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Abstract

The exploration of quantum algorithms that possess quantum advantages is a central topic in quantum

computation and quantum information processing. One potential candidate in this area is quantum

generative adversarial learning (QuGAL), which conceptually has exponential advantages over classical

adversarial networks. However, the corresponding learning algorithm remains obscured. In this paper,

we propose the first quantum generative adversarial learning algorithm—the quantum multiplicative

matrix weight algorithm (QMMW)—which enables the efficient processing of fundamental tasks. The

computational complexity of QMMW is polynomially proportional to the number of training rounds and

logarithmically proportional to the input size. The core concept of the proposed algorithm combines

QuGAL with online learning. We exploit the implementation of QuGAL with parameterized quantum

circuits, and numerical experiments for the task of entanglement test for pure state are provided to support

our claims.

I. INTRODUCTION

The principal interest in quantum computation is the exploration of potential applications that outperform

their classical counterparts. The rapid development of quantum hardware divides this interest into short-

term and long-term goals. The short-term goal is to devise quantum algorithms that not only possess

quantum advantages but can also be implemented on near-term devices [36]. The long-term goal is to

employ fault-tolerant quantum computers that are capable of providing remarkable quantum speedups

over classical methods [38] to tackle practical real-world problems.

Quantum machine learning is one of the most promising candidates for achieving both short-term and

long-term goals [5], and the proposed quantum generative adversarial learning (QuGAL) strengthens this
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belief [29]. The main theoretical conclusion of QuGAL is that exponential quantum advantages may exist

under the assumption that the target data distribution can be efficiently encoded into a density matrix

[29]. Conceptually, QuGAL involves two players, a generator and a discriminator, which play a zero-sum

game. At each training round, the generator tries to approximate the target data to fool the discriminator,

while the discriminator tries to distinguish the fake data from the real data. When the generator and

discriminator are both constructed by quantum operations, the adversarial quantum learning game has the

potential to converge to Nash equilibrium with an exponential speedup.

Despite promising theoretical results, two issues related to QuGAL have not been explored. First, it is

unclear what kinds of learning tasks can be accomplished by QuGAL to potential advantages. Second,

an explicit learning algorithm of QuGAL that can fast converge to the equilibrium remains unexplored.

Previous studies mainly focus on the implementation of QuGAL under near-term quantum devices as

so-called quantum generative adversarial networks (QuGANs) [14], [39], [45], [37], [47]. In particular,

the generator and discriminator of QuGANs are constructed by employing parameterized quantum circuits

(PQCs) that are composed of a set of trainable parameterized single qubit gates and two-qubit CNOT

gates [16]. However, the intrinsic optimization mechanism of PQCs that iteratively updates each gate

destroys the required convex-concave property in QuGAL, which implies that the obtained result may not

converge to Nash equilibrium and may induce additional training difficulties, e.g., mode collapse and

vanishing gradients [2]. Two key issues therefore exist for QuGANs, i.e., how to improve stability and

convergence in training QuGANs, and whether QuGANs deliver potential quantum advantage.

To tackle the aforementioned issues, we revisit the theory of QuGAL in this paper from the perspective

of online learning [23]. The integration of online learning with QuGAL is motivated by the fact that online

learning algorithms can efficiently approximate the optimal result for the zero-sum game associated with

the convex-concave property, and the training of QuGAL satisfies this condition. This observation enables

us to devise a quantum adversarial learning algorithm with online learning features and to theoretically

analyze its potential quantum advantages. Additionally, online learning has been employed as a powerful

tool for relieving training difficulties in classical generative adversarial networks (GANs) [20], which

motivates us to introduce such a method in optimizing QuGANs. Lastly, we investigate how to use QuGAL

to accomplish learning quantum information processing tasks, such as the quantum entanglement test

for pure state and quantum state discrimination [25], [12], [10], [11], [13]. Our study opens avenues for

exploring quantum information processing tasks using quantum generative adversarial learning models.

We summarize the main results of this work as follows.

• We propose a quantum generative adversarial learning algorithm, the quantum multiplicative matrix

weight (QMMW) algorithm, which rapidly converges to Nash equilibrium as expected from QuGAL.
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QMMW is inspired by the multiplicative matrix weight algorithm, which is a popular online learning

algorithm that efficiently finds optimal solutions to the zero-sum game [28]. We prove that the

convergence rate of QMMW is O(
√
N/T ), where N is the number of qubits corresponding to the

target density matrix and T is the number of training rounds. An attractive feature of QMMW is

that the output states of both the generator and discriminator can be viewed as Gibbs states. By

exploiting the efficient Gibbs sampling method proposed by [41], we prove that the computational

complexity of QMMW is O(N3T 4).

• We introduce a multiplicative weight training method to overcome the training difficulty encountered

in QuGANs. The core ingredient of this method is to seek the most possible optimized direction

for achieving global equilibrium through the inherent mechanism of online learning. In the training

process, a multiplicative weight training method puts more weight to the gradient that is more

probable to fool the discriminator. Since the multiplicative weight training method only focuses on

re-weighting the gradient, it can be seamlessly embedded into other optimization methods used in

QuGANs.

• We investigate the potential quantum advantages by applying QMMW and QuGANs to solve

quantum information tasks, i.e., the pure state entanglement test and the quantum state discrimination.

In particular, we numerically validate that QuGANs are capable of accomplishing the pure state

entanglement test with modest quantum resources, which sheds light on using QuGANs to handle

other quantum information learning tasks. All numerical simulations demonstrated in this paper are

implemented in Python, leveraging the pyQuil and QuTiP libraries to access the numerical simulators

[40], [27].

A. Related Works

Online convex optimization has been broadly applied to the study of linear programming, semidefinite

programming, and zero-sum game [28], [23]. Recently, it has been employed to study shadow quantum

tomography [1]. An advanced meta-algorithm in online convex learning, the so-called multiplicative

weight, has been introduced to study the quantum zero-sum game algorithm [42], non-interactive zero-sum

quantum games [26], the parallel approximation of semidefinite programs and minmax problems [21],

and quantum semi-definite programming [7]. Despite their similarities, the various studies, including this

work, have adopted different update rules and focused on different tasks, leading to distinct theoretical

results on, for example, convergence rate.

In the rest of this paper, we first introduce QuGAL and discuss its applications on quantum information

processing in Section II. In Section III, we describe QMMW and theoretically analyze its computational
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cost. In Section IV, we give the multiplicative weight training method for QuGANs. In Section V, we

explain how to employ QMMW and QuGANs to tackle quantum information processing tasks. In Section

VI, we numerically validate the effectiveness of applying QuGANs to accomplish quantum information

processing tasks. Section VII concludes the paper.

II. QUANTUM GENERATIVE ADVERSARIAL LEARNING AND ITS APPLICATIONS

We formally define the quantum generative adversarial learning (QuGAL) problem and devise a general

framework for using QuGAL to accomplish quantum information processing tasks. Suppose that a given

mixed state ρ is represented by N qubits, the goal of QuGAL is to reproduce ρ. QuGAL employs two

players to set up a zero-sum game [34]: The first player refers to a generator, which generates a mixed

state σ to approximate ρ; the second player refers to the discriminator D, which aims to maximally

distinguish ρ from σ. Such a zero-sum game is evaluated by a loss function L(·, ·), where its physical

meaning is the classification error. In the training process, the generator tries to minimize the loss function

while the discriminator tries to maximize it. By labeling the state ρ as ‘True’ and the generated state σ as

‘False’, we have

L(σ,D) = P (True|σ)P (G) + P (False|ρ)P (R) , (1)

where P (G) (P (R)) refers to the prior of operating the discriminator with σ (ρ), and P (True|σ) (P (False|ρ)

refers to the likelihood that the discriminator will classify σ (ρ) as ‘True’ (‘False’). Throughout this paper,

we set P (G) = P (R) = 1/2.

