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Abstract—We consider the problem of characterizing the
first arrival position (FAP) density in molecular communication
(MC) with a diffusion-advection channel that permits a constant
drift velocity pointed to arbitrary direction. The advantage of
FAP modulation lies in the fact that it could encode more
information into higher dimensional spatial variables, compared
to other modulation techniques using time or molecule numbers.
However, effective methods to characterize the FAP density in
a general framework do not exist. In this paper, we devise a
methodology that fully resolves the FAP density with planar
absorbing receivers in arbitrary dimensions. Our work recovers
existing results of FAP in 2D and 3D as special cases. The key
insight of our approach is to remove the time dependence of
the MC system evolution based on the generator of diffusion
semigroups.

Index Terms—Molecular communication, diffusion, first ar-
rival time (FAT), first arrival position (FAP), semigroup, gener-
ator.

I. INTRODUCTION

Since ancient times, the problem of conveying information
over a distance has been an important issue in human history.
Modern communication systems resolve this problem with
electromagnetic (EM) signals. However, EM-based communi-
cation techniques are challenging for tiny (for instance, nano-
scale) devices; if not feasible, due to the constraints such as
the wavelength, antenna size, or energy issues [1], [2].

In molecular communication (MC) systems, small
molecules1 called message molecules (MMs) act as chemical
signals conveying the information [3], [4]. After the
information-carrying particles are released in the channel, a
propagation mechanism is necessary for transporting them
to the receiver. This mechanism can be diffusion-based [5],
flow-based [6], or an engineered transport system such as
molecular motors [7], [8]. Among these different propagation
mechanisms, diffusion-based MC, sometimes in combination
with advection and chemical reaction networks, has been the
most prevalent approach for MC systems, and will be the
main focus of study in this paper.

In order to transmit information in a diffusion-based MC
system, we can modulate different physical properties of the
MMs [9]–[12]. Signaling molecules that reach the vicinity of

1We omit the shape of a message molecule and think of it as a mass
point as most works in molecular communication do. Thus we use both terms
“particle” and “molecular” interchangeably.

the receiver can be observed and processed by the receiver
to extract the information that is necessary for performing
detection and decoding [13]. The reception mechanism of a
MC receiver can be categorized into two classes: i) passive re-
ception, and ii) active reception. The simplest active reception
is the fully-absorbing receiver [14] which has the ability to
measure the time and position of arrival of each molecule,
and to remove the MM right after it is received. For MC
systems with a fully-absorbing receiver, how to completely
characterize the arrival time or the arrival position is no doubt
a very important issue.

In Section I-A, we briefly review some important results
concerning first arrival time (FAT) in MC literature. Until very
recently, the first arrival position (FAP) information was also
introduced into the MC realm, see [15], [16]. We will give
a short introduction to the current status of FAP results in
Section I-B.

A. First Arrival Time

When information is encoded on the time of release of MM,
we refer to this subclass of MC channels as molecular timing
channels (MTCs). The main difference between timing-based
modulation and other modulations, such as the number or type
modulation, is that: the channel input is continuous instead of
discrete.

The MTC model was first proposed in [17]. In its simplest
form, a MTC can be realized through a single MM released
by the transmitter (Tx) at time tin with information encoded
on this release time. The MM goes through some random
propagation and arrive at the receiver (Rx) at time tout. We
have

tout = tin + tn, (1)

where tn is some random delay due to MM propagation
mechanisms.

In [18], an MTC with additive inverse Gaussian noise
(AIGN) was introduced into MC realm, where tn in Eq. (1) is
inverse Gaussian distributed. The authors of [18] derived upper
and lower bounds on capacity per channel use. Later in [19],
tighter bounds on capacity of the same MTC with AIGN noise
were derived. The capacity-achieving MM input distribution
was also characterized. In [20]–[22], single particle release is
extended to multiple, say M MM releases. In this scenario,
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information is encoded in a vector t, in which each component
is the time of release of one of the M MMs. For multiple
particle case, the channel model changes to:

tout = sort(tin + tn), (2)

where tn is an RM vector of random delays associated with
each MM. Notice that sort(t) is the sort operator that permutes
the input vector into an ascending order. The sort operation is
necessary when time information of each MM is considered
since the MMs may arrive out of order.

B. First Arrival Position

Apart from the first arrival time, there is another impor-
tant degree of freedom to carry information: the first arrival
position. The simplest FAP channel can be written as

xout = xin + xn, (3)

where xin, xout and xn are all Euclidean vectors in Rn with n
being the dimension of the underlying space.

