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Quantum Neural Networks (QNNs) with random structures have poor trainability due to the
exponentially vanishing gradient as the circuit depth and the qubit number increase. This result
leads to a general belief that a deep QNN will not be feasible. In this work, we provide the first viable
solution to the vanishing gradient problem for deep QNNs with theoretical guarantees. Specifically,
we prove that for circuits with controlled-layer architectures, the expectation of the gradient norm
can be lower bounded by a value that is independent of the qubit number and the circuit depth.
Our results follow from a careful analysis of the gradient behavior on parameter space consisting
of rotation angles, as employed in almost any QNNs, instead of relying on impractical 2-design
assumptions. We explicitly construct examples where only our QNNs are trainable and converge,
while others in comparison cannot.

I. INTRODUCTION

Neural Networks [1] using gradient-based optimizations
have dramatically advanced research in discriminative
models, generative models, and reinforcement learning.
To efficiently utilize parameters and practically improve
trainability, neural networks with dedicated architectures
[2] are introduced for different tasks, including convolu-
tional neural networks [3] for image tasks, recurrent neural
networks [4] for time series analysis, and graph neural
networks [5] for tasks related to graph-structured data.
Recently, neural architecture search [6] was proposed to
improve the performance of the networks by optimizing
their neural structures.

Despite the success in many fields, the development
of neural network algorithms is still prone to limitations
caused by the large computational resources required for
model training. In recent years, quantum computing has
emerged as a promising approach to this problem, and
has evolved into a new interdisciplinary field known as
quantum machine learning (QML) [7, 8]. Specifically,
variational quantum circuits [9] have been explored as
efficient protocols for quantum chemistry [10] and combi-
natorial optimizations [11, 12]. Compared to the classical
circuit models, quantum circuits have greater expressive
power [13, 14] and proven quantum advantage [15]. Due
to their robustness against noises [16], variational quan-
tum circuits have attracted significant interest for the
hope of achieving the practical quantum supremacy on
near-term quantum computers [17, 18].

Quantum Neural Networks (QNNs) [19, 20] are the
special kind of quantum-classical hybrid algorithms that
run on trainable quantum circuits. Recently, small-scale
QNNs have been implemented on real quantum comput-
ers [8, 21] for supervised learning tasks. Inspired by the
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classical optimizations of neural networks, a natural strat-
egy to train QNNs is to exploit the gradient of the loss
function [22, 23]. However, recent works [24] show that
N -qubit quantum circuits with random structures and
large depth (D = poly(N)) form approximate unitary
2-designs [25], and the partial derivative vanishes to zero
exponentially with respect to N .

The vanishing gradient problem is usually referred to as
the Barren Plateau [24], which could affect the trainability
of QNNs in three folds. 1) Simply using a gradient-
based method like Stochastic Gradient Descent (SGD)
to train the QNN takes a large number of iterations.
2) The estimation of derivatives requires an extremely
large number of samples from the quantum output to
guarantee a relatively accurate direction [26]. 3) The
objective function tends to have a flat surface [24] with
globally vanishing gradients, which hardly have practical
implications.

A. Related Works

The barren plateau phenomenon of QNNs is first re-
ported in random ansatzes [24]. Specifically, for N -qubit
random quantum circuits with global 2-design distributed
unitaries, the expectation of the derivative to the objec-
tive function is zero, and the variance of the derivative
vanishes to zero with the rate exponential in the num-
ber of qubits. Given the fact that random circuits form
approximate 2-designs [25], QNNs with random ansatzes
are essentially untrainable. Subsequently, Refs. [28, 31]
relax the global 2-design assumption to the local case
and prove the trainability of shallow alternating layered
circuits with local observables. Their results imply that
in the low-depth D = O(logN) case, the norm of the
gradient could be 1

poly(N) , which is better than previous

exponential vanishing results. Similar results hold for
the quantum convolutional neural network (QCNN) [29]
which adopts a tree tensor structure [32] with logN depth.
Besides, most existing works show a negative relationship
between trainability and circuit complexity. Specifically,
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TABLE I. Existing theoretical results of the barren plateau problem. We use N and D to denote the number of qubits and the
circuit depth. We denote by m the number of qubits acted on by local gates. We use ε to measure the distance between circuit
states and Haar random states [27]. We denote by q < 1 the noise parameter.

Structure Distribution Bounds on the gradient

Random circuit [24] Global 2-design Var
[
∂f
∂θk

]
≈ O(2−3N )

Alternating layered circuit [28] Local 2-design Var
[
∂f
∂θk

]
≥ O(2−2m(D+2))

QCNN [29] Local 2-design Var
[
∂f
∂θk

]
≥ O( 1

poly(N)
)

Arbitrary circuit [27] Circuit distribution Var
[
∂f
∂θk

]
≤ 2−O(N) +O(ε2)

D-layer noisy circuit [30] - | ∂f
∂θk
| ≤ O(N1/2qD)

states generated from QNNs, which satisfy the volume law
[33], could lead to the barren plateau landscape. QNNs
with high expressibility [27, 34] could also suffer from the
vanishing gradient problem. For the depolarizing chan-
nel case, noisy QNNs with linear depth could have an
exponentially small gradient [30]. The vanishing gradient
phenomenon is inherently related to the concentration
nature of measure for quantum states [35], which can-
not be solved using gradient-free [36] or higher-order [37]
methods. We summarize existing theoretical results about
the barren plateau problem in Table I.

Recently, some techniques have been proposed to ad-
dress the barren plateau problem, including the special ini-
tialization strategy [38] and the layerwise training method
[39]. We remark that these techniques rely on the assump-
tion of low-depth quantum circuits. Specifically, Ref. [38]
initializes parameters such that the initial quantum cir-
cuit is equivalent to an identity matrix (D = 0). Ref. [39]
trains subsets of parameters for each layer so that a low-
depth circuit is optimized during the training.

Notice that almost all the theoretical analysis on the
trainability of QNNs is based on the assumption that
the learning circuits satisfy the unitary 2-designs or the
Haar distributions. However, QNNs in most scenarios are
tuned in the parameter space consisting of rotation angles
followed by CNOT or CZ gates, instead of the entire
unitary space [40]. Thus, earlier claims that deep QNNs
are doomed to fail are not on solid ground. In the work,
we provide a first analysis of the gradient behavior of
the quantum neural network within the parameter space.
Most importantly, we theoretically prove the existence of
deep QNNs whose gradient norm is independent of the
circuit depth D.

