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Abstract—In [1], the impulse response of the first arrival
position (FAP) channel of 2D and 3D spaces in molecular commu-
nication (MC) is derived, but its Shannon capacity remains open.
The main difficulty of depicting the FAP channel capacity comes
from the fact that the FAP density becomes a multi-dimensional
Cauchy distribution when the drift velocity approaches zero. As a
result, the commonly used techniques in maximizing the mutual
information no longer work because the first and second moments
of Cauchy distributions do not exist.

Our main contribution in this paper is a complete charac-
terization of the zero-drift FAP channel capacity for the 2D
and 3D spaces. The capacity formula for FAP channel turns
out to have a similar form compared to the Gaussian channel
case (under second-moment power constraint). It is also worth
mentioning that the capacity value of 3D FAP channel is twice
as large as 2D FAP channel. This is an evidence that the FAP
channel has larger capacity as the spatial dimension grows.
Finally, our technical contributions are the application of a
modified logarithmic constraint as a replacement of the usual
power constraint, and the choice of output signal constraint as
a substitution to input signal constraint in order to keep the
resulting formula concise.

Index Terms—Molecular communication (MC), diffusion,
Brownian motion, first arrival position (FAP), channel capacity,
Cauchy distribution, Lorentz distribution, alpha-stable distribu-
tion, logarithmic constraint.

I. INTRODUCTION

Molecular communication (MC) is a communication

paradigm based on the exchange of molecules [2], [3]. Due

to the nano-scale feasibility and bio-compatibility, MC is a

promising communication approach for nano-networks [4],

[5]. In MC systems, tiny message molecules (MM) operate

as information carriers. A propagation mechanism is nec-

essary for transporting MMs to the receiver (Rx), and this

mechanism can be diffusion-based [6], flow-based [7], or an

engineered transport system like molecular motors [8], [9].

Among these different propagation mechanisms, diffusion-

based MC, sometimes in combination with a drift field, has

been the most prevalent approach for both MC theoretical

research and practical implementation.

The reception mechanism of a MC receiver can be cate-

gorized, see [10], into two classes: i) passive reception, and

ii) active reception. We consider a common type of active

reception called the fully-absorbing Rx [11], and assume that

the Rx has the ability to measure the time [12] and the

position [13] at which the MM first reaches the Rx. In order to

explore the Shannon capacity [14] of this new type of position

channels, we assume the simplest geometric structure of the

receiver, namely an infinite large1 receiving plane [15]. The

MMs will be removed when they first arrive at the receiving

plane [11], [13].

The first paper in MC society promoting the first arrival

position (FAP) as an information carrying property is [16].

Although most works in MC consider the first arrival time

(FAT)2 for absorbing receivers, there are at least two reasons

why FAP is preferable.

• For each independent channel use (i.e. for each transmis-

sion of a single MM), the FAT information is only one-

dimensional (1D), while the FAP-type modulation could

have higher dimensions (say n− 1) to carry information

when considering n-dimensional spaces. Hence, the ca-

pacity of FAP channel could be larger then FAT channel

per single channel use in high dimensional cases (see [1]).

• The second reason is about the time efficiency. When

considering multiple-MM transmission, the MMs may

arrive out of order due to the randomness of the diffusion

phenomenon, causing the cross-over effects, see [10],

[18]. In order to prevent the MC system from cross-over

effects, the transmission time of each symbol cannot be

too short.3 Consequently, for applications in which the

time efficiency plays an important role, the FAP-type

modulation is arguably a better solution.

Before exploring the general capacity that allows transmis-

sion of multiple MMs, a clever way is to have a deeper un-

derstanding of single-MM transmission first. In the remaining

of this paper, we will mainly focus on one-shot transmission

[19] (i.e. transmission using a single MM). In order to explore

the channel capacity of FAP or FAT channels, the first step is

to provide quantitative descriptions about the channel impulse

response. The one-shot FAT channel can be described as a

time-invariant additive channel [12]:

tout = tin + tn, (1)

1This geometrical assumption can also be regarded as an approximate model
provided that the transmission distance is short compared to the receiver size.

2One can refer to [12], [17] for more details concerning FAT-type modu-
lation and its channel characteristics.

