) followed by a CNOT gate. The parameterized
angles αi, βi, γi can be learned through back-propagation. The measurement takes the expectation
value of one qubit, and this value is used to determine if the input molecular graph is real or
fake. In our experiment, we use 9 qubits to encode the molecular graph and three-layer of strongly
entanglement layers.

Amplitude
Embedding

Strongly
Entangling

Sx Uθ

FIG. 5: The VQC of quantum discriminator consists of the amplitude embedding circuit [81] (Sx),
the strong entanglement layers [82] (Uθ), and the measurement. The strongly entangling layers

[82] have multiple CNOT gates and parameterized rotational gates (R). The measurement takes
the expectation value of one qubit to determine if the input molecular graph is real or fake. It is

noted that we use 9 qubits to encode the molecular graph in our experiment.

III. EVALUATION METRICS AND DATASET

In this section, we will first introduce the evaluation method and metrics followed by the dataset
we used to train the generative models.
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R(α1, β1, γ1) • R(α5, β5, γ5) •

R(α2, β2, γ2) • R(α6, β6, γ6) •

R(α3, β3, γ3) • R(α7, β7, γ7) •

R(α4, β4, γ4) • R(α8, β8, γ8) •

FIG. 6: The VQC of strongly entanglement layers [82] contain multiple CNOT gates and
parameterized rotational gates (R). In each layer, each qubit starts with parameterized rotational
gates R(αi, βi, γi) followed by a CNOT gate. The parameterized angles αi, βi, γi can be learned

through back-propagation. In our experiment, our ansatz structure has 9 qubits and three layers.

A. Evaluation Method and Metrics

To evaluate the performance of different generative models, we first generate 5,000 noise samples
from Gaussian distribution and variational quantum circuits for MolGAN and QuMolGAN, respec-
tively. The generated noise samples are then fed into the trained generator of models to produce the
atom vectors and bond matrices. In the end, these vectors and matrices are used to construct the
molecular graphs. Seven evaluation metrics described below will be calculated from the molecular
graphs.

Three quality metrics, i.e., validity, uniqueness, and novelty used in [83, 84], and three drug prop-
erties, i.e., quantitative estimation of drug-likeness (QED), solubility, and synthesizability (SA), is
used to compare different generative models in this work. Validity is the ratio of the valid molecules
to all generated molecules, and uniqueness is the ratio of unique molecules to the valid molecules.
Novelty is defined as the ratio of valid molecules which are not in the training dataset to all valid
molecules. In addition, we also measure the diversity of generated molecules which is defined as how
likely the generated molecules are to be diverse to the training dataset. We also report the valid
and unique molecules (# molecules) from 5,000 noise samples. QED [85] measures how likely a
molecule is to be a drug based on the concept of desirability. Solubility reports the n-octanol-water
partition coefficient (logP) [86] of the molecule that is the degree of a molecule being hydrophilic.
SA [87] quantifies how easy a molecule is to be synthesized based on the molecular complexity and
fragment contributions. These property metrics are calculated by using RDKit [88].

The Kullback–Leibler (KL) divergences [89] are also calculated, and it measures how well a
probability distribution approximates another distribution. The probability distributions of a va-
riety of physicochemical descriptors including BertzCT (molecular complexity index), MolLogP
(Wildman-Crippen LogP value [86]), MolWt (molecular weight), TPSA (molecular polar sur-
face area), NumHAcceptors (number of hydrogen acceptors), NumHDonors (number of hydro-
gen donors), NumRotatableBonds (number of rotatable bonds), NumAliphaticRings (number of
aliphatic rings), and NumAromaticRings (number of aromatic rings) for the generated molecules
and the molecules of the training set are compared, and the corresponding KL-divergence scores
DKL,i are computed. Models able to capture the distributions of molecules in the training set will
lead to small KL-divergence scores (DKL). However, the final KL-divergence score (S) [90] used in
this paper is computed by

S =
1

9

9∑
i=1

exp(−DKL,i) (7)
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Therefore, the larger final KL-divergence score (S) means how well the model can capture these
nine physicochemical distributions of molecules in the training set.