When the discriminator is assigned to be positive operator value measurement (POVM), we have

P (True|σ) = Tr((I−D)σ) and P (False|ρ) = Tr(Dρ), where the corresponding loss function possesses the

convex-concave property. This property immediately indicates that equilibrium always exists, guaranteed

by the theoretical result of the convex optimization [6]. Denoting the optimal solution as (σ∗,D∗) with

(σ∗,D∗) = arg maxσ minD L(σ,D), we have σ∗ = ρ with L(σ∗,D∗) = 1/2 at the equilibrium point.

Despite this promising property, the means of applying QuGAL to solve certain problems with an

exponential quantum advantage is unknown. In the following, we propose a general principle for employing

QuGAL to solve quantum information processing problems [33]. Let us recall a common strategy of

conventional methods in quantum information processing tasks, e.g., quantum entanglement test or quantum

state discrimination [3], [25]. A conventional method generally has two steps: Extraction of quantum

information into the classical forms, followed by manipulation of the collected classical data into the

desired result. Due to the curse of dimensionality, the number of measurements required to collect a

sufficient amount of quantum information grows exponentially with respect to the number of qubits. In

contrast, the desired result is often unrelated to the size of the input and can be represented in a low
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dimensional space. For instance, the outcome of an entanglement test is binary, indicating whether the

input state is entangled or not. Applying QuGAL to manipulate quantum data and output the result directly

could immediately have exponential quantum advantage, assured by circumventing the enormous amount

of quantum measurements required by conventional methods.

The key issue, given this observation, is identifying how to reformulate a given quantum information

processing task as quantum generative adversarial learning language. Here we devise a general framework

to achieve this goal. The central idea behind this framework is to conditionally limit the expressive

power of the generator or the discriminator for a given task. Adopting the constraint operation aims to

distinguish the desired answer from other results, where the training loss of QuGAL will conditionally

converge to the Nash equilibrium if and only if the given input directly relates to the desired answer.

In other words, the convex-concave property of the training loss defined in Eqn. (1) is conditionally

preserved when the input directly relates to the desired answer. We outline the framework as follows.

First, we translate a quantum information processing task into a binary decision problem, which can be

effectively achieved by employing the ‘one-versus-all’ strategy [44]. We then constrain the expressive

power of the generator or the discriminator, e.g., the generator can only well approximate all possible

inputs corresponding to the desired answer. If the discrepancy between the obtained loss and the optimal

loss is below a certain threshold after training„ the desired outcome is obtained. The restriction of the

expressive power particularly depends on the detailed setting and implementation of QuGAL, and we will

illustrate how to limit the expressive power in the following sections.

We illustrate how to tackle entanglement test problems under the proposed QuGAL framework. Let

us briefly review the entanglement test. The entanglement test targets to the detection of whether a

given quantum state is entangled or separable. Devising an efficient separability criteria to distinguish

entanglement for specific quantum states is fundamentally important for quantum applications. Previous

separability criteria can be roughly divided into two classes [25]: (1) The separability criteria are efficient

but incomplete, that is, some entangled states could be misclassified as separable states, e.g., positive

partial transposition [24]. (2) The separability criteria are complete in the sense that they are capable

of correctly identifying any entangled states at any dimensions, but the computational cost is very high,

e.g., symmetric extension [15]. Besides these two conventional classes, machine learning, which has been

explored as an effective tool in many physics problems [9], [43], also provides novel insights into the

tasks of the entanglement test [30], [31]. A common weakness of the above methods is the requirement

for quantum state tomography to construct the classical density matrix, which leads to an exponential

runtime with a linearly increased number of qubits.

QuGAL is a potential candidate for overcoming the aforementioned issue by directly manipulating
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the quantum data to circumvent the time-consuming quantum state tomography. The separability rule

of QuGAL is reflected by the training loss such that the given state is classified as being entangled if

the training loss cannot converge to the equilibrium below a threshold after a certain number of training

rounds. The detailed procedure of employing QuGAL to tackle the entanglement test is as follows. Given

an unknown quantum state ρ, the entanglement test asks if ρ is entangled or not, which is a binary decision

problem. In this setting, we restrict the expressive power of the generator to only generate separable states.

If ρ is separable, the convex-concave property of QuGAL is preserved, where σ output by the generator

can efficiently approximate ρ and the loss converges to the Nash equilibrium very quickly. Otherwise, the

convex-concave property is lost and the Nash equilibrium can never be reached. The fact that the loss

of QuGAL can be efficiently calculated by two outcome measurements immediately gives QuGAL an

exponential quantum advantage over conventional methods, which require exponential measurements with

respect to the number of qubits.

III. QUANTUM MULTIPLICATIVE MATRIX WEIGHT

The convex-concave property of QuGAL enables us to ues the results of convex optimization, under the

no-regret framework for online learning [23], to develop an advanced quantum algorithm that is capable of

fast convergence to the equilibrium. We first give the definition of regret before moving on to explain how

no-regret learning algorithms work. Given a sequence of convex loss functions {F1,F2, ...,FT } : K → R,

an algorithm A selects a sequence of Kt ∈ K’s with K being the input space, each of which may only

depend on previously observed {F1, ...,Ft−1}. The algorithm A is said to have no regret if its minimized

regret minK RT (K) = O(T ), where we define RT (K) :=
∑T

t=1(Ft(Kt)−minK∈K Ft(K)).

Here we propose a no-regret quantum generative adversarial learning algorithm—the quantum multi-

plicative matrix weight (QMMW) algorithm—to efficiently reconstruct the given mixed state under the

fault-tolerant quantum circuits setting. Conceptually, QMMW is inspired by the multiplicative matrix

weight algorithm [28], an advanced meta-algorithm with the no-regret property that is broadly used in

online convex optimization [23].

Before presenting the technical treatment, we explicitly define the generated state, the discriminator,

and the loss function in Eqn. (1) used in QMMW. We denote the output states of the generator and the

discriminator as σG and σD, respectively. The loss function at t-th round L(σ
(t)
G , σ

(t)
D ) is

L(σ
(t)
G , σ

(t)
D ) =

1

2

(
Tr
(
σ
(t)
D ρ
)
− Tr

(
σ
(t)
D σ

(t)
G

))
+

1

2
. (2)
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The physical meaning of this loss function is the evaluation of the overlap between ρ and σG using σ(t)D
1.

The convexity of trace calculation implies that the loss function defined in Eqn. (2) has the convex-concave

property, where the optimal solution is σ∗G = ρ with the equilibrium L(σ∗G, σ
∗
D) = 1/2.

Following the theoretical results of approximating Nash equilibrium, an algorithm that has the no-regret

property will quickly converge to the equilibrium [17]. We denote that the regret for the generator and

discriminator as RT (σG) and RT (σD), respectively. We will prove later that QMMW possesses the

no-regret property with RT (σG) = O(T ) and RT (σD) = O(T ), which implies that the optimal result can

be efficiently located. Mathematically, the minimized regret for the generated state σG during T training

rounds is defined as

RT (σG) = −
T∑
t=1

L(σ
(t)
G , σ

(t)
D ) + min

σG

T∑
t=1

L(σG, σ
(t)
D ) .