To the best of our knowledge, the first paper in MC society
that mentions FAP as an information carrying property is [15],
the density function of FAP is derived in closed-form for
both pure diffusion and diffusion with a constant drift in 3D
spaces. However, this approach is limited in scope when higher
dimensional FAP is considered. Later, the authors in [16] use
Green’s function and the method of images to derive the FAP
density function for 2D MC systems, where the fluid medium
has a constant drift restricted to the longitudinal direction
from the transmitter towards the receiver. However, the method
of images in [16] cannot be generalized to the setting of
arbitrary drift velocity field, which is commonly encountered
in fluid environments, because it uses symmetry heavily, but
an arbitrary direction of drift will break down the required
symmetry. Finally, the capacity of molecular position channels
remains completely unknown except some very specific cases,
see [16] for capacity of M -ary modulation scheme.

C. Our Contributions

Although most works in MC consider FAT modulation for
absorbing receivers, there are at least two reasons why FAP is
preferable.
• For each message particle, the FAT information is only

one-dimensional, while the FAP could have higher di-
mensions to carry information. Hence, the capacity of
FAP could be larger then FAT per single message particle.

• Practically, “guard intervals” between two consecutive
transmissions are required to avoid cross-over effects,
as described in Eq. (2). Due to these guard intervals,
the total transmission time for FAT-type modulation will
increase roughly proportional to the number of MMs to
be transmitted. Consequently, for applications in which
the time efficiency plays an important role, the FAP-type
modulation is arguably a better solution.

The main contributions of this paper are two-fold. 1) We
relax the constraint imposed on the drift direction in previous
works. 2) We introduce the semigroup approach to facilitate

characterization of the FAP density for planar absorbing re-
ceivers in higher dimensional diffusion channels. Our method-
ology unifies the process toward finding FAP in 2D and 3D
with a solid theoretical backup (see Section III for details).
Technically, the semigroup approach avoids complicated time
integration in finding FAP. We believe that our work opens
the possibility toward general resolution of the capacity of
molecular position channels.

D. Structure of this Paper

The remainder of this paper is structured as follows. Section
II describes the system model we choose, and some related
papers working on FAP. Section III presents the new method-
ology we proposed to find FAP. Finally, concluding remarks
are made in Section IV.

II. SYSTEM MODEL AND RELATED WORKS

A. System Model

We consider a MC system located in an n-dimensional
Euclidean space, consists of a point Tx and a planar absorbing
Rx. The distance between Tx and Rx is d. Notice that we
can always arrange the basis of Rn so that the last vector
in the basis set is parallel to the transmission direction.
Without loss of generality, we consider that the transmitter
is a point located at the Cartesian coordinate (0, · · · , 0, d),
and the receiver is an infinite large absorbing plane located at
{x ∈ Rn : xn = 0}. Abstract MC system figures for 2D and
3D spaces are illustrated in Figure 1 and Figure 2, respectively.
The physical channel of our MC model is composed of a
diffusive fluid medium with a constant drift.

In theoretical MC literature, there are two different view-
points to model diffusion channels. The macroscopic view-
point uses diffusion equation (aka heat equation) to capture
the evolution of the continuous distribution of concentration
of MMs. While in the microscopic viewpoint, individual
message molecule is monitored using its own trajectory. For
the equivalence of these two viewpoints, readers can refer to
classical potential theory as in [23], or a good review paper
in MC such as [9] or [13].

In the macroscopic viewpoint, the physical channel is
modeled by Eq. (4) below. The most important quantity in
macroscopic MC system analysis is the concentration field2

c(r, t) of message molecules at spatial position r and time t.
By Fick’s law of diffusion [13], the evolution of c(r, t) can
be captured by the diffusion-advection equation:

∂tc (r, t; r0) + v(r, t) · ∇c (r, t; r0) = D∇2c (r, t; r0) , (4)

where r0 is the point where the diffusion starts, v is the
velocity field of the fluid medium which is assumed to be
incompressible, ∇ and ∇2 are the gradient and the Laplace
operators, respectively, and D is the diffusion coefficient.
The value of D is determined by the temperature, the fluid
viscosity, and the molecule’s Stokes radius, see [9].

2Here we use the word “field” to mean a function of space and time.



On the other hand in the microscopic viewpoint, a common
assumption is that the trajectory of each molecule can be well
distinguished. A mainstream model in MC for the trajectory
Xt of a MM is the Itô diffusion process. An Itô diffusion
in Euclidean space Rn is a stochastic process satisfying a
stochastic differential equation (SDE) of the form

dXt = b(Xt)dt+ σ(Xt)dBt, (5)

where Bt is an n dimensional standard Brownian motion.
Throughout this paper, we assume that b(·) and σ(·) are
both constants and can be determined by the properties of
fluid and MMs. We further assume that the receiver for our
MC system is perfectly absorbing and has the ability to
correctly measure the time and position at first-arrival for each
individual molecule [16].