3This can be understood by roughly thinking that there should be some
“guard interval” between two consecutive timing symbols.
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where tin is the releasing time, tout is the arriving time,

and tn is the random time delay due to the propagation

mechanisms. The authors of [12] showed that tn follows the

inverse Gaussian distribution, so channel (1) is known as

additive inverse Gaussian noise (AIGN) channel in MC. Later

in [12], [17], some bounds on capacity of AIGN channel is

derived, and the capacity-achieving input time distribution was

also characterized.

As for FAP channels in n-dimensional spaces, the one-shot

channel model can be also written in an additive vector form

[1]:

xout = xin + xn, (2)

where xin is the releasing position, xout is the arriving position,

and xn is the random position bias due to the propagation

mechanisms. Note that xin, xout and xn are all Euclidean

vectors in R
n−1. Although the density function of xn is

obtained in [1], [13], [16], the channel capacity of such

kind of position channel remains open at the time of this

writing. In this paper, we shall provide the zero-drift FAP

channel capacity formulas in 2D and 3D spaces under a newly

proposed logarithmic constraint.

The remainder of this paper is structured as follows. In

Section II, we briefly review the concept of mutual information

and Shannon channel capacity description. In Section III, the

channel model under consideration is depicted and the α-

power constraint is introduced. The main results of this work

are presented in Section IV. Finally, we conclude in Section V.

II. PRELIMINARY

We briefly review some background knowledge for mutual

information and channel capacity. Let X be a random variable

with a probability density function f whose support is denoted

by X . The (differential) entropy h(X) is defined as:

h(X) := EX [− ln f(X)] = −

∫

X

[ln f(x)]f(x)dx. (3)

Based on the definition of entropy, the mutual information

between the input and output of the additive channel

Y = X +N (4)

is given by

I(X ;Y ) = h(Y )− h(Y |X) (5)

= h(Y )− h(X +N |X) (6)

= h(Y )− h(X |X)− h(N |X) (7)

= h(Y )− h(N). (8)

Here we have assumed that the noise N is independent of

signal X . Recall that the (Shannon) channel capacity is defined

as:

C = sup
fX (x)

I(X ;Y ). (9)

The supremum is taken over all possible distributions of X sat-

isfying some chosen constraint. For point-to-point communica-

tion or single-input-single-output (SISO) scenarios, sometimes

the output constraints are used instead of the input constraints,

yielding

C = sup
fY (x)

I(X ;Y ). (10)

The selection of constraint depends heavily on the noise

distribution. To get some feeling about this, let us study a sim-

ple example before exploring the FAP channels. For additive

Gaussian channel (i.e. the noise is Gaussian distributed), the

most familiar power measure is the second moment constraint.

We can prescribe our signal set to satisfy:

E[X2] =

∫

X

x2f(x)dx ≤ P. (11)

The constant P ≥ 0 is the maximum power we allowed for

all input signals. Using this power constraint (11), the channel

capacity (9) can be written as:

C = sup
fX (x): E[X2]≤P

I(X ;Y ). (12)

Following a standard textbook derivation (see [20]), one can

see that the supremum value of I(X ;Y ) is

1

2
ln

(

σ2 + P

σ2

)

, (13)

and the capacity attaining distribution is normal distributed

with variance P , namely, X ∼ N (0, P ).
For later comparison to the capacity formula of zero-drift

FAP channels, we let A2 := σ2 + P and rewrite Eq. (13) in

the following way:

CG = C(A, σ) =
1

2
ln

(

A2

σ2

)

= ln

(

A

σ

)

, (14)

where the subscript G stands for Gaussian.

III. CHANNEL MODEL

We consider an additive vector channel:

Y = X+N (15)

where the noise N is (multivariate) Cauchy distributed.4

Because the Cauchy distributions are heavy-tailed, traditional

signal processing theory, which is tailored for finite second

moment signals, does not apply directly to our channel model

(15).

Perhaps the most important type of heavy-tailed probability

models is the alpha-stable family (see [21]) of distributions,

which have been recently found to accurately simulate the

multiple access interference [22], and also the co-channel

interference originated from a field of Poisson distributed

interferers [23]. For alpha-stable channels, the second moment

is no longer considered to be a suitable power measure because

all related quantities become infinite.