Similarly, we can define the regret for the discriminator as

RT (σD) =

T∑
t=1

L(σ
(t)
G , σ

(t)
D )−min

σD

T∑
t=1

L(σ
(t)
G , σD) .

We now explain QMMW. QMMW consists of three steps. First, given a targeted state ρ represented by

N qubits, we set the total number of training rounds as T and let the tolerable error be ε =
√
N/T with

ε ≤ 1/2. We also initialize the discriminator σ(1)D as the maximally mixed state σ(1)D = I/2N . Second, we

iteratively update the generator and the discriminator T training rounds. The update rule for the generated

state σ(t) at t-th round is

σ
(t)
G =

exp
∑t
τ=1(−εσ

(τ)
D )

Tr
(

exp
∑t
τ=1(−εσ

(τ)
D )
) . (3)

The update rule for the discriminator is

σ
(t+1)
D =

e
∑t
τ=1−ε(ρ−σ

(τ)
G )

Tr e
∑t
τ=1−ε(ρ−σ

(τ)
G )

. (4)

Third, we calculate the loss L(σ̄D, σ̄D) defined in Eqn. (2) with σ̄G =
∑T

t=1 σ
(t)
G /T and the averaged

discriminator σ̄D =
∑T

t=1 σD
(t)/T during T training rounds. This convergence rate of QMMW is assured

by the following theorem:

Theorem 1. Given a mixed state ρ represented by N qubits, and setting the training rounds as T , QMMW

yields

|L(σ̄G, σ̄D)− L(σ∗G, σ
∗
D)| ≤ 3

√
N

T
. (5)

1As discussed in Section 3, the mixed state will be purified in the implementation of QMMW, where the physical meaning of

the loss will be clearer.
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The proof of Theorem 1 is given in the supplementary material SM (A).

QMMW can be efficiently executed on fault-tolerant quantum circuits, since both σ
(t)
G and σ

(t)
D are

Gibbs states that can be prepared by using efficient Gibbs sampling methods [7], [41]. We elaborate how

to carry out the proposed QMMW algorithm in the supplementary material SM(B). The efficiency of the

Gibbs sampling methods proposed in [41] presents another attractive advantage of QMMW:

Theorem 2. Given an N -qubit state, let Uρ be the unitary that prepares the purification state of ρ. Denote

T as the total number of training rounds. If there is quantum query access to Uρ, the computation cost of

the QMMW algorithm is O(N3T 4).

The proof of Theorem 2 is given in the supplementary material SM (C). We remark that allowing

access the Gibbs sampler Uρ has also been used in [7].

IV. QUGANS WITH MULTIPLICATIVE WEIGHT TRAINING METHOD

The investigation of applying QuGANs to tackle quantum information processing problems is of

practical interest in the near term when there are only limited available qubits and shallow quantum

circuit depth [36]. Although several studies have confirmed the feasibility of using QuGANs to achieve

certain tasks, the variational optimization method collapses the desired convex-concave property and

heavily challenges the performance of QuGANs. The disappearance of the convex-concave property results

in an inevitable difficulty, since the optimization may get stuck in local minima. This topic has been

widely investigated in classical GANs [46]. Inspired by the weighted training algorithm proposed by [35],

which has demonstrated its effectiveness in classical GANs, we propose the multiplicative weight training

method [35] to relieve the training difficulty in QuGANs. The proposed training method can be seamlessly

embedded into advanced optimization algorithms used to train parameterized quantum circuits (PQCs).

Before illustrating how the multiplicative weight training method works, we first set up the QuGAN

used in this paper. The generator UG and discriminator UD of our QuGAN are two trainable unitaries

that are implemented by PQCs. Mathematically, the trainable unitary UG and UD are defined as

UG =

L1∏
i=1

U(θi), UD =

L2∏
i=1

U(γi) , (6)

where L1 (L2) refers to the number of blocks in G (D) and each block U(θi) (U(γi)) has an identical

arrangement of quantum gates. Suppose that the target state ρ is represented by N qubits, the generated
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state is formulated as |φ〉 = UG |0〉⊗N
′

with N ′ = N +Na and Na being the number of ancillary qubits
2. The generated mixed state σG can be obtained by partial tracing the ancillary system, i.e.,

σG = Tra(UG(|0〉 〈0|)⊗N ′U †G), (7)

supported by Stinespring’s dilation theorem [33]. The discriminator of our QuGANs is defined as

MD = U †D(I⊗ EF )UD , (8)

where a two-outcome positive-operator valued measurement D defined in Eqn. (1) is reformulated as UD

followed by a partial measurement EF = |0〉 〈0| on an ancillary qubit. Following the loss function of

QuGAL defined in Eqn. (1), the loss function of QuGAN yields

L(UG, UD) = Tr((MD(ρ⊗ |0〉 〈0|))P (R) + Tr((I−MD)(σG ⊗ |0〉 〈0|))P (G) , (9)

where σG is defined in Eqn. (7) and MD is defined in Eqn. (8). The loss function of QuGAN gives the

following theorem:

Lemma 3. The loss function L(UG, UD) defined in Eqn. (9) has the convex-concave property with the

equilibrium value L(U∗G, U
∗
D) = 1/2.

The proof of Theorem 3 is given in the supplemental material SM (D).

We now illustrate how to use the multiplicative weight training method to facilitate the optimization of

QuGAN. Intuitively, this method aims to put more weight on generated states that are more likely to fool

the discriminator in updating UG. We summarize the multiplicative weight training method in Algorithm

1.

The four hyper-parameters of the multiplicative weight training method are the total number of training

rounds T , the total number of inner iterations K, the learning rate α ∈ R, and the scale parameter

η ∈ (0, 1). At each training round t with t ∈ [T ], we introduce K inner iterations to obtain a better

gradient for updating θ(t+1). For ease of understanding, we denote the updated parameters in K iterations

as θ̃ and γ̃. As indicated in Lines 5-7 of Algorithm 1, we iteratively update θ̃ and γ̃, and record a set

of training losses {L(U
(k)
G , U

(k)
D )}Kk=1 and a set of gradients {∇θL(U

(k)
G , U

(k)
D )}Kk=1. After conducting

the inner iterations, we calculate the multiplicative weights and employ them to update θ, as indicated

by Lines 9-10 in Algorithm 1. We note that the multiplicative weight training method differs from the

weighted training algorithm proposed in [35]. The major difference is in the mechanism of QuGAN and

classical GANs, i.e., classical GANs support nonlinear mapping, whereas QuGAN can only conduct linear

mapping (see more details about classical GANs in the supplementary material SM (E)).

2If the given state is a pure state, we have Na = 0. The value of Na is no larger than N .
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Algorithm 1 The Multiplicative Weight Training Method
Input: T ; K; α ∈ R; η ∈ (0, 1).

Output: The trainable parameters θ(T ) and γ(T ) .

1: Initialize trainable parameters θ(0), γ(0); . Randomly sampled from uniform distribution.

