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In this work, we compute the number of [[n,k]]d stabiliser codes made up of d-dimensional qudits, for arbitrary positive
integers d. In a seminal work by Gross (Ref.22) the number of [[n,k]]d stabilizer codes was computed for the case
when d is a prime (or the power of a prime, i.e., d = pm, but when the qudits are Galois-qudits). The proof in Ref.22

is inapplicable to the non-prime case. For our proof, we introduce a group structure to [[n,k]]d codes, and use this in
conjunction with the Chinese remainder theorem to count the number of [[n,k]]d codes. Our work overlaps with Ref.22

when d is a prime and in this case our results match exactly, but the results differ for the more generic case. Despite
that, the overall order of magnitude of the number of stabilizer codes scales agnostic of whether the dimension is prime
or non-prime. This is surprising since the method employed to count the number of stabilizer states (or more generally
stabilizer codes) depends on whether d is prime or not. The cardinality of stabilizer states, which was so far known
only for the prime-dimensional case (and the Galois qudit prime-power dimensional case) plays an important role as a
quantifier in many topics in quantum computing. Salient among these are the resource theory of magic, design theory,
de Finetti theorem for stabilizer states, the study and optimisation of the classical simulability of Clifford circuits,
the optimal verification of stabilizer states, the study of quantum contextuality of small-dimensional systems and the
study of Wigner-functions. Our work makes available this quantifier for the generic case, and thus is an important step
needed to place results for quantum computing with non-prime dimensional quantum systems on the same pedestal as
prime-dimensional systems.

I. INTRODUCTION

The stabilizer formalism (which will be explained in detail
in Section II) has become an indispensable part of the study
of quantum computing. Some of its salient applications
are as follows: it forms the bedrock for the vast field of
quantum error correcting codes (QECC)29. Randomising
over stabilizer states or Clifford unitaries (see Eq. (18) for
the definition of a Clifford unitary) serves as an important
application, for instance, for computing capacities of quantum
channels1, data hiding2 and the study of noise-compounding
in quantum circuits (randomized benchmarking)3,4. It also
demarcates a boundary between the classical simulability of
quantum computations via the Gottesmann-Knill theorem5,
and the onset of quantum complexity for which some
non-stabilizerness is necessary. The non-universal nature
of stabilizer operations6 and the need to compensate this
deficiency with non-stabilizer operations manifests in a
resource theory of “non-stabilizerness", a.k.a., magic (see
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Ref.44–46), where stabilizer operations are the free resource
(see Subsection I A for an explanation of stabilizer operations
and the resource theory with respect to which it is defined).
While the basic mathematical preliminaries which support all
the above have been developed in many works (for e.g. see
Ref.8,22), there remain some gaps, particularly for quantum
computing with multiqudit systems for arbitrary d. And while
qubit systems are envisaged as the paradigmatic building
blocks of quantum computing, qudits of larger dimensions
may offer their own benefits (for e.g. see Ref.9–14), owing
to which it is imperative to study them. Among these, it is
easier to study multiqudit systems when the dimension d
is a prime number, or when d is the power of a prime, i.e.,
d = pm, while, simultaneously, the configuration space of the
qudit system is the Galois field Fpm . We call such a qudit a
Galois-qudit16. Many important results which were obtained
for qubits may be easily generalized to such qudit systems
(this has been noted in many places, for e.g. in the intro-
duction in Ref.57). This contrasts with qudit systems, whose
configuration space is Zd , when d is not a prime number. We
refer to such qudit systems simply as qudits since this work is
about such qudits, but wherever disambiguation is required,
we may instead refer to them as modular qudits17. While
there has been a lot of seminal work on such modular qudit
systems18–27, some significant gaps remain. For instance, one
of those gaps is the computation of the number of [[n,k]]d
stabilizer codes of such qudits (stabilizer codes are defined
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in Subsection II D). We will label this number as C [[n,k]]d .
C [[n,k]]2 was computed in a seminal paper Ref.6 (a recent
proof also appeared in Ref.7), and for Galois-qudit systems,
C [[n,k]]Fpm was computed in another seminal paper, Ref.22.
In this work we compute C [[n,k]]d for arbitrary d ≥ 2.
Our work overlaps with earlier works6,7,22 for the case when
d is a prime number, and in that case our results match exactly.

Typically one is interested in the order of magnitude of
C [[n,k]]d since it may act as an important quantifier. For such
a reader, we present here the main result.

Corollary 1 (Corollary 4). Let c = 2.17. Then number of
[[n,k]]d stabiliser codes scales as

d
(n−k)(n+3k+1)

2 ≤ C [[n,k]]d < d
(n−k)(n+3k+1)

2 +c, (1)

the number of [[n,k]]d stabiliser code spaces scale as

d
(n−k)(n+3k+3)

2 ≤ Cspace[[n,k]]d < d
(n−k)(n+3k+3)

2 +c, (2)

and thus the number of stabilizer states scale as

d
n(n+3)

2 ≤ Cstate[[n]]d < d
n(n+3)

2 +c. (3)

Here we make a distinction between an [[n,k]]d stabilizer
code, and the corresponding stabilizer code spaces, which is
one of the dn−k subspaces associated with such a stabilizer
code (see Remark 3).

The number of stabilizer states, i.e., Cstate[[n]]d , plays the
role of an important quantifier in quantum computing. Before
this work, Cstate[[n]]d was known only for prime d (and for
Fpm number systems), and, thus, its application as a quantifier
was limited to these cases. We list below the salient topics
where it has been used as a quantifier before.

A. Resource theory of magic

To initiate the interested reader into the resource theory of
stabilizer-operations we refer them to a short summary in Ap-
pendix A. For more comprehensive treatments on the topic,
see Ref.45,46,48. For some recent interesting developments in
the topic, we further refer the reader to Ref.58.

The most significant application of Cstate[[n]]d is that stabilizer
states are the extremal points of the stabilizer polytope, and
many measures of magic are defined as optimizations over
this polytope. Since Cstate[[n]]d scales super-exponentially
for prime-dimensional systems (and Galois-qudit systems),
computing these measures of magic is an intractable problem
for such systems. The earliest known measure in this category
is the relative entropy of magic145, after which the robustness

1 In Ref.45, a computable measure of magic called mana was also introduced.
This measure, while efficiently computable, is computable for only odd-
dimensional quantum systems. That being said it has a more significant
operational interpretation compared to the relative entropy of magic.

of magic was defined in Ref.46. The robustness of magic has
an operational interpretation: it gives an upper bound on the
classical simulation complexity of the quantum Clifford+π/8
circuits (see also Ref.47), and scales exponentially in the
number of π/8 gates. It may also be used for the optimality of
π/8-gate counts in the gate-synthesis problem. In Ref.48 the
regularised robustness of magic was introduced, and its com-
putation, while superpolynomially faster, still suffers from
an exponential run-time. We also refer the reader to a recent
work Ref.50 which tries to optimize the classical simulability
of Clifford+π/8 circuits, in the manner introduced by Ref.47.
The intractability of these measures has also encouraged the
search for new quantifiers of magic, for instance, see Ref.49.

Before our work, it wasn’t known how Cstate[[n]]d scales
with n for arbitrary d. Since Corollary 1 states that Cstate[[n]]d
scales super-exponentially in n for all d, we now know that
the problem of computing the aforementioned measures of
magic is intractable for arbitrary dimension.

B. STIM: The classical simulation of stabilizer operations

The resource theoretic perspective of Subsection I A, which
deems stabilizer operations to be a free resource, is an approx-
imation, albeit a useful one. These costs are apparent while
simulating algorithms with only stabilizer operations. Such
a classical simulation requires one to keep track of 1

2 d2 dits
(where ’dit’ is the d-level analog of the two-level bit) during
the computation. Appropriate optimisation schemes are re-
quired for such simulations, particularly, when the goal is to
simulate large quantum circuits, for instance a circuit for the
surface code with fifteen thousand qubits (for e.g., see Ref.51).

C. Frame potentials for stabilizer states

In Ref.52, Kueng and Gross established that a uniform en-
semble of multiqubit stabilizer states are complex projective
3-designs. To prove this, they computed explicitly the frame-
potential associated with this ensemble of states. And this
frame potential was computed using Cstate[[n]]2, which was
borrowed from Ref.6 and Ref.22. While for d ≥ 3, it is known
that multi-qudit stabilizer states aren’t projective 3-designs,
one may nevertheless still be interested in the projective-
design which this ensemble gives rise to. While the result
in Ref.22 may be employed for this purpose for only prime
values of d, our results allows one to obtain the result for ar-
bitrary values of d.

D. de Finetti theorem for stabilizer states

In Ref.53 a de Finetti theorem for stabilizer states was es-
tablished for quantum states on t-copes of n-qudit systems,
where d is prime. To summarize it, let us consider the ac-
tion of the t-th tensor power of the n-qudit Clifford group on
t-copies of an n-qudit system, i.e., U⊗t , where U ∈ C

(d)
n , and
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let L be the commutant of this tth tensor power of the Clif-
ford group, i.e., L ∈L implies that U⊗tL

(
U†
)⊗t

= L. Let a
quantum state ρ commute with all L in L . Then ρ has the
following property. Define ρs = Tri1,i2,···it−sρ be the reduced
state, which is obtained by tracing out t− s subsystems from
ρ . The subsystems which are traced out are arbitrary. Then
there exists some probability distribution pσS on the n-qudit
stabilizer states σS such that

1
2

∣∣∣∣∣
∣∣∣∣∣ ρs − ∑

σS

pσS σ
⊗s
S

∣∣∣∣∣
∣∣∣∣∣
1

≤ CdO(n2) d−
1
2 (t−s), (4)

where C is some constant, σS is a stabilizer state of an n-qudit
systems and pσS is a probability distribution on these states.
The exponential scaling in the number of traced out subsys-
tems, i.e., t − s contrasts with the ordinary de Finetti result,
whose scaling is of the form O (s/t) (see Ref.54). The expo-
nential scaling of the stabilizer version of the de Finetti theo-
rem is proved using Cstate[[n]]d , which was computed in Ref.22

for prime d (and Galois qudits). We anticipate it to be possible
for Corollary 1 to provide a similar exponential scaling for the
case when d is non-prime.

E. Others

We mention some other topics where Cstate[[n]]d for prime
d was employed. We hope that our result could find similar
applications for non-prime d.

