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Entanglement-assisted concatenated quantum codes (EACQCs), constructed by con-
catenating two quantum codes, are proposed. These EACQCs show significant ad-
vantages over standard concatenated quantum codes (CQCs). First, we prove that,
unlike standard CQCs, EACQCs can beat the nondegenerate Hamming bound for
entanglement-assisted quantum error-correction codes (EAQECCs). Second, we con-
struct families of EACQCs with parameters better than the best-known standard
quantum error-correction codes (QECCs) and EAQECCs. Moreover, these EACQCs
require very few Einstein–Podolsky–Rosen (EPR) pairs to begin with. Finally, it is shown
that EACQCs make entanglement-assisted quantum communication possible, even if
the ebits are noisy. Furthermore, EACQCs can outperform CQCs in entanglement
fidelity over depolarizing channels if the ebits are less noisy than the qubits. We show
that the error-probability threshold of EACQCs is larger than that of CQCs when the
error rate of ebits is sufficiently lower than that of qubits. Specifically, we derive a high
threshold of 47% when the error probability of the preshared entanglement is 1% to
that of qubits.
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Quantum error-correction codes (QECCs) are necessary to realize quantum communi-
cations and to make fault-tolerant quantum computers (1, 2). The stabilizer formalism
provides a useful way to construct QECCs from classical codes, but certain orthogo-
nality constraints are required (3). The entanglement-assisted (EA) QECC (EAQECC)
(4–6) generalizes the stabilizer code. By presharing some entangled states between the
sender (Alice) and the receiver (Bob), EAQECCs can be constructed from any classical
linear codes without the orthogonality constraints. Therefore, the construction could
be greatly simplified. As an important physical resource, entanglement can boost the
classical information capacity of quantum channels (7–12). Recently, it has been shown
that EAQECCs can violate the nondegenerate quantum Hamming bound (13) or the
quantum Singleton bound (14).

Compared to standard QECCs, EAQECCs must establish some amount of entan-
glement before transmission. This preshared entanglement is the price to be paid for
enhanced communication capability. In a sense, we need to consider the net transmission
of EAQECCs—i.e., the number of qubits transmitted minus that of ebits preshared.
Further, it is difficult to preserve too many noiseless ebits in EAQECCs at present. Thus,
we have to use as few ebits as possible to conduct the communication—e.g., one or two
ebits are preferable (15–18). In addition, EAQECCs with positive net transmission and
little entanglement can lead to catalytic quantum codes (4, 6), which are applicable to
fault-tolerant quantum computation (FTQC). In ref. 4, a table of best-known EAQECCs
of length up to 10 was established through computer search or algebraic methods. Several
EAQECCs in ref. 4 have larger minimum distances than the best-known standard QECCs
of the same length and net transmission. However, for larger code lengths, the efficient
construction of EAQECCs with better parameters than standard QECCs is still unknown.

In classical coding theory, concatenated codes (CCs), originally proposed by Forney in
the 1960s (19), provide a useful way of constructing long codes from short ones. CCs
can achieve very large coding gains with reasonable encoding and decoding complexity
(20). Moreover, CCs can have large minimum distances since the distances of the
component codes are multiplied. As a result, CCs have been widely used in many digital
communication systems—e.g., the NASA standard for the Voyager program (21) and
the compact disc (20). Similarly, in QECCs, the concatenated quantum codes (CQCs),
introduced by Knill and Laflamme in 1996 (22), are also effective for constructing good
quantum codes. In particular, it has been shown that CQCs are of great importance in
realizing FTQC (23–25).

Moreover, there exists a specific phenomenon in QECCs, called “error degeneracy,”
which distinguishes quantum codes from classical ones in essence. It is widely believed
that degenerate codes can correct more quantum errors than nondegenerate ones. Indeed,
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there are some open problems concerning whether degenerate
codes can violate the nondegenerate quantum Hamming bound
(26) or can improve the quantum-channel capacity (27, 28).
Many CQCs have been shown to be degenerate, even if the
component codes are nondegenerate—e.g., Shor’s [[9, 1, 3]] code
and the [[25, 1, 9]] CQC (23, 29). If we introduce extra entan-
glement to CQCs, it is possible to improve the error-degeneracy
performance of CQCs.