The rest of this paper is organized as follows. Pre-
liminaries of QNNs are introduced in Section II. The
theoretical results are presented in Section III. We show
numerical results in Section IV, which includes the toy
model study (Section IV A), finding the ground state of
the Ising model (Section IV B), and the binary classifi-
cation (Section IV C). We summarize our conclusion in
Section V.

II. PRELIMINARY

Quantum neural network is one special kind of varia-
tional quantum algorithms with trainabile parameterized
quantum circuits. More specifically, we aim to minimize
the function f with respect to θ:

f(θ; ρin) = Tr
[
OV (θ)ρinV (θ)†

]
, (1)

where O denotes the quantum observable and ρin denotes
the density matrix of the input state. We use the linear
combination of tensor products of Pauli matrices

{σ0, σ1, σ2, σ3} = {I,X, Y, Z}

to represent the quantum observable. Equation (1) pro-
vides a general formulation of the loss in QNNs. For the
quantum machine learning (QML) scenario, ρin encodes
the information of the training data, while the observable
O could be a simple σ3 for classification tasks [19, 41]
or a complex form for quantum kernel methods [42, 43].
For the variational quantum eigensolver scenario, such
as the quantum chemistry and the quantum simulation,
ρin is usually initialized as (|0〉〈0|)⊗N , while O encodes
the Hamiltonian of the whole system which is written
as the linear combination of Pauli tensor products. For
convenience, we define the locality of a Pauli product
observable as the number of qubits such that the corre-
sponding component in the observable is not the identity.

Different from the input state ρin and the observable
O, parameters θ in QNN are trainable, which makes the
QNN suitable for various optimizers [44–46]. In practice,
we could deploy the parameter as the phase of single-
qubit gates {e−iθσk , k ∈ {1, 2, 3}} while employing two-
qubit gates {CX,CZ} among them to generate quantum
entanglement. This strategy has been frequently used
in existing quantum neural networks [9, 19, 21, 47–50]
since the model suits near-term quantum computers. We
remark that the partial derivative could be calculated
subsequently by using the parameter shifting rule [22, 23],

∂f

∂θj
= f(θ+; ρin)− f(θ−; ρin), (2)

where θ+ and θ− are different from θ only at the jth
parameter: θj → θj ± π

4 . Thus, the gradient of f could
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FIG. 1. The architecture of the L blocks of the controlled-layers quantum neural networks (CL-QNNs) (S = 2). Each CL block
V`(θ`) (light yellow block) consists of a CZ operation layer (orange block), single-qubit rotations RXRYRX on the first S qubits
(dark blue block), and a parameterized unitary operation W ′`(θ

′
`) on the remaining N − S qubits (light blue block). Operations

CZ` and W ′`(θ
′
`) could have different structures for different blocks, and the ansatz W ′`(θ

′
`) could be arbitrarily deep. We denote

parameters of single-qubit rotations on the jth qubit in the `th CL block by θj,` = (θ
(1)
j,` , θ

(2)
j,` , θ

(3)
j,` ). We denote parameters in

the `-th CL block by θ` = (θ1,`, · · · ,θS,`,θ′`), where θ′` denotes the parameters on the remaining N − S qubits.

be obtained by estimating quantum observables, which
allows the optimization of QNNs using gradient-based
methods [44–46].

III. MAIN RESULTS

In this section, we introduce quantum neural networks
(QNNs) with controlled-layer (CL) architectures and the
corresponding trainability results. Namely, we prove that
the expectation of the square of the gradient for the
CL-QNN is lower bounded by Ω(8−LS), where L is the
number of CL blocks in QNNs and S is the locality of
the quantum observable. Note that the circuit depth in
each CL block is arbitrary. The bounds are independent
of the circuit depth, i.e., we guarantee the trainability of
arbitrary deep CL-QNNs with limited CL blocks.

A. Controlled-layer QNNs

Now we discuss the CL-QNNs in detail. The architec-
ture of the CL-QNN is shown in Figure 1. The circuit
begins with an input state ρin, followed by L layers of
CL blocks. In the `-th CL block, a CZ operator layer
(denoted as CZ`), where CZ gates on arbitrary qubit
pairs are allowed, is applied. Then we perform param-
eterized quantum gates on the first S qubits and the
remaining N − S qubits separately. For each of the

first S qubits, we employ RX(θ
(3)
j,` )RY (θ

(2)
j,` )RX(θ

(1)
j,` ) gates

sequence to implement arbitrary unitaries in U(2) in-
dividually, where j ∈ {1, · · · , S} denotes the index of
the qubit and ` ∈ {1, · · · , L} denotes the index of the
CL block. We allow arbitrary parameterized unitaries

W ′`(θ
′
`) ∈ U(2N−S) on the remaining N −S qubits. Thus,

the `-th CL block is defined by

V`(θ`) =

 S⊗
j=1

Wj,`(θj,`)

⊗W ′`(θ
′
`)

CZ`,

where Wj,`(θj,`) ≡ RX(θ
(3)
j,` )RY (θ

(2)
j,` )RX(θ

(1)
j,` ) and θ` =

(θ1,`, · · · ,θS,`,θ′`). After all unitary operations, we mea-
sure the first S qubits to reveal the information from the
quantum circuit. Specifically, the objective function is the
expectation of the measurement result with the associated
S-local observable

σi = σ(i1,··· ,iS ,0,··· ,0)

= σi1 ⊗ · · · ⊗ σiS ⊗ σ0 ⊗ · · · ⊗ σ0, (3)

where ij 6= 0, ∀j ∈ {1, · · · , S}.
We remark that the controlled-layer architecture shown

in Figure 1 is a general framework. Arbitrary structures
could be employed for operations CZ` and W ′` , to generate
different distributions for specific tasks. Many existing
quantum neural networks can be viewed as special cases
of CL-QNNs, e.g., the layerwise learning circuit [39] in
Figure 2(a), the quantum entanglement circuit [51–53]
in Figure 2(b), and the alternating-layered circuit [28] in
Figure 2(c). Specifically, these architectures contain a CZ
operation layer (orange color) and the arbitrary param-
eterized unitaries W ′`(θ

′
`) ∈ U(2N−S) on the remaining

N − S qubits are taken to be just single-qubit rotations.
Besides, the local quantum observable condition is natu-
rally satisfied for QNNs associated with quantum machine
learning [19], combinatorial optimizations [11, 12], and
quantum simulations [54, 55].
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(a) (b) (c)

FIG. 2. Existing QNNs as special cases of CL-QNNs. Figure 2(a) shows the structure of the layerwise learning circuit [39].
Figure 2(b) shows the structure of the quantum entanglement circuit [51–53]. Figure 2(c) shows the structure of the alternating-
layered circuit [39]. The deep blue block denotes the single-qubit rotations and the orange block denotes the CZ operator layer,
as defined in Figure 1.