(i) Quantum contextuality: In Ref.55, Howard and collab-
orators study quantum stabilizer states, to see if these
states exhibit any quantum contextual correlations. For
odd prime d, the set of Cstate[[n]]d two-qudit stabilizer
states is partitioned into two classes: separable states
and entangled states. Each class is separately studied to
see if it exhibits state dependent contextuality, and the
number of elements within each class plays an impor-
tant role in this.

(ii) Disambiguation of Wigner functions for odd dimen-
sional qudit systems: While Hudson’s theorem for finite
dimensional quantum systems was proved in Ref.22, the
choice of the Wigner function with which it was proved
wasn’t disambiguated. In Ref.56, Howard establishes
that there is a unique choice of the Wigner function
which supports Hudson’s theorem. The proof of this
result employs the explicit formula for Cstate[[n]]d .

(iii) Optimal verification of quantum stabilizer states. In
Ref.57, optimal schemes to verify stabilizer states are
given. Knowing Cstate[[n]]d , or at least the order of mag-
nitude of Cstate[[n]]d is essential for this task. While the
results in Ref.57 are given for qubit systems, Dangniam
et al. believe that those results are generalizable to the
case when d is an arbitrary prime number.

Our work readily generalises results for the resource theory
of magic and for the classical simulability of stabilizer-only

circuits. For other topics mentioned above, we anticipate
that our computation of Cstate[[n]]d will facilitate comparable
results for arbitrary d-dimensional systems.

The challenge in computing C [[n,k]]d , for non-prime d,
is that Zd is not a field. In particular, only elements which
are co-prime with d will have multiplicative inverses. The
phase space of an n-modular qudit system is the 2n−fold
Cartesian product of Zd , i.e., Z2n

d . We need to treat it like
a vector space which is defined over a field. Towards this
end, we will borrow some basics terms and definitions from
the theory of vector spaces wherever this is appropriate. We
stress though, that the jargon we borrow from linear algebra
is actually superfluous, and all the necessary concepts can be
phrased in terms of more primitive concepts in the theory of
abelian groups and its subgroups. Nevertheless, a rigorous
justification of viewing Z2n

d as a vector space and applying
concepts and definitions from the theory of vector spaces will
be justified in the appendix.

C [[n,k]]d is computed in two steps. (i) We introduce a
group theoretic structure of [[n,k]]d stabilizer codes con-
structed in the following way: we take a 2n × (n − k)
check-matrix of a given code, and extend it to a 2n× 2n
symplectic matrix. This extension isn’t unique, and the
set of all such symplectic extensions realizable for a given
[[n,k]]d code forms a unique coset of Sp(2n,Zd)/T(2n,k,Zd),
where T(2n,k,Zd) is a subgroup of matrices in Sp(2n,Zd)
which forms the coset corresponding to the [[n,k]]d trivial
code. Conversely, to each coset of Sp(2n,Zd)/T(2n,k,Zd)
one can attribute a unique [[n,k]]d stabilizer code, and thus
a bijection between [[n,k]]d stabilizer codes and cosets of
Sp(2n,Zd)/T(2n,k,Zd) is established. This tells us that
C [[n,k]]d = |Sp(2n,Zd)|/ |T(2n,k,Zd)|. (ii) To compute
|T(2n,k,Zd)|, we find a way to decompose each element
of T(2n,k,Zd) into an ordered product of four matrices,
each of which belongs to a distinct subgroup of T(2n,k,Zd).
These subgroups overlaps only over the identity element.
Thus |T(2n,k,Zd)| is the product of the orders of these
subgroups. The orders of these subgroups and of |Sp(2n,Zd)|
are computed, first for the case when d = pm, i.e., the
power of a prime. This corresponds to the case when the
configuration space of the qudit is Zpm (and not Fpm ). Some
of the details of this computation, which employ standard
tricks for such computations, are relegated to Section E 1 in
the Appendix. This gives us C [[n,k]]pm . To obtain C [[n,k]]d ,
we invoke the Chinese remainder theorem, which is a ring
isomorphism, as follows: Zd ' Zm1

p1 ×Zm2
p2 ×·· ·×Zmr

pr , where
d = pm1

1 pm2
2 · · · pmr

r is the prime factorisation of d. While the
proof method depends on whether d is prime or non-prime,
the number of stabilizer codes C [[n,k]]d , the stabilizer code
subspaces Cspace[[n,k]]d and the stabilizer states Cstate[[n]]d
scale agnostic of d being prime or non-prime, which is
surprising.

The paper is organised as follows. In Section II we
give the necessary preliminaries of the stabilizer formalism:
we will introduce the n-qudit Weyl-Heisenberg group (also
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known as the generalized Pauli group), we define stabilizer
codes along with their check matrices and related concepts.
In Section III, we explain the group theoretical structure of
[[n,k]]d stabilizer codes, and in Section IV we show how an
arbitrary element of T(2n,k,Zd) may be decomposed into a
product of elements from four different subgroups. In Section
V we count C [[n,k]]d . We conclude in Section VI.

II. PRELIMINARIES

Various preliminaries are introduced in this section, along
with the notations and explanations of their usage.

A. The ring Zd

Let Z denote the set of all integers. Let d be an arbitrary
positive integer such that d ≥ 2. Zd then denotes the set of
integers modulo d: Zd = {0,1, · · · ,d−1}. All arithmetic op-
erations in Zd are carried out modulo d. This means that for
any a,b ∈ Zd ,

a ⊕d b = (a+b) mod d
a ×d b = (a ·b) mod d, (5)

where, on the left hand side of Eq. (5), ⊕d and ×d represent
addition and multiplication operations in Zd , and on the right
hand side, + and · represent addition and multiplication in Z.
From here onward, we will use the standard notations of addi-
tion and multiplication, even in Zd , and let the context deter-
mine where these operations are meant to be performed. Zd is
a cyclic group under addition, with 0 as the additive identity.
When d is a composite number, for a ∈ Zd to have a multi-
plicative inverse in Zd , a and d in Z need to be co-prime. The
set of all non-zero coprime elements form the multiplicative
group Z×d . Hence, Zd is a field if and only if d is a prime num-
ber. When d is a prime, we will denote it by p and denote the
corresponding field by Fp.

B. Using Zn
d as a vector space

Let n be a positive integer. The n-fold Cartesian product
of Zd with itself, Zd × Zd × ·· ·Zd contains all ordered n-
tuples (a1,a2, · · · ,an) where a j ∈ Zd . Addition in Zn

d is de-
fined point-wise: for arbitrary a,b ∈ Zn

d , (a+ b)i = ai + bi,
where (a + b)i denotes the i-th component of a + b. Sim-
ilarly, scalar multiplication of a in Zn

d with some λ ∈ Zd
means λa = (λa1,λa2, · · · ,λan). Zn

d satisfies all the ax-
ioms which a usual vector space will satisfy. Thus, any
a = (a1, · · · ,an) ∈ Zn

d will be called a vector. That being said,
since Zd is not necessarily a field, Zn

d doesn’t form a vector
space. Technically, Zn

d is called a module over a commutative
ring28. The algebra in Zn

d is richer than that for vector spaces
defined over fields, and one may not blindly generalise results
from vector spaces over fields to Zn

d . But we will be able to
borrow the following concepts from linear algebra.

Definition 1 (Linear independence). Let a1,a2, · · · ,am ∈ Zn
d

be m vectors. Then they are linearly independent in Zn
d if and

only if the only solution for the unknowns x1, x2, · · · , xm ∈ Zd
in the following equation

x1a1 + x2a2 + · · ·+ xmam = 0 (6)

is that x1, x2, · · · , xm = 0.

We now list some corollaries which follow from Definition
1.

Corollary 2. (i) Any set of n LI vectors forms a basis for
Zn

d .

(ii) If {a1,a2, · · · ,am} are LI, then their linear span gener-
ates a subspace of dimension m.

(iii) For any m < n, any set of m LI vectors may be extended
to form a basis for Zn

d .

(iv) If the columns of an n×m matrix are LI, then viewed as
a linear map from Zn

d → Zm
d , its range is of dimension

m and kernel is of dimension n−m.

Despite the fact that Zn
d is not necessarily a vector space,

the following terms in Corollary 2: basis, linear span, sub-
space, dimension, matrix, linear map, range and kernel can be
applied and used in the same manner as done when working
with a vector space over fields. The reader is further directed
to the Appendix B for a rigorous justification of these terms.

C. Generalized Pauli group on n qudits

We introduce the single qudit Pauli group P(d) using its
defining representation, which acts on Cd , where d is an ar-
bitrary positive integer greater than or equal to 2. The con-
struction of the defining representation of P(d) for arbitrary d
has been done earlier in many works18–27. Among these, we
choose 21. First, let us introduce an orthonormal basis for Cd :
{| j〉}d−1

j=0 , where the label j is taken from Zd . With respect to
this basis, define the linear operators X and Z as follows.