B. Dataset

All experiments of this work use the QM9 (Quantum Machines 9) [91] dataset. QM9 dataset is
curated from the GDB-17 chemical database [92] which has approximately 166.4 billion molecules.
QM9 consists of 133,171 molecules containing less than or equal to nine non-hydrogen atoms (car-
bon, nitrogen, oxygen, and fluorine). Figure 7 shows some molecules from the QM9 dataset, and
Table II summarizes the drug properties of all molecules of the QM9 dataset.

FIG. 7: Example molecules of QM9 with canonical SMILES visualized by using RDKit [88].

TABLE II: Drug properties of QM9. QED: a quantitative estimate of drug-likeness. Solubility:
n-octanol-water partition coefficient (logP) [86]. SA: synthesizability.

QM9

# molecules QED Solubility SA
133,171 0.461 0.289 0.327

IV. COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we would like to computationally explore the potential benefits of our algorithms
as compared to classical algorithms in small molecule discovery. We endeavored to find the best
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TABLE III: Comparing generated molecules of QuMolGAN and MolGAN in drug properties.
Bold numbers highlight the better scores in QuMolGAN compared to the corresponding MolGAN.

It is noted that the QED, Solute, and SA scores in this table are calculated from the valid and
unique molecules.

z dim=2 z dim=3 z dim=4 z dim=8

QuMolGAN MolGAN p-value QuMolGAN MolGAN p-value QuMolGAN MolGAN p-value QuMolGAN MolGAN p-value

# moleculesa 363 657 - 414 2163 - 511 3085 - 646 3287 -
QED ↑ 0.489 0.475 <0.01 0.489 0.465 <0.01 0.473 0.465 <0.05 0.474 0.470 0.149

Solubility ↑ 0.343 0.324 <0.05 0.370 0.305 <0.01 0.317 0.298 <0.01 0.329 0.305 <0.01
SA ↑ 0.367 0.336 <0.05 0.310 0.307 <0.05 0.308 0.296 0.246 0.309 0.307 0.581

KL Score (S)b ↑ 0.653 0.824 - 0.797 0.913 - 0.846 0.957 - 0.868 0.957 -
a Number of valid and unique molecules from 5,000 samples;

b From Equation (7);

hyper-parameters for the base MolGAN. We first examined different complexities of generators (in
Appendix A) and observed that MolGAN-HR (high reduction) has the best performance compared
to other generator complexities. We then examined different input noise dimensions of generators
(in Appendix B) and found out that the number of unique and valid molecules saturated at the input
dimension equaling 4 (z dim=4). In addition, we also tested different numbers of parameterized
layers in the variational quantum circuit (VQC) (in Appendix C) and observed that MolGAN-
HR with 3 parameterized layers of VQC as noise generator has the best performance compared
to other numbers of parameterized layers. Therefore, in the following experiments, MolGAN-HR
is used as the base model, and VQC with 3 parameterized layers is used as the base quantum
circuit. In the first experiment, we substitute the noise generator of MolGAN with a VQC and
discover the quantum advantage in the generated molecules with better drug properties. In the
second experiment, we replace the generator of MolGAN with a VQC and show the potential of
generating small molecules using a VQC. In the third experiment, we supplant the discriminator
of MolGAN with a VQC and demonstrate the quantum advantage. All the combinations of the
classical/quantum noise/generator/discriminator and their corresponding model name are shown
in Table I. All experiments are implemented by using Pennylane [79] and PyTorch [80].