In this article, we generalize the idea of concatenation to
EAQECCs and propose EACQCs. We show that EACQCs can
beat the nondegenerate quantum Hamming bound, while stan-
dard CQCs cannot. Several families of degenerate EACQCs that
can surpass the nondegenerate Hamming bound for EAQECCs
are constructed. The same conclusion could be reached for asym-
metric error models, in which the phase-flip errors (Z errors)
happen more frequently than the bit-flip errors (X errors) (30,
31). Furthermore, we derive a number of EACQCs with better
parameters than the best-known QECCs and EAQECCs. In par-
ticular, we see that many EACQCs have positive net transmission,
and each of them consumes only one or two ebits. Thus, they give
rise to catalytic EACQCs with little entanglement and better pa-
rameters than the best-known QECCs. Further, we show that the
EACQC scheme makes EA quantum communication possible,
even if the ebits are noisy. We compute the entanglement fidelity
(EF) of the [[15,1,9;10]] EACQC by using Bowen’s [[3,1,3;2]]
EAQECC (32) or the [[3,1,3;2]] EA repetition code (4, 6) as the
inner code. The outer code is the standard [[5,1,3]] stabilizer code.
We show that the [[15,1,9;10]] EACQC performs much better
than the [[25,1,9]] CQC over depolarizing channels if the ebits
suffer a lower error rate than the qubits. Moreover, we compute
the error-probability threshold of EACQCs, and we show that
EACQCs have much higher thresholds than CQCs when the error
rate of ebits is sufficiently lower than that of qubits.

EA Stabilizer Formalism

Let q = 2m (m ≥ 1 is an integer) and denote by GF (q) the
extension field of the binary field GF (2). Let C be the field
of complex numbers, and let Vn = (Cq)⊗n = C

qn

be the
qn -dimensional Hilbert space, where n is a positive integer.
Define two error operators on C

q by X (a)|x 〉= |a + x 〉 and
Z (b)|x 〉= (−1)tr(bx)|x 〉, where a, b, x ∈GF (q), and “tr”
denotes the trace operator from GF (q) to GF (2). For a vector
u= (u1, · · · , un) ∈GF (q)n , denote by X (u) = X (u1)⊗
· · · ⊗X (un) and Z (u) = Z (u1)⊗ · · · ⊗ Z (un). Let Ξn =
{X (a)Z (b)|a,b ∈GF (q)n} and let Gn = {(−1)uX (a)Z (b)|
a,b ∈GF (q)n , u ∈GF (2)} be the group generated by Ξn .
For the operator e = (−1)uX (a)Z (b) ∈ Gn , the weight of e
is defined by wtQ(e) = |{1≤ i ≤ n : (ai , bi) �= (0, 0)}|. The
definition of quantum stabilizer codes is given below.

Definition 1: A stabilizer code Q is a qk -dimensional (k ≥ 0)
subspace of Vn such that Q =

⋂
e∈T{|φ〉 ∈ Vn : e|φ〉= |φ〉},

where T is a subgroup of Gn . Q = [[n, k , d ]]q has minimum
distance d if it can detect all errors e ∈ Gn of weight wtQ(e) up
to d − 1. Further, Q is called nondegenerate if every stabilizer
in T has weight larger than or equal to d ; otherwise, it is called
degenerate.

A CQC is derived from an inner code and an outer code.
In general, the component codes of CQCs can be chosen as
stabilizer codes or nonstabilizer codes. In this article, it suffices
to consider only the case of stabilizer codes. Let the inner and
outer codes be QI = [[n1, k1, d1]] and QO = [[n2, k2, d2]]2k1 ,

respectively. Then, we can derive a CQC (33) with parameters
QC = [[n1n2, k1k2, dC ≥ d1d2]].

An EAQECC with parameters Qe = [[n, k , d ; c]]q can en-
code k qudits into n qudits by consuming c pairs of maximally
entangled states between Alice and Bob. It should be noted
that EAQECCs can be constructed from arbitrary classical linear
codes directly. The Calderbank–Shor–Steane framework (3, 34)
provides a useful way to construct both QECCs and EAQECCs
from classical linear codes.

Lemma 1 (4). Let C1 = [n, k1, d1]q and C2 = [n, k2, d2]q be two
linear codes over GF (q). Denote the parity-check matrices of C1

and C2 by H1 and H2, respectively. There exists an EAQECC with
parameters Qe = [[n, k1 + k2 − n + c, de ≥ min{d1, d2}; c]]q ,
where c = rank(H1H

T
2 ), and HT

2 is the transpose of H2.
EAQECCs can also be constructed by using the Hermitian

construction (3, 4, 35) as follows.