In the following, we denote the initial position of a MM by
x, the final (or received) position by y, and the FAP distribution
by a conditional density function f(y|x). The main problem
is to characterize the function f(y|x).

B. Related Works

1) 2D FAP density: The authors of [16] solved this problem
in 2D partially3. In [16], a 2D MC system with a constant drift

Fig. 1. System Model of 2D First Arrival Position Channels.

velocity v pointing precisely to the receiver is considered. The
system model is illustrated in Figure 1. The authors of [16]
adopt the method of images to construct Green’s function for
an absorbing boundary. The resulting FAP density function
can be found as in [24, Eq. (42)] of Appendix A of the online
version of this paper. Notice that we cannot recover the FAP
expression as appeared in [16, Eq. (19)]. Instead, we have
provided a self-contained proof in Appendix A of [24].

2) 3D FAP density: In [15], a 3D MC system with a
constant drift velocity v pointing to arbitrary direction is
considered. The system model is illustrated in Figure 2. The
authors of [15] use Dynkin’s formula to link the microscopic
properties at first arrival time to the solution of macroscopic

3Using the image method in [16], we can only tackle with drifts in
longitudinal direction parallel to the direction of transmission, but not in
arbitrary direction.

Fig. 2. System Model of 3D First Arrival Position Channels.

diffusion equation. A closed-form FAP density function in 3D
is obtained in [15], which has the following form:

fY |X(y|x)

=
λ

2π
exp

{
−v3λ

σ2

}
exp

{ v1

σ2
(ξ − x1) +

v2

σ2
(η − x2)

}
· exp

{
−|v|
σ2
‖y − x‖

}[
1 + |v|

σ2 ‖y − x‖
‖y − x‖3

]
,

(6)

where σ2 = 2D is the microscopic diffusion coefficient, d = λ
is the distance between transmitter plane and receiver plane, v3

is the component of drift velocity parallel (or longitudinal) to
the information transmission direction, and v1 and v2 are the
drift components perpendicular (or transverse) to the transmis-
sion. Here we use the symbol ‖·‖ to represent the Euclidean
norm. Namely, ‖y − x‖ =

√
(ξ − x1)2 + (η − x2)2 + λ2,

where x = (x1, x2, λ), y = (ξ, η, 0) are position vectors in
R3.

III. FINDING FAP VIA GENERATOR OF DIFFUSION
SEMIGROUP

By suitably examine macroscopic and microscopic relations
for the diffusion process, we come up with new ideas which
can simplify the procedure towards finding FAP density. After
a careful examination, one can realize that FAP density itself
has no time dependency, so there must exist some redundant
calculations in old methods playing with heat equations, for
instance the method used in [16]. The key insight of our
approach is to remove the time dependence of the MC system
evolution based on the generator of diffusion semigroups.

Our proposed semigroup approach towards finding the FAP
density can be summarized in three main steps:

1. By utilizing the generator of diffusion semigroup, we can
remove the time variable from the very beginning. This
can be done because of the Markov property of diffusion
semigroup for our MC system.

2. Look up representation formulas from partial differential
equation (PDE) literature for the corresponding elliptic
boundary value problems (BVP) we obtained in Step 1.
Since there are plentiful well known results for solutions



of elliptic PDEs (even in high dimensional cases, see [25],
[26]), we do not need to derive representation formulas
from scratch.

3. Via properly interpretating the Dynkin’s formula, we
claim that the FAP density can be obtained directly by

the relation fY |X(y|x) =

∣∣∣∣∂G(y, x)

∂ny

∣∣∣∣ , once the elliptic

Green’s function G(y, x) is known. Through this pro-
cess, we can bypass the complicated integration step as
appeared in [16, Eq. (17)].

The comparisons between the old and new methods are
listed in Table I. For the sake of completeness, we present
the old method concisely in Appendix B of [24] in a self-
contained fashion.

TABLE I
COMPARISON BETWEEN OLD AND NEW METHODS

FOR FINDING FAP DENSITY

Old Method (with t) New Method (without t)

Step 1
Finding the free space
Green’s function for
parabolic PDE.

Removing time t from
the beginning by considering
the generator of diffusion.

Step 2
Solving for absorbing
Green’s function based
on image method.

Looking up the solution
forms for certain types of
elliptic BVPs.