A. Quantum Noise Generator

In the first experiment, we would like to compare the performance of QuMolGAN and classical
MolGAN. We use the same hyper-parameters to train the QuMolGAN and classical MolGAN
except for the learning rate. The learning rate of the quantum noise generator is 0.04, and the
learning rate for the generator and discriminator is 0.001. The models are trained for 150 epochs.
The WGAN (Wasserstein generative adversarial networks) loss [93] is used to train the models.
QuMolGAN with three parameterized layers is used in this experiment. We have examined the
input dimension of the generator at 2, 3, 4, and 8, and the results are shown in Table III. It is
noted that the QED, Solute, and SA scores in this table are calculated from the valid and unique
molecules. The QuMolGAN is lacking in generating as many molecules as classical MolGAN which
results in worse KL Scores. However, the QuMolGAN can generate molecules with significantly
(p < 0.05) better drug properties compared to the classical MolGAN particularly when the input
noise dimension is small (z dim=2 and z dim=3). The drug properties distributions of MolGAN-
generated and QuMolGAN-generated molecules are shown in Figure 8 for z dim=2. It shows that
QuMolGAN can generate molecules with better drug properties, particularly in QED. QuMolGAN
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has less probability to generate molecules whose QED is less than 0.4. For the KL-divergence task,

(a) QED distribution. (b) SA distribution. (c) Solute distribution.

FIG. 8: Distributions of different drug properties from MolGAN-generated and
QuMolGAN-generated molecules. From left to right: QED, SA, and Solute distributions. Blue:
valid and unique molecules from MolGAN (z dim=2). Orange: valid and unique molecules from

QuMolGAN (z dim=2).

the MolLogP, BertzCT, and MolWt distributions of generated molecules are also shown in Figure 9
for z dim=2. The classical MolGAN (blue) tends to generate molecules with similar distributions
to the training set (grey) which results in a better KL-divergence score.

FIG. 9: From left to right: the MolLogP, BertzCT, and MolWt distributions of
MolGAN-generated and QuMolGAN-generated molecules. Grey: randomly sampled molecules of

QM9. Blue: valid and unique molecules from MolGAN (z dim=2). Orange: valid and unique
molecules from QuMolGAN (z dim=2).

In the end, we randomly sample 32 valid and unique molecules from both MolGAN and QuMol-
GAN for z dim=2, and the example molecules are shown in Figure 10. QuMolGAN can generate
training-set-like molecules with better drug properties.

As mentioned in [90], the goal-directed optimization of molecules tries to improve the demanded
scores for the generated molecules. These scores reflect how well molecules satisfy the required
properties. The goal is to find molecules that maximize the scoring function. In this experiment,
we also would like to check if the quantum circuit can bring advantages to the MolGAN in the goal-
directed benchmark. Therefore, we add a reward network into the original schema, and the updated
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(a) Example molecules of MolGAN with z dim=2.
(b) Example molecules of QuMolGAN with

z dim=2.

FIG. 10: Example molecules generated by MolGAN (left) and QuMolGAN (right).

schema is shown in Figure 11. At this time, the generator is trained using a linear combination of
the WGAN [93] loss and the RL [94] (reinforcement learning) loss:

L(ω) = α · LWGAN (ω) + (1− α) · LRL(ω) (8)

where α ∈ [0, 1] is a hyperparameter that controls the trade-off between WGAN loss and RL
loss, and ω are the inputs to networks. Here, we set α = {0.5, 0.01} to weigh the loss between
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FIG. 11: Schema of MolGAN and QuMolGAN with reward network in the goal-directed
benchmark. The generator takes the noise as input and generates the molecular graph including

the atom vector and bond matrix. The discriminator tries to distinguish between the fake
molecular graph from the generator and the real molecular graph from the data distribution. The

reward network tries to guide the generator to generate the molecules with desired properties.

two components and the goal of improving SA, and QED to train MolGAN and QuMolGAN as
suggested by the medical chemists. In addition, we also add the unique score into the goal to prevent
the model from generating the same molecules. We have trained MolGAN and QuMolGAN with
(α = {0.5, 0.01}) and without (α = 1.0) RL loss using the same hyperparameters for 150 epochs,
and the results are shown in Table IV. The input noise dimension to the generator is 4 (z dim =4).
It is noted that the QED, Solute, and SA scores in this table are calculated from the valid molecules.
In this table, the KL Scores of MolGAN are always greater than their quantum counterparts in
different weights of RL loss. However, QuMolGAN can achieve a higher goal (from 0.47 to 0.57 in
QED and from 0.29 to 0.76 in SA) compared to MolGAN (from 0.47 to 0.52 in QED and from 0.30
to 0.60 in SA) while α = 0.01. The solute is not the goal so these scores are close for MolGAN and
QuMolGAN.