B. Trainability of CL-QNNs

We provide main theoretical results of this work in
Theorems 1 and 2. Specifically, we prove that both the
square of the loss f and the norm of its gradient are lower
bounded by Ω(8−LS). Both bounds are independent of
the qubit number N and the circuit depth D, where the
latter can be arbitrarily large when employing complex
unitaries W ′` in Figure 1. Proofs of Theorems 1 and 2 are
provided in Appendices B and C, respectively.

Theorem 1. Consider the N-qubit L-block variational
quantum circuit V (θ) defined in Figure 1 and the cost
function f(θ) = Tr

[
σiV (θ)ρinV (θ)†

]
, where σi is a S-

local observable. Then the following formula holds,

E
θ
f2 ≥

(
Tr[σ3|iρin]

)2
8LS

, (4)

where the index 3|i = (3, 3, · · · , 3, 0, · · · , 0) contains S
non-zero components. The expectation is taken indepen-
dently for all parameters in θ with the uniform distribution
in [0, 2π].

Theorem 2. Consider the N-qubit L-block variational
quantum circuit V (θ) defined in Figure 1 and the cost
function f(θ) = Tr

[
σiV (θ)ρinV (θ)†

]
, where σi is a S-

local observable. Then the following formula holds,

E
θ
‖∇θf‖2 ≥

12(L− 1)S

8LS
(
Tr[σ3|iρin]

)2
, (5)

where index 3|i = (3, 3, · · · , 3, 0, · · · , 0) contains S non-
zero components. The expectation is taken independently
for all parameters in θ with the uniform distribution in
[0, 2π].

We remark that the trace term in Eqs. (4) and
(5) is independent of N for many input states, e.g.,
Tr[σ3|i(|0〉〈0|)⊗N ] = 1.

From the geographic view, the value E
θ
‖∇θf‖2 char-

acterizes the global steepness of the function surface in

|0

|1

|+

|

|i+

|i

(a)

|0

|1

|+

|

|i+

|i

(b)

FIG. 3. Bloch sphere of states U |0〉, where U = RY (θ2)RX(θ1)
for Figure 3(a) and U ∈ U(2) for Figure 3(b). For the left figure,
we sample from the uniform distribution of (θ1, θ2) ∈ [0, 2π]2,
while for the right figure, we sample from the Haar distribution
of the unitary space. Each figure contains 10000 samples.

the parameter space. Optimizing the objective function f
using gradient-based methods could be hard if the norm
of the gradient vanishes to zero. Thus, the lower bound
in Eq. (5) provides a theoretical guarantee for the opti-
mization of the objective function, which is the necessary
condition for obtaining a good trainability of QNNs on re-
lated tasks. Different from existing works [24, 28, 29, 38]
that deal with shallow quantum circuits, we provide a
positive result on the trainability of deep quantum circuits
with certain structures.

From the technical view, we provide a new theoretical
framework for proving Eqs. (4) and (5). Instead of the
unitary 2-design assumptions which do not accord with
practical QNNs training scenarios, we consider the uni-
form distribution in the parameter space, in which each
parameter in θ varies continuously in [0, 2π]. Our assump-
tion suits quantum circuits that encode parameters in
the phase of single-qubit rotations, and fits the analysis
to the loss landscape within the parameter space. Our
framework could be extended with further assumptions
on current circuit architectures in future works.

Generally, the uniform distribution of parameters could
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FIG. 4. Illustration of the depolarizing noisy channel used in this work. We denote by Nq the depolarizing channel on the
single qubit, which acts as Eq. (7) on all qubits after each operation layer. Figure 4 shows the noisy hardware-efficient ansatz as
an example.

induce a distribution that differs from the Haar distri-
bution [56], as illustrated by an example in Figure 3.
Specifically, Figure 3(a) corresponds to the unitary U =
RY (θ2)RX(θ1), where θ1, θ2 are sampled from [0, 2π] uni-
formly; while Figure 3(b) corresponds to the unitary U ,
which is sampled from the Haar distribution. We can see

concentrations of samples around states |i±〉 = |0〉±i|1〉√
2

in Figure 3(a), which differs from uniformly distributed
samples in Figure 3(b).

IV. APPLICATIONS

We provide numerical analysis on the trainability of
different QNNs using the PennyLane Python package [57].
We propose three optimization tasks, i.e., the toy model,
quantum simulation of the Ising model, and supervised
learning for the binary classification. In the first and
the third task, we are able to show that only CL-QNNs
are trainable with deep circuit structures while hardware-
efficient QNNs [58] and randomly structured QNNs are
not. Moreover, In the second task, we demonstrate that
the CL-QNNs could perform better than the randomly
structured QNNs.

A. Toy model

To begin with, we study the toy model,

f(θ) = Tr[OV (θ)(|0〉〈0|)⊗NV (θ)†], (6)

where the observable O = σ3⊗σ0⊗· · ·⊗σ0. We compare
the performance of three different ansatzes, the CL-QNN,
the hardware-efficient QNN (HE-QNN) in Figure 5, and
the randomly structured QNN. For CL-QNNs, we set the
number of CL blocks L = 2 and perform CZ gates on
all neighboring qubits (1, 2), (2, 3), · · · , (N − 1, N), (N, 1).
The number S = 1 by considering the observable in
Eq. (6). Unitaries on the remaining N−S qubits (the light
blue block in Figure 1) are chosen to be LHE = 5 layers
of the hardware-efficient ansatz in Figure 5. Thus, the

FIG. 5. The illustration of the hardware-efficient circuit [58],
where the ansatz in the light blue block is repeated for LHE
times. The deep blue block denotes the RXRYRX sequence
as defined in Figure 1.

depth of the parameterized part of CL-QNNs is DCL =
3LHEL = 30. To make a fair comparison, the number of
single-qubit gates, CZ gates, and CNOT gates in Random-
QNNs are set to be the same as that in the CL-QNNs.
The parameterized circuit layer of HE-QNNs is set to
be the same as that in CL-QNNs, which is constructed
by repeating the hardware-efficient ansatz for LHE = 10
layers. Since the depth of one HE layer is O(N), the
depth of CL-QNNs and HE-QNNs would grow linearly
with increasing qubits. Parameters in different QNNs are
initialized independently from a uniform distribution in
[0, 2π] if no additional requirements are made.