2: for t = 1; t ≤ T ; t← t+ 1 do

3: θ̃(1) ← θ(t) and γ̃(1) ← γ(t) . Initialize θ̃(k) and γ̃(k) for k = 1

4: for k = 1; k ≤ K; k ← k + 1 do

5: {L(U
(k)
G , U

(k)
D ),∇θ̃L(U

(k)
G , U

(k)
D )} . Record the training loss and gradients

6: θ̃(k+1) ← θ̃(k) + α∇θ̃L(U
(k)
G , U

(k)
D ) . Update the virtual parameters θ̃

7: γ̃(k+1) ← γ̃(k) − α∇γ̃L(U
(k)
G , U

(k)
D ) . Update the virtual parameters γ̃

8: end for

9: wk = η L(U (k)
G ,U

(k)
D )∑K

k=1 L(U
(k)
G ,U

(k)
D )

. Calculate the multiplicative weights {wk}Kk=1

10: θ(t+1) ← θ(t) + α
∑K

k=1wk∇θL(U
(k)
G , U

(k)
D ) . Update the trainable parameters for UG

11: γ(t+1) ← γ(t) − α∇γL(U
(t)
G , U

(t)
D ) . Update the trainable parameters for UD

12: end for

V. THE APPLICATION OF QMMW AND QUGANS FOR ENTANGLEMENT TEST

Following the observation in Section II, a core ingredient of employing QuGAL to tackle a given

quantum information processing problem is to conditionally restrict the expressive power of the generator

or discriminator. The restriction method is varied for different settings and implementations of QuGAL. In

this section, we discuss how to conditionally restrict the expressive power of the generator or discriminator

for QMMW and QuGAN can be conditionally restricted to tackle a given quantum information processing

problem.

For QMMW, an extra ‘constraint’ step should be involved in the update rule to restrict the expressive

power. Naive QMMW is capable of approximating any quantum state without the imposition of any

constraint, as proved in Theorem 1. The ‘constraint’ step ensures that only the desired answer formulated

in Section II can be efficiently approximated by QMMW. Two standard rules govern the design of the

‘constraint’ step, namely, that it does not destroy the no-regret property of QMMW and that it can be

efficiently implemented by quantum operations.

For QuGAN, the restriction of the expressive power can be achieved by adjusting the quantum circuit

structure, so that only the desired answer formulated in Section II can be efficiently simulated. In particular,

the arrangement of the quantum gates of each block U(θi) and U(γi) defined in Eqn. (6) should be

April 23, 2019 DRAFT



11

redesigned. Although QuGAN cannot guarantee an effective convergence rate as QMMW does, it may

still have quantum advantages, since QuGAN does not demand expensive measurements and can be

efficiently implemented on near-term quantum devices.

To facilitate understanding, we show how to use QMMW and QuGAN can be used to accomplish the

entanglement test for a bipartite pure state. The formal definition of the separable bipartite pure state

as follows [25]. Suppose that a given bipartite pure state |Ψ〉AB is represented by NA +NB qubits, we

say that |Ψ〉AB ∈ HA ⊗ HB is separable if it can be written as |Ψ〉AB = |φ〉A |φ〉B with |φ〉A ∈ HA
(|φ〉B ∈ HB).

When QMMW is employed to distinguish entanglement from a bipartite pure state, we impose an

‘constraint’ step in updating the generated state. We define the target state as ρAB = |Ψ〉 〈Ψ|AB at each

training rounds, and two copies of σG are generated as defined in Eqn. (3). The ‘constrained’ step refers

to a partial trace step, i.e., by partial trace system A for the first copy and system B for the second

copy, we have the product state TrA (σG)⊗ TrB (σG). The integration of the ‘constraint’ step and naive

QMMW naturally results in Nash equilibrium being reached if and only if the input state is separable,

since the generated state must be separable. Meanwhile, the ‘constraint’ step satisfies the two standards

rules. It is easy to prove that the no-regret property of the varied QMMW is conserved. The partial trace

can be executed with O(1) complexity.

When QuGAN is employed to distinguish entanglement from a bipartite pure state, we redesign the

arrangement of quantum gates in each block of UG defined in Eqn. (6). No CNOT gate exists whose

controlled qubit is in system A and whose target qubit is in system B. The detailed quantum circuit

architecture is shown in the right panel of Figure 1. The modified quantum circuit structure indicates that

Nash equilibrium can be reached if and only if the input state is separable, since UG can only generate a

separable state.
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...
...

...

0

|0〉⊗NA

UG/Uρ
UD

|0〉⊗NB

|0〉

UG(θ) UD(θ)

...
. . . ...

...
. . . ...

. . .

0

|0〉⊗NA

U U U

U U U

|0〉⊗NB

U U U

U U U

|0〉 U

Fig. 1: The quantum circuit of QuGAN to accomplish the entanglement test for bipartite pure states. In the left

panel, Uρ (or UG) is selected to to produce the real (or generated) state with prior P (R) (or P (G). In the right

panel, the circuit architecture of UG and UD is expanded. The notation U is defined as U = RX ◦RY ◦RZ , where

RX , RY , and RZ are trainable parameterized single qubit gates along X , Y , Z axis.

It is valuable to compare QuGAN with another advanced method, the self-testing method [22], which can

also accomplish the pure entanglement test task. The core ingredient of self-testing is the controlled-SWAP

test; however, the controlled-swap test has several disadvantages under near-term devices [4]. To perform

the self-testing method, 2N +1 qubits are required, two copies should be accessed simultaneously, and the

ability to conduct nontrivial controlled gates and error correction is required. In contrast to the self-testing

method, QuGAN can flexibly select the number of controlled gates, which is more suitable for near-term

quantum devices.

VI. NUMERICAL SIMULATIONS

QMMW is a powerful tool for approximating a given state. We validate its performance by approximating

a separable mixed state ρsep = 1
2 |0000〉 〈0000|+ 1

2 |1111〉 〈1111|. The total number of training rounds is

set as T = 400 and T = 1600, respectively. As illustrated in Figure 2, the final training loss for T = 400

is 0.561 with fidelity of 0.929. The final training loss for T = 1600 is 0.532 with fidelity of 0.965.

The simulation results indicate that the training loss rapidly converges to the equilibrium value and the

fidelity between the generated state and ρsep tends to be 1 with increased T . The simulation results are in

accordance with the conclusion of Theorem 1, where the theoretical results are 1/2 + 3
√

4/400 = 0.7

and 1/2 + 3
√

4/1600 = 0.65, respectively. The numerical simulations are implemented in Python in

conjunction with QuTiP [27].

We then benchmark the performance of the QuGANs to accomplish the entanglement test for bipartite

pure states. The detailed procedure for constructing QuGAN is as follows. The trainable parameters θ

(for UG) and γ (for UD) are randomly initialized and updated by the zero-order differential method

April 23, 2019 DRAFT



13

The Training Loss and Fidelity with 𝜌"#$

Fig. 2: The left panel is the simulation result of QMMW with setting T = 400. The right panel is the simulation

result of QMMW with setting T = 1600.

[32]. We set the total number of training rounds T as 500. The prior defined in Eqn. (9) is set as

P (G) = P (R) = 1/2. The detailed quantum circuit structure is illustrated in Figure 1. The number of

blocks required to implement UG and UD as defined in Eqn. (6) is set as L1 = 7 and L2 = 3, respectively.

The expressive power of UG is constrained as explained in Section V. The quantum circuit architecture is

demonstrated in Figure 1. All numerical simulations are implemented in Python in conjunction with the

PyQuil library [40].