Lemma 2 (4). Let C = [n, k , d ]q2 be a linear code over GF (q2).
Denote the parity-check matrix of C by H. There exists an EAQECC
with parameters Qe = [[n, 2k − n + c, de ≥ d ; c]]q , where c =
rank(HH †), and H † is the conjugate transpose of H over GF (q2).

Results

We organize the main results of our study in the following
order. First, we present the construction of EACQCs from two
component quantum codes. Second, we construct several families
of EACQCs violating the nondegenerate Hamming bound for
EAQECCs. Third, we derive a number of EACQCs with better
parameters than the best-known QECCs and EAQECCs. Finally,
we show that EACQCs can correct errors in the ebits. It is shown
that EACQCs can outperform CQCs in EF and have higher error-
probability thresholds than CQCs.

EACQCs. We generalize CQCs to EACQCs by concatenating two
quantum codes, which can be chosen as either standard QECCs or
EAQECCs. In this article, sometimes we represent an [[n, k , d ]]q
QECC as an [[n, k , d ; 0]]q EAQECC so that we can unify the
representation of QECCs and EAQECCs. Let the inner code be
QI = [[n1, k1, d1; c1]], which requires c1 ebits. Denote by k∗

1 ≡
k1 − c1 the net transmission of QI . Let the outer code be QO =
[[n2, k2, d2; c2]]2k1 , which can either be binary or nonbinary
depending on k1. QO uses c2 edits, or, equivalently, c2k1 ebits.
Denote by k∗

2 ≡ k2 − c2 the net transmission of QO . Notice that,
for classical linear codes and quantum codes over the binary field
GF (2), we usually neglect the index in the code parameters if
there is no ambiguity.

We prove the following result about EACQCs.

Theorem 1. Let QI = [[n1, k1, d1; c1]] be the inner code, and let
QO = [[n2, k2, d2; c2]]2k1 be the outer code. There exists an EACQC
Qe with parameters

Qe = [[n1n2, k1k2, de ≥ d1d2; ce ]], [1]

where ce = c1n2 + c2k1 is the number of ebits. The net transmission
is k∗

e = k1k2 − ce .
Proof: Based on the idea of code concatenation, we simply con-
catenate the inner code QI with the outer code QO to derive the
EACQC (19, 22, 33). First, we encode the information state |μ〉
by using the outer code QO , i.e.,

|μ〉 	→ |ψ〉O
= (UO ⊗ ÎBO

)|μ〉 ⊗ |0〉⊗(n2−k2−c2)k1 ⊗ |Ψ+〉⊗c2k1
AB , [2]
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where there are c2k1 Einstein–Podolsky–Rosen (EPR) pairs,
|Ψ+〉⊗c2k1

AB , preshared between Alice and Bob during the outer
encoding, and ÎBO

is the identity operator on Bob’s halves of ebits
during the outer encoding. The outer encoding operation UO is
applied to the qubits on Alice’s side.

Suppose that we can represent |ψ〉O by

|ψ〉O =

2k1∑
ν1,··· ,νn2

=0

�ν1···νn2
|ν1 · · · νn2

〉, [3]

where �ν1···νn2
(0≤ ν1, · · · , νn2

≤ 2k1) should satisfy the nor-
malization condition. We separate each basis state |ν1 · · · νn2

〉
in |ψ〉O into n2 subblocks, i.e., |ν1 · · · νn2

〉= |ν1〉 · · · |νn2
〉 for

0≤ ν1, · · · , νn2
≤ 2k1 . For each subblock |νi〉(1≤ i ≤ n2), we

do the inner encoding as follows:

|νi〉 	→ |ψi〉I = (UI ⊗ ÎBI
)|νi〉 ⊗ |0〉⊗n1−k1−c1 ⊗ |Φ+〉⊗c1

AB ,
[4]

where |Φ+〉⊗c1
AB are c1 EPR pairs preshared between Alice and Bob

during each inner encoding. The encoding operation UI ⊗ ÎBI
is

applied to the qubits in Alice’s side, while Bob’s halves of ebits do
not need to be encoded during each inner encoding. It is easy to
see that the number of ebits used during the whole inner encoding
is c1n2. The encoding process of EACQCs is given in Fig. 1.