X | j〉= | j+1〉,
Z| j〉= ω

j| j〉, ∀ j ∈ Zd ,
(7)

where ω := exp2πi/d, (d-th root of unity). Since j ∈ Zd , it is
understood that the operation of addition in j+1 is performed
in Zd . The commutation relations between X and Z are given
by

ZX = ωXZ. (8)

When d = 2, X =
(

0 1
1 0

)
, and Z =

(
1 0
0 −1

)
, that is, we get the

well-known Pauli matrices for the qubit case. When d is odd,
P(d) := 〈X ,Z〉. It is easily seen that an arbitrary element takes
the form ω jXaZb, where j,a,b = 0,1, · · · ,d−1. Group com-
position is given by(

ω
jXaZb

)
.
(

ω
j′Xa′Zb′

)
= ω

j+ j′+a′bXa+a′Zb+b′ , (9)
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which is the just the composition rule of the Heisenberg-Weyl
group22. The order of each element is at most d. For the
case when d is even, often it is convenient2 to introduce an
additional phase factor ζ = ω

1
2 , and P(d) := 〈ζ1,X ,Z〉. Then

an arbitrary element in P(d) is ζ jXaZb, where j ∈ Z2d , a,b ∈
Zd . The group composition law of two arbitrary elements is
given by(

ζ
jXaZb

)
.
(

ζ
j′Xa′Zb′

)
= ζ

j+ j′+2a′bXa+a′Zb+b′ . (10)

While the order of all group elements is at most 2d in the
even d case, one may suitably multiply with ζ to gener-
ate another group element with order at most d. The n-
qudit Pauli group P

(d)
n is simply the n-fold tensor product

of the single qudit Pauli group. The Hilbert space it acts
on will be denoted by H '

(
Cd
)⊗n. For the odd d case,

P
(d)
n :=

〈
X j,Z j

〉n
j=1, whereas for the even d case, we have

that P
(d)
n =

〈
ζ1,X j,Z j

〉n
j=1, where X j represents the opera-

tor with X on the j-th qudit and 1 on all the remaining qudits.
Neglecting the phase factors of ω j and ζ j, we may represent
an arbitrary element of the n-qudit Pauli group as

g(a) = Xu1Zv1 · · ·XunZvn , (11)

where a := (u,v)T ∈ Z2n
d is a 2n-ordered tuple with entries in

Zd . It is easily seen that group composition law is given by21

g(a)g(b) = ω
aT Ubg(a+b), (12)

where

U =

[
0 0
In 0

]
, (13)

and In is the n×n identity matrix. From Eq. (12), the commu-
tation relation for the Pauli operators is

g(a)g(b) = ω
−aT Λbg(b)g(a), (14)

where

Λ :=
[

0 In
−In 0

]
. (15)

Eq. (14) implies that

aT
Λb = 0 (16)

2 For even d, the group 〈X ,Z〉 has some undesirable properties: while Xd =

Zd =1, (ωaXZ)d =−1 for all a= 0,1, · · · ,d−1, the order of ωaXZ is 2d.
It is cumbersome to keep track of which operator has order d and which
has order 2d. By adding ζ to the group, we can obtain another group
element ζ XZ whose order is d. This is preferable to us because, while
ωaXZ ∈ 〈ζ1,XZ〉 continues to have order d, we can always multiply this
with ζ to get an order d element. The important point is that elements like
X and ζ XZ are put on the same footing. See59 for a treatment of the even
d case without the redundancy ζ phase factor.

if and only if the two Pauli operators g(a) and g(b) commute
with each other. The centre of the Pauli group P

(d)
n , which

is the subgroup of P
(d)
n which commutes with all elements of

P
(d)
n , is

Z
(
P

(d)
n

)
= 〈χ1〉 , (17)

where we will assume that χ = ω when d is odd
and χ = ζ when d is even. Thus the factor group
P

(d)
n /Z

(
P

(d)
n

)
' Z2n

d . This is also seen from Eq.

(12), since g(a)g(b) ∝ g(a+b). Thus P
(d)
n is homomor-

phic to Z2n
d , and one possible homomorphism takes Pauli

g(a) ∈P
(d)
n to a ∈ Z2n

d . This homomorphism plays a very
important role in the formalism of the stabiliser codes.

The Clifford group C
(d)
n for an n-qudit system is de-

fined as the normaliser of the Weyl-Heisenberg group in the
unitary group over the n-qudit system.

U ∈ C
(d)
n ⇔ UgU† ∈P

(d)
n , ∀ g ∈P

(d)
n . (18)

The Clifford group is homomorphic to the group of 2n× 2n
symplectic matrices Sp(2n,Zd) over Zd .

M ∈ Sp(2n,Zd) ⇔ MT
ΛM = Λ, (19)

where Λ is given in Eq. (15).

D. Stabilizer codes on n qudits

The general framework of stabiliser codes was introduced
in29. Among the many references available in the literature,
we refer the reader to36, for a beginner friendly introduction
to quantum error correction.

To define an [[n,k]]d stabiliser code space, we will need
to first define a stabiliser group S. Let g1,g2, · · · ,gn−k be n−k
elements in P

(d)
n , with the following properties. (i) they com-

mute with each other, (ii) the order of S := 〈g1,g2, · · · ,gn−k〉
is |S|= dn−k. The final condition ensures that any non-trivial
product of the g j’s, i.e., gx1

1 gx2
2 · · ·g

xn−k
n−k = 1 if and only if

x1,x2, · · · ,xn−k = 0. Often, one includes another condition,
i.e., spectrum of each g j always contains +1. If any g j
doesn’t satisfy this condition, one may replace g j with χag j,
so that χag j has eigenvalues +1. One may associate to S, a
subspace of the Hilbert space C (S), which is defined as

C (S) :=
{
|ψ〉 ∈

(
Cd
)⊗n
| g|ψ〉= |ψ〉 for all g ∈ S

}
. (20)

dimC (S) = dk (see Theorem 1, in26). It is easily seen that
C (S) is the unique subspace stabilised by S, and is hence
called the stabiliser code space corresponding to S. Since
dimC (S) = dk, C (S) encodes k qudits within itself, and thus
C (S) is said to be an [[n,k]]d stabiliser code space, where the
subscript denotes the dimension d of a single qudit.
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Remark 1. When k = 0, dimC (S) = 1. Since C (S) is
spanned by a single vector, we refer to that vector as a sta-
biliser state.

Remark 2. The case when k = n covers the scenario when
we’re encoding the whole Hilbert space into itself. We are not
interested in this scenario.

Since g j = g(a j) for some a j ∈ Z2n
d , one may identify the

subgroup S in terms of the a j’s instead of the g j’s36. This is
done by arranging the a j’s in a 2n× (n− k) matrix, which is
called the check matrix of S.

H =

[
a1 a2 · · · an−k

]
. (21)

The aforementioned two conditions on g j’s may be phrased in
terms of equivalent conditions on a j’s.

gig j = g jgi ⇔ a j
T

Λai = 0. (22)

|S|= dn−k ⇔
∣∣∣span

{
a j
}n−k

j=1

∣∣∣ = dn−k. (23)

Condition Eq. (22) follows from Eq. (14), and Condition
Eq. (23) is equivalent to the fact that a j’s are linearly inde-
pendent and span an (n− k)-dimensional subspace.

The 2n× (n−k) matrix H can be extended to a full 2n×2n
symplectic matrix M. A partial construction of this full
2n×2n matrix can be found in Ref.36. We refer the reader to
Appendix C for such a construction.

M =

[
E LX H LZ

]
, (24)

where E is a 2n×(n−k) matrix, and LX and LZ are 2n×k ma-
trices. The columns of LX and LZ correspond to the logical X
and the logical Z operators respectively, whereas the columns
of E may be interpreted as the correctable Pauli errors. An
explanation of this may be found in Section IV in conjunction
with Section E of the Appendix. When k = 0, H is a 2n× n
matrix, and M takes the following form.

M =

[
E H ,

]
(25)

where E is also a 2n×n matrix.
When we alter the generators g j of S as g j → ωa j g j, for

a j ∈ Zd , then if a j 6= 0 for some j, ωa j g j are the genera-
tors of another stabiliser group S′. By replacing S with S′

in Eq. (20), one can associate to S′ a unique corresponding
[[n,k]]d stabiliser code space C (S). C (S) and C (S′) are or-
thogonal because the +1 eigenspaces of g j and ωa j g j are or-
thogonal when a j 6= 0. There are dn−k possible choices for
a j (including the choice a j = 0 for all j), thus we get dn−k

orthogonal code spaces. Since each of these code spaces is of
dimension dk, the direct sum of all these code spaces is the full
Hilbert space. Since a j do not encode the overall phase fac-
tor of the Paulis, the entries in the check-matrix don’t change

when the phase factors ωa j are changed in the generators. So
the check matrix H and its symplectic extension M for all the
above codes spaces are the same. We will refer to a code as the
aforementioned collection of code spaces without meaning to
distinguish among them. Thus a code is associated to a check
matrix without any ambiguity. We will refer to a code space
C (S) as the subspace of the Hilbert space Cd⊗n associated to
a unique stabiliser group S. This is as per Eq. (20).

Remark 3. Two codes spaces in the same code don’t differ
in any of their error correcting properties (such as distance,
fault-tolerance threshold corresponding to some error model,
the weight distribution of the generators (whether the code is
LDPC or not, etc). Since one is interested these properties
(among others), the emphasis is on finding good codes, and
not on the many code-spaces with which these codes are real-
isable.

III. GROUP STRUCTURE OF [[n,k]]d STABILISER CODES

In this section, we will obtain a group theoretic structure
underpinning all [[n,k]]d stabiliser codes. Let H1 be the check
matrix of some [[n,k]]d stabiliser code, and A be an (n− k)×
(n− k) invertible matrix. Then H1A is the check-matrix of
the same stabiliser code. This is because the columns of H1A
are merely (invertible) linear combinations of the columns of
H1, i.e., the generators corresponding to the column vectors
of H1 maybe recovered from the generators corresponding to
the column vectors of H2. Define H2 = H1A. Let M1 and
M2 be a 2n×2n symplectic matrix obtained by extending H1
and H2 respectively (see Section C of the Appendix). Since
M1,M2 ∈ Sp(2n,Zd), there exists a matrix M such that

M2 = M1 M. (26)

We first assume that k ≥ 1. Then it is clear that M needs to
have the following form so that H2 = H1A.

M =

M11 M12 0 M14
M21 M22 0 M24
M31 M32 A M34
M41 M42 0 M44

 (27)

Here M11, M31, A are (n−k)×(n−k) matrices, M22, M24, M42
and M44 are k×k sized matrices, M12, M14, M32, M34 are (n−
k)×k and M21, M41 are k×(n−k) matrices. Additionally M is
necessarily a symplectic matrix, since M = M−1

1 M2, and M1,
M2 are symplectic. Thus M satisfies the symplectic condition
Eq. (19). Substituting M in Eq. (26) into Eq. (19), we get the
conditions for M to be symplectic:

M11 = (AT )−1, (28)
M12 = M14 = 0(n−k)×k, (29)[

M22 M24
M42 M44

]
∈ Sp(2k,Zd), (30)

M31AT −AMT
31 = A

(
MT

41M21 − MT
21M41

)
AT , (31)

M32 = A
(
MT

41M22−MT
21M42

)
, (32)

M34 = A
(
MT

41M24−MT
21M44

)
, (33)



7

where Sp(2k,Zd) denotes the group of 2k×2k symplectic ma-
trices over Zd . Using Eq. (28) and Eq. (29), M takes the
following form

M =

(A
T )−1 0 0 0

M21 M22 0 M24
M31 M32 A M34
M41 M42 0 M44

 . (34)

The derivation of Eq. (30)-(33) is not essential for this work,
and is hence shifted to the Appendix D.
Note that when k = 0, M in Eq. (34) takes the form

M =

[(
AT
)−1 0

M31 A

]
. (35)

Theorem 1. The set of all 2n×2n symplectic matrices of the
form given in Eq. (34) form a subgroup of Sp(2n,Zd).