B. Quantum Generator

In the second experiment, we try to benchmark the advantage of the quantum circuit in the
generator of GAN. We have tried to substitute the generator of MolGAN with a VQC described in
[75] for the small molecule generation. The performance of MolGAN with the quantum generator
(MolGAN-QC) is reported in Table V. Although the integration works smoothly, the training
processing is time-consuming and resource-consuming. The average training time per step takes
around 39 seconds in the Amazon EC2 C6a Metal Instance which results in approximately 3.5 days
per epoch. In addition, the model has difficulty generating more valid and unique molecules after
being trained for ten epochs. It fails to generate the training-data-like molecules even after ten
epochs of training. Random-picked and cherry-picked examples of generated molecules are shown
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TABLE IV: Performance comparison between MolGAN and QuMolGAN with (α = {0.5, 0.01})
and without (α = 1.0) reinforcement learning loss in the goal-directed benchmark. It is noted that

the QED, Solute, and SA scores in this table are calculated from the valid molecules. Bold
numbers indicate better scores among the same type of models with different RL weights α, and

the underlined numbers indicate the best scores across different types of models.

MolGAN QuMolGAN
α = 1.0 α = 0.5 α = 0.01 α = 1.0 α = 0.5 α = 0.01

#of moleculesa 2890 2700 696 534 309 116
Validity ↑ 80.40 78.48 68.76 70.02 70.32 42.94

Uniqueness ↑ 71.89 68.81 20.24 15.25 8.78 5.40
QED ↑ 0.47 0.48 0.52 0.47 0.49 0.57
Solute ↑ 0.31 0.31 0.45 0.32 0.30 0.44

SA ↑ 0.30 0.31 0.65 0.29 0.28 0.76
KL Score (S)b↑ 0.95 0.94 0.58 0.92 0.82 0.31

a Number of valid and unique molecules from 5,000 samples;
b From Equation (7)

TABLE V: Performance of MolGAN with the quantum generator. The QED, Solute, and SA
scores in this table are calculated from the valid molecules.

# epoch # moleculesa validity ↑ uniqueness ↑ novelty ↑ diversity ↑ QED ↑ Solubility ↑ SA ↑ KL Score (S)b ↑

1 73 79.39 4.49 100 1.00 0.43 0.75 0.24 0.24
2 54 76.37 3.45 100 1.00 0.47 0.75 0.24 0.25
3 43 78.47 2.68 100 1.00 0.48 0.75 0.11 0.28
4 29 78.61 1.80 100 1.00 0.48 0.75 0.13 0.29
5 30 77.93 1.88 100 1.00 0.48 0.75 0.14 0.30
6 40 78.37 2.49 100 1.00 0.48 0.75 0.09 0.21
7 29 80.27 1.76 100 1.00 0.47 0.75 0.06 0.28
8 39 78.91 2.41 100 1.00 0.48 0.75 0.16 0.28
9 41 74.66 2.68 100 1.00 0.48 0.75 0.22 0.25
10 29 79.74 1.78 100 1.00 0.48 0.75 0.08 0.27

a Number of valid and unique molecules from 2,048 samples from Gaussian distribution;
b From Equation (7);

in Figure 12. Most generated molecules are similar to the randomly sampled molecules in Figure 12.
However, we demonstrate that the quantum generator has the potential to generate small molecules.

C. Quantum Discriminator

In addition to substituting the generator architecture, the architecture with a quantum discrimi-
nator combined with the classical generator described in MolGAN has been experimented with. Our
goal is to see if the quantum discriminator shows any advantage over its classical counterparts. We
have found that the number of learnable parameters is significantly less than the classical ones while
the model can still generate valid molecules. Furthermore, to conduct a fair comparison between
the classical discriminator and the quantum one, we changed the MolGAN classical graph-based
discriminator to the multiple-layer perceptron (MLP) architecture, which is more similar to our
proposed quantum discriminator architecture, reduced the number of its training parameters, and
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FIG. 12: Example molecules from the quantum generator. We input 2048 noises to the quantum
generator of MolGAN for every epoch (from #1 to #10). The first row shows the random pick of

generated molecules, and the second row shows the cherry-pick of generated molecules.

found that quantum discriminator with 50 training parameters outperforms the classical discrim-
inator with 22,500 parameters in terms of generated molecule properties and KL divergence. For
simplicity, all the combinations of the classical/quantum noise/generator/discriminator are listed
in Table I. In this experiment, the noises of the generator are always sampled from the Gaussian
distribution.