The numbers of ebits used during the outer and the inner
encoding are equal to c2k1 and c1n2, respectively. Therefore, the
total number of ebits is equal to ce = c1n2 + c2k1. It is easy to see
that the dimension of the EACQC Qe is equal to 2k1k2 . Similar
to the principle of code concatenation in refs. 19, 22, and 33,
the minimum distance of Qe is at least d1d2. Therefore, we can
obtain an EAQECC with parameters Qe = [[n1n2, k1k2, de ≥
d1d2; ce ]]. �

It is easy to see that if the inner and outer codes are both
standard QECCs, then the EACQC is a standard CQC. More-
over, we can use different inner codes in EACQCs. Let QIi =
[[nIi , kIi , dIi ; cIi ]] (1≤ i ≤ n2) be n2 inner codes. For simplicity,
we let k1 ≡ kI1 = . . .= kIn2 , and let d1 ≡ dI1 = . . .= dIn2 . Let
the outer code be QO = [[n2, k2, d2; c2]]2k1 . Then, we can derive
an EACQC with parameters

Q′
e = [[

n2∑
i=1

nIi , k1k2, d
′
e ≥ d1d2; c

′
e ]], [5]

where c′e =
∑n2

i=1 cIi + c2k1. The net transmission is k1k2 − c′e .

Fig. 1. The encoding circuit of EACQCs. The information state |μ〉 is first
encoded with the outer encoder UO by presharing c2k1 EPR pairs |Ψ+〉 =
|Ψ+〉⊗c2k1

AB between Alice and Bob. For the output of UO, each subblock
is encoded with the inner encoder UI by presharing c1 EPR pairs |Φ+〉 =
|Φ+〉⊗c1

AB between Alice and Bob.

EACQCs Beating the Nondegenerate Quantum Hamming
Bound. First, let us review the nondegenerate Hamming bound
for EAQECCs (36).

Lemma 3 (36). For a binary nondegenerate Qe = [[n, k , d ; c]]
EAQECC, it must satisfy

� d−1
2 �∑

i=0

3i
(
n

i

)
≤ 2n+c−k . [6]

Taking the limit as n →∞, this yields the asymptotic bound on the
rate k/n :

k

n
≤ 1 +

c

n
− δ

2
log2 3− H2

(
δ

2

)
, [7]

where δ = d/n , and H2(x ) =−x log2 x − (1− x ) log2(1− x )
is the binary entropy function.

To the best of our knowledge, no degenerate CQCs have been
discovered that violate the nondegenerate quantum Hamming
bound (36). However, the situation is quite different in the
EA case. We can easily construct several families of degenerate
EACQCs that violate the Hamming bound in Lemma 3. We
summarize these EACQCs as follows.

Theorem 2. There exist the following four families of EACQCs with
parameters

1© Qe1 = [[5n2, 1, de1 ≥ 3n2;n2 − 1]], where n2 ≥ 3 is odd.
2© Q̃e1 = [[5n2, 1, d̃e1 ≥ 3n2 − 3;n2 − 1]], where n2 ≥ 10 is

even.
3© Qe2 = [[4n2, 1, de2 ≥ 3n2; 2n2 − 1]], where n2 ≥ 11 is

odd.
4© Q̃e2 = [[4n2, 1, d̃e2 ≥ 3n2 − 3; 2n2 − 1]], where n2 ≥ 32

is even.

EACQCs in 1©− 4© can beat the nondegenerate quantum Ham-
ming bound for EAQECCs.

Proof: The proof is given in SI Appendix, section 1. �
We give an explicit example to illustrate the construction of

EACQCs. Let QI = [[5, 1, 3; 0]] be the inner code, and let QO =
[[3, 1, 3; 2] be the outer code in ref. 4. Then, we can derive an
EACQC with parameters Qe = [[15, 1, 9; 2]] by Theorem 1. This
code can beat the nondegenerate Hamming bound for EAQECCs
in Eq. 6. Notice that QI = [[5, 1, 3; 0]] and QO = [[3, 1, 3; 2]
are both nondegenerate codes (3, 4), while Qe = [[15, 1, 9; 2]]
is degenerate. Also notice that QI and QO cannot beat the
nondegenerate Hamming bound in Eq. 6, but their EACQC
Qe = [[15, 1, 9; 2]] can do so. If we encode one of the qubits
of the outer encoding by using the [[4, 1, 3; 1]] EAQECC, then
we derive a [[14, 1, 9; 3]] EACQC. This code can also beat the
nondegenerate Hamming bound for EAQECCs.