Proof. We use the following subgroup test: if G is a group,
H a subset of G, then H is a subgroup if for all h,g ∈ H,
h−1g ∈ H too.

First note that the inverse of a symplectic matrix M is
given by ΛT MT Λ, since ΛT MT ΛM = ΛT Λ = I. This gives us

M−1 =


AT 0 0 0
MT

34 MT
44 0 −MT

24
−MT

31 −MT
41 A−1 MT

21
−MT

32 −MT
42 0 MT

22

 . (36)

Thus we see that M−1 has the form given by Eq. (34). Next,
consider the composition of two symplectic matrices of the
form Eq. (34).(A

T )−1 0 0 0
M21 M22 0 M24
M31 M32 A M34
M41 M42 0 M44


(B

T )−1 0 0 0
N21 N22 0 N24
N31 N32 B N34
N41 N42 0 M44



=


(
(AB)T

)−1 0 0 0
L21 L22 0 L24
L31 L32 AB L34
L41 L42 0 L44

 . (37)

Note that the matrix on the RHS of Eq. (37) is symplectic,
since it is a product of two symplectic matrices. Also it is of
the form given in Eq. (34).

The subgroup given in Theorem 1 will be denoted by
T(2n,k,Zd). It encapsulates the degree of freedom with which
one may extend the check matrix of the [[n,k]]d trivial code to
a symplectic matrix. The trivial code is the code correspond-
ing to the stabiliser group S = 〈Z1,Z2, · · · ,Zn−k〉. At the same
time, right multiplying the symplectic matrix of any [[n,k]]d
stabiliser code by an element of T(2n,k,Zd) yields another
another symplectic matrix of the same stabiliser code. We saw
this in Eq. (26). In the next section we show that T(2n,k,Zd)
decomposes as a product of three subgroups, and highlight
the roles played by these three subgroups in quantum error
correction for stabiliser codes.

IV. DECOMPOSITION OF T(2n,k,Zd)

The matrix M given in Eq. (34) can be decomposed as a
product of three matrices.

M = MT ME MS ML, (38)

where

MT :=

 Ik 0 0 0
0 In−k 0 0

KS 0 Ik 0
0 0 0 In−k

 , (39)

ME :=

 Ik 0 0 0
N In−k 0 0
KA LT Ik −NT

L 0 0 In−k

 , (40)

ML :=

Ik 0 0 0
0 M22 0 M24
0 0 Ik 0
0 M42 0 M44

 (41)

and MS :=

(A
T )−1 0 0 0
0 In−k 0 0
0 0 A 0
0 0 0 In−k

 , (42)

where

N = M21AT ,

KS = M31AT +AMT
31,

KA = M31AT −AMT
31,

and L = M41AT . (43)

Furthermore, we have the following.

Corollary 3. For any M ∈ T(2n,k,Zd), the decomposition in
Eq. (38) is unique, i.e., there are unique matrices MS, ML, ME
and MT such that Eq. (38) holds.

Proof. Since MS and ML are constructed from some of the
blocks of M, there is a unique way of obtaining them. Hav-
ing obtained MS and ML, MT ME = M (MLMS)

−1. Since N
and L are matrix blocks within M (MLMS)

−1, and KA is en-
tirely determined by N and L), a unique ME is obtained
from M (MLMS)

−1, which also gives us a unique MT . Hence
proved.

We next note that four subsets of matrices of MS, ML,
ME and MT form four distinct subgroups, which don’t share
any overlaps with each other.

a. The GL(n − k,Zd) subgroup: The set of matrices
of the form MS, with A invertible, is readily seen to be a
subgroup of T(2n,k,Zd) (by setting all matrix elements in
M21, M24, M31, M32, M34, M41 and M42 as 0, and setting
M22 = M44 = In−k). Moreover, this subgroup is isomorphic
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to GL(n− k,Zd), the group of (n− k)× (n− k) general linear
matrices over Zd , and hence we refer to it as the GL(n−k,Zd)
subgroup.

b. The Sp(2k,Zd) subgroup: All matrices of the form
ML which satisfy Eq. (30) form a subgroup of T(2n,k,Zd),
and this subgroup is isomorphic to Sp(2k,Zd). Thus we call
it the Sp(n− k,Zd) subgroup.

Note that the GL(n − k,Zd) subgroup and the Sp(k,Zd)
subgroup commute with each other.

c. The symmetric and antisymmetric abelian subgroups
BS(n,k,d) and BA(n,k,d): Matrices of the form MT and ME ,
which satisfy Eq. (31) (see Eq. (43)), are also subgroups of
T(2n,k,Zd). For MT to satisfy Eq. (31), KS has to be sym-
metric but is otherwise unconstrained, while for ME to satisfy
Eq. (31), KA has to be anti-symmetric and moreover satisfies
the equation KA = NT L− LT N (see Eq. (43)). It is easily
verified that both are abelian subgroups, and also commute
with each other. We refer to them as the symmetric and anti-
symmetric abelian subgroups BS(n,k,d), BA(n,k,d),

BS(n,k,d) = { all MT ∈ T(2n,k,Zd)} . (44)
BA(n,k,d) = { all ME ∈ T(2n,k,Zd)} . (45)

Remark 4. When k = 0, the BA(n,k,d) and Sp(2k,Zd) sub-
groups shrink to the trivial group which contains only the
identity. The decomposition of T(2n,k,Zd) then takes the fol-
lowing form.

M = MT MS. (46)

The uniqueness of the decomposition (i.e., Corollary 3) holds
for this case well.

In the Appendix Section E, we elaborate on the significance
of these subgroups in quantum error correction. While the
roles played by GL(n− k,Zd) and Sp(2k,ZZd ) is easily sur-
mised to those familiar with QEC with stabilizer codes, there
has been less spotlight on the roles played by BA(n,k,d) and
BS(n,k,d), i.e., the fact that the choice of selecting correctable
errors for the code is encapsulated by the group actions of
BS(n,k,d) and BA(n,k,d).

V. COUNTING [[n,k]]d STABILISER CODES

One may employ Lagrange’s theorem in theory of finite
groups to compute the total number of [[n,k]]d stabiliser codes,
which we denote as C [[n,k]]d .

Lemma 1. The number of [[n,k]]d stabilizer codes is

C [[n,k]]d = |Sp(2n,Zd)|/ |T(2n,k,Zd)| , (47)

where |Sp(2n,Zd)| is the order of Sp(2n,Zd) and
|T(2n,k,Zd)| is the order of T(2n,k,Zd).

Remark 5. For the case when d is a prime, i.e., d = p, the
number of [[n,k]]d stabiliser codes was explicitly computed in
Ref.22 (see Theorem 20 and Corollary 21 therein). The re-
sults we obtain below agree with the results in Ref.22 in this
case. There is a discrepancy in the language and notation em-
ployed: an [[n,k]]d stabiliser code in our work corresponds to
an m-dimensional isotropic subspace in Theorem 20 in Ref.22,
each [[n,k]]d code space in our work is a counted as a distinct
code in Corollary 21 in Ref.22, and finally, we use the nota-
tion C [[n,k]]d to count the number of [[n,k]]d stabiliser codes,
whereas it is used to count the total number of code spaces in
Ref.22.

Proof. For a given [[n,k]]d stabiliser code, let’s choose a rep-
resentative code space C (S) with the stabiliser group S =〈
g j
〉n−k

j=1. From S one can construct a check matrix H, which
may be extended to a symplectic matrix M. In Sec. III
we noted that this construction of M from S has a redun-
dancy, and that the degree of freedom within the redun-
dancy is captured by the right action on M by the subgroup
T(2n,k,Zd). In other words, each symplectic matrix in any
coset of Sp(2n,Zd)/T(2n,k,Zd) is a possible symplectic con-
struction for the same [[n,k]]d stabiliser code. This tells us that
the number of [[n,k]]d codes is lesser than or equal to the num-
ber of left cosets, i.e., |Sp(2n,Zd)/T(2n,k,Zd)|. Conversely,
let us start from some left coset in Sp(2n,Zd)/T(2n,k,Zd),
i.e., M×T(2n,k,Zd), where we designate M as the coset rep-
resentative. One can associate to this coset any one of dn−k

mutually orthogonal [[n,k]]d stabiliser codes in the following
way: extract from M a 2n× (n− k) submatrix by extract-
ing the columns with numbers n+ 1 to 2n− k from the left
(see Eq. (24)). Call this submatrix H. Since M ∈ Sp(2n,Zd)
and satisfies MT ΛM = Λ, H satisfies HT ΛH = 0. Let the
j-th column in H be the homomorphic image of some Pauli
ωa j g j (see Eq. (11)), where g j’s are such that each has a +1
eigenspace, and the a j’s are in Zd and arbitrary. Generate the
group S =

〈
ωa j g j

〉
. Note that the construction branches out

into dn−k different choices of S, depending on the values of
the a j’s. That HT ΛH = 0 is equivalent to the fact that the
g j’s commute between themselves. Also, the columns of H
are linearly independent since M is an invertible matrix. This
ensures that any subset of the ωa j g j’s will generate a strictly
smaller subgroup of S. Construct the coding space C (S) from
S, and note that dimC (S) = 2k (see Eq. (20) and the descrip-
tion below it). Thus C (S) is a code space corresponding to
an [[n,k]]d stabiliser code. The dn−k distinct choices of S and
C (S) correspond to the dn−k different choices within the same
stabiliser code. This tells us that the number of cosets is lesser
than or equal to the number of [[n,k]]d stabiliser codes.
Note that when the code to coset construction is reversed, one
retrieves the original code which one started with. This is true
for all codes. This proves the theorem.

Using the decomposition of T(2n,k,Zd) from Sec. IV we
obtain the following theorem.