In the following subsections, we first present our proposed MolGAN-CQ and the training de-
tails. Second, we compare the results of MolGAN-CQ with MolGAN. In the end, we made archi-
tecture modifications from the Graph-Classical-Discriminator in MolGAN to the MLP-Classical-
Discriminator (MolGAN-CC) and reduced the amount of the learnable parameters to make a fair
comparison with MolGAN-CQ.

1. MolGAN-CQ Architecture and Training Details

As illustrated in Figure 13, the model consists of two components: classical generator and quan-
tum discriminator. To encode two generator outputs, a bond matrix, and an atom vector, into the
quantum discriminator efficiently, we first flatten the bond matrix into a vector, which is subse-
quently concatenated with the atom vector to a new vector with the size of 450. After that, the
resulting vector will be the input of the Q-Discriminator, composed of an amplitude embedding
layer followed by 3 strongly entangling layers as described in Figure 5.

For the training details, at first, we followed the best hyper-parameters set in MolGAN. However,
applying the same training details on MolGAN-CQ makes the training process hard to converge.
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FIG. 13: Schema of MolGAN-CQ. One of the generator outputs, the bond matrix, is flattened to
a vector and concatenated with the other generator outputs, the atom vector, resulting in a vector

with the size of 1x450, which is fed into the quantum discriminator.

Therefore, we change the learning rate from 1× 10−3 to 1× 10−4 for the generator to make it more
stable. Moreover, we have experimented with the alternating training times between the classical
generator and quantum discriminator with several sets, including (G, D)=(1, 5), (1, 8), (1, 10).
We found out that training 1 step C-Generator followed by 10 steps Q-Discriminator stabilizes the
training process. The other hyperparameters remain identical to the ones in MolGAN.

2. Comparison with classical MolGAN

In this section, we compare MolGAN-CQ with MolGAN. We trained MolGAN according to the
best hyper-parameter sets found in the previous section. Notice here, since training a quantum
network is time-consuming, and the loss curve from classical MolGAN at epoch 30 shows the trend
of convergence, both MolGAN-CQ and MolGAN were only trained to epoch 30 and evaluated at
epoch 30 instead of epoch 150. After that, both models generate 5000 samples to do a further
comparison. Table VI demonstrates that MolGAN-CQ can generate valid and drug-like molecules.
In addition, MolGAN-CQ can generate molecules with better drug properties, particularly in Solute
and SA. However, compared to classical MolGAN, MolGAN-CQ does not have an advantage in
KL divergence with training data probability. Figure 14 shows some molecules generated from
MolGAN-CQ.

3. Comparison with MolGAN-CC

In this section, MolGAN-CQ is compared with MolGAN-CC with different numbers of hidden
layers to evaluate MolGAN-CQ’s capacity. To have a fair comparison, we modified the original
graph-based network to a multiple-layer perceptron (MLP). Under this condition, the input of the
MLP-based discriminator would be the same as the one in MolGAN-CQ’s quantum discriminator, a



19

TABLE VI: Performance comparison between MolGAN and MolGAN-CQ. The models are only
trained for 30 epochs. Bold numbers indicate better scores. The QED, Solute, and SA scores in

this table are calculated from the valid molecules.