For asymmetric channel models, we present a construction
of EACQCs that can beat the nondegenerate Hamming
bound for asymmetric EAQECCs. Let dX and dZ be two
positive integers. From ref. 37, an asymmetric EAQECC
QA = [[n, k , dZ /dX ; c]]q can detect any X error of weight up to
dX − 1 and any Z error of weight up to dZ − 1 simultaneously.
The number of edits is c. One can further obtain nondegenerate
Hamming bounds for asymmetric EAQECCs (36, 37).
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Lemma 4 (37). A binary nondegenerate asymmetric EAQECC
[[n, k , dZ /dX ; c]] must satisfy

� dX −1
2 �∑

i=0

(
n

i

) � dZ−1
2 �∑

j=0

(
n

j

)
≤ 2n+c−k . [8]

Let QI = [[n1, 1,n1/1; 0]] be a binary asymmetric EAQECC
derived from the [n1, 1,n1] repetition code, where n1 ≥ 2
is an integer. We use QI as the inner code. Let QO =
[[n2, 1, d2/d2;n2 − 1]] be the outer code, where d2 = n2 − 1
for even n2 ≥ 2, or d2 = n2 for odd n2 ≥ 3. We concatenate QI

with QO according to Fig. 1. Then, we have the following result
about asymmetric EACQCs.

Corollary 1. There exists a family of asymmetric EACQCs with
parameters

QA = [[n1n2, 1,n1d2/d2;n2 − 1]], [9]

where n1 ≥ 2 is an integer, d2 = n2 − 1 for even n2 ≥ 2, or d2 =
n2 for odd n2 ≥ 3.

For any integer n1 ≥ 2 and any odd n2 ≥ 3, QA in Corollary
1 can beat the nondegenerate Hamming bound for asymmetric
EAQECCs in Lemma 4. For any integer n1 ≥ 2 and any even
n2 ≥ 8, QA can also beat the nondegenerate Hamming bound.
Let n1 = 2 and n2 = 3. We can derive an asymmetric EACQC
with parameters QA = [[6, 1, 6/3; 2]].

EACQCs Beating Existing QECCs and EAQECCs. Similar to classi-
cal coding theory, constructing quantum codes with parameters
better than the best-known results is a central topic in quantum
coding theory. It is even more attractive since degenerate quantum
codes have significant potential to outperform any nondegenerate
quantum code. Indeed, a number of the best-known QECCs in
ref. 29 have been shown to be degenerate.

As argued in ref. 4, we say that an EAQECC [[n, k1, d ; c]] is
better than a QECC [[n, k , d ]] if the net transmission (k1 − c) is
larger than k. Ref. 29 collects a list of classical linear codes and
QECCs with the best parameters currently known. According
to the construction of EAQECCs in Lemma 2, the quaternary
codes in ref. 29 correspond to the best-known nondegenerate
EAQECCs. In general, it is not difficult to construct nonde-
generate EAQECCs with positive net transmissions better than
the best-known QECCs based on ref. 29. However, how to
construct degenerate EAQECCs with positive net transmissions
that can beat the best-known nondegenerate EAQECCs is largely
unknown. This addresses the important question of whether
degeneracy can improve on the coding limit in EAQECCs.

We give two explicit constructions to show that EACQCs
can beat the best-known QECCs and EAQECCs. According to
refs. 38 and 39, there exists a cyclic maximum-distance-separable
(MDS) code with parameters [17, 9, 9]16. From Lemma 2, we
can derive an EA quantum MDS (EAQMDS) code with pa-
rameters [[17, 5, 9; 4]]4. Let QI = [[4, 2, 2]] be the inner code,
and let QO = [[17, 5, 9; 4]]4 be the outer code. Then, we can
derive an EACQC with parameters Qe = [[68, 10, 18; 8]]. Com-
pared with the best-known Q = [[68, 2, 16]] QECC in ref. 29,
the EACQC Qe has a larger minimum distance, while main-
taining the same length and net transmission. Qe also has a
larger minimum distance than the best-known nondegenerate
[[68, 10, 16; 8]] EAQECC from ref. 29 of the same length and
net transmission.