Lemma 2. Let d be a prime power, i.e., d = pm, where p is
a prime number and m a positive integer. The total number of
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[[n,k]]pm stabiliser codes, C [[n,k]]pm is

C [[n,k]]pm =
(

pm−1) (n−k)(n+3k+1)
2

[
n

n− k

]
p

n−k−1

∏
j=0

(
(p)n− j +1

)
(48)

where the Gaussian coefficient
[

n
n− k

]
pi

is defined as

[
n

n− k

]
p

:=
n−k−1

∏
j=0

pn− j−1
pn−k− j−1

. (49)

Proof. Using Lemma 1, the decomposition in Sec. IV and
Lemma 3,

C [[n,k]]pm =



∣∣Sp(2n,Zpm)
∣∣

|BS (n,k, pm)| |BA (n,k, pm)|
∣∣GL(n− k,Zpm)

∣∣ ∣∣Sp(2k,Zpm)
∣∣ , when k ≥ 1 and

|Sp(2n,Zd)|
|BS (n,0, pm)|

∣∣GL(n,Zpm)
∣∣ , when k = 0.

(50)

It is straightforward to compute that |BA (n,k, pm)| =
(pm)2k(n−k), since in ME from Eq. (40), N and L are left
completely unconstrained by Eq. (43), whereas simultane-
ously KA is completely determined by N and L. Also note,
|BS (n,k, pm)| = pm 1

2 (n−k)(n−k+1), since in MT from Eq. (39),
the only constraint which Eq. (43) imposes on KS is that it be
symmetric.

∣∣GL(n− k,Zpm)
∣∣ is computed in Corollary 2.8 in

Ref.31 (see also Ref.39 for a more accessible arguments):

∣∣GL(n− k,Zpm)
∣∣ = p(m−1)(n−k)2

n−k−1

∏
j=0

(
pn−k− p j

)
.

(51)

∣∣Sp(2n,Zpm)
∣∣ and

∣∣∣Sp(2k,Zp
mi
i
)
∣∣∣ (needed for the case k ≥ 1)

are explicitly computed in the Appendix Sec. E 1 (which is
based on Ref.38), which gives us

∣∣Sp(2n,Zpm)
∣∣ = p(2m−1)n2+(m−1)n

n

∏
j=1

(
p2 j−1

)
. (52)

Then putting everything together in Eq. (50) gives us Eq. (48)

Remark 6. In a seminal paper on Wigner distributions on
finite dimensional phase-space Ref.22, Gross computed the
number of [[n,k]]d codes when d = pm, but the phase-space
is identified with F2

pm , not Z2
pm . That the Pauli groups for

both phase spaces are different is observed from the following
fact. Set n = 1. Then P(pm) is homomorphic to the additive
abelian group of Z2

pm (i.e., when only looking at Z2
pm as an

abelian group), whereas P(Fpm ) is homomorphic to the addi-
tive abelian group of F2

pm . Note that the abelian group of Z2
pm

decomposes as the product of two cyclic groups:
(
Z2

pm ,+
)
'

(Zpm ,+)× (Zpm ,+) , whereas that of F2
pm decomposes as a

product of 2m cyclic groups, i.e.,
(
F2

pm ,+)
)
' (Zp,+)×2m.

Furthermore these decompositions are unique by the structure
theorem of finite abelian groups. When m = 1, i.e., d = p, the
formula in Theorem 20 in Ref.22 matches that with Eq. (48),
but for larger m, the formula differs on account of the fact that
while Fpm is a field, Zpm isn’t. For completeness, in Appendix
G we explain why this renders the proof for Theorem 20 in
Ref.22 inapplicable to our case.

Theorem 2. When d is an arbitrary positive integer with
prime factorisation d = ∏

r
i=1 pmi

i , where pi are distinct
primes, mi are positive integers and r, which is the number
of distinct prime factors, is also a positive integer. Then total
number of [[n,k]]d stabiliser codes is

C [[n,k]]d =
r

∏
i=1

C [[n,k]]pmi
i
. (53)

Thus we get

C [[n,k]]d = d
(n−k)(n+3k+1)

2

r

∏
i=1

ζi, (54)

where

ζi :=
n−k−1

∏
j=0

(
1− pi

−2(n− j)

1− pi
−(n−k− j)

)
. (55)

Proof. We invoke the Chinese remainder theorem32, which
tells us that

Zd ' Zm1
p1
×Zm2

p2
×·· ·Zmr

pr , (56)

is a ring isomorphism. A simple corollary of this ring isomor-
phism is the following two group isomorphisms.
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Sp(2n,Zd) ' Sp(2n,Zp
m1
1
)×Sp(2n,Zp

m2
2
)×·· ·×Sp(2n,Zpmr

r
)

T(2n,k,Zd) ' T(2n,k,Zp
m1
1
)×T(2n,k,Zp

m2
2
)×·· ·×T(2n,k,Zpmr

r
), (57)

where the × symbol on the RHS denotes the direct product of
groups. Invoking Eq. (57) into Lemma 1 thus proves Eq. (53).
For Eq. (54), we first simplify the RHS of Eq. (48) using the
following. [

n
n− k

]
pi

n−k−1

∏
j=0

(
(pi)

n− j +1
)

= p
(n−k)(n+3k+1)

2
i

n−k−1

∏
j=0

(
1− pi

−2(n− j)

1− pi
−(n−k− j)

)
. (58)

Using Eq. (58) in Eq. (48) gives us

C [[n,k]]pmi
i

= pmi
i

(n−k)(n+3k+1)
2 ζi, (59)

which is then invoked into Eq. (53).

It is often important to simply get an order of magnitude of
C [[n,k]]d . Towards that result, we obtain the following corol-
lary as a result of Theorem 2.

Corollary 4. Let c = 2.17. Then number of [[n,k]]d stabiliser
codes scales as

d
(n−k)(n+3k+1)

2 ≤ C [[n,k]]d < d
(n−k)(n+3k+1)

2 +c, (60)

the number of [[n,k]]d stabiliser code spaces scale as

d
(n−k)(n+3k+3)

2 ≤ Cspace[[n,k]]d < d
(n−k)(n+3k+3)

2 +c, (61)

and thus the number of stabilizer states scale as

d
n(n+3)

2 ≤ Cstate[[n]]d < d
n(n+3)

2 +c. (62)

Proof. It is not difficult to upper bound ζi by a constant which
is independent of pi, n and k. For instance, in Appendix Sec.
F we show that

ζi < e1.57, ∀ n, k, and primes p. (63)

Thus we now use Eq. (58) and Eq. (63) in Eq. (48)

C [[n,k]]pmi
i

< ec1
(

pmi
i

) (n−k)(n+3k+1)
2 , (64)

where c1 = 1.57. Let the number of distinct prime factors of
d be denoted by r(d). Then Eq. (53) and (64) tell us

C [[n,k]]d < ec1r(d) d
(n−k)(n+3k+1)

2 . (65)

It is known that r(d) may be upper bounded as follows (see
Theorem 11, p. 369 in Ref.42):

r(d) ≤ c2
logd

log logd
, for d ≥ 3. (66)

where c2 = 1.38. Thus we get that ec1r(d) ≤ dc, where c =
c1c2 ≈ 2.17. Thus we get

C [[n,k]]d < d
(n−k)(n+3k+1)

2 +c. (67)

Note that for d = 2, Eq. (64) is already satisfied, and hence,
d = 2 also satisfies Eq. (67). The number of [[n,k]]d stabilizer
code spaces is dn−k C [[n,k]]d , and the number of stabilizer
states is obtained by setting k = 0 in the number of stabilizer
code spaces.

VI. CONCLUSIONS

In this work we count the number of [[n,k]]d stabilizer
codes, C [[n,k]]d for arbitrary d-level systems, where the
configuration space of such systems is Zd . Since Zd is
not a field when d is non-prime, the method we used for
this has to differ from earlier works in Ref.6 for qubits and
Ref.22 for prime-dimensional qudits and Galois-qudits, which
relied on d being prime. Our method is broadly broken
up into two parts: (i) proving a bijection between distinct
[[n,k]]d QECC and cosets of Sp(2n,ZZd )/T(2n,k,Zd), where
T(2n,k,Zd) is a subgroup, which corresponds to the [[n,k]]d
trivial code, with stabilizer group S =

〈
Z j
〉n−k

j=1, and (ii)
computing |Sp(2n,Zd)|/ |T(2n,k,Zd)|, for which we make
use of the Chinese remainder theorem. We find that the
number of [[n,k]]d stabilizer codes C [[n,k]]d , the number
of [[n,k]]d stabilizer code subspaces Cspace[[n,k]]d and the
number of stabilizer states Cstate[[n]]d scale agnostic of
whether d is prime or non-prime. This is surprising since
the prime or non-prime nature of d played an important role
in our computation. In Section I we listed salient topics
where Cstate[[n]]d plays the role as an important quantifier:
the resource theory of magic, the classical simulation of
stabilizer-only circuits, projective-designs of stabilizer states,
a de Finetti theorem customized for stabilizer operations, the
study of quantum contextuality for small systems, the study
of Wigner functions and the optimal verification of stabilizer
states. Since Cstate[[n]]d was so far known only for prime d
(and Galois-qudits), the results were limited to such cases.
For resource theory of magic and the optimal verification of
stabilizer states, our work allows one to make statements for
arbitrary d. For the remaining topics, we believe that our
computation of Cstate[[n]]d will prove useful for generalising
the corresponding results to arbitrary d. Thus our work also
contributes towards the important goal of placing results for
arbitrary d qudit systems on the same pedestal as for prime
qudit systems or Galois qudit systems.



11

1Mixed-state entanglement and quantum error correction, Bennett C. H., Di-
Vincenzo D. P., Smolin J. A., and Wootters W. K.; Phys. Rev. A 54, 3824
(1996)

2Quantum data hiding, D. P. DiVincenzo, D. W. Leung and B. M. Terhal,
IEEE Transactions on Information Theory, vol. 48, no. 3, pp. 580-598,
March 2002

3Randomized benchmarking of quantum gates, Knill E., Leibfried D., R.
Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S.
Seidelin, and D. J. Wineland Phys. Rev. A 77, 012307 (2008)

4Scalable and Robust Randomized Benchmarking of Quantum Processes,
Magesan E., Gambetta J. M., Emerson J., Phys. Rev. Lett. 106, 180504
(2011)

5The Heisenberg Representation of Quantum Computers, Gottesmann D.,
preprint at: arXiv:quant-ph/9807006.
Journal reference: Group22: Proceedings of the XXII International Collo-
quium on Group Theoretical Methods in Physics, eds. S. P. Corney, R. Del-
bourgo, and P. D. Jarvis, pp. 32-43 (Cambridge, MA, International Press,
1999)

6Improved simulation of stabilizer circuits, Scott Aaronson and Daniel
Gottesman, Phys. Rev. A 70, 052328 (2004)

7New techniques for bounding stabilizer rank, Benjamin Lovitz and Vincent
Steffan”, Quantum 6, 692 (2022).