The problem of finding the channel capacity for alpha-stable

additive noise (with α ≥ 1) with an r-th absolute moment

input constraint was solved by [24] for the case of symmetric

4For a detailed characterization of Cauchy density functions, one can refer
to Appendix A.



alpha-stable noise, and the optimal capacity-achieving input

was found to be discrete and compactly supported. An al-

ternative notion of power, called the geometric power, was

introduced by [25] for heavy-tailed distributions. In this paper,

we consider another power characterization framework for α-

stable family called the α-power (see [26]). It is a relative

power measure Pα(X) satisfying the following:

P1) Pα(X) ≥ 0, with equality if and only if X = 0 almost

surely.

P2) Pα(kX) = |k|Pα(X), for any k ∈ R.

For α-stable distributions, it is known (see [26]) that

{

EX

[

ln(1 + ‖X‖2)
]

<∞, α < 2;

EX

[

‖X‖2
]

<∞, α = 2.
(16)

We suggest to adopt a power measure P1(·) for multivariate

Cauchy-like distributions as follows:

EX

[

ln

(

1 +

∥

∥

∥

∥

X

P1(X)

∥

∥

∥

∥

2
)]

= w2

(

1 + p

2
;
p

2

)

, (17)

where the constant evaluation function w2(t;α) can be written

explicitly as the difference of two digamma functions:

w2(t; a) = ψ(t)− ψ(t− a), for t > a. (18)

The values of w2 function when p = 1 and p = 2 are 2 ln(2)
and 2 ln(e) respectively.

IV. MAIN RESULTS

We consider the FAP communication channel encountered

in diffusion-based MC systems. In this main section, we first

show in Section IV-A that when the drift velocity in the

fluid medium approaches zero, both the 2D and 3D FAP

channel reduce to univariate and bivariate Cauchy distributions

respectively. This result is new to the MC society.

Next in Section IV-B and Section IV-C, we introduce a

relative power measure called the α-power (see [26]) into the

MC field. We write down explicitly the signal space needed

to characterize the no-drift FAP channels. Under this newly

proposed logarithmic constraint on the output signal space,

we derive the Shannon capacity for FAP channel both in

2D and 3D spaces in closed-form. The conclusions about

the FAP channel capacity are summarized in Theorem 1

and Theorem 2. Notice that in [27], the authors derived

the capacity formula for univariate Cauchy channel under

logarithmic constraint imposed on the input signal space.

However, their result is not easy to extend to high dimensional

cases because a complicated integration process was involved,

see [27, Appendix I].

A. FAP Channel Reduces to Cauchy Channel Under Zero Drift

Condition

1) In 2D Space: From [1] we know that the FAP density

function in 2D space, with a drift velocity v = (v1, v2), can

be written as:

fY |X(y|x) =
|v|λ

σ2π
exp

{

−v2λ

σ2

}

exp

{

−v1(x1 − y1)

σ2

}

·

K1

(

|v|

σ2

√

(x1 − y1)2 + λ2
)

√

(x1 − y1)2 + λ2
,

(19)

where x = (x1, λ), y = (y1, 0), and λ is the transmission dis-

tance between transmitter (Tx) and Rx. Note that in Eq. (19),

σ2 is the microscopic diffusion coefficient which can be related

to the macroscopic diffusion coefficient D through the relation

σ2 = 2D, see [5]. Note also that the special function K1(·)
in Eq. (19) is the modified Bessel function of the second kind

(see [28]) with order ν = 1.

Next we show that when drift velocity approaches zero, the

2D FAP density reduces to a univariate Cauchy distribution.

We use a limit property about the special function K1(·) from

[29]:

lim
x−→0

xK1(x) = 1. (20)

With this limit property, we can do the following calculation:

fY |X;v=0(y|x)

= lim
|v|−→0

|v|λ

σ2π
·
K1

(

|v|
σ2

√

(x1 − y1)2 + λ2
)

√

(x1 − y1)2 + λ2

=
λ

π
lim

|v|−→0

[

|v|

σ2

√

(x1 − y1)2 + λ2

·
K1

(

|v|
σ2

√

(x1 − y1)2 + λ2
)

(x1 − y1)2 + λ2

]

=
λ

π

1

(x1 − y1)2 + λ2
.