Let QO = [[65, 17, 33; 16]]8 be an EAQMDS code con-
structed from a cyclic MDS code [65,33,33] in ref. 38, and let

QI = [[8, 3, 3; 0]]. Then, we can derive an EACQC with param-
eters Qe = [[520, 51, 99; 48]] by using QO = [[65, 17, 33; 16]]8
and QI = [[8, 3, 3; 0]] as the outer and inner codes, respectively.
This EACQC is better than the asymptotic Gilbert–Varshamov
bound for EAQECCs in ref. 36. In SI Appendix, Table S1 and S2,
we list more constructions of EACQCs with parameters better
than the best-known QECCs and EAQECCs.

In practice, we prefer to use as few ebits as possible to do
the EA communication since storing a large number of noiseless
ebits is quite difficult. Let QI = [[5, 1, 3; 0]] be the inner code,
and let QO = [[3, 2, 2; 1]] be the outer code; then, we can
derive a [[15,2,6;1]] EACQC. This code has larger minimum
distance than the best-known standard [[15,1,5]] QECC in
ref. 29. By using the MAGMA software (40), we know that
there exists a nondegenerate [[15, 8,6;7]] EAQECC. This code
has the same minimum distance and net transmission as the
[[15, 2, 6; 1]] EACQC. However, the EACQC consumes only one
ebit and, thus, is more practical. In SI Appendix, Table S3, we list a
number of EACQCs with parameters better than the best-known
QECCs and EAQECCs, and each EACQC consumes only
one ebit.

In ref. 41, several families of q-ary EAQMDS codes with
distances larger than q + 1 and consuming very few edits were
constructed. We use EAQMDS codes in ref. 41 as the outer codes
to construct EACQCs that consume very few ebits. We give an
example to illustrate the construction. Let QI = [[4, 2, 2; 0]] be
the inner code, and let a QO = [[17, 4, 8; 1]]4 EAQMDS code in
ref. 41 be the outer code. Then, we can derive an EACQC with
parameters Qe = [[68, 8, 16; 2]]. This code has a larger minimum
distance than the best-known [[68,6,14]] QECC in ref. 29 of the
same length and net transmission. It also has a larger minimum
distance than the best-known nondegenerate [[68, 19, 15; 13]]
EAQECC in ref. 29 of the same length and net transmission. In
SI Appendix, Table S4, we list a number of EACQCs with better
parameters than the best-known QECCs and EAQECCs in ref.
29, and each code consumes only a few ebits.

Thresholds of EACQCs with Noisy Ebits. In this section, we eval-
uate the performance of EACQCs with noisy ebits. We compute
the EF and the error-probability threshold of EACQCs and
compare them to standard CQCs. For a quantum channel, the
use of a QECC should improve the EF when the error probability
is below a specific value, which we call the “threshold.” In practical
applications, QECCs with sufficiently high thresholds are needed.
We will show that EACQCs can outperform CQCs in EF if the
ebits are less noisy than the qubits. Further, we will show that
the threshold of EACQCs is much higher than that of CQCs
when the error probability of ebits is sufficiently lower than that of
qubits.

During the process of EA quantum communication, the
preshared ebits of Bob need to be stored faultlessly, and EAQECCs
can only correct errors on the transmitted qubits. However, noise
in Bob’s ebits may be inevitable in practical applications (6, 42),
and maintaining a large number of noiseless ebits is extremely
difficult. In this section, we use EACQCs to correct errors in
ebits. In the EACQC scheme, suppose that we use an EAQECC
QI as the inner code and use a standard stabilizer code QO as
the outer code. We show that the outer code QO cannot only
correct errors on the physical qubits, but also can correct errors
on the ebits. We construct two EACQCs and show that they can
outperform CQCs in EF when the error probability of ebits is
lower than that of qubits. We construct a QB = [[15, 1, 9; 10]]B