Numerical results of the toy model are shown in Fig-
ures 6(a)-6(f). First, we record the squared loss and
the gradient norm of Eq. (6) for noiseless CL-QNNs,
HE-QNNs, and Random-QNNs in Figures 6(a) and 6(b).
For noiseless HE-QNNs and Random-QNNs, both the
squared loss and the gradient norm decay exponentially
with increasing qubit numbers N ∈ {3, 4, · · · , 20}, while
for noiseless CL-QNNs, these values remain the same
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FIG. 6. Numerical results of the loss value and the gradient information of the toy model (6). Figures 6(a) and 6(b) show
the squared loss and the gradient norm with increasing qubits N ∈ {3, 4, · · · , 20}, respectively. Figures 6(c) and 6(d) show
the squared loss and the gradient norm corresponding to noiseless and noisy CL-QNNs and HE-QNNs with increasing qubits
N ∈ {3, 4, · · · , 9}, respectively. The noisy channel follow the Figure 4. Figures 6(e) and 6(f) show the squared loss and the
gradient norm corresponding to CL-QNNs and HE-QNNs initialized with the uniform parameter distribution and the Haar
distribution, respectively. Each line denotes the average of 5 rounds of independent simulations.

magnitude. Thus, we have verified Theorems 1 and 2.

Next, we consider the performance of CL-QNNs under
noisy settings. Specifically, we consider the depolarizing
noisy channel illustrated in Figure 4. The noisy channel

on the single-qubit state acts as

Nq(ρ) = qρ+
1− q

2
I, (7)
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FIG. 7. Numerical results of QNN finding the ground state energy of the Ising model. Figures 7(a) and 7(b) show the loss
corresponding to the Hamiltonian of the Ising model (8) with stochastic gradient descent and stochastic Adam optimizers,
respectively. Figures 7(c) and 7(d) show the `2-norm of the corresponding gradient during the training. Red and blue lines
denote the average of 5 rounds for the CL-QNN and the Random-QNN, respectively.

where we set q = 0.99 in simulations. We compare the
squared loss and the gradient norm of CL-QNNs and HE-
QNNs under noiseless and noisy settings for increasing
qubit numbers N ∈ {3, 4, · · · , 9} in Figures 6(c) and 6(d),
respectively. The squared loss of both CL-QNNs and HE-
QNNs decays when the noise is introduced. Specifically,
the squared loss of CL-QNNs drops by around one order of
magnitude when the qubit number increases from 3 to 9,
while the squared loss of HE-QNNs drops by around four
orders of magnitude. We observe similar results about
the gradient norm in Figure 6(d). Thus, the trainability
of CL-QNNs is less influenced by noise-induced barren
plateaus [30], compared to that of HE-QNNs.

Finally, we compare the performance of different param-
eter initializations, i.e., the uniform distribution in [0, 2π]
and the Haar distribution in Figures 6(e) and 6(f), which
show the squared loss and the gradient norm of CL-QNNs
and HE-QNNs with qubits N ∈ {3, 4, · · · , 20}, respec-
tively. In general, parameterized circuits with restricted
structures could not generate the Haar distribution in the
whole unitary space U(2N ), so we consider the local Haar

distribution on each qubit, which could be generated as
RX(θ3)RY (θ2)RX(θ1) by ignoring the global phase. As
shown in Figures 6(e) and 6(f), for both CL-QNNs and
HE-QNNs, the uniform distribution and the Haar distri-
bution show similar performances.

B. Ising model

In the second task, we aim to find the ground state
energy of the transverse-field Ising model [60] around the
critical point with periodic boundary conditions, i.e.

H = − 1

N

N∑
i=1

ZiZi+1 −
1

N

N∑
i=1

Xi, (8)

where we employ the periodic boundary condition ZN+1 =
Z1. We adopt the loss function defined by Eq. (1) with the
corresponding observable in Eq. (8). We compare the per-
formance of CL-QNNs with that of randomly structured
QNNs. Both QNNs contain N = 16 qubits and begin
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FIG. 8. Numerical results of the binary classification on the wine dataset [59]. Figures 8(a) and 8(b) show the loss (9) of
the training set with stochastic gradient descent and stochastic Adam optimizers. Figures 8(c) and 8(d) show the error (10)
of the test set with stochastic gradient descent and stochastic Adam optimizers. Figures 8(e) and 8(f) show the `2-norm of
the corresponding gradient during the training. Red, blue, and black lines denote the average of 5 rounds for CL-QNN, the
Random-QNN, and the hardware-efficient QNN (HE-QNN), respectively.

from the initial state (|0〉〈0|)⊗N . We set the number of
CL blocks L = 6 and perform CZ gates on all neighboring
qubits (1, 2), (2, 3), · · · , (N − 1, N), (N, 1). Unitaries on
the remaining N − S qubits in Figure 1 are employed as
the tensor product of RXRYRX gate sequences. Overall,

we generate a CL-QNN with 270 single-qubit gates and 75
CZ gates. To make a fair comparison, the number of single-
qubit gates and CZ gates in the Random-QNN are set to
be the same as that in the CL-QNN. Initial parameters
in both QNNs are sampled independently with a uniform
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distribution in [0, 2π]. We employ two different optimizers,
i.e., stochastic gradient descent (SGD) [61] and stochastic
Adam (SGD with adaptive momentum) [62], where the
randomness is introduced by finite measurements. In the
experiment, we set the number of measurements to be
100 for each Pauli observable, and the number of training
iterations is 200. The learning rate is 0.15 for SGD, while
for stochastic Adam, the learning rate is 0.01.