We now employ QuGAN to accomplish the entanglement test for two bipartite pure states, i.e., a

separable state |Ψ〉 = (|00〉A + |10〉A) ⊗ |00〉B /
√

2 and an entangled state |GHZ〉 = (|00〉A ⊗ |00〉B +

|11〉A ⊗ |11〉B)/
√

2, where A and B refer to the bipartite system. When the input state is separable state

|Ψ〉, the training loss oscillates around the optimal value after around 100 steps and ranges from 0.444 to

0.559, as shown in the outer plot. The corresponding fidelity between the target state and the generated

state is always larger than 0.702. The training loss for the entanglement state case is far away from the

optimal value, which oscillates around 0.850 after 300 steps, as shown in the inner plot. The fidelity

between the generated state and the given state |GHZ〉 is always below 0.250. The simulation results

echo the analysis in Section V. The simulation results are illustrated in Figure 3. To accomplish the

simulation, QuGAN requires 143 single and two qubit quantum gates, while self-testing method requires

240 quantum gates.
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The Training Loss and Fidelity with 𝜌"# = |Ψ⟩⟨Ψ|

𝜌"# = |GH𝑍⟩⟨GH𝑍|

Fig. 3: The outer plot is the simulation result of QuGAN when the input is |Ψ〉. The inner plot is the simulation

result of QuGAN when the input is |GHZ〉.

VII. CONCLUSION

In this paper, we have presented the first attempt to approach quantum information processing problems

by employing QuGAL. We have proposed a general framework that enables quantum information processing

problems to be tackled by using QuGAL. A major advantage of QuGAL is its capability to process

quantum data directly, where the required number of quantum measurements is irrelevant to the size

of quantum state. This advantage is significant in accomplishing quantum information process tasks,

since conventional methods generally demand exponential measurements to extract sufficient quantum

information into a classical form.

Encouraged by the similarity between QuGAL, online learning, and zero-sum game, we have exploited

advanced online learning methods to conquer two issues in QuGAL, i.e., finding a quantum generative

adversarial learning algorithm that can rapidly converge to Nash equilibrium, and how the performance

in training QuGANs QuGAN can be improved. To resolve the former issue, we proposed QMMW and

proved that its training loss can effectively converge to Nash equilibrium with the increased number of

training rounds. The computational complexity of QMMW is polynomially proportional to the number

of qubits and training rounds. To solve the latter issue, we introduced the multiplicative weight training

method. The proposed method has the ability to relieve the dilemma encountered in training QuGANs

such that the optimization may get stuck in local minima.

Lastly, we have described how to apply QMMW and QuGANs to solve quantum information processing

tasks. We have shown that QMMW and QuGANs can be employed to accomplish entanglement test task
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for pure states. Several numerical simulations were conducted to validate that QuGANs is capable of

accomplishing the entanglement test with modest quantum resources.

Our future work has two key directions. First, we will focus on applying QMMW and QuGANs to

tackle more fundamental quantum information problems, e.g., the identification of quantum correlation.

Second, we will investigate whether other advanced online learning methods exist that may improve

the training performance of QuGAN. We believe that combining QuGAL with quantum information

processing will benefit the fields of quantum machine learning and quantum information.
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APPENDIX

A. SM(A) Proof of Theorem 1

The analysis of the convergence of quantum multiplicative matrix weight (QMMW) relies mainly

on conclusions drawn from game theory and online learning. To provide an illustrative proof, we first

introduce the necessary concepts from these two fields and then build the connection to Theorem 1.

The formal definition of the zero-sum game is:

Definition 1 (Zero-sum Game, [17]). A two-player zero-sum game is a tuple (X ,Y, u) where X represents

the finite set of actions that player 1 can play, Y represents the finite set of actions that player 2 can play,

and u : X × Y → R is the payoff function for player 1, mapping the pair of actions (x, y) ∈ (X ,Y) of

the players into the payoff for player 1. The corresponding payoff for player 2 is given by −u(x, y).

Exploiting the definition of the zero-sum game, we introduce two concepts in game theory. The first

concept is approximated best response, defined as follows:

Definition 2 (Approximate best response). Given a zero-sum game (X ,Y, u), we say that x ∈ X is an

ε-best response to y for player 1 if u(x, y) + ε ≥ u(x̂, y) for all x̂ ∈ X . Symmetrically, given x ∈ X , we

say that y ∈ Y is an ε-best response to x for player 2 if −u(x, y) + ε ≥ −u(x, ŷ) for all ŷ ∈ Y .

Another concept is approximated Nash equilibrium, defined as:

Definition 3 (Approximate Nash equilibrium). Given a zero-sum game (X ,Y, u), the strategy pair

(x, y) ∈ (X × Y) is an ε-Nash equilibrium for the game if x is an ε-best response to y for player 1,

and y is an ε-best response to x for player 2. Note that Nash equilibrium can be treated as a 0-Nash

equilibrium.

A well-known conclusion between regret and approximate Nash equilibria is as follows [17]:

Proposition 4. In a zero-sum game, if the average regrets of the players up to step T are such that RT (x̂) :=∑T
t=1(u(xt, yt)−u(x̂, yt)) with RT (x̂)/T ≤ ε1, RT (ŷ) :=

∑T
t=1(−u(xt, yt)+u(xt, ŷt)) with RT (ŷ)/T ≤

ε2, for all actions x̂ ∈ X , ŷ ∈ Y , then the strategy pair (x̄T , ȳT ) := (
∑T

t=1 xt/T,
∑T

t=1 yt/T ) ∈ (X ,Y)

is a (ε1 + ε2)-Nash equilibrium.

We now connect the Proposition 4 with Theorem 1. In QMMW, the minimized regret for the generator

is

RT (σG) = −
T∑
t=1

L(σ
(t)
G , σ

(t)
D ) + min

σG

T∑
t=1

L(σG, σ
(t)
D ) . (10)

April 23, 2019 DRAFT



20

The minimized regret for the discriminator is

RT (σD) =

T∑
t=1

L(σ
(t)
G , σ

(t)
D )−min

σD

T∑
t=1

L(σ
(t)
G , σD) . (11)

Suppose that the optimal strategy pair is (σ∗G, σ
∗
D) and the corresponding Nash equilibrium is L(σ∗G, σ

∗
D) =

1/2. Following the statement of Proposition 4 and Definition 2, with setting εG and εG that satisfies

RT (σG)/T ≤ εG and RT (σD)/T ≤ εD, the strategy pair (σ̄G, σ̄D) with σ̄ =
∑T

t=1 σ
(t)/T and the

σ̄D =
∑T

t=1 σD
(t)/T , is a (εG + εD)-Nash equilibrium, i.e.,

L(σ∗, σ̄D)− (εG + εD) ≤ L(σ̄G, σ̄D) ≤ L(σ̄G, σ
∗
D) + (εG + εD) . (12)

These two inequalities come from Definition 2. According to the definition of Nash equilibrium, which is

an 0-Nash Equilibrium with an optimal strategy pair (σ∗, σ∗D), we rewrite Eqn. (12) as

L(σ̄G, σ
∗
D) ≤ L(σ∗G, σ

∗
D) ≤ L(σ∗G, σ̄D) . (13)

Connecting Eqn. (12) with Eqn. (13), we have

|L(σ̄G, σ̄D)− L(σ∗G, σ
∗
D))| ≤ εG + εD . (14)

The goal of QMMW, or Theorem 1, is to prove εG + εD ≤ 3
√
N/T , which implies that L(σ̄G, σ̄D)

converges to the optimal value L(σ∗G, σ
∗
D) = 1/2 with increasing T .

Proof of Theorem 1. As discussed above, we aim to prove that QMMW possesses the no-regret property

when the original state ρ is separable.