EACQC by using the [[5, 1, 3]] stabilizer code as the outer
code and Bowen’s [[3, 1, 3; 2]] EAQECC (32) as the inner code.
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Alternately, we can use the [[5, 1, 3]] stabilizer code as the outer
code and the [[3, 1, 3; 2]] EA repetition code as the inner code to
construct another QR = [[15, 1, 9; 10]]R EACQC with the same
parameters. Recall that the standard QC = [[25, 1, 9]] CQC is
the concatenation of the [[5, 1, 3]] stabilizer code with itself. It is
known that Bowen’s [[3, 1, 3; 2]] EAQECC is equivalent to the
[[5, 1, 3]] stabilizer code, and they have the same stabilizers. Thus,
the QB = [[15, 1, 9; 10]]B EACQC is equivalent to the QC =
[[25, 1, 9]] CQC. Then, the QB = [[15, 1, 9; 10]]B EACQC has
the same error-correction ability as the QC = [[25, 1, 9]] CQC.
Nevertheless, we show that EACQCs can outperform CQCs in
EF if the error probability of ebits is lower than that of qubits.

The detailed EF computation of the two EACQCs and the
CQC was put in SI Appendix, section 3. The EFs of the two
EACQCs and the CQC are plotted in Fig. 2. We compare the
EF of EACQCs with that of the [[25, 1, 9]] CQC. If pa = pb ,
the EF of the QB = [[15, 1, 9; 10]]B EACQC is equal to that
of the [[25, 1, 9]] CQC. When pb = 0.5pa , the EF of the
QB = [[15, 1, 9; 10]]B and the QR = [[15, 1, 9; 10]]R EACQCs
can outperform that of the [[25,1,9]] CQC (Fig. 2B). As pb

becomes even lower—e.g., pb = 0.1pa , 0.01pa—the EF of
QB = [[15, 1, 9; 10]]B and QR = [[15, 1, 9; 10]]R performs
much better than that of the [[25, 1, 9]] CQC (Fig. 2 C and
D). Moreover, QB = [[15, 1, 9; 10]]B performs better than
QR = [[15, 1, 9; 10]]R when pb = pa (Fig. 2A). While pb =
0.1pa , 0.01pa , QR = [[15, 1, 9; 10]]R performs much better
than QB = [[15, 1, 9; 10]]B and the [[25,1,9]] CQC (Fig. 2 C
and D).

We compare the error-probability threshold of the two
EACQCs with that of the CQC. For the [[5,1,3]] stabilizer
code and the [[25, 1, 9]] CQC, the thresholds are p > 0.09 and
p > 0.18, respectively. Thus, the CQC scheme can improve
the error-probability threshold. For the EACQCs, when
pb = 0.5pa , the thresholds of QB = [[15, 1, 9; 10]]B and
QR = [[15, 1, 9; 10]]R are p > 0.25 and p > 0.14, respectively.
While pb becomes sufficiently lower—e.g., pb = 0.01pa—the
thresholds of QB = [[15, 1, 9; 10]]B and QR = [[15, 1, 9; 10]]R

are p > 0.41 and p > 0.47, respectively. Therefore, the EACQC
scheme can greatly improve the error-probability threshold when
the error probability of ebits is much lower than that of qubits.
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Fig. 2. The EF of EACQCs and CQCs for pb = pa (A), pb = 0.5pa (B), pb = 0.1pa (C), and pb = 0.01pa (D).
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Discussion

In this article, we have proposed the construction of EACQCs
by concatenating an inner code with an outer code. We not only
have generalized the idea of concatenation to EAQECCs, but also
have shown that EACQCs can outperform many existent results.
We have further shown that EACQCs can beat the nondegenerate
Hamming bound for EAQECCs, while standard CQCs cannot
do so. We have derived many EACQCs with larger minimum
distances than the best-known QECCs and EAQECCs in ref. 29
of the same length and net transmission. In addition, we have con-
structed several catalytic EACQCs with little entanglement and
better parameters than the best-known QECCs and EAQECCs.
We have also constructed a family of asymmetric EACQCs that
can beat the nondegenerate Hamming bound for asymmetric
EAQECCs. Finally, we have computed the EF of two EACQCs
and compared them with the [[25, 1, 9]] CQC. We have shown

that EACQCs can outperform CQCs in EF when the ebits are
less noisy than qubits. In particular, we have shown that EACQCs
have much higher error thresholds than CQCs when the error
probability of ebits is sufficiently lower than that of qubits. These
properties of EACQCs make them very competitive with standard
CQCs for both quantum communication and FTQC.
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