The numerical results of the Ising model task are shown
in Figures 7(a)-7(d). The loss during the training iteration
is illustrated in Figures 7(a) and 7(b) for different QNNs.
For the SGD case, we notice the convergence of the loss
corresponding to the CL-QNN after 150 iterations, while
the loss of Random-QNN does not converge and the final
value is much higher than that of the CL-QNN. For the
stochastic Adam case, the loss of the CL-QNN converges
after 75 iterations, while the loss of Random-QNN does
not converge with a much higher final value. We record
the `2-norm of the gradient during the training in Fig-
ures 7(c) and 7(d). The gradient norm for the CL-QNN is
larger than 0.2 at the initial point and converges during
training. On the other hand, the gradient norm of the
Random-QNN is much smaller than that of the CL-QNN
at the initial point and then exceeds the CL-QNN dur-
ing training. The gradient norm of the Random-QNN
after training indicates that the loss of the Random-QNN
converges to its stationary point slower than that of the
CL-QNN.

C. Binary classification

In the third task, we aim to classify two kinds of wines
based on their features. The wine dataset [59] consists of
138 instances derived from three different cultivars. Each
of the instances has 13 features that measure different
chemical components. In this task, we choose two kinds
of wines and divide the original dataset into the training
and test set. Both datasets contain 58 samples, and the
number of samples from two different classes are the same.
Specifically, we denote A = {(x(i), y(i))} as the set of
input data, where y(i) = ±1 for different labels. Qubit
embedding [63] is employed to encode the information of
datasets into quantum states, i.e.,

ρin(x) =

dim(x)⊗
j=1

RY (xj)|0〉〈0|RY (xj)
†,

where dim(x) = 13 is the dimension of x. We optimize
the `1-norm loss defined by

fQML(θ) =
1

|A|

|A|∑
i=1

∣∣∣Tr[OV (θ)ρin(x(i))V (θ)†]− y(i)
∣∣∣ ,
(9)

where O = σ3 ⊗ σ0 · · · ⊗ σ0, and |A| is the size of the
dataset. Since the aim of the binary classification is to
arrange the right label for the unseen data, we will record

the classification error

e(θ) =
1

|A|

|A|∑
i=1

sign
(

Tr[OV (θ)ρin(x(i))V (θ)†]− y(i)
)

(10)
on the test dataset.

We compare the performance of CL-QNNs with that
of hardware-efficient QNNs (HE-QNNs) in Figure 5
and randomly structured QNNs. The qubit number
N = 13 suffices to encode all the features of the wine
dataset. For CL-QNNs, we set the number of CL blocks
L = 2 and perform CZ gates on all neighboring qubits
(1, 2), (2, 3), · · · , (N − 1, N), (N, 1). The number S = 1
by considering the observable in Eq. (9). Unitaries on the
remaining N − S qubits (the light blue block in Figure 1)
are chosen to be the hardware-efficient ansatz in Figure 5
with the depth LHE = 5. Thus, the depth of the pa-
rameterized part of the CL-QNN is DCL = 3LHEL = 30.
To make a fair comparison, the number of single-qubit
gates, CZ gates, and CNOT gates in Random-QNNs are
set to be the same as that in the CL-QNNs, and the
parameterized circuit depth of the HE-QNNs is set to
be the same as that in the CL-QNN by using LHE = 10
HE layers. Parameters in different QNNs are initialized
independently from a uniform distribution in [0, 2π]. We
employ SGD and stochastic Adam optimizers, where the
randomness is introduced by finite measurements and the
batch training strategy. We set the number of measure-
ments to be 100 and the batch size to be 8. The number
of training iterations is 200. The learning rates of SGD
and stochastic Adam optimizers are 0.01.

The numerical results of the binary classification task
using different QNNs are shown in Figures 8(a)-8(f). For
the SGD case, both the training loss and the test error
corresponding to the CL-QNN decrease significantly com-
pared with that of the Random-QNN and the HE-QNN.
For the stochastic Adam case, the training loss and the
test error of the CL-QNN converge after 125 iterations,
while the loss of Random-QNN and HE-QNN do not
show clear convergence with a much higher final value.
We record the `2-norm of the gradient during the training
in Figures 8(e) and 8(f). For the SGD case, the gradient
norm of the CL-QNN is larger than 0.5 during the train-
ing. For the stochastic Adam case, the gradient norm
for the CL-QNN is larger than 0.5 at the initial point
and converges during training. On the other hand, the
gradient norm of the Random-QNN and the HE-QNN
is much smaller than that of the CL-QNN at the initial
point before the latter converges.

In conclusion, CL-QNNs of moderate size showed much
better trainability for finding the ground state of the
Ising model and the binary classification when compared
with Random-QNNs and HE-QNNs. These numerical
experiments accord with the theorems obtained in the
previous section.
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V. CONCLUSION

In this work, we analyze the vanishing gradient problem
in quantum neural networks. We prove that the gradi-
ent norm of N -qubit quantum neural networks with a
controlled-layer structure is lower bounded by Ω(8−LS),
where L is the number of CL blocks in the circuit and S
is the number of qubits corresponding to the quantum
observable. We remark that the circuit depth in each CL
block could be arbitrary. Thus, the bound guarantees the
trainability of deep CL-QNNs.

Our theoretical framework does not require the unitary
2-design assumption as in previous works; hence, it will be
more applicable to real-world quantum neural networks
for near-term quantum computers. When compared with
randomly structured QNNs and hardware-efficient QNNs,
which are known to suffer from the barren plateau prob-
lem, CL-QNNs show better trainability for finding the
ground state of the Ising model and the binary classifica-
tion task. We hope that the paper could inspire future
works on the trainability of deep QNNs with different
architectures and other variational quantum algorithms.
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Appendix A: Technical Lemmas

In this section we provide some technical lemmas.
Consider the objective function of the QNN defined as

f(θ) = 〈O〉 = Tr[O · V (θ)ρinV (θ)†],

where θ encodes all parameters which participate the
circuit as e−iθjσk , k ∈ 1, 2, 3, ρin denotes the input state
and O is an arbitrary quantum observable.

Lemma 1. The partial derivative of the function f(θ)
with respect to the parameter θj could be calculated by

∂f

∂θj
= Tr[O · V (θ+)ρinV (θ+)†]

− Tr[O · V (θ−)ρinV (θ−)†], (A1)

where θ+ ≡ θ + π
4 ej and θ− ≡ θ − π

4 ej.