We employ the following two claims to quantify two regrets RT (σG) and RT (σD) (Proof of Claim 5

and Claim 6 provided later in this section.):

Claim 5. The regret of RT (σG) based on the update rule of the Quantum Matrix Multiplicative Weights

algorithm (to maximize the loss) is bounded by εG, i.e.,

RT (σG)

T
≤ εG =

ε2T +N

2εT
. (15)

Claim 6. The regret of RT (σD) based on the update rule of the Quantum Matrix Multiplicative Weights

algorithm (to minimize the loss) is bounded by εD, i.e.,

RT (σD)

T
≤ εD =

ε2T + (N + 1)

2εT
. (16)

Combining the above two claims and with setting ε = 2
√
N/T , we have

εG + εD ≤
2ε2T + 2(N + 1)

2εT
≤ 3

√
N

T
, (17)
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where the first inequality comes from the results of Claim 5 and Claim 6, and the second equality

results from N + 1 ≤ 2N and the definition of ε. The discrepancy between the loss L(σ̄G, σ̄D) and the

equilibrium value L(σ∗G, σ
∗
D) yields

|L(σ̄G, σ̄D)− L(σ∗G, σ
∗
D)| ≤ 3

√
N

T
. (18)

Before giving the proof of Claim 6 and Claim 5, we introduce the following two results to facilitate

the proof.

Corollary 7 (Corollary 2, [28]). For any ε ≤ 1, let ε1 = 1 − e−ε and ε2 = eε − 1. We then have the

following matrix inequalities:

• If all eigenvalues of a symmetric matrix A lie in [0, 1], then eεA � I− ε1A;

• If all eigenvalues of a symmetric matrix A lie in [−1, 0], then eεA � I− ε2A;

Proof of Claim 5. Following the observation of Eqn. (14) and Proposition 4, we hope the regret RT (σG)

possesses the no-regret property with RT (σG) ≤ εG ∼ O(1/
√
T ), i.e.,

T∑
t=1

L(σ
(t)
G , σ

(t)
D ) ≥

T∑
t=1

L(σ∗G, σ
(t)
D )− εGT . (19)

To quantify RT (σG), we define the potential function Θ(t) and track its evolution with varying t, which is

analogous to the proof of the conventional MMW algorithm, i.e., Θ(t) = Tr(W (t)) and W (t) = e
∑t−1
τ=1−εσ

(τ)
D .

By defining ε1 = 1− e−ε, we have:

Θ(t+1) = Tr (W (t+1)) = Tr (e
∑t
τ=1−εσ

(τ)
D )

≤ Tr (e(
∑t−1
τ=1−εσ

(τ)
D )e−εσ

(t)
D ) = Tr(W (t)e−εσ

(t)
D ) ≤ Tr(W (t)(I− ε1σ(t)D ))

= Tr (W (t))(1− ε1 Tr(σ
(t)
D

W (t)

Tr (W (t))
)) ≤ Θ(t)e

−ε1 Tr (σ(t)
D

W (t)

Tr (W (t))
)

= Θ(t)e−ε1 Tr (σ
(t)
D σ

(t)
G ) . (20)

The first inequality comes from the Golden-Thompson inequality, the second inequality employs the

conclusion of Corollary 7, the third is supported by 1 − x ≤ e−x, and the last equality arises in
W (t)

Tr (W (t)) = σ
(t)
G .

By induction, since Θ(1) = Tr(e−εσ
(1)
D ) ≤ Tr(e0) ≤ 2N , we have

Θ(T+1) ≤ 2Ne−ε1
∑T
t=1 Tr (σ

(t)
D σ

(t)
G ). (21)
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The denotation A =
∑T

t=1 (σ
(t)
D ), Θ(T+1) yields

Θ(T+1) = Tr(exp(−εA)) =
∑
k

exp (−ελk(A)) ≥ exp (−ελn(A)) ,

where λn(A) refers to the minimum eigenvalue of A. We also have

e−ε
∑T
t=1 Tr (σ

(t)
D σ∗G) ≤ exp (−ελn(A)) ,

since we always have λn(A) ≤ Tr(Aσ∗G) with Tr(σ∗G) = 1 and then exp(−ελn(A)) ≥ exp(−εTr(Aσ∗G)).

The lower bound of Θ(T+1) is therefore

Θ(T+1) ≥ e−ε
∑T
t=1 Tr (σ

(t)
D σ∗G) . (22)

By connecting Eqn. (22) with Eqn. (21), we have

e−ε
∑T
t=1 Tr (σ

(t)
D σ∗G) ≤ 2Ne−ε1

∑T
t=1 Tr (σ

(t)
D σ

(t)
G ) . (23)

Taking the logarithms of Eqn. (23) and exploiting ε1 ≥ ε(1− ε), we obtain the following inequality,

(1− ε)
T∑
t=1

Tr(σ
(t)
G σ

(t)
D ) ≤

T∑
t=1

Tr(σ∗Gσ
(t)
D ) +

N

ε

⇒
T∑
t=1

Tr(σ
(t)
G σ

(t)
D ) ≤

T∑
t=1

Tr(σ∗Gσ
(t)
D ) + εT +

N

ε

⇒
T∑
t=1

Tr((ρσ
(t)
D )−

T∑
t=1

Tr(σ
(t)
G σ

(t)
D ) ≥

T∑
t=1

Tr((ρσ
(t)
D )−

T∑
t=1

Tr(σ∗Gσ
(t)
D )− εT − N

ε

⇒
T∑
t=1

L(σ
(t)
G , σ

(t)
D ) ≥

T∑
t=1

L(σ∗G, σ
(t)
D )− ε2T +N

2ε
.

The first arrow results from the fact that: 0 ≤ εTr(σ
(t)
G σ

(t)
D ) ≤ ε with Tr(σ

(t)
G σ

(t)
D ) ≤ Tr(σ

(t)
G ) Tr(σ

(t)
D ) =

1 for any 1 ≤ t ≤ T . The second arrow comes from adding the term
∑T

t=1 Tr((ρσ
(t)
D ) on both sides. The

last arrow comes from the definition of the loss function of QMMW. The above equation indicates that

RT (σG) ≤ εG = ε2T+N
2εT .

Proof of Claim 6. This claim can be easily proved by imitating the proof of Claim 5. Conceptually, we

hope to derive a bound of the classification error, i.e.,
T∑
t=1

L(σ
(t)
G , σ

(t)
D ) ≤

T∑
t=1

L(σ
(t)
G , σ∗D) + εDT , (24)

where σ∗D refers to the optimal solution. We can then quantify the regret of RT (DAB).

Following the proof of Claim 5, we define a potential function Θ(T ) = Tr(W T ) with W (T ) =

e−ε
∑T−1
t=1 (ρ−σ(t)

G ). Let Q(t) be Q(t) = ρ − σ(t)G with Q(t) = Q
(t)
+ + Q

(t)
− . We decompose Q(t) into two
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terms, Q(t)
+ and Q(t)

− with Q(t) = Q
(t)
+ +Q

(t)
− , where Q(t)

+ (Q(t)
− ) is formed by all non-negative (negative)

eigenvalues and eigenvectors of Q(t). Defining that ε1 = 1− e−ε and ε2 = eε − 1, we have:

Θ(t+1) = Tr (W (t+1)) = Tr
(
e
∑t
τ=1−ε(ρ−σ

(τ)
G )
)

≤ Tr
(
e
∑t−1
τ=1−ε(ρ−σ

(τ)
G )e−εQ

(t)
)

= Tr
(
W (t)e−ε(Q

(t)
+ +Q

(t)
− )
)

≤ Tr
(
W (t)e−εQ

(t)
+ e−εQ

(t)
−

)
≤ Tr

(
W (t)(I− ε1Q(t)

+ )(I− ε2Q(t)
− )
)

= Tr
(
W (t)(I− ε1Q(t)

+ − ε2Q
(t)
− )
)
, since Q+ ⊥ Q−

= Tr
(
W (t)

)1−
Tr
(
W (t)(ε1Q

(t)
+ + ε2Q

(t)
− )
)

Tr
(
W (t)

)


= Tr
(
W (t)

)(
1− Tr

(
σ
(t)
D (ε1Q

(t)
+ + ε2Q

(t)
− )
))

= Tr
(
W (t)

)(
1− Tr

(
σ
(t)
D (ε1Q

(t) + (ε2 − ε1)Q(t)
− )
))

≤ Tr
(
W (t)

)(
1− Tr

(
σ
(t)
D (ε1Q

(t)
+ + ε1Q

(t)
− )
))

,

≤ Θ(t)e−ε1 Tr (σ
(t)
D (ρ−σ(t)

G )) , (25)

where the first inequality and the second inequality come from the Golden-Thompson inequality, the

third inequality employs the conclusion of Corollary 7, the penultimate inequality is supported by

−Tr(σ
(t)
D (ε2 − ε1)Q(t)

− ) ≥ 0 (To be proved later), and the last inequality is supported by 1− x ≤ e−x.