Step 3
Calculating FAP
density flux and
doing time integration.

Interpretating the Dynkin’s
formula and obtaining the
FAP density directly.

A. Infinitestimal Generator of Itô Diffusion

In physics, an Itô diffusion is used to describe the Brownian
motion of a particle subjected to a potential in a fluid medium.
In mathematics, an n dimensional Itô diffusion4 is a stochastic
process satisfying a specific type of SDE of the form dXt =
b(Xt)dt+σ(Xt)dBt, as described in Eq. (5). Throughout this
paper, we assume that b(·) and σ(·) are both constants.

To each Itô diffusion Xt, we can associate a corresponding
operator called infinitestimal generator, or simply generator,
which is defined as follows. Let D(A) be the domain of the
generator A. We define Ex[f(Xt)] := E[f(Xt)|X0 = x],
where the notation Ex[·] stands for taking expectation con-
ditioned on X0 = x. The generator A of a process Xt can be
then defined as

Af(x) = lim
t↘0

Ex[f(Xt)]− f(x)

t
for f ∈ D(A). (7)

For time-homogeneous Itô process Xt, the time evolution is
a Markov process. By letting Tt := Ex[f(Xt)], we obtain a
semigroup of operators: T = (Tt)t≥0. Thinking from another

perspective, Af = lim
t↘0

Ttf − f
t

can be regarded as the

linear increment term (omitting all higher order terms) of the
semigroup evolution.

4We merely consider time-homogeneous Itô diffusion throughout this paper.
That is, b(Xt) and σ(Xt) does not depend on t explicitly.

The next step is to calculate the generator A explicitly from
the Itô diffusion SDE: dXt = b(Xt)dt+σ(Xt)dBt. Supposing
f is of class C2, by Taylor expansion and Itô’s formula5, we
have:

df (Xt) = f ′ (Xt) dXt +
1

2
f ′′ (Xt) d〈X〉t

=

[
b (Xt) f

′ (Xt) +
σ2 (Xt)

2
f ′′ (Xt)

]
dt

+ f ′ (Xt)σ (Xt) dBt.

(8)

The notation d〈X〉t represents the quadrature variation of
random process Xt, see [28]. Directly plugging Eq. (8) into
Eq. (7) yields

Af(x) = b(x)f ′(x) +
σ2(x)

2
f ′′(x). (9)

Eq. (9) is the generator of Itô diffusion corresponding to our
MC system.

B. Boundary Value Problem for Elliptic PDE

For MC systems located in a time-invariant and spatial-
homogeneous fluid environment, we can restrict ourselves to
the case that both b(·) and σ(·) are constants. Consider a PDE
BVP with unknown function u:{

Au = 0 in Ω
u = g on ∂Ω

(10)

where g is some prescribed boundary data. Note that the right
hand side of the first equation in (10) is zero. This means that
there are no particle production and annihilation process in
the fluid channel. For elliptic differential operators, BVPs are
well studied, and the solution of (10) under common boundary
conditions can be found in literature of PDE, for instance [25].

Let us discuss a simple example in more detail. Consider a
half-space 3D domain with A = ∇2 and a boundary condition:

u(x, y, z) = g(x, y) at z = 0. (11)

The solution of BVP (10) with (11) as boundary condition is
well known and can be found in standard handbooks of PDE:

u(x, y, z) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

zg(ξ, η)dξdη

[(x− ξ)2 + (y − η)2 + z2]
3/2

.

(12)
Eq. (12) is called an integral representation formula in PDE
language. Using Green’s function, we can rewrite (12) as

u(x, y, z) =

∫
∂Ω

∣∣∣∣∂G(ξ, η, 0;x, y, z)

∂n

∣∣∣∣ g(ξ, η)dξdη, (13)

where n is the normal unit vector of the boundary. We claim

that the term
∣∣∣∣∂G(ξ, η, 0;x, y, z)

∂n

∣∣∣∣ is already the FAP density

on the receiving plane. In this example, the BVP corresponds
to no-drift pure diffusion. We will prove the above claim in
Section III-C. The calculations for diffusion-with-drift case in
2D space are presented in Appendix A of [24].

5Itô’s formula and Taylor expansion of an Itô process are standard results
in stochastic analysis, see [27], [28].



C. Dynkin’s Formula and FAP Density

In this subsection, we will use the Dynkin’s formula to
clarify the relations between macroscopic and microscopic
viewpoints of diffusion phenomena. During this clarification
process, the FAP density is obtained incidentally.