MolGAN MolGAN-CQ
# of moleculesa 2,693 730

QED ↑ 0.47 0.48
Solute ↑ 0.31 0.44

SA ↑ 0.31 0.66
KL Score (S)b↑ 0.94 0.75

a Number of valid and unique molecules from 5,000 samples;
b From Equation (7)

FIG. 14: Example molecules from MolGAN-CQ.

flattened vector instead of a graph. The network architecture of MolGAN-CC is shown in Figure 15.
Furthermore, since the discriminator of MolGAN-CQ only has 50 learnable parameters, we have

tried to reduce the discriminator size of MolGAN-CC as small as possible for a fair and reasonable
evaluation. However, the input vector is already a size of 450, it is not possible to decrease the
parameter size to 50 in the classical MLP. Therefore, we have tried MolGAN-CC with 3 different
parameter sizes of discriminator as shown in Table VII.

Table VIII demonstrates that although MolGAN-CC-NR and MolGAN-CC-HR have a higher
capacity to generate molecules whose molecule properties are more similar to the training data,
MolGAN-CQ with only 50 parameters can achieve an outstanding performance compared to
MolGAN-CC-ER with 22K parameters in terms of KL-score which shows the quantum advan-
tage in the expression power. The distributions of molecular properties of MolLogP, MolWt,
and BertzCT, generated from MolGAN-CC-ER, MolGAN-CQ, MolGAN, and QM9 are shown in
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(a) Schema of MolGAN-CC
(b) MLP-based discriminator architecture in

MolGAN-CC.

FIG. 15: (a) Schema of MolGAN-CC. (b) MLP-based discriminator architecture in MolGAN-CC.
The number of the hidden layers and neurons varies in the classical MLP-based discriminator as

Table VII

TABLE VII: The details of MolGAN-CC models with the varied size of discriminators.

# of layer in the MolGAN-CC discriminator parameter size

MolGAN-CC-ERa 3
(450, 50, 1)

22K

MolGAN-CC-HRb 3
(450, 100, 1)

45K

MolGAN-CC-NRc 4
(450, 150, 50, 1)

82K

a Extremely-reduction;
b Highly-reduction c No-reduction;

Figure 16. As we can see from Figure 16, molecular properties from MolGAN are closer to the
ones from the training data, QM9, compared to MolGAN-CQ and MolGAN-CC-ER. Nevertheless,
MolGAN-CQ with only 50 parameters could generate molecules with similar distribution to the
training data in comparison to MolGAN-CC-ER with 22K parameters.

V. CONCLUSIONS

In this paper, we have explored the quantum advantage in small molecule drug discovery by
substituting each part of MolGAN [33] with a VQC step by step and comparing its performance
with the classical counterpart. In the first experiment, using a VQC as a noise generator to the
classical GAN can generate small molecules with better drug properties including QED, SA, and
LogP particularly when the input dimension to the generator is small, e.g., z dim = 2 or z dim
= 3. However, QuMolGAN has difficulty generating as many unique molecules compared to clas-
sical MolGAN which results in a lower KL Score. In addition, this hybrid model achieves better
performance in the goal-directed benchmark compared to the classical counterpart. In the second
experiment, we substitute the classical generator with a VQC with the patch method [75]. We
demonstrated the potential of generating training-set-like small molecules using a quantum gen-
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TABLE VIII: Performance comparison between MolGAN-CQ and MolGAN-CC with 3 different
sizes of the MLP-based discriminator. Bold numbers indicate better performance across different

types of models. The QED, Solute, and SA scores in this table are calculated from the valid
molecules.

MolGAN-CQ MolGAN-CC-ER MolGAN-CC-HR MolGAN-CC-NR
# of parameters 50 22K 45K 82K
#of moleculesa 2,693 104 1919 2284

QED ↑ 0.47 0.51 0.49 0.5
Solute ↑ 0.44 0.63 0.35 0.38

SA ↑ 0.66 0.97 0.48 0.50
KL Score (S)b↑ 0.75 0.28 0.84 0.81

a Number of valid and unique molecules from 5,000 samples;
b From Equation (7)

FIG. 16: Molecular properties of generated molecules. Generated molecules from
MolGAN-CC-ER, MolGAN-CQ, and MolGAN were analyzed in each column with the molecular
properties of MolLogP, MolWt, and BertzCT. In each graph, the histogram with blue indicates

the distribution of the training data QM9.