8Quantum systems with finite Hilbert space, A Vourdas 2004 Rep. Prog.
Phys. 67 267

9Kitaev’s Zd -code threshold estimates, Duclos-Cianci G., and Poulin D.,
Phys. Rev. A 87, 062338 (2013)

10Fast decoders for qudit topological codes, Anwar H., Brown B. J., Campbell
E. T., and Browne D. E., New J. Phys. 16 063038 (2014)

11Magic-State Distillation in All Prime Dimensions Using Quantum Reed-
Muller Codes, Campbell E .T, Anwar H., and Browne D. E., Phys. Rev. X
2, 041021 (2012)

12Enhanced Fault-Tolerant Quantum Computing in d-Level Systems, Camp-
bell E. T., Phys. Rev. Lett. 113, 230501 (2014)

13Towards Low Overhead Magic State Distillation, Krishna A., and Tillich J.
P., Phys. Rev. Lett. 123, 070507 (2019)

14A quantum compiler for qudits of prime dimension greater than 3, Heyfron
L. E. and Campbell E. T., arxiv:1902.05634 (2019)

15Quantum computation with realistic magic-state factories, O’Gorman J.,
and Campbell E. T., Phys. Rev. A 95, 032338 (2017)

16“Galois-qudit code”, The Error Correction Zoo (V. V. Albert & P. Faist,
eds.), 2022.

17“Modular-qudit stabilizer code”, The Error Correction Zoo (V. V. Albert &
P. Faist, eds.), 2022.

18H. Weyl, “Theory of Groups and Quantum Mechanics", Dutton, New York,
(1932)

19Unitary Operator Basis, J. Schwinger, PNAS 46, 570 (1960)
20Symmetric informationally complete–positive operator valued measures

and the extended Clifford group, D. M. Appleby, J. Math. Phys. 46, 052107
(2005)

21Stabilizer states and Clifford operations for systems of arbitrary dimensions
and modular arithmetic, E. Hostens, J. Dehaene, and B. De Moor, Phys.
Rev. A 71, 042315 (2005)

22Hudson’s theorem for finite-dimensional quantum systems, D. Gross , J.
Math. Phys. 47, 122107 (2006)

23Qudit surface codes and gauge theory with finite cyclic groups, S. S. Bul-
lock and G. K. Brennen, 2007 J. Phys. A: Math. Theor. 40 3481

24Homological error correction: Classical and quantum codes, Bombin H.,
and Martin-Delgado M. A., J. Math. Phys. 48, 052105 (2007)

25The monomial representations of the Clifford group, Appleby D. M.,
Bengtsson I., Brierley S., Grassl M., Gross D., and Larsson J., Quantum
Information and Computation, Vol.12 No.5 & 6, 2012

26Standard form of qudit stabilizer groups, Gheorghiu V., Phys. Lett. A, Vol
378, No. 5–6, P 505-509, (2014)

27Geometry of Quantum States. An Introduction to Quantum Entanglement,
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Appendix A: A short summary of the resource theory of magic

An operationally significant resource theory of magic has been studied and developed over the past decade. In this theory
stabilizer operations are considered a free resource. By stabilizer operations we mean the following. (i) Initiating the starting
state of a quantum computation as an eigenstate of some multi-qudit Pauli operator. Often this is the state |0,0, · · · ,0〉, which
spans the [[n,0]]d trivial code for the n-qudit system with stabilizer group S =

〈
Z j
〉n

j=1. (ii) Performing Clifford operations during
the computation. (iii) The only observables which are subjected to quantum measurements are multiqudit Pauli operators. It is
known that stabilizer operations are not universal6, and universality demands the inclusion of some non-stabilizer operations,
such as the π/8 gate via magic state injection. From the perspective of fault-tolerant quantum computing, performing non-
stabilizer operations at the logical level of the quantum code, is a high-cost incurring operation (see for e.g.15), which justifies
the differentiation between the ‘free’ resources of stabilizer operations (the aforementioned three operations) and the costly
resources of non-stabilizer operations (magic state injection).

Appendix B: Proof of Corollary 2

Zn
d is a free-Zd module. This means that one may simply view Zn

d as an abelian group with vector addition as the corresponding
group operation. Furthermore, Zn

d is then simply seen to be a direct product group of Zd with itself n times.

1. Any set of n LI vectors is a basis for Zn
d

By basis for Zn
d , we mean a minimal generating set for Zn

d as a group. Any set of n LI vectors is a minimal generating set
since there are precisely dn distinct linear combinations of these n vectors, and the LI property guarantees that each distinct
linear combination results in a distinct vector in Zn

d . Since there are dn vectors in Zn
d , each vector must be one of the dn possible

linear combinations.

2. If aj’s are LI, then their linear span generates a subspace of dimension m

By the linear span of the a j’s, we mean the subgroup of Zn
d , which the a j’s generate. Since the a j’s are LI and since they are m

in number, they generate a subgroup of size dm. However, not all subspaces of size dm are isomorphic. It remains to justify the
concept of an m dimensional subspace. We use the term m-dimensional subspace to mean a subgroup of Zn

d , which is isomorphic
to Zm

d . One may easily construct such an isomorphism from span
{

a j
}m

j=1 to Zm
d as follows: define T : span

{
a j
}m

j=1→ Zm
d as

follows:

T (x1a1 + x2a2 + · · ·+ xmam) = (x1,x2, · · · ,xm), ∀ x j ∈ Zd . (B1)

T is readily seen to be an isomorphism (in the group theoretic sense).

3. For any m < n, any set of m LI vectors may be extended to form a basis for Zn
d .

We prove this by finding an invertible matrix A whose first m columns are given by the LI vectors a1, a2, · · · , am. Then we
may simply add the remaining n−m columns to obtain a set of n linearly independent columns. We prove this inductively.

When m = 1. We adapt the arguments given in Ref.603 to our purpose. To say the a1 = a is linearly independent

3 The proof in Ref.60 is itself taken from Ref.30 (Corollary II.I). We can’t
rely on the proofs in Ref.30,60 directly, since these results are valid only for

https://doi.org/10.1103/PhysRevResearch.2.043323
https://doi.org/10.48550/arXiv.2011.11651
https://doi.org/10.48550/arXiv.2011.11651
https://doi.org/10.1088/1751-8113/43/7/075302
https://doi.org/10.1088/1751-8113/43/7/075302
https://math.stackexchange.com/users/389981/user0
https://math.stackexchange.com/q/2058822
https://math.stackexchange.com/q/2058822
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means that there is no non-zero x ∈Zd such that xa = 0. In other words, a is of order d. This implies that if a = (a1,a2, · · · ,an)
T ,

then as integers in Z, g.c.d.{a1,a2, · · · ,an,d}= 1 ∈ Z. We can thus apply Bézout’s identity (see Ref.43), in the same way that it
is applied in Ref.60. For completeness, we give the whole proof here.

Proceeding inductively, suppose that n = 2 first. Bézout’s identity tells us that there exist b1, b2 and d′ in Z such that
a1b2 − a2b1 + d′d = 1 in Z. Thus we also get that (a1b2−a2b1) mod d = 1 ∈ Zd . With A =

(
a1 b1
a2 b2

)
mod d, the result

is proved for n = 2. Next, suppose that the result is true for n− 1. We need to then prove the result for n. As before
g.c.d{a1,a2, · · · ,an,d} = 1 ∈ Z. There exists some integer g which is a common factor of a1, a2, · · · and an−1 such that
if bi = ai/g, then g.c.d{b1,b2, · · · ,bn−1,d} = 1. It isn’t necessary that g equals g′ := g.c.d{a1,a2, · · · ,an−1,d}, because
g.c.d{a1/g′,a2/g′, · · · ,an−1/g′,d} need not be 1. Writing d = g′h′, we see that ai/g′ have no common factors with h′ (otherwise
g′ would have been larger). Thus the only factors which a1/g′, a2/g′, · · · , an−1/g′ have in common with d will occur in g′.
Writing g.c.d{a1/g′,a2/g′, · · · ,an−1/g′,g′} =: g̃′, and defining g′′ = g̃′g′, we examine whether a1/g′′, a2/g′′, · · · , an−1/g′′ and
d have any common factors. If not, we may choose g = g′′, otherwise we iterate recursively. These iterations have to stop at
some point since the numbers a1, a2, · · · , an−1 are finite. Note that g/g′ is necessarily a factor of g′ itself. Since the hypothesis is
assumed true for n−1, corresponding to b ∈ Zn−1, where b = (b1,b2, · · · ,bn−1)

T , we can construct an (n−1)× (n−1) matrix
B whose first column is b and such that detB+d′d = 1 ∈ Z. Construct an n×n matrix A in the same fashion as in Ref.60.

AT =


gb1 gb2 · · · gbn−1 an1
b21 b22 · · · b2,n−1 0

...
...
. . .

...
...

bn−1,1 bn−1,2 · · · bn−1,n−1 0
rb1 rb2 · · · rbn−1 s

 , (B2)

which gives us detA = (sg−an1r)detB, and since detB = 1 − d′d, we get detA = (sg−an1r)(1−d′d). Note that
g.c.d{g′,an1,d}= 1, which tells us that g′ and an1 are co-prime. Since g/g′ is also a factor of g′, we get that g.c.d{g,an1,d}= 1
as well. Hence Bézout’s identity informs us that there will exist some integers s, r and d′′ in Z so that sg− an1r + d′′d = 1.
Hence we get that detA = (1−d′d)(1−d′′d). In Zd , detA = 1, which implies that A mod d is invertible. This proves our result
for m = 1.