We now prove that the last second inequality always satisfies −Tr(σ
(t)
D (ε1− ε2)Q(t)

− ) ≥ 0. Since σ(t)D � 0,

it is equivalent to prove (ε1 − ε2)Q(t)
− � 0. Due to Q

(t)
− � 0, (ε1 − ε2)Q(t)

− � 0 is reduced to prove

ε2 − ε1 ≥ 0, which is always succeed since eε + e−ε > 2.

By induction, we have

Θ(T+1) ≤ Θ(1)e
∑T
t=1 Tr(σ

(t)
D (ρ−σ(t)

G )) . (26)

Due to Θ(1) = Tr(e−ε(ρ−σ
(1)
G ))) ≤ Tr(eI) ≤ eTr(IAB) ≤ eN+1, the above inequality can be reformulated

as

Θ(T+1) ≤ eN+1e
∑T
t=1 Tr(σ

(t)
D (ρ−σ(t)

G )) . (27)

Concurrently, we have

Θ(T+1) ≥ e
∑T
t=1 Tr (σ

∗
D(ρ−σ(t)

G )) , (28)

where the proof is analogous to Eqn. (22). We specifically set A =
∑T

t=1(ρ − σ
(t)
G ). The left term

Θ(T ) of Eqn. (28) follows Θ(T ) = Tr(exp(−εA)) =
∑

k exp (−ελk(A)) ≥ exp (−ελn(A)), where λn(A)
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refers to the minimum absolute eigenvalue of A. The right term of Eqn. (28) follows e−ε
∑T
t=1 Tr (σ

∗
DA) ≤

exp (−ελn(A)), since we always have λn(A) ≤ Tr(Aσ∗D) with 0 � σ∗D � IAB and Trσ∗D = 1. This

leads to exp−ελn(A) ≥ exp−εTr(Aσ∗D). Therefore, we obtain Eqn. (28).

By connecting Eqn. (26) with Eqn. (28), we have

e−ε
∑T
t=1 Tr (σ

∗
D(ρ−σ(t)

G )) ≤ eN+1e−ε1
∑T
t=1 Tr (σ

(t)
D (ρ−σ(t)

G )) . (29)

Taking logarithms and simplifying Eqn. (29), we obtain the following inequality,

− ε
T∑
t=1

Tr (σ∗D(ρ− σ(t)G )) ≤ (N + 1)− ε1
T∑
t=1

Tr (σ
(t)
D (ρ− σ(t)G ))

⇒− ε
T∑
t=1

Tr (σ∗D(ρ− σ(t)G )) ≤ (N + 1)− ε(1− ε)
T∑
t=1

Tr (σ
(t)
D (ρ− σ(t)G ))

⇒(1− ε)
T∑
t=1

Tr (σ
(t)
D (ρ− σ(t)G )) ≤

T∑
t=1

Tr (σ∗D(ρ− σ(t)G )) +
N + 1

ε

⇒
T∑
t=1

Tr (σ
(t)
D (ρ− σ(t)G )) ≤

T∑
t=1

Tr (σ∗D(ρ− σ(t)G )) + εT +
N + 1

ε

⇒
T∑
t=1

L(σ
(t)
G , σ

(t)
D )− ε2T + (N + 1)

2ε
≤

T∑
t=1

L(σ
(t)
G , σ∗D) .

The first arrow results from the fact that ε1 ≥ ε(1 − ε). The second arrow comes from dividing ε on

both sides. The third arrow employs Tr (σ∗D(ρ− σ(t)G )) ≤ 1, since Tr (σ∗D(ρ− σ(t)G )) = Tr (σ∗Dρ) −

Tr (σ∗Dσ
(t)
G )) ≤ Tr (σ∗Dρ) ≤ 1. The last arrow comes from the definition of the loss function of QMMW.

This inequality immediately indicates that the bound for the minimized regret R(σD) is R(σD) ≤ εD =

(ε2T +N + 1)/(2εT ).

B. SM (B) Instantiation of QMMW

Let us briefly review the Quantum Multiplicative Matrix Weight algorithm (QMMW). QMMW consists

of three steps: First, initializing parameters; Second, updating the generated state σ(t)G and the density

operator σ(t)D iteratively during T training rounds; Last, calculating the loss L(σ
(t)
G , σ

(t)
D ) using σ̄G and σ̄D

with σ̄G =
∑T

t=1 σ
(t)
G /
√
T and σ̄D =

∑T
t=1 σ

(t)
D /T . Both the generated state σ(t)G and the discriminator

σ
(t)
D can be treated as Gibbs state. The formal definition of Gibbs state and Gibbs Sampler is:

Definition 4 (Gibbs Sampler [41]). A θ-precise Gibbs-sampler is a unitary that creates as output a purifica-

tion of a θ-approximation in trace distance of the Gibbs state exp (
∑T

t=1−ytC(t))/Tr (exp(
∑T

t=1−ytC(t))),

where {C(t)}Tt=1 is a set of Hermitian matrix. If ‖y‖1 ≤ K and the support of y has the size at most d,

then we write T (K, d, 4θ) for the cost of this unitary.
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We also allow Gibbs-samplers that require a random classical input seed S ∈ {0, 1}a for some

a = O(log(1/θ)). In this case the output should be a θ-approximation of the Gibbs state with high

probability (≥ 4/5) over a uniformly random input seed S.

For ease of description, we denote the responsible θ-precise Gibbs-sampler for the generated state σ(t)G

as Uσ(t)
G

. For the discriminator σ(t)D , we denote the responsible θ-precise Gibbs-sampler as Uσ(t)
D

. Observing

the QMMW algorithm, the third step can be efficiently executed using the SWAP test once we have

prepared {Uσ(t)
G
}Tt=1 and {Uσ(t)

D
}Tt=1 [8], where the query complexity is O(1). Consequently, preparing

Gibbs samplers is the central part of the implementation of QMMW and also dominates the computational

cost.