Proof. First we assume that the circuit V (θ) consists of
p parameters, and could be written in the sequence:

V (θ) = Vp(θp) · Vp−1(θp−1) · · ·V1(θ1),

such that each block Vj contains only one parameter.
The parameter shifting rule [22, 23] provides a gradient

calculation method for the single parameter case. Con-

sider the observable O′ = V †j+1 · · ·V †pOVp · · ·Vj+1 and the

input state ρ′in = Vj−1 · · ·V1ρinV †1 · · ·V
†
j−1. The gradient

of fj(θj) = Tr[O′ ·U(θj)ρ
′
inU(θj)

†] could be calculated as

dfj
dθj

= fj(θj +
π

4
)− fj(θj −

π

4
).

Thus, by inserting the form of O′ and ρ′in, we could obtain

∂f

∂θj
=
dfj
dθj

= fj(θj +
π

4
)− fj(θj −

π

4
)

= Tr[O · V (θ+)ρinV (θ+)†]− Tr[O · V (θ−)ρinV (θ−)†].

Lemma 2. Let θ be a variable with uniform distribu-
tion in [0, 2π]. Let G be an arbitrary hermitian unitary,
and define W = e−iθG. Let O be an arbitrary quantum
observable. Then

E
θ

Tr[OWρ1W
†]Tr[OWρ2W

†] = Tr[O1ρ1]Tr[O1ρ2]

+
1

2
Tr[O2ρ1]Tr[O2ρ2] +

1

2
Tr[iO2Gρ1]Tr[iO2Gρ2], (A2)

where ρ1, ρ2 are two quantum states, and O1,2 = 1
2O ±

1
2GOG, respectively.

Proof. By replacing the term

W = e−iθG = I cos θ − iG sin θ,
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we have

Tr[OWρ1W
†]

= Tr[O(I cos θ − iG sin θ)ρ1(I cos θ + iG sin θ)]

= Tr[O1ρ1] + Tr[O2ρ1] cos 2θ − sin 2θTr[iO2Gρ1], (A3)

where hermitians O1 and O2 are commuting and anti-
commuting parts of O with respect to G, respectively,
i.e.

O1 +O2 = O,

O1G−GO1 =
OG+GO

2
− GO +OG

2
= 0,

O2G+GO2 =
OG−GO

2
+
GO −OG

2
= 0.

We remark that iO2G could serve as a hermitian observ-
able. Similar formulation also holds for ρ2, i.e.

Tr[OWρ2W
†]

= Tr[O1ρ2] + Tr[O2ρ2] cos 2θ − sin 2θTr[iO2Gρ2]. (A4)

Combining Eqs. (A3) and (A4), we have

E
θ

Tr[OWρ1W
†]Tr[OWρ2W

†]

= E
θ

(Tr[O1ρ1] + Tr[O2ρ1] cos 2θ − sin 2θTr[iO2Gρ1])

· (Tr[O1ρ2] + Tr[O2ρ2] cos 2θ − sin 2θTr[iO2Gρ2])

= Tr[O1ρ1]Tr[O1ρ2] +
1

2
Tr[O2ρ1]Tr[O2ρ2]

+
1

2
Tr[iO2Gρ1]Tr[iO2Gρ2], (A5)

where Eq. (A5) is obtained by calculating expectation
terms.

Lemma 3. Let θ be a variable with uniform distribution
in [0, 2π]. Let G be an arbitrary hermitian unitary, and
denote W± = e−i(θ±

π
4 )G. Let O be an arbitrary hermitian

observable and . Then

Eθ
(

Tr[OW+ρW
†
+]− Tr[OW−ρW

†
−]
)2

= 2Tr[O2ρ]2 + 2Tr[iO2Gρ]2, (A6)

where ρ is a quantum state and O2 = 1
2O −

1
2GOG.

Proof. First we denote θ± = θ ± π
4 for convenience. By

replacing terms

W± = e−iθ±G = I cos θ± − iG sin θ±,

we obtain

Tr[OW+ρW
†
+]− Tr[OW−ρW

†
−]

= Tr[O(I cos θ+ − iG sin θ+)ρ(I cos θ+ + iG sin θ+)]

−Tr[O(I cos θ− − iG sin θ−)ρ(I cos θ− + iG sin θ−)]

= Tr[O1ρ] + Tr[O2ρ] cos 2θ+ − sin 2θ+Tr[iO2Gρ]

−Tr[O1ρ]− Tr[O2ρ] cos 2θ− + sin 2θ−Tr[iO2Gρ]

= − 2 sin 2θTr[O2ρ]− 2 cos 2θTr[iO2Gρ],

where hermitians O1,2 = 1
2O±

1
2GOG are commuting and

anti-commuting parts of O with respect to G, respectively,
i.e.

O1 +O2 = O,

O1G−GO1 =
OG+GO

2
− GO +OG

2
= 0,

O2G+GO2 =
OG−GO

2
+
GO −OG

2
= 0.

We remark that iO2G could be served as a hermitian
observable. Thus, we have

Eθ
(

Tr[OW+ρW
†
+]− Tr[OW−ρW

†
−]
)2

= 2Tr[O2ρ]2 + 2Tr[iO2Gρ]2, (A7)

where Eq. (A7) is obtained by calculating expectation
terms.

Appendix B: Proof of Theorem 1

Proof. We first introduce several notations for conve-
nience.

CZ`

RX(θ
(1)
`,1 ) RY (θ

(2)
`,1 ) RX(θ

(3)
`,1 )

...
...

...
...

...

RX(θ
(1)
`,S) RY (θ

(2)
`,S) RX(θ

(3)
`,S)

W ′`(θ
′
`)

VX(θ
(1)
` ) VY (θ

(2)
` ) VX(θ

(3)
` )

FIG. 9. Decomposition of a controlled layer block into five
layers.