(21)

Notice that in the last equality of Eq. (21), we have used

the limit property Eq. (20). This calculation result can be

interpreted as follows: let x1 be the input position and y1 be

the output position. The displacement of position is an additive

noise n, following the density function:

λ

π

1

n2 + λ2
, (22)

which is Cauchy distributed. (See Appendix A.)



2) In 3D Space: From [1], [16] we know that the FAP

density function in 3D diffusion channel, with a drift velocity

v = (v1, v2, v3), can be written as:

fY |X(y|x)

=
λ

2π
exp

{

−
v3λ

σ2

}

exp
{ v1

σ2
(y1 − x1) +

v2

σ2
(y2 − x2)

}

· exp

{

−
|v|

σ2
‖y − x‖

}

[

1 + |v|
σ2 ‖y − x‖

‖y − x‖3

]

,

(23)

where σ2 is the microscopic diffusion coefficient, the scale

parameter λ is the transmission distance between Tx and

Rx plane, v3 is the longitudinal component of drift veloc-

ity in the direction parallel to the transmission direction,

and v1, v2 are the components perpendicular (or trans-

verse) to the transmission direction. Here we use the symbol

‖·‖ to represent the Euclidean norm. Namely, ‖y − x‖ =
√

(y1 − x1)2 + (y2 − x2)2 + λ2, where x = (x1, x2, λ), y =
(y1, y2, 0) are position vectors in R

3.

Next we show that when drift velocity approaches zero, the

3D FAP density reduces to a bivariate Cauchy distribution.

Note that when v = 0, all the exponential terms in Eq. (23)

become e0 = 1, so that we have:

fY |X;v=0(y|x)

=
λ

2π
lim

|v|−→0

1 + |v|
σ2 ‖y − x‖

‖y − x‖3

=
λ

2π

1

‖y − x‖3

=
λ

2π

1
(

(y1 − x1)2 + (y2 − x2)2 + λ2
)3/2

.

(24)

That is, if we regard the position channel as:

y = x+ n, (25)

then n follows a bivariate Cauchy distribution, see Eq. (57) in

Appendix A.

B. Channel Capacity for 2D FAP Channel Under Logarithmic

Constraint

As mentioned in Section IV-A, a 2D FAP channel reduces

to a Cauchy channel when the drift velocity approaches zero.

Since we are considering a point-to-point (or SISO) commu-

nication scenario, the input constraint is actually equivalent to

the output constraint. We choose to adopt output constraint for

convenience.

It is known that a Cauchy distribution X ∼ Cauchy(0, k)
maximizes the entropy among all RVs5 that satisfy

EX ln

[

1 +

(

X

k

)2
]

= 2 ln(2), (26)

or equivalently,

EX ln
[

1 +X2
]

= 2 ln(1 + k). (27)

5This is the principle of maximum entropy for Cauchy distribution, see [30].

The corresponding maximum entropy value is ln(4πk), see

Appendix A. Note that the parameter k restricts the dispersion

of all random variables X under consideration.

Consider a 2D FAP zero-drift channel (as shown in Sec-

tion IV-A), the input-output relation can be written as

Y = X +N, (28)

where N ∼ Cauchy(0, λ). For continuous-variable channel

capacity problem, we need to specify a family of distributions

that are under consideration in order to prevent the capacity

value from being infinite. Instead of writing down explicitly

the constraint equality for X or Y , we define

D(A) =
{

distributions Y
∣

∣

∣
∃k ∈ [λ,A]

such that EY ln
[

1 +
(Y

k

)2]

= 2 ln(2)
}

.

(29)

The parameter A appeared in Eq. (29) indicates the “largest

allowed dispersion” for the distributions in D(A). For later

use, we also define

Dk =
{

distributions Y
∣

∣

∣
EY ln

[

1 +
(Y

k

)2]

= 2 ln(2)
}

,

(30)

so that we can write D(A) =
⋃

k∈[λ,A] Dk. Now we can state

the main theorem.