erator. However, the training processing is resource-consuming and time-consuming even in the
advanced classical computer. In the third experiment, we replace the classical discriminator with
a VQC and compare its performance with the classical counterpart. This hybrid model MolGAN-
CQ outperforms the classical counterpart in terms of generated molecule properties and the KL
score. We also demonstrated that the hybrid model could generate valid molecules with only tens
of learnable parameters in a quantum discriminator. The proposed hybrid model has the potential
to be integrated into the Insilico Medicine Chemistry42TM [78] platform (Figure 17).
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Journal of Cheminformatics 11, 1 (2019).
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Appendix A: Different Generator Complexities

We would like to explore the relationship between the generator complexity and the training data.
The generator of MolGAN consists of multiple dense layers (linear layer followed by activation layer
and dropout layer [95]). We train three models with different generator complexities. The generator
of the first model has the same amount of parameters as the original MolGAN [33]. The generator
of the second model only has approximately 15% of the parameters as the original MolGAN, and
we call this model MolGAN-HR (high reduction). The generator of the third model merely has
approximately 2% of the parameters as the original MolGAN, and we call this model MolGAN-ER
(extreme reduction). These three models are trained using the same hyperparameters. The batch
size is 128. The models are trained for 150 epochs. The learning rate is 0.001 for both the generator
and discriminator. The discriminator is updated three times followed by updating the generator
once. We evaluate each model using the generator from 150 epochs, and the results are shown in
Table IX. In this table, MolGAN-HR can generate the most valid and unique molecules which
results in the highest KL Score. The QED, Solute, and SA scores in this table are calculated from
the valid molecules.

TABLE IX: Different complexities of generator in MolGAN. QED: a quantitative estimate of
drug-likeness. SA: synthesizability. The QED, Solute, and SA scores in this table are calculated

from the valid molecules.

Model # moleculesd validity ↑ uniqueness ↑ novelty ↑ diversity ↑ QED ↑ Solubility ↑ SA ↑ KL Score (S)e ↑

MolGANa 995 78.54 25.34 59.56 0.57 0.47 0.31 0.28 0.893
MolGAN-HRb 3191 78.34 81.47 64.33 0.59 0.47 0.31 0.29 0.954
MolGAN-ERc 2826 75.84 74.53 67.14 0.67 0.47 0.31 0.32 0.945

a 396,610 parameters;
b Highly-reduction (59,202 parameters);

c Extremely-reduction (7,794 parameters);
d Number of valid and unique molecules from 5,000 samples;

e From Equation (7);

Appendix B: Varying the Input Noise Dimension of Generator

Padala et al [96] have examined the effect of input noise dimension in GANs in generating the
Gaussian distribution, the handwritten digit recognition [97], and the celebrity image classification
[98]. They observed a significant effect on the results when the input noise dimension is alternated.
They also claimed that the optimal noise dimension is depended on the dataset and loss function
used. Inspired by their work, we would like to examine the optimal input noise dimension for the
task of small molecular generation using the QM9 dataset for MolGAN and QuMolGAN. The input
noise dimension is varied from 1 to 8 for the MolGAN-HR, and the results are shown in Table X.
For QuMolGAN-HR, we only examine the ansatz with 2, 3, 4, and 8 qubits, and the experimental
results are shown in Table XI. These models are trained for 150 epochs. The learning rates of the
discriminator and generator are 0.001, and the learning rate of the quantum circuit is 0.04. The
QED, Solute, and SA scores in this table are calculated from the valid molecules. From these two
tables, the number of valid and unique molecules saturates when the input dimension (z dim) goes
beyond 4. The KL Score of MolGAN-HR oscillates between 0.94 and 0.96, and the KL Score of
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TABLE X: Different input noise dimensions of generator in MolGAN-HR. The QED, Solute, and
SA scores in this table are calculated from the valid molecules.

z-dim # moleculesa validity ↑ uniqueness ↑ novelty ↑ diversity ↑ QED ↑ Solubility ↑ SA ↑ KL Score (S)b ↑