Denote

VX(θ
(1)
` ) ≡ RX(θ

(1)
`,1 )⊗ · · · ⊗RX(θ

(1)
`,S)⊗ σ0 ⊗ · · · ⊗ σ0,

(B1)

VY (θ
(2)
` ) ≡ RY (θ

(2)
`,1 )⊗ · · · ⊗RY (θ

(2)
`,S)⊗ σ0 ⊗ · · · ⊗ σ0,

(B2)

VX(θ
(3)
` ) ≡ RX(θ

(3)
`,1 )⊗ · · · ⊗RX(θ

(3)
`,S)⊗ σ0 ⊗ · · · ⊗ σ0,

(B3)

where θ
(i)
` = (θ

(i)
`,1, · · · , θ

(i)
`,S), ∀i ∈ {1, 2, 3}. Then a

controlled-layer block in Figure 9 could be divided into
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five parts as follows:

V`(θ`) = (I⊗S ⊗W ′`(θ′`))VX(θ
(3)
` )VY (θ

(2)
` )VX(θ

(1)
` )CZ`,

(B4)

where the parameter θ` = (θ
(1)
` ,θ

(2)
` ,θ

(3)
` ,θ′`). We abbre-

viate the term I⊗S ⊗W ′`(θ′`) as W ′`(θ
′
`) in the following

for convenience.
In the following proof, we consider VX(θ

(1)
` ), VY (θ

(2)
` ),

VX(θ
(3)
` ), W ′`(θ

′
`) and CZ` as separate layers. We denote

by ρk the state after the kth layer, ∀k ∈ {0, 1, · · · , 5L},

ρk :=



(
1∏
i=`

Vi(θi)

)
ρin

(∏̀
i=1

Vi(θi)
†

)
(k = 5`),

CZ`+1ρ5`CZ†`+1 (k = 5`+ 1),

VX(θ
(1)
`+1)ρ5`+1VX(θ

(1)
`+1)† (k = 5`+ 2),

VY (θ
(2)
`+1)ρ5`+2VY (θ

(2)
`+1)† (k = 5`+ 3),

VX(θ
(3)
`+1)ρ5`+3VX(θ

(3)
`+1)† (k = 5`+ 4).

(B5)
Now we begin to prove Eq. (4). We denote all param-

eters in the circuit by θ = (θ1,θ2, · · · ,θL). Rewrite the
formulation of f(θ) in detail:

E
θ

(
Tr
[
σiV (θ)ρinV (θ)†

])2
= E
θ

(Tr [σiρ5L])
2

(B6)

= E
θ1,··· ,θL−1,θ

(1)
L ,θ

(2)
L ,θ

(3)
L ,θ′L

Tr
[
σiW

′
L(θ′L)ρ5L−1W

′
L(θ′L)†

]2
(B7)

= E
θ1,··· ,θL−1,θ

(1)
L ,θ

(2)
L ,θ

(3)
L

Tr [σiρ5L−1]
2

(B8)

= E
θ1,··· ,θL−1,θ

(1)
L ,θ

(2)
L ,θ

(3)
L

Tr
[
σiVX(θ

(3)
L )ρ5L−2VX(θ

(3)
L )†

]2
.

(B9)

Eqs. (B6) and (B7) follow from the definition of ρk in
Eq. (B5). Eq. (B8) holds since

W ′L(θ′L)†σiW
′
L(θ′L) = σi. (B10)

Eq. (B9) is obtained by using the definition of ρk in
Eq. (B5) again.

Continuing from Eq. (B9), we have

E
θ

(
Tr
[
σiV (θ)ρinV (θ)†

])2
≥ E
θ1,··· ,θL−1,θ

(1)
L ,θ

(2)
L

Tr
[
σ3|i;2VY (θ

(2)
L )ρ5L−3VY (θ

(2)
L )†

]2
2S

(B11)

≥ E
θ1,··· ,θL−1,θ

(1)
L

Tr
[
σ3|iVX(θ

(1)
L )ρ5L−4VX(θ

(1)
L )†

]2
22S

(B12)

≥
(

1

2

)3S

E
θ1,··· ,θL−1

Tr
[
σ3|iρ5L−4

]2
(B13)

=

(
1

2

)3S

E
θ1,··· ,θL−1

Tr
[
σ3|iρ5L−5

]2
, (B14)

where 3|i; 2 denotes the index by replacing non-zero el-
ements of i = (i1, · · · , iN ) with 3 if the original value is
2. Eq. (B11) is derived by using Lemma 2 for the RX
rotation case for S times. Eqs. (B12) and (B13) are de-
rived similarly by using Lemma 2. Eq. (B14) is derived by
noticing that for j, k ∈ {0, 3}, the term σj ⊗ σk remains
the same after the CZ operation.

Now we move forward from Eq. (B14). By applying
Eqs. (B7)–(B14) inductively for L− 1 times, we obtain

Eq. (B14) ≥
(

1

2

)3LS

Tr
[
σ3|iρin

]2
. (B15)

Thus, we prove Equation (4).

Appendix C: Proof of Theorem 2

Proof. First, we notice that the norm of the whole gradient
is lower bounded by that of particle derivatives summed
over a part of parameters, i.e.

E
θ
‖∇θf‖2 ≥

L−1∑
`=1

S∑
n=1

3∑
j=1

E
θ

(
∂f

∂θ
(j)
`,n

)2

, (C1)

where θ
(j)
`,n denotes the parameter of the jth single-qubit

gate on the nth qubit in the `th CL block. Thus, we
could obtain Eq. (5) if

E
θ

(
∂f

∂θ
(j)
`,n

)2

≥
4
(
Tr[σ3|iρin]

)2
8LS

(C2)

holds for all ` ∈ {1, · · · , L − 1}, n ∈ {1, · · · , S}, and
j ∈ {1, 2, 3}.

Now we begin to prove Eq. (C2). Our main idea is
to integrate the square of the partial derivative of f
with respect to θ = (θ1, · · · ,θL) by using Lemma 2 and
Lemma 3. For convenience, we follow the definition of
VX(·) in Eqs. (B1), (B3), VY (·) in Eq. (B2), CZ` and ρk
in Eq. (B5). In addition, we denote

ρk,`,n,j,± :={
ρk(θ1, · · · ) (k ≤ 5`− 4),

ρk(θ1, · · · ,θ`−1,θ`,n,j,±,θ`+1, · · · ) (k > 5`− 4),

(C3)

where ρk follows from the definition in Eq. (B5), and
θ`,n,j,± differs from θ` by plus or minus π

4 on the compo-

nent θ
(j)
`,n.
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Next, we rewrite the formulation in Eq. (C2),

E
θ

(
∂

∂θ
(j)
`,n

Tr
[
σiV (θ)ρinV (θ)†

])2

(C4)

= E
θ1
· · · E

θL

(
∂

∂θ
(j)
`,n

Tr [σiρ5L]

)2

(C5)

= E
θ1
· · · E

θL
(Tr [σiρ5L,`,n,j,+]− Tr [σiρ5L,`,n,j,−])

2
. (C6)

Eq. (C4) follows from the formulation of the cost function
f . Eq. (C5) follows from Eq. (B5). Eq. (C6) follows from
the parameter-shift rule in Lemma 1.