Recall that the definition of an infinitestimal generator

is Af(x) = lim
t↘0

Ex[f(Xt)]− f(x)

t
. Rewriting the above

equation into an integral form, we have

Ex [f (Xt)] = f(x) + Ex

[∫ t

0

Af (Xs) ds

]
. (14)

Note that the time t appeared in the above formula is a
deterministic variable, not a random variable.

In stochastic analysis, Dynkin’s formula is a theorem giving
information about a diffusion process at a stopping time τ
(which is a random variable [28]). Let f be of class C2 with
compact support and τ be a stopping time with Ex[τ ] < +∞.
The Dynkin’s formula can be stated as

Ex [f (Xτ )] = f(x) + Ex

[∫ τ

0

Af (Xs) ds

]
. (15)

With all these background materials at hand, we now show
that how arbitrary FAP density is obtained by our newly
proposed approach in principle. Let g be a smooth data defined
on the boundary (i.e. the receiver plane) of the domain. We
can write

Ex[g(Xτ )] = E[g(Xτ ) | X0 = x] =

∫
∂Ω

fY |X(y|x)g(y)dy

(16)
by the definition of conditional probability density function
(PDF). In Eq. (16), x ∈ Ω is the starting point of the diffusion;
and since τ is the hitting time, the hitting position y ∈ ∂Ω.
Notice that the conditional PDF fY |X is exactly the desired
FAP density distributed on the receiver boundary ∂Ω.

Consider an Itô diffusion Xt and its corresponding generator
A. Suppose we have a solution u(x) of the BVP problem
(10) for some prescribed g. Then we plug f(x) = u(x) into
Eq. (15). The last term of Eq. (15) becomes∫ τ

0

Au(Xs)ds = 0. (17)

This is because 0 < s < τ and τ is the first hitting time, so that
Xs lies in Ω, making u(Xs) = 0. On the other hand, the term
on the left hand side of Eq. (15) becomes Ex[g(Xτ )] because
u(x) coincides with g(x) on the boundary. Combining these
two facts, we can get

Ex[g(Xτ )] = u(x) =

∫
∂Ω

fY |X(y|x)g(y)dy (18)

for any x ∈ Ω.
Generically, for elliptic-type BVP defined in a domain V

with boundary S = ∂V , we have

u(x) =

∫
V

Φ(y)G(x,y)dVy +

∫
S

g(y)H(x,y)dSy (19)

where Φ represents the source term, dVy is the volume
element, dSy is the surface element, and the term H(x,y)
depends on which type of boundary conditions we are con-
sidering. If there is no molecule source reproducing MMs in
the domain, we can set Φ(y) = 0. For the purpose of deriving
FAP density, we consider the Dirichlet type boundary, which
corresponds to

H(x,y) = − ∂G

∂ny
(x,y). (20)

As a result, formula (19) reduces to

u(x) =

∫
S

− ∂G

∂ny
(x,y)g(y)dSy. (21)

Finally, by comparing Eq. (18) and Eq. (21), we reveals
an important relation between the FAP density and elliptic
Green’s function:

fY |X(y|x) =

∣∣∣∣ ∂G∂ny
(x,y)

∣∣∣∣ . (22)

Note that the left hand side of Eq. (22) always has a positive
sign, so we add an absolute value on the right hand side for
emphasis.

To conclude, Eq. (22) can be used to solve for FAP density
as long as we know the Green’s function. This method in
principle works for higher n dimensional diffusion. By using
generator of diffusion semigroup, we transform the original
heat-type BVP (with time variable) into elliptic-type BVP
(without time variable). Then we can look up solutions for
the corresponding elliptic Green’s functions in literature, such
as [25], [26].

IV. CONCLUSIONS

In this paper, we fully resolve the FAP density problem for
planar absorbing receivers in MC. Our approach is based on
the theory of diffusion semigroups. The comparisons between
the existing and our methods are listed in Table I. Through this
semigroup approach, we integrate the existing FAP results in
MC, and unified the process toward finding FAP in 2D and
3D.

Secondly, this is the first paper in MC to clarify in a
rigorous way the mathematical link between the macroscopic
and microscopic viewpoints for the diffusion mechanism in
diffusion-based MC systems. Previous works in MC treat these
two viewpoints separately. We hope this clarification could
bring new insights into future theoretical MC system analysis.

Finally, we provided a self-contained proof for the formula
proposed in [16] for 2D FAP density problem. We also
make some improvements via relieving the restriction that
the drift direction must point exactly toward the receiver. The
calculation details are presented in Appendix A of [24].
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APPENDIX A
CALCULATION OF FAP DENSITY IN 2D SPACE USING

SEMIGROUP APPROACH

In this appendix section, we demonstrate how to calculate
FAP density using semigroup approach proposed in Sec-
tion III.