Assumed true for m. To prove for m+1. a1, a2, · · · , am, am+1 ∈ Zn
d , such that they are LI. Our hypothesis is assumed true for

m vectors, so a1, a2, · · · , am can be placed as the (left-most) columns of an n× n matrix A, which is invertible. Consider the
isomorphism on Zn

d : a→ A−1a. This maps a j = e j for j = 1 to m, where e j are the standard basis vectors whose only non-zero
component is the j-th component, and this component is equal to 1. Let A−1am+1 = (c1,c2, · · · ,cm,cm+1,cm+2, · · · ,cn)

T =: c.
Since A−1 is an isomorphism on Zn

d , we get that e1, e2, · · · , em and c are LI. Consider the following.(
1m 0
0 A′

)(
1m
0 c

)
, (B3)

where the matrix on the left is an n×n matrix. The upper right 0 denotes a block matrix of size m×n−m whose entries are all 0.
The lower left 0 denotes another block matrix of size (n−m)×m and whose entries are all 0. A′ is an (n−m)× (n−m) matrix,
as yet unspecified. The matrix on the right is of size n× (m+1), whose first m columns are the vectors e j ordered from 1 to m,
and the (m+1)-th column is c. Denote c′ := (cm+1,cm+2, · · · ,cn)

T . Our hypothesis allows us to choose A′ to be invertible and
such that A′c′ = (1,0, · · · ,0)T , which is a column vector of size n−m. Defining c′′ := (c1,c2, · · · ,cm)

T , so that cT = (c′′T ,c′T ),
define an n×n matrix T

T =

1k −c′′ 0
0 1 0
0 0 1n−k−1

 . (B4)

The diagonal blocks 1k, 1 and 1n−k−1 are of sizes k, 1 and n− k− 1 respectively. These determine the sizes of the remaining
blocks of T . When T is multiplied on the left of Eq. (B3), we get an n× (m+1) sized matrix whose columns are e1, e2 · · · , em
and em+1. Denoting the left matrix in Eq. (B3) by A′′, and defining Q := TA′′A−1, we see that Q is an invertible matrix, and the
action of Q on a j is to produce e j for j = 1 to m+1. This tells us that a j is the j-th column of the matrix Q−1. Thus given a j for
j = 1 to m+1, we may extend it to a set of n LI vectors by adding the remaining columns as vectors to this set. This proves our
result.

commutative rings with no zero divisors. In our case, when d is non-prime,
Zd has zero divisors.
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Appendix C: Extension of a check matrix to a symplectic matrix

Consider the stabilizer group S for an [[n,k]]d stabilizer code. For a choice of independent generators g j of S and an ordering,
one may readily construct the check matrix H using these generators (see Eq. (21)). The columns of H are linearly independent
and satisfy the commutation relations given by Eq. (22). Our goal in this section of the Appendix is to prove that the 2n×(n−k)
matrix H may be extended to a 2n×2n symplectic matrix M.

Proposition 1. Proposition 10.4,36 For each i = 1,2 · · · ,n−k, there exists some g ∈P
(d)
n , such that gig = ωggi, and g jg = gg j

when j 6= i.

Proof. Our proof will be based on the proof in36, which works perfectly well for the case when d = p is a prime, and Zd = Fp

is a field. In that case, one simply seeks the solution to the following equation: HT Λx = ei, where x ∈ F2n
p is a column vector

whose solution is sought, and ei ∈ Fn−k
p , is the vector whose only non-zero element is the i-th component, and this component

is equal to 1. The existence of the solution the aforementioned equation is based on the fact that dimFn−k
p = rankHT Λ, thus

the transformation x→ HT Λx is surjective in Fn−k
p . To establish that the same result holds true when d is a composite number,

we use the following arguments: since a1, a2, · · · , an−k are LI, one may extend this to a basis of 2n columns vectors in Z2n
d

(see Subsection B 3). Construct a 2n× 2n matrix Hext, by adding to HT the additional n+ k basis vectors, by transposing
them and placing the corresponding rows below HT . Since the rows of Hext are linearly independent and since they are 2n in
number, by arguments in Subsection B 1 they form a basis. Hence solutions to the equations xT Hext = e j

T may be found for all
j = 1,2, · · · ,2n, which implies that Hext has a left-inverse. Since the left-inverse of Hext is also its right inverse, that implies that
the columns of Hext are also linearly independent, and since these columns are 2n in number, they also form a basis using the
arguments in Subsec. B 1. Thus one may then find the solution to the equation:

Hext x′ = e′i, (C1)

where x′,e′i ∈ Z2n
d . Here e′i is the vector whose only non-zero entry is the i-th entry, and this entry is equal to 1, whereas x′ is a

vector whose solution is sought. That Hext is invertible tells us that x′ = H−1
ext e′i. Define x := Λ−1x′. Then x satisfies the equation:

HextΛx = e′i. One may neglect the n+ k bottom most rows of Hext and of e′i (not of Λ, or of x - their rows must be maintained
intact), which then gives us the equation HT Λx = ei. Let g be the Pauli element whose Z2n

d representative is x. The commutation
relations between g and the g j’s is then determined by the equation HT Λx = ei: we get that g and g j commute when j 6= i and
gig = ωggi. Hence proved.

Let us obtain the solutions for x for all i = 1,2, · · · ,n− k, and call the corresponding solutions w′i. We want w′i
T

Λw j = 0 for
all i, j = 1,2, · · · ,n− k. To that end, we perform a Gram-Schmidth orthogonalization procedure in the following way, starting
with w1 := w′1, and starting with i = 2 to i = n− k,

wi := w′i −
i−1

∑
j=1

(
w j

T
Λw′i

)
a j. (C2)

If k = 0, our job is done: to extend H to a 2n×2n symplectic matrix, we need to add the columns wi to the left (or right) of H,
and this will give us our symplectic matrix M. Suppose k = 1, we need to find pairs of vectors an,wn so that

an
T

Λa j = 0, ∀ j = 1,2, · · · ,n,
wn

T
Λw j = 0, ∀ j = 1,2, · · · ,n,

wn
T

Λa j = δ j,n, ∀ j = 1,2, · · · ,n. (C3)

At the moment, we have 2(n−1) linearly independent vectors a j and w j. Let a′ be some other vector so that the a′, a j and w j

form a set of 2n−1 LI vectors in Z2n
d . Define an := a′− ∑

n−1
j=1

(
w j

T Λa′
)

a j− ∑
n−1
j=1

(
a j

T Λa′
)

w j. Since the linear independence
of a′, a j and w j ensures that an is non-zero. We have also ensured that an satisfies the conditions a j

T Λan = w j
T Λan = 0 for

all j = 1,2, · · · ,n− 1. It remains to find wn with the properties as desired by Eq. (C3). Such a wn may be found by using
Proposition 10.3 again for an extended check matrix which is obtained by adding an to the original check matrix H. Thus we
have obtained all the column vectors as desired, and the newly obtained column vectors may be arranged suitably to produce a
2n×2n symplectic matrix M.

If k > 1, we may apply the same procedure as above iteratively, to obtain the symplectic matrix M.
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Appendix D: Symplectic conditions for M

In this section of the Appendix, we derive the symplectic conditions Eq. (30)-(33) for the matrix M in Eq. (24), which has
the form:

M =

M11 M12 0 M14
M21 M22 0 M24
M31 M32 A M34
M41 M42 0 M44

 . (D1)

Here M11, M31, M13 (which is 0) and A are of dimensions (n− k)× (n− k), M22, M24, M42 and M44 are of dimensions 2k×2k,
M21, M41, M23 and M43 (which are both 0) are of dimensions k× (n− k), and finally, M12, M14, M32 and M34 are of dimensions
(n− k)× k. M satisfies the following symplectic condition.

MT
ΛM = Λ. (D2)

It will be convenient to label the LHS of Eq. (D2) as follows.

MT
ΛM =

Q11 Q12 Q13 Q14
Q21 Q22 Q23 Q24
Q31 Q32 Q33 Q34
Q41 Q42 Q43 Q44

 . (D3)

Here we only consider blocks Q13,Q23 and Q43. That is the conditions given in Eq. (28) and (29):

Q13 = MT
11A = Ik =⇒M11 = (A−1)T ,

Q23 = MT
12A = 0 =⇒M12 = 0,

Q43 = MT
14A = 0 =⇒M14 = 0.

(D4)

Substituing Eq. (D4) into Eq. (24) gives us Eq. (34). Now, Eq. (31), Eq.(32) and Eq. (33) are merely the equations for the blocks
Q11, Q12 and Q14 respectively, whereas Eq. (30) is the collective condition on

(
Q22 Q24
Q42 Q44

)
.

Appendix E: Significance of the subgroups of T(2n,k,Zd): Sp(2k,Zd), GL(n− k,Zd), BA(n,k,d) and BS(n,k,d)

We now explain the significance of each of these subgroups. For an [[n,k]]d stabiliser code, let H be the corresponding
check matrix and let a symplectic extension of H be given by M as in Eq.(24). One may obtain another symplectic matrix
of the same stabiliser code by right-multiplying M with a matrix in T(2n,k,Zd) with a decomposition MEMSML. Suppose
that ME = ML = I2n. Right-multiplying M with MS transforms the check matrix H to another check-matrix HA (of the same
code). Thus the GL(n− k,Zd) subgroup realises the freedom of making different choices of the independent generators of said
stabilizer group. Right-multiplying M with ML transforms the columns in LX and LZ , while leaving E and H invariant. Thus
the Sp(n− k,Zd) subgroup realises the freedom of making different choices of the generators of the purely logical Pauli group,
which we denote by L

(d)
n . Each element of this subgroup (except the identity) will act non-trivially on the stabiliser code, i.e.,

codewords are mapped to other codewords under the action of these elements. Thus the purely logical Pauli group is a subgroup
of the logical Pauli group N(S), which contains the stabiliser group S. One anticipates that the choice of generators for S (which
is realised by the GL(n− k,Zd) subgroup) is independent of the choice of generators of the purely logical Pauli group (which is
realised by the Sp(k,Zd) subgroup). This agrees with the fact that both subgroups commute with each other.

We next explain the significance of ME . Let gE be a Pauli which anti-commutes with some generators of S. Consider
gEL

(d)
n which is a left coset of L

(d)
n . Each element gEgL rotates C (S) to the same orthogonal coding space C (S)⊥. But for

different choices of gL, gEgL performs a distinct internal rotation within C (S)⊥. The error correction procedure is unable to
distinguish between different internal rotations due to different gL. Thus it can correct only one element in the coset gEL

(d)
n .

This is true for all gE ’s which anticommute with elements in S. Which element within gEL
(d)

n is chosen to be the correctable
error depends on the error correction model. We next prove the following.