Theorem 1. The capacity of 2D FAP channel (28) is

C2D,FAP = C(A, λ) = ln

(

A

λ

)

(31)

under the output logarithmic constraint

Y ∈ D(A) (32)

for some prescribed dispersion level A, where A ≥ λ. In addi-

tion, the corresponding capacity achieving output distribution

is

Y ∗ ∼ Cauchy(0, A), (33)

or equivalently,

X∗ ∼ Cauchy(0, A− λ). (34)

Because the proof of Theorem 1 is very similar to the proof

of Theorem 2. We settle this proof into Appendix B and move

directly to the 3D case.

C. Channel Capacity for 3D FAP Channel Under Logarithmic

Constraint

It is known (see [30], [31]) that a bivariate Cauchy dis-

tribution X ∼ Cauchy2(0,Σ = diag(k2, k2)) maximizes the

entropy among all bivariate RVs that satisfy

EX ln

[

1 +

∥

∥

∥

∥

X

k

∥

∥

∥

∥

2
]

= 2 ln (e) , (35)



The corresponding maximum entropy value is ln(2πe3k2), see

Appendix A. Note that the parameter k restricts the dispersion

of all random vectors X under consideration.

Consider a 3D FAP zero-drift channel (as shown in Sec-

tion IV-A), the input-output relation can be written as

Y = X+N, (36)

where N ∼ Cauchy2(0,Σ = diag(λ2, λ2)). We define

Dbi(A) =

{

distributions Y

∣

∣

∣

∣

∣

∃k ∈ [λ,A]

such that EY ln
[

1 +

∥

∥

∥

∥

Y

k

∥

∥

∥

∥

2
]

= 2 ln(e)

}

.

(37)

The parameter A appeared in Eq. (37) indicates the “largest

allowed dispersion” for the distributions in Dbi(A). For later

use, we also define

Dk,bi =

{

distributions Y

∣

∣

∣

∣

∣

EY ln
[

1 +

∥

∥

∥

∥

Y

k

∥

∥

∥

∥

2
]

= 2 ln(e)

}

,

(38)

so that we can write

Dbi(A) =
⋃

k∈[λ,A]

Dk,bi. (39)

Now we can state the main theorem.

Theorem 2. The capacity of 3D FAP channel (36) is

C3D,FAP = C(A, λ) = 2 ln

(

A

λ

)

(40)

under the output logarithmic constraint

Y ∈ Dbi(A) (41)

for some prescribed dispersion level A, where A ≥ λ. In addi-

tion, the corresponding capacity achieving output distribution

is

Y∗ ∼ Cauchy2(0, diag(A
2, A2)). (42)

Proof. For the additive channel we are considering, the mutual

information can be written as

I(X;Y) = h(Y)− h(N). (43)

The issue of finding the channel capacity turns out to be an

optimization problem:

C(A, λ) = sup
Y∈Dbi(A)

I(X;Y). (44)

The calculation is as follows. We have

C(A, λ) = sup
Y∈Dbi(A)

{

h(Y) − h(N)
}

(45)

=
{

sup
Y∈Dbi(A)

h(Y)
}

− ln(2πe3λ2), (46)

where

sup
Y∈Dbi(A)

h(Y) = sup
k∈[λ,A]

{

sup
Y∈Dk,bi

h(Y)
}

(47)

= sup
k∈[λ,A]

ln(2πe3k2) (48)

= ln(2πe3A2). (49)

Combining equations (46) and (49) yields

C(A, λ) = ln(2πe3A2)− ln(2πe3λ2)

= ln

(

A2

λ2

)

= 2 ln

(

A

λ

)

.
(50)

Notice that the equalities (47)-(49) hold if and only if Y

distributes as Cauchy2(0, diag(A2, A2)). Hence, Theorem 2

is proved.

V. CONCLUSIONS

We consider the FAP communication channel encountered

in diffusion-based MC systems. In this paper, we first show

that when the drift velocity in the fluid medium approaches

zero, both the 2D and 3D FAP channel reduces to univariate

and bivariate Cauchy distribution respectively. This conclusion

is new to the MC society.