For two dimensional (2D) FAP density, we consider a 2D
Itô diffusion Xt with its semigroup generator A as

A =

2∑
i=1

vi
∂

∂xi
+
σ2

2

2∑
i=1

∂2

∂x2
i

. (23)

In the above equation, the term vi stands for the i-th com-
ponent of the drift velocity v. Let us denote the Laplacian
operator in 2D by ∆2 and consider the following BVP in
Cartesian coordinate:{

A(u) =
∑2
i=1 vi

∂u
∂xi

+ σ2

2 ∆2u = 0 in Ω

u = g on ∂Ω
, (24)

where u is a (dummy) unknown function. Set the domain of
BVP (24) to be

Ω = R2 ∩ {x2 > 0} , (25)

and the boundary to be

∂Ω = R2 ∩ {x2 = 0} . (26)

Here we use the notation xj to denote the j-th component
of the position vector x = (x1, · · · , xn). For the purpose of
compatibility to higher dimensional cases, we arrange the basis
order of the Cartesian coordinate so that the direction of the
last component is parallel to the transmission direction.

The BVP (24) is not in a common resolved form in standard
PDE solution tables such as [25]. However, we can use a
change of variables to transform (24) into a Helmholtz equa-
tion. Before proceeding further, we temporarily set σ2 = 1
to avoid cumbersome calculations. After obtaining the final
result, we will then replace vi with vi

σ2 to recover the solution
for general σ2 which is not necessarily equal to 1.

Suppose u is the solution of BVP (24) with σ2 = 1. That
is, u satisfies

∑2
i=1 vi

∂u
∂xi

+ 1
2∆2u = 0 in the domain Ω, and

coincides with the function g on the boundary ∂Ω. We define
a drift factor γ to facilitate later calculations; the drift factor
is defined as follows:

γ(x) := exp{v · x} = exp {v1x1 + v2x2} , (27)



where v · x denotes the standard inner product in R2. We
consider an alternative function w(x) = γ(x)u(x). Plugging
u(x) = w(x)

γ(x) into BVP (24) yields

1

γ(x)

[
∆2w(x)−

(
v2

1 + v2
2

)
w(x)

]
= 0. (28)

Next, by letting

s = |v| =
√
v2

1 + v2
2 , (29)

we can deduce that w satisfies the Helmholtz equation:

∆2w − s2w = 0 (s ≥ 0). (30)

The Helmholtz equation can be regarded as the eigenvalue
problem of Laplacian operator; its solution form can be found
in standard PDE books [25]. To solve w, we consider another
BVP described by the Helmholtz equation:{

H(w) = ∆2w − s2w = 0 in Ω
w = g̃ on ∂Ω

, (31)

where H(·) is the Helmholtz operator. Note that new boundary
data g̃ satisfies

g̃(y) = ev1y1g(y) for y ∈ ∂Ω (32)

since y2 = 0 on the boundary.
The next step is to look up a representation formula of

solution of BVP (31) in the literature. The following equations
(33, 34, 35, 36) are all cited from [25]. Let the domain be
−∞ < x1 < ∞, 0 ≤ x2 < ∞ and consider a first-type
boundary condition6 as:

w(x1, 0) = g(x1) at x2 = 0. (33)

The solution of BVP (31) can be written down using the
following representation formula:

w(x1, x2) =

∫ ∞
−∞

∫ ∞
−∞

f(ξ)

[
∂

∂η
G(x1, x2, ξ, η)

]
η=0

dξ.

(34)
where the Green’s function appeared in Eq. (34) has the form

G(x1, x2, ξ, η) =
1

2π
[K0(sρ1)−K0(sρ2)] (35)

with

ρ1 =
√

(x1 − ξ)2 + (x2 − η)2,

ρ2 =
√

(x2 − ξ)2 + (x2 + η)2.
(36)

Interested readers can refer to [29] for more details about the
derivation of this Green’s function.

Now we let x = (x1, x2), y = (ξ, η). Based on the
methodology presented in Section III, we know that

w(x) =

∫
∂Ω

∣∣∣∣∂G(x,y)

∂ny

∣∣∣∣ g̃(y)dy. (37)

6First-type boundary condition, also known as Dirichlet boundary condition,
means that we prescribe the values of the unknown function on the boundary.