Theorem 3. The columns E in M in Eq. (24) represent correctable errors. Right multiplying M with different ME ∈ BA(n,k,d)
realises the freedom in making different choices of such correctable errors. The action of MT ∈ BS(n,k,d) doesn’t affect this
choice.
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Proof. That the columns of E fix the choice of the correctable errors of the stabiliser code is well-known in the stabiliser
formalism for quantum error correction (see Chapter 10 in36 for instance or see the beginning in Section III in37). What we need
to prove is that for each distinct choice of correctable errors, there is a choice of ME ∈ BA(n,k,d) such that right multiplying M
with ME produces the corresponding column block of correctable errors in MME . To this end, suppose that the columns in E are
homomorphic images of g1, g2 · · · , gk ∈P

(d)
n (see Eq. (11)). Suppose that we wish for g1h1, g2h2, · · · , gkhk to be correctable

errors instead, where h1,h2 · · · ,hk ∈L
(d)

n . These errors may be represented in Z2n
d by the 2n× k matrix

E ′ = E +LX N′+LZL′, (E1)

where the j-th columns of N′ and L′ are determined by how h j decomposes into the generators of L
(d)

n . Thus N′ and L′ are
determined entirely by h j’s. Equation (E1) may be realised by right multiplying M with a matrix of the form ME with N′ = N
and L′ = L, and KA determined entirely by N and L as follows: KA = LT N−NT L. This is just Eq. (31). Additionally, right
multiplying M by any MT ∈ BS(n,k,d) changes the columns in E to E ′ = E +HKS. If gE ′ and gE represent the j-th columns in
E ′ and E, then gE ′ = gEgS, where gS ∈ S is some element of the stabiliser group. gS is determined by the j-th column of KS and
the choice of generators in H. Note that the error operators gE ′ and gE are both simultaneously correctable since the stabiliser
element gS acts trivially on the code. Hence proved.

1. Order of Sp(2n,Zpm)

A computation of the order of Sp(2n,Zpm) is given in Ref.38. For the interested reader, we reproduce that computation
here, while elaborating on some of the definitions and computations to make them clearer. Define a ring homomorphism
ψ1 : Zpm → Zpm−1 as

ψ1(x) = x mod pm−1, (E2)

where x ∈ Zpm . The following remark explains Eq. (E2).

Remark 7. The ideal generated by pm−1 within Zpm is isomorphic to Zp . We label this ideal as pm−1Zpm . The factor ring of
Zpm/pm−1Zpm is isomorphic to Zpm−1 . ψ1 is the map from Zpm → Zpm/pm−1Zpm . ψ1 is a ring homomorphism, and kerψ1 =

pm−1Zpm .

We define a group homomorphism from Sp(2n,Zpm)→ Sp(2n,Zpm−1) as follows. Let M be a 2n× 2n symplectic matrix.
Define Ξ1 : Sp(2n,Zpm)→ Sp(2m,Zpm−1) as follows: the i j-th matrix element of Ξ1(M) is ψ1 (Mi j). Since M ∈ Sp(2n,Zpm), it
satisfies the equation MT ΛM = Λ (where Λ ∈ Sp(2n,Zpm)), then

(Ξ1(M))T
Λ Ξ1(M) = Λ, where Λ ∈ Sp(2n,Zpm−1), (E3)

which implies that Ξ1(M) ∈ Sp(2n,Zpm−1). That ψ1 is a ring homomorphism immediately implies that Ξ1 is group homomor-
phism from Sp(2n,Zpm) to Sp(2n,Zpm−1). kerΞ1 is the subgroup in Sp(2n,Zpm) which Ξ1 maps to I2n ∈ Sp(2n,Zpm−1). Note
that I2n (in Sp(2n,Zpm)) lies in kerΞ1. Thus any M ∈ kerΞ1 can be written in the form I2n +K, where K is a 2n×2n matrix with
matrix elements in pm−1Zpm , and satisfies the symplectic equation

(I2n +K)T
Λ (I2n +K) = Λ,

⇒ KT
Λ + ΛK + KT

ΛK = 0. (E4)

Note that KT ΛK = 0 since K can be written as K = pm−1K′, with K′ ∈ {0,1, · · · , p−1} ⊂ Zpm , which gives us KT ΛK =

pm pm−2K′T ΛK′ which is 0 since pm = 0 in Zpm . Thus K has to satisfy the equation ΛK = −KT Λ. Decomposing K into n×n
blocks as follows:

K =

[
X Y
Z W

]
, (E5)

we see that the symplectic condition becomes X =−W T , Y =Y T and Z = ZT . Thus K has 2n2+n unconstrained matrix elements
which take values in pm−1Zpm , which has p elements. Thus | kerΞ1 | = p2n2+n and we get∣∣ Sp(2n,Zpm)

∣∣ = p2n2+n
∣∣∣ Sp(2n,Zpm−1)

∣∣∣ . (E6)
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Similarly one may define ψ j : Zpm− j+1 → Zpm− j and Ξ j : Sp(2n,Zpm− j+1)→ Sp(2n,Zpm− j), with | kerΞ2 | = p2n2+n for j =
2,3, · · · ,m−1, and ∣∣∣ Sp(2n,Zpm− j+1)

∣∣∣ = p2n2+n ∣∣ Sp(2n,Zpm− j)
∣∣ , (E7)

which finally gives us ∣∣ Sp(2n,Zpm)
∣∣ = p(m−1)(2n2+n) ∣∣ Sp(2n,Zp)

∣∣ . (E8)

It is known (see Ref.35) that
∣∣Sp(2n,Zp)

∣∣ = pn2
∏

n
j=1
(

p2 j−1
)
, which tells us that

∣∣ Sp(2n,Zpm)
∣∣ = p(2m−1)n2+(m−1)n

n

∏
j=1

(
p2 j−1

)
. (E9)

Appendix F: Proof of Eq. (63)

We start by noting that

1 ≤ 1− pi
−2(n− j)

1− pi
−(n−k− j)

, (F1)

we get
(

pmi
i

) (n−k)(n+3k+1)
2 ≤ C [[n,k]]pmi

i
and using Eq. (53) we immediately get d

(n−k)(n+3k+1)
2 ≤ C [[n,k]]d . For the inequality on

the right, we note that
1− p−2(n− j)

1− p−(n−k− j)
≤ 1

1− p−(n−k− j)
≤ 1

1−2−(n−k− j)
, since p≥ 2. Thus

n−k−1

∏
j=0

1− p−2(n− j)

1− p−(n−k− j)
≤

n−k−1

∏
j=0

(
1+

2−(n−k− j)

1−2−(n−k− j)

)
≤

n−k−1

∏
j=0

(
1+2− j) , (F2)

where we used the fact that 2−(n−k− j)

1−2−(n−k− j) ≤ 2−(n−k−1− j), and re-label j→ n− k−1− j. and using

n−k−1

∏
j=0

(
1+2− j) ≤ ∞

∏
j=0

(
1+2− j) = φ

(
1
2

)
, (F3)

where φ(.) is the Euler function440, which is a special case of the q-Pochhammer function41. Using Mathematica, this evaluates
to 4.768 or e1.56.

Appendix G: Why the proof of Theorem 20. of Ref.22 fails for counting [[n,k]]d modular stabilizer codes

We first give the context of Theorem 20 in Ref.22: d = pm, for some positive prime integer p, and some positive integer m,
and the vector space in question is F2n

pm , which is defined over the field Fpm . Here Fpm is the Galois field extension of the base
field Fp ' Zp. Thus this overlaps with our scenario only when d = p. The proof counts the number of isotropic subspaces of
F2n

pm . An isotropic subspace is spanned by n− k linearly independent vectors a1, a2, · · · , an−k, with the additional property that
the symplectic inner products between any pair of these vectors is zero, i.e., aT

i Λa j = 0, for all i, j = 1,2, · · · ,n−k. The proof in
Ref.22 begins by counting the number of possible values that a1 can take in F2n

pm . Since any non-zero vector in F2n
pm is a potential

candidate, the count is d2n− 1. Subsequently it counts the possible values which a2 can be in F2n
pm \ span{a1}. Note that a2

has to satisfy the additional condition that aT
1 Λa2 = 0. Viewing the transformation a2 → aT

1 Λa2 as a linear map on F2n
pm , one

notes that the symplectic condition simply demands that a2 belongs to the kernel of this linear map. The rank-nullity theorem
is then used to tell us that a2 belongs to a 2n− 1 dimensional subspace of F2n

pm . But since a1 also belongs to the kernel, and
since a2 and a1 need to be linearly independent, we need to rule out the possibility that a2 = xa1 for all x ∈ Fpm . This gives us

4 Not the Euler totient function
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the count for a2. The same technique is applied iteratively to give us counts for all a j for j = 3, · · · ,n− k. The product of these
counts gives the number of distinct ordered sets of n− k “symplectic" orthogonal vectors. To obtain the number of isotropic
subspaces, one needs to divide the aforementioned product by the redundancy with which each subspace is counted. It is eas-
ily seen that this redundancy is equal to the number of distinct ordered “symplectic” orthogonal basis any isotropic subspace has.

Coming to our scenario, we note that the first step of the proof of Theorem 20 in Ref.22 itself is incompatible with our
context, since in our case we need to rule out all the non-zero linearly dependent vectors for a1, i.e., non-zero vectors a1 which
satisfy the equation xa1 = 0, for a non-zero x. When d is not prime, such vectors exist. For example consider the vector
a = (2,0,0,0,0,0)T for d = 4, n = 3 and k = 2. 2a = (4,0,0,0,0,0)T = 0 in Z4. If one still manages to weed out those non-zero
vectors for a1, one still encounters similar issues for counting a j for j ≥ 2. According to Lemma 1 the total number of ordered
linear independent vectors a j whose symplectic inner products are zero should be

|Sp(2n,Zd)|
|BS (n,k,d)| |BA (n,k,d)| |Sp(2k,Zd)|

, when k ≥ 1

|Sp(2n,Zd)|
|BS (n,0,d)|

, when k = 0. (G1)

This is because the redundancy, which is equal to the number of choices for ordered bases, is |GL(n− k,Zd)|. Thus one may
relate our method with the method used by Gross in Theorem 20 in Ref.22 in this way. It is possible that one may compute
the expression in Eq. (G1) by suitably modifying the counting technique in Ref.22, but our method has the advantage of being
conceptually richer.
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