Although in [1], the impulse response of the FAP channel

is discussed in detail for 2D and 3D spaces, the Shannon

capacity for FAP channel remains open at the time of this

writing. The main difficulty of the capacity characterization

problem of Cauchy-like channel is that, unlike commonly

encountered distributions such as Gaussian or exponential, the

Cauchy distribution is heavy-tailed and belongs to a broader

family called α-stable distributions.

For α-stable distributions, usually the second moment does

not exist, so we cannot use traditional energy constraints (such

as the variance of RV) to depict our signal space. To tackle

with this problem, we introduce a relative power measure

called the α-power (see [26]) into the MC field. We write

down explicitly the signal space needed to characterize the

no-drift FAP channel capacity. Under this newly proposed

logarithmic constraint, we derive the Shannon capacity for

FAP channel both in 2D and 3D spaces in closed-form. Based

on the capacity formulas derived in Theorem 1 and Theorem 2,

we can see that: under the same value A, the channel capacity

of 3D FAP channel is twice as large as the capacity of 2D

FAP channel. In some sense, this demonstrates the spirit that

FAP channel can carry more information when the spatial

dimension n of the diffusion process becomes higher, as

mentioned in the introductory section.
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APPENDIX A

DENSITY FUNCTION AND ENTROPY OF MULTIVARIATE

CAUCHY DISTRIBUTION

The Cauchy distribution, named after Augustin Cauchy, is a

continuous probability distribution often used in statistics as a

canonical example of distribution since both its expected value

and its variance are undefined. It is also known, especially

among physicists, as the Lorentz distribution. In mathematics,

it is closely related to the fundamental solution for the Laplace

equation in the half-plane, and it is one of the few distributions

that is stable (see [21], [24]) and has a density function that

can be expressed analytically. (Other examples are normal

distribution and Lévy distribution.)

The univariate6 Cauchy distribution has the probability

density function (PDF) which can be expressed as:

f(x;x0, γ) =
1

πγ

γ2

(x− x0)2 + γ2
=

1

πγ

1

1 + (x−x0

γ )2
, (51)

where x0 ∈ R is the location parameter, and γ > 0 is the

scaling parameter (see [32]). For the purpose of exploring the

channel capacity, since the location parameter x0 is irrelevant

to the entropy, we may assume without loss of generality that

x0 = 0, yielding the so called symmetry Cauchy with PDF as:

f(x; γ) =
γ

π

1

x2 + γ2
=

1

πγ

1

1 + (xγ )
2
. (52)

The entropy of Cauchy distribution can be evaluated by direct

calculation. From Eq. (51), we have

h(X) = ln(4πγ) (53)

whenever X ∼ Cauchy(x0, γ), and x0 can be chosen arbitrar-

ily.

As for multivariate Cauchy distribution, our notation system

mainly follows [31]. Consider a p-dimensional Euclidean ran-

dom vector X = (X1, · · · , Xp)
⊤ which follows multivariate

Cauchy distribution. We use the notation X ∼ Cauchyp(µ,Σ)
to specify the parameters, where µ ∈ R

p×1 is the location

vector, and Σ ∈ R
p×p is the scale matrix describing the

6For univariate Cauchy, people usually suppress the word “univariate”, and
simply call it Cauchy.



shape of the distribution. The PDF of multivariate Cauchy

distribution is given by the following formula:

f
(p)
X

(x;µ,Σ) =
Γ(1+p

2 )

Γ(12 )π
p

2 |Σ|
1
2 [1 + (x− µ)⊤Σ−1(x − µ)]

1+p

2

.

(54)

Note that Σ is by nature a positive-definite square matrix. For

our later purpose, we mainly work in the case p = 2. We

provide the PDF of this special case here for convenience:

f
(2)
X

(x;µ,Σ) =
Γ(32 )

π
3
2 |Σ|

1
2 [1 + (x− µ)⊤Σ−1(x− µ)]

3
2

. (55)

Eq. (55) is the so-called bivariate Cauchy distribution.