Here, the notation
∣∣∣∂G(x,y)

∂ny

∣∣∣ is the partial derivative of G with
respect to the unit vector normal to the boundary ∂Ω. Using
the fact that K ′0(x) = −K1(x), we calculate

∂G

∂η

∣∣∣∣
η=0

=

[
∂G

∂ρ1

∂ρ1

∂η
+
∂G

∂ρ2

∂ρ2

∂η

]
η=0

=
−s
2π
K1

(
s
√

(x1 − ξ)2 + x2
2

)
−x2√

(x1 − ξ)2 + x2
2

+
s

2π
K1

(
s
√

(x1 − ξ)2 + x2
2

)
x2√

(x1 − ξ)2 + x2
2

=
|v|x2

π

K1

(
|v|
√

(x1 − ξ)2 + x2
2

)
√

(x1 − ξ)2 + x2
2

.

(38)

To obtain a representation formula for the solution u of
the original BVP (24), we substitute w(x) = γ(x)u(x) into
Eq. (37), yielding

u(x) =
w(x)

γ(x)
= exp{−v · x}

∫
∂Ω

∣∣∣∣∂G(x,y)

∂ny

∣∣∣∣ g̃(y)dy

=

∫
∂Ω

exp {v1y1 − v1x1 − v2x2}[
∂G

∂ρ1

∂ρ1

∂η
+
∂G

∂ρ2

∂ρ2

∂η

]
η=0

g(y1)dy1

=

∫
∂Ω

Kv(x, ξ)g(ξ)dξ

, (39)

where Kv(x, ξ) is the integral kernel which we want to
determine. Note that in the second equality of (39), we have
used the relation g̃(y) = ev·xg(y).

Now we let x2 = d > 0 to be the transmission distance
between Tx and Rx. By examining Eq. (38) and Eq. (39), we
obtain an exact formula for the integral kernel Kv(x, ξ):

Kv(x, ξ)

= exp {v1ξ − v1x1 − v2d}
[
∂G

∂ρ1

∂ρ1

∂η
+
∂G

∂ρ2

∂ρ2

∂η

]
η=0

=
|v|d
π

exp{−v2d} exp{−v1(x1 − ξ)}

·
K1

(
|v|
√

(x1 − ξ)2 + d2
)

√
(x1 − ξ)2 + d2

.

(40)

To tackle with the general case σ2 6= 1, we can simply
replace vi with vi

σ2 , yielding

fY |X(y|x) =
|v|d
σ2π

exp

{
−v2d

σ2

}
exp

{
−v1(x1 − ξ)

σ2

}

·
K1

(
|v|
σ2

√
(x1 − ξ)2 + d2

)
√

(x1 − ξ)2 + d2
,

(41)

where x = (x1, d), y = (ξ, 0), and d is the distance between
Tx and Rx. Eq. (41) is the desired conditional density function,
allowing arbitrary drift directions, for 2D FAP problem.



In order to make a comparison to the restrictive version in
[16, Eq. (19)], we can set v1 = 0 in Eq. (41), yielding

fY |X(y|x)

=
|v|d
σ2π

exp

{
−v2d

σ2

} K1

(
|v|
σ2

√
(x1 − ξ)2 + d2

)
√

(x1 − ξ)2 + d2

=
|v|d
2πD

exp

{
−v2d

2D

} K1

(
|v|
2D

√
(x1 − ξ)2 + d2

)
√

(x1 − ξ)2 + d2
,

(42)

where we use the relation σ2 = 2D.

APPENDIX B
THE OLD METHOD: SEPARATION OF VARIABLES AND

METHOD OF IMAGE

For the sake of completeness, we review in a self-contained
fashion the original approach to finding FAP density function
as proposed in [16]. Throughout this appendix section, we
set the x-direction to be the direction of transmission, i.e. the
direction pointing from Tx to Rx.

A. Finding the Green’s Function for Free Space

For a 2-dimensional (2D) diffusion channel with a constant
drift velocity v = (v, 0) pointing from the transmitter to the
receiver along the x-axis, equation (4) can be written explicitly
as

∂c(x, y, t)

∂t
+ v

∂c(x, y, t)

∂x
= D

(
∂2c(x, y, t)

∂x2
+
∂2c(x, y, t)

∂y2

)
(43)

where c(x, y, 0) = δ (x− x0) δ (y − y0) is the 2D Dirac delta
function. The boundary condition is set to be:

c(x, y, t) = 0 for x, y ∈ ∂Ω, (44)

representing an absorbing receiver.
Using separation of variables, the concentration field

c(x, y, t) can be written as

c(x, y, t) = c1(x, t)c2(y, t). (45)

By plugging Eq. (45) back into Eq. (43), we get two separated
equations

∂c1
∂t

+ v
∂c1
∂x
−D∂

2c1
∂x2

= 0, (46)

∂c2
∂t
−D∂

2c2
∂y2

= 0. (47)

The fundamental solutions (aka free space Green’s function)
of Eq. (46) and Eq. (47) are

c1(x, t) =
1√

4πDt
exp

(
− (x− x0 − vt)2

4Dt

)
(48)

and

c2(y, t) =
1√

4πDt
exp

(
− (y − y0)

2

4Dt

)
(49)

respectively. Hence, the free space Green’s function of (43)
can be written as the product of Eq. (48) and Eq. (49):

G (x, y, x0, y0, t)

=
1

4πDt
exp

(
− (x− x0 − vt)2 − (y − y0)

2

4Dt

)
.