8 3204 80.04 80.06 64.67 0.62 0.47 0.31 0.30 0.946
7 3206 80.42 79.73 65.61 0.74 0.47 0.30 0.30 0.957
6 2898 77.76 74.54 61.34 0.72 0.47 0.30 0.29 0.937
5 3104 78.86 78.72 63.78 0.62 0.47 0.30 0.30 0.955
4 2930 81.26 72.11 63.82 0.65 0.47 0.30 0.30 0.941
3 1850 75.36 49.10 66.43 0.68 0.47 0.31 0.30 0.926
2 571 73.56 15.52 72.92 0.66 0.48 0.32 0.34 0.868
1 33 59.16 1.12 77.45 0.72 0.47 0.33 0.29 0.687

a Number of valid and unique molecules from 5,000 samples;
b From Equation (7);

TABLE XI: Different numbers of qubits in the quantum circuit of QuMolGAN-HR. The QED,
Solute, and SA scores in this table are calculated from the valid molecules.

# qubitsa # moleculesb validity ↑ uniqueness ↑ novelty ↑ diversity ↑ QED ↑ Solubility ↑ SA ↑ KL Score (S)c ↑

8 515 73.94 13.93 60.05 0.62 0.46 0.31 0.27 0.785
4 534 70.02 15.25 71.04 0.70 0.47 0.32 0.29 0.894
3 301 64.74 9.30 66.23 0.58 0.50 0.34 0.38 0.782
2 194 63.68 6.09 66.02 0.69 0.49 0.36 0.45 0.570

a Number of qubits of quantum circuit;
b Number of valid and unique molecules from 5,000 samples;

c From Equation (7);

QuMolGAN-HR has the best KL Score as z dim=4.

Appendix C: Number of Parameterized Layers of Variational Quantum Circuit

Variational quantum circuits (VQCs) can be considered machine learning models with remarkable
expressive power for a variety of data-driven tasks, such as supervised learning and generative
modeling [99]. VQCs consists of three ingredients: a fixed initial state, e.g., the zero state, a
quantum circuit, parameterized by a set of learnable parameters, and the measurement as shown in
Figure 2. A quantum circuit is composed of an initialization layer and parameterized layer(s). The
initialization layer brings randomness to the VQC, and the parameters of parameterized layer(s)
can be learned through back-propagation. One challenge in implementing variational quantum
algorithms is to choose an effective circuit that well represents the solution space while maintaining
a low circuit depth and the number of parameters [100]. Increasing the number of parameterized
layers of VQC has the potential to improve the impressive power of VQC and its performance.
However, it may face the problem of Barren plateaus [101–103] and longer computational time.
In this experiment, we would like to find the optimal number of parameterized layers that can
generate the most unique and valid molecules for QuMolGAN-HR. We have examined one to five
parameterized layers, and the results are shown in Table XII. In this table, QuMolGAN-HR achieves
the best KL Score when the VQC has three parameterized layers.
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TABLE XII: Different parameterized layers of QuMolGAN-HR. The QED, Solute, and SA scores
in this table are calculated from the valid molecules.

# layersa # moleculesb validity ↑ uniqueness ↑ novelty ↑ diversity ↑ QED ↑ Solubility ↑ SA ↑ KL Score (S)c ↑

5 375 70.10 10.70 70.44 0.63 0.47 0.32 0.31 0.738
4 377 52.04 14.49 64.64 0.57 0.46 0.32 0.27 0.701
3 443 72.40 12.24 69.20 0.68 0.50 0.36 0.32 0.784
2 435 76.06 11.44 71.00 0.61 0.45 0.33 0.28 0.765
1 165 75.98 4.34 67.81 0.66 0.44 0.32 0.26 0.702

a Number of parameterized layers;
b Number of valid and unique molecules from 5,000 samples;

c From Equation (7);

Appendix D: Chemistry42TM

FIG. 17: Overall Workflow of Insilico Medicine Chemistry42TM platform. The proposed hybrid
generative model can be integrated into the Generative Models section of the platform. More

details of Chemistry42TM can be found in [78].
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