Similar to the univariate case, we can without loss of

generality set µ = 0 in equations (54) and (55) for the purpose

of entropy and channel capacity analysis. When µ = 0, the

multivariate Cauchy is called central. For the case that the

Cauchy is central, we abuse the notations R and Σ to mean the

same scale matrix. We shall assume all Cauchy distributions

considered in this paper to be central from now on. In addition,

for the special case that Σ is a diagonal matrix, namely

Σ = diag(γ2, γ2) =

[

γ2 0
0 γ2

]

, (56)

the central bivariate Cauchy density function can be simplified

into a more concise form:

1

2π

γ

(n2
1 + n2

2 + γ2)3/2
, (57)

where n = (n1, n2) is the Cauchy random vector.

Finally, the (differential) entropy of p-variate central Cauchy

distribution can be found in [4]. We briefly state the results

here for later use. Suppose the scale matrix R of a p-variate

Cauchy X is prescribed, the entropy of X can be expressed

as

h(X; R) =
1

2
ln |R|+Φ(p), (58)

where |R| represents the determinant of matrix R; Φ(p) is

a constant depending only on dimension p, and it can be

evaluated through

Φ(p) = ln

[

π
p
2

Γ(p2 )
B

(

p

2
,
1

2

)]

+
1 + p

2

[

ψ

(

1 + p

2

)

− ψ

(

1

2

)]

.

(59)

In the above expression, B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the so-called

beta function, and

ψ(t) :=
d

dt

[

ln Γ(t)
]

(60)

is known as the digamma function.

APPENDIX B

PROOF OF THEOREM 1

In this appendix section, we prove Theorem 1 step by step.

For the additive channel

Y = X +N (61)

we are considering, the mutual information can be written as

I(X ;Y ) = h(Y ) − h(N) according to Section II. The issue

of finding the capacity of channel (28) turns out to be an

optimization problem:

C(A, λ) = sup
Y ∈D(A)

I(X ;Y ). (62)

The calculation is as follows. We have

C(A, λ) = sup
Y ∈D(A)

{

h(Y )− h(N)
}

(63)

=
{

sup
Y ∈D(A)

h(Y )
}

− ln(4πλ), (64)

where

sup
Y ∈D(A)

h(Y ) = sup
k∈[λ,A]

{

sup
Y ∈Dk

h(Y )
}

(65)

= sup
k∈[λ,A]

ln(4πk) (66)

= ln(4πA). (67)

Combining equations (64) and (67) yields

C(A, λ) = ln(4πA)− ln(4πλ) = ln

(

A

λ

)

. (68)

Notice that the equalities (65)-(67) hold if and only if Y

distributes as Cauchy(0, A). Hence, Theorem 1 is proved.

APPENDIX C

SOME KNOWN FACTS ABOUT CAUCHY DISTRIBUTION

For the probability density function formula and entropy

evaluation of Cauchy distribution, please refer to Appendix A.

In this appendix section, we recall three important properties

of Cauchy distributions.

The first and second property is about the independent

sum of two Cauchy distributions. Briefly speaking, univariate

symmetry Cauchy distribution is closed under independent

sum, as the following lemma states.

Lemma 1. Letting U ∼ Cauchy(0, σ), V ∼ Cauchy(0, τ) be

two independent Cauchy random variables, we have

Z = U + V ∼ Cauchy(0, σ + τ). (69)

As for the independent sum property of bivariate Cauchy

distributions, we have the following lemma.

Lemma 2. Letting U ∼ Cauchy2

(

0,Σ1 = diag(σ2, σ2)
)

,

V ∼ Cauchy2

(

0,Σ2 = diag(τ2, τ2)
)

be two independent

bivariate Cauchy random vectors, we have

Z = U+V ∼ Cauchy2

(

0,Σ3 = diag
(

(σ + τ)2, (σ + τ)2
)

)

.

(70)



Notice that in Lemma 2, we have used the notation

diag(a, b) =

[

a 0
0 b

]

for conveniently representing diagonal

matrices.

The third property is about linear combination of compo-

nents of Cauchy vector X. Let v ∈ R
p×1 be an arbitrary

constant vector, then the following lemma holds.

Lemma 3. If X ∼ Cauchyp(µ,Σ), then

v⊺X ∼ Cauchy(v⊺
µ,v⊺Σv), (71)

where µ is the location vector of X and Σ is the scale matrix

of X.
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