(50)

B. Finding the Green’s Function for Absorbing Boundary

For Eq. (50), we have not yet taken the boundary conditions
into account. Since the receiver is assume to be perfectly
absorbing, we require the concentration to be zero on the
boundary, as Eq. (44) shows.

There is one well-known method, originated in classical
electrodynamics, that works well in problems of finding static
distributions for flat boundaries, called the method of image,
see [30]. Since we only care about the concentration function
inside the domain, we can effectively put an “mirror image” of
negative mass at the reflection point of the original releasing
point. Using this method, the domain of the original unknown
function is not extended, but the function is made to satisfy
given boundary conditions, such as absorbing boundary in our
case.

To use the method of image, we write

Gabs(x, y, x0, y0, t)

= G(x, y, x0, y0, t)− a(x0)G(x, y,−x0, y0, t)
(51)

and then solve for a(x0). Note that the subscript “abs” stands
for absorbing. The absorbing boundary condition requires that

a(x0) =
G(0, y, x0, y0, t)

G(0, y,−x0, y0, t)
= exp

(
−x0v

D

)
. (52)

We can now write down the Green’s function for absorbing
boundary as

Gabs (x, y, x0, y0, t)

=
1

4πDt

[
exp

(
− (x− x0 − vt)2

+ (y − y0)
2

4Dt

)]

− exp

(
−x0v

D
− (x+ x0 − vt)2

+ (y − y0)
2

4Dt

)]. (53)

C. From Green’s function to FAP Density

Consider a quantity called diffusive flux J(0, y, t) at x = 0
plane, which possesses a physical unit of particle density per
unit length per unit time. By Fick’s law, we know that

J(0, y, t) = −D∂Gabs(x, y, x0, y0, t)

∂x
. (54)

Using the absorbing Green’s function formula as shown in
Eq. (53), we can calculate the flux explicitly, yielding

J(0, y, t) = − x0

4πDt2
exp

(
− (x0 + vt)

2
+ (y − y0)

2

4Dt

)
.

(55)
Note that the original formula [16, Eq. (14)] has some calcu-
lation error, so we correct the formula herein.



Our goal is to find the FAP density f(y|x). Let x = (x0, y0)
denote the point of release of the information molecule and
y = (x, y) its arrival position at the receiver boundary. The
conditional PDF of Y at a receiver located at x = 0 is given
as

fY |X(0, y | x0, y0) =

∫ ∞
0

J(0, y, t)dt . (56)

Plugging the diffusion flux we just obtained in Eq. (55) into
Eq. (56), we have

fY |X(0, y | x0, y0)

= −
∫ ∞

0

x0

4πDt2
exp

(
− (x0 + vt)

2
+ (y − y0)

2

4Dt

)
dt.

(57)

In order to calculate this integration explicitly, we rearrange
the terms to get

fY |X(0, y | x0, y0)

=
−x0

4πD
exp

(
−x0v

2D

)
×
∫ ∞

0

1

t2
exp

(
−x

2
0 + (y − y0)

2

4Dt
− v2t

4D

)
dt.

(58)

Letting Ks(z) be the modified Bessel function of the second
kind of order s, for positive constants a and b, we have the
relation [31]:∫

0

t−s−1 exp
(
−
(a
t

+ bt
))

dt = 2

(
b

a

)s/2
Ks(2

√
ab),

(59)
where s and z are real and complex numbers respectively.
Combining Eq. (58) and Eq. (59) with x0 = d, we finally get

f(y|x)

= fY |X(0, y | d, y0)

=
|v|d
2πD

exp

(
−dv
2D

)
1√(

d2 + (y − y0)
2
)

·K1

 |v|
√(

d2 + (y − y0)
2
)

2D

 .

(60)

It is worth noting that the conditional FAP density as shown
in Eq. (60) depends only on y − y0, but not on time variable
t. We can conclude that the FAP channel is an additive time-
invariant channel.
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