We proceed from Eq. (C6). Firstly, by taking the
expectation with the uniform distribution of parameters
in θL, we obtain

E
θL

(Tr [σiρ5L,`,n,j,+]− Tr [σiρ5L,`,n,j,−])
2

= E
θ
(1)
L

E
θ
(2)
L

E
θ
(3)
L

E
θ′L

(
Tr
[
σiW

′
L(θ′L)ρ5L−1,`,n,j,+W

′
L(θ′L)†

]
− Tr

[
σiW

′
L(θ′L)ρ5L−1,`,n,j,−W

′
L(θ′L)†

])2
(C7)

= E
θ
(1)
L

E
θ
(2)
L

E
θ
(3)
L

(
Tr
[
σiρ5L−1,`,n,j,+

]
− Tr

[
σiρ5L−1,`,n,j,−

])2
(C8)

= E
θ
(1)
L

E
θ
(2)
L

E
θ
(3)
L

(
Tr
[
σiVX(θ

(3)
L )ρ5L−2,`,n,j,+VX(θ

(3)
L )†

]
− Tr

[
σiVX(θ

(3)
L )ρ5L−2,`,n,j,−VX(θ

(3)
L )†

])2
, (C9)

where Eq. (C7) follows from the definition of ρk,`,n,j,±
in Eq. (C3). Eq. (C8) is obtained by using Eq. (B10).
Eq. (C9) follows from the definition of ρk,`,n,j,± in Eq. (C3)
again.

Then, we have

≥ 1

2S
E
θ
(1)
L

E
θ
(2)
L

(
Tr
[
σ3|i;2ρ5L−2,`,n,j,+

]
− Tr

[
σ3|i;2ρ5L−2,`,n,j,−

])2
(C10)

=
1

2S
E
θ
(1)
L

E
θ
(2)
L

(
Tr
[
σ3|i;2VY (θ

(2)
L )ρ5L−3,`,n,j,+VY (θ

(2)
L )†

]
− Tr

[
σ3|i;2VY (θ

(2)
L )ρ5L−3,`,n,j,−VY (θ

(2)
L )†

])2
(C11)

≥
E
θ
(1)
L

(
Tr
[
σ3|iρ5L−3,`,n,j,+

]
− Tr

[
σ3|iρ5L−3,`,n,j,−

])2
22S

(C12)

=
1

22S
E
θ
(1)
L

(
Tr
[
σ3|iVX(θ

(1)
L )ρ5L−4,`,n,j,+VX(θ

(1)
L )†

]

− Tr
[
σ3|iVX(θ

(1)
L )ρ5L−4,`,n,j,−VX(θ

(1)
L )†

])2
(C13)

≥

(
Tr
[
σ3|iρ5L−4,`,n,j,+

]
− Tr

[
σ3|iρ5L−4,`,n,j,−

])2
23S

(C14)

=

(
Tr
[
σ3|iρ5L−5,`,n,j,+

]
− Tr

[
σ3|iρ5L−5,`,n,j,−

])2
23S

,

(C15)

where 3|i; 2 denotes the index by replacing non-zero el-
ements of i = (i1, · · · , iN ) with 3 if the original value is
2. Eq. (C10) is obtained by using Lemma 2 for the RX
case. Eq. (C11) follows from the definition of ρk,`,n,j,±
in Eq. (C3). Eq. (C12) is obtained by using Lemma 2
for the RY case. Eq. (C13) follows from the definition
of ρk,`,n,j,± in Eq. (C3). Eq. (C14) is obtained by using
Lemma 2 for the RX case. Eq. (C15) is derived by notic-
ing that for j, k ∈ {0, 3}, the term σj ⊗ σk remains the
same after the CZ operation.

Next, we repeat the derivation in Eqs.(C7)–(C15) in-
ductively for parameters (θL−2, · · · ,θ`+1), which yields

E
θ

(
∂f

∂θ
(j)
`,n

)2

≥
E
θ1
· · · E

θ`

(
Tr
[
σ3|iρ5`,`,n,j,+

]
− Tr

[
σ3|iρ5`,`,n,j,−

])2
23(L−`)S

(C16)

=
1

8(L−`)S
E
θ1
· · · E

θ`

(
Tr
[
σ3|iW

′
`(θ
′
`)ρ5`−1,`,n,j,+W

′
`(θ
′
`)
†]

− Tr
[
σ3|iW

′
`(θ
′
`)ρ5`−1,`,n,j,−W

′
`(θ
′
`)
†])2 (C17)

=
1

8(L−`)S
E
θ1
· · · E

θ`−1

E
θ
(1)
`

E
θ
(2)
`

E
θ
(3)
`(

Tr
[
σ3|iρ5`−1,`,n,j,+

]
− Tr

[
σ3|iρ5`−1,`,n,j,−

])2
.

(C18)

Eq. (C17) is derived by using the definition of ρk,`,n,j,±
in Eq. (C3). Eq. (C18) is derived by using Eq. (B10).

Now we proceed to integrate parameter layers

(θ
(1)
` ,θ

(2)
` ,θ

(3)
` ) and (θ1, · · · ,θ`−1). Remark that the pa-

rameter θ
(j)
`,n is applied on the nth qubit with the observ-

able σ3 in Eq. (C18). Since σ3 anticommutes with σ1
and σ2, Hamiltonians of parameterized single-qubit gates
in the circuit, we could apply Lemma 2 and Lemma 3
to simplify the formulation. Thus, Eq. (C18) could be
further bounded

≥
E
θ1
· · · E

θ`−1

4Tr
[
σ3|iρ5`−5

]2
8(L−`+1)S

(C19)

≥
4Tr
[
σ3|iρin

]2
8LS

. (C20)
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Eq. (C19) is obtained by noticing the similar collapsed
formulation of Lemmas 2 and 3 when the gate Hamiltonian

anticommutes with the observable. Eq. (C20) follows
similar to Eq.(B15). Thus, we prove Eq. (C2).
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