We now elaborate how to accomplish the second step of QMMW, i.e., the construction of {Uσ(t)
G
}Tt=1

and {Uσ(t)
D
}Tt=1. This task employs two subroutines OσTG and OσTD , i.e., the subroutine OσTG after training

t-rounds is Oσ
T
G
|τ〉 |0〉⊗N

′
:=
∑

τ≤t ατ |τ〉Uσ(τ)
G
|0〉⊗N

′
=
∑

τ≤t ατ |τ〉 |ψ
(τ)
G 〉 , τ ≤ t

OσTG |τ〉 |0〉
⊗N ′ :=

∑
τ>t ατ |τ〉 |0〉

⊗N ′ =
∑

τ>t ατ |τ〉 |0〉
⊗N ′ , τ > t

where N ′ = a+N , a refers to the number of ancillary qubits with a ∼ O(logN) [41], |τ〉 refers to the

computational basis corresponding to the τ -th training round, Uσ(τ)
G

prepares the purification |ψ(τ)
G 〉 of the

Gibbs state σ(τ)G , and
∑t

τ=1 α
2
τ = 1. Note that the Gibbs sampler Uσ(τ)

G
can only be prepared for τ ≤ t.

Similarly, the subroutine OσTD after training t-rounds isOσ
T
D
|τ〉 |0〉⊗N

′
:=
∑

τ≤t βτ |τ〉Uσ(τ)
D
|0〉⊗N

′
=
∑

τ≤t γτ |τ〉 |ψ
(τ)
D 〉 , τ ≤ t

OσTD |τ〉 |0〉
⊗N ′ :=

∑
τ>t γτ |τ〉 |0〉

⊗N ′ =
∑

τ>t γτ |τ〉 |0〉
⊗N ′ , τ > t

where |ψ(τ)
D 〉 refers to the purification of the Gibbs state σ

(τ)
G . After training T steps with setting

ατ =
√

1/T and γτ =
√

1/T for any τ ∈ [T ], we prepare the purification of Gibbs state σ̄(t)G and σ̄(t)D .

In QMMW, we employ the method proposed by [41] to prepare the Gibbs sampler, which has the

following result,

Theorem 8 (Theorem 22, [41]). Suppose that we have query access to the unitaries Uρ± preparing a

purification of the subnormal density operators 3 µ±, such that H = (µ+ − µ−)/2. Suppose that β ≥ 1

and θ, δ ∈ (0, 1], there is a quantum algorithm, that using Oθ(β3.5/δ) queries to controlled-Uρ± or their

inverses, prepares a purification of a quantum state ρS such that
∣∣∣ρS − e−βH

Tr(e−βH)

∣∣∣ ≤ θ , where S is an

O(log(β/δ))-bit random seed, and the above holds for at least (1− δ)-fraction of seeds.

3A density operator Q is said to be subnormal if it satisfies TrQ = 1.
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The update rule of QMMW accompanies with the query access to Uσ(1)
D

(A set of Hadamard gates

to prepare the maximally mixed state σ(1)D ) and Uρ enables us to use Theorem 8 to construct all Gibbs

samplers. Without loss of generality, we consider the preparation of Uσ(t)
G

and Uσ(t)
D

. Following the

update rule, the density operator µ+ and µ− defined in Theorem 8 refers to 0 and the purification

of
∑t−1

τ=1 σ
(τ)
D /(t − 1), respectively to prepare Uσ(t)

G
. Meanwhile, we have β = 2ε(t − 1). It is easy to

see that β(µ+ − µ−)/2 =
∑t−1

τ=1−εστD is the exponential term for updating σ
(t)
G . The purified state

µ+ can be generated by querying the subroutine OσTD once, i.e., with setting γτ =
√

1/(t− 1) for any

τ ∈ [t− 1]. Likewise, to prepare Uσ(t)
D

, the density operator µ+ and µ− refers to the purification of ρ and∑t−1
τ=1 σ

(τ)
G /(t− 1), respectively. Meanwhile, we have β = 2ε(t− 1). The corresponding purification state

of µ+ and µ− can be prepared by querying Uρ and OσTG once, with setting γτ =
√

1/(t− 1) for any

τ ∈ [t− 1]. By induction, we can prepare all Gibbs samplers and build two subroutines after T training

rounds.

C. SM (C) Proof of Theorem 2.

Proof. As discussed in the previous subsection, the main computational cost of QMMW is in the

preparation of two subroutines, or equivalently a set of Gibbs samplers. We now employ the conclusion of

Theorem 8 to characterize the computation cost of building two subroutines. Observing the conclusion of

Theorem 8, the computational cost is highly related to the two variables, i.e., β and δ. Notably, the error

θ in Theorem 8 is caused by loading classical input into quantum state, which is not required in QMMW.

This error can thus be eliminated in our case and the query complexity transformed to O(β3.5/δ).

At (t+1)-th step, we have β = 2εt with ε =
√
N/T , which leads to the cost O(β3.5/δ) ≤ O((NT )3/δ).

Since each training round requires at most O((NT )3/δ) query complexity to prepare two Gibbs samplers,

the total query complexity for building two subroutines is O(N3T 4/δ) after T training rounds. By setting

δ as a small constant, the query complexity of QMMW is O(N3T 4), with the first step and the third

step requiring only O(1) query complexity.

The runtime cost of QMMW is also O(N3T 4). The first and third steps of QMMW only require O(1)

and O(logN) elementary operations. In second step, µ+ and µ− can be prepared with O(1) queries and

using O(poly log(β)) elementary operations [41]. Therefore, the total runtime complexity for QMMW is

O(N3T 4).

D. SM(D) Proof of Lemma 3

Proof of Lemma 3. The zero-sum game played by QuGAL is identical to that of QuGAN, since both

possess the convex-concave property and have the same equilibrium, supported by the linear property of
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trace operations, and ρ is sampled from a convex set. Concretely, we have

max
σ

min
D
L(σ,D)

= max
σ

min
D

Tr((I−D)σ)P (G) + Tr(Dρ)P (R) (30)

= max
UG

min
UD

Tr((I⊗ (I− EF ))UD(σG ⊗ |0〉 〈0|)U †D)P (G) + Tr((I⊗ EF )UD(ρ⊗ |0〉 〈0|)U †D)P (R) ,

where σG = Tra(UG(|0〉 〈0|)⊗N ′U †G). The first equality follows the definition of loss function of QuGAL,

which is

L(σ,D) = Tr((I−D)σ)P (G) + Tr(Dρ)P (R) .

The second equality employs Naimark’s dilation theorem and Stinespring’s dilation theorem.

E. SM (E) Generative Adversarial Network

The generator G and discriminator D for classical GANs are typically implemented by multi-layer

neural networks [18]. The generator can be treated as a function G, which aims to map from a random

variable z ∈ R|z| sampling from the latent space to the data space x ∈ R|x|. Mathematically, we have

G : G(z) → x, where | · | denotes the number of dimensions with |z| � |x|, and x refers to the

generated data (e.g., an image with |x| pixels). Discriminator D may be similarly characterized as a

function that maps from input data to the class distribution: D : D(x)→ (0, 1), where the training data

are expected to be 1 (True) and the generated data are expected to be 0 (False). If the distribution learned

by the generator is able to match the real data distribution perfectly, the discriminator will be maximally

confused, predicting 0.5 for all inputs. This unique solution whereby D can never discriminate between

the generated data and the training data is called Nash equilibrium [19].

The training of GANs involves finding the parameters of a discriminator D to maximize classification

accuracy, and finding the parameters of a generator G to maximally confuse the discriminator. The

performance of GAN is evaluated using a loss function L(G,D) which depends on both the generator

and the discriminator. The training procedure can be treated as:

min
G

max
D

L(G,D), (31)

where L(G,D) = Ex∼pdata(x)[logD(x)] +Ez∼p(z)[log(1−D(G(z)))], pdata(x) refers to the distribution

of the training dataset, and p(z) is the probability distribution of the latent variable z. During training,

the parameters of one model are updated, while the parameters of the other are fixed.
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