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Abstract. Quantum machine learning has received significant attention in recent years, and promising progress

has been made in the development of quantum algorithms to speed up traditional machine learning tasks. In this

work, however, we focus on investigating the information-theoretic upper bounds of sample complexity—how many
training samples are sufficient to predict the future behaviour of an unknown target function. This kind of problem

is, arguably, one of the most fundamental problems in statistical learning theory and the bounds for practical settings

can be completely characterised by a simple measure of complexity.
Our main result in the paper is that, for learning an unknown quantum measurement, the upper bound, given

by the fat-shattering dimension, is linearly proportional to the dimension of the underlying Hilbert space. Learning

an unknown quantum state becomes a dual problem to ours, and as a byproduct, we can recover Aaronson’s famous
result [Proc. R. Soc. A 463, 3089–3144 (2007)] solely using a classical machine learning technique. In addition,

other famous complexity measures like covering numbers and Rademacher complexities are derived explicitly. We
are able to connect measures of sample complexity with various areas in quantum information science, e.g. quantum

state/measurement tomography, quantum state discrimination and quantum random access codes, which may be

of independent interest. Lastly, with the assistance of general Bloch-sphere representation, we show that learning
quantum measurements/states can be mathematically formulated as a neural network. Consequently, classical ML

algorithms can be applied to efficiently accomplish the two quantum learning tasks.

1. Introduction

Statistical learning theory [1, 2] or Machine Learning (ML) [3] is a branch of artificial intelligence which aims to
devise algorithms for machines to systematically learn from historic data. Typically, ML has been separated into
unsupervised learning and supervised learning. In unsupervised learning, the machine is most useful for finding the
hidden structure, e.g. clustering or density estimation, within unlabeled data. In supervised learning, the machine
is equipped with more power to predict the class or to infer the characteristic from the structured data. The figures
of merit for a learning machine include: (i) computational complexity which measures the run-time efficiency of a
learning algorithm; (ii) sample complexity which determines the number of queries to a membership made by the
learning algorithm such that the hypothesis function is Probably Approximately Correct (PAC) [4]; and (iii) model
complexity (otherwise called generalization error [5]) which is defined as the discrepancy between the out-of-sample
error and the in-sample error. Note that model complexity is closely related to sample complexity in the sense
that a learning machine with large model complexity requires more samples to accurately approximate the target
function, which results in high sample complexity. Current research trends include the reduction of computational
complexity due a large volume data set (big data) as well as the high dimensional features of each data point, and
how to balance model complexity with in-sample error such that the training data set can be trained well without
the occurrence of overfitting.

Quantum Information Processing (QIP) is an active field that studies the computational capability in quantum
systems. In recent years, QIP has achieved significant breakthroughs [6]: factorizing large prime integers with
an exponential speed-up [7] and searching an unstructured database with a quadratic speed-up [8] are two most
famous examples. There are two features of QIP that result in dramatic improvement over classical information
processing: (1) The superposition principle: contrary to the classical bit, which takes discrete value either 0 or 1,
a quantum bit (or qubit) can be in any linear combination of two quantum states |0〉 and |1〉. The principle is
a consequence of the fundamental property of quantum mechanics—the linearity of Schrödinger’s wave equation.
Therefore, the superposition principle allows the outcomes of parallel quantum computation to be stored in a single
quantum state, which gives quantum machines more computing ability than classical devices. (2) Entanglement:
quantum entanglement is the most remarkable phenomenon in quantum theory. This resource plays a crucial role
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in numerous results, including quantum Shannon theory [9–12], quantum error-correcting codes [13–16], and so on.
These features make QIP a multidisciplinary research area with a broad range of promising applications.

Owing to the successful achievements of QIP, researchers have begun to explore whether QIP can advance other
subjects of classical computer science. Consequently, the interdisciplinary area of quantum machine learning [17, 18]
has attracted substantial interest lately. The central problems are two-fold. The first kind of problem investigates
how QIP can improve classical ML tasks by converting classical algorithms partially or totally to a quantum
algorithm. More precisely, one studies how quantum machines can serve to accelerate the ML process to improve
computational efficiency, or to reduce sample complexity by transforming classical training data into special sets of
quantum states. We call this line of research Quantum Computational Learning [19–37]. On the other hand, certain
fundamental quantum problems, such as the inference of unknown quantum states or operations, or the hidden
structure of the underlying quantum system, fits well into the setting of statistical learning theory. However, it
requires certain generalisation of current theory of machine learning to accommodate the operator-valued inputs
and/or outputs. We term this line of research Quantum Statistical Learning1 [33, 36, 38–54].

Current achievements in Quantum Computational Learning come from quantum enhancement of the computation
procedures such as optimization, inner product of big data and ability to compute classical functions in parallel.
For example, Servedio and Gortler [19–22] considered two standard learning models of Boolean functions: Angluin’s
[55] exact learning from membership queries, and Valiant’s [4] PAC learning from examples. By defining quantum
extensions of the classical oracles to manipulate classical binary data, it was shown that the quantum oracles and
classical machines are polynomially equivalent in terms of sample complexity. Anguita et al. (2003) [23] used the
method of Durr and Hoyer [56] to perform the optimization process in support vector machine (SVM). Aı̈meur,
Brassard, and Gambs (2006) [24, 26] applied a modified Grover’s algorithm [8] in clustering problems. Lloyd et al.
(2013) [28–30] introduced a quantum random access memory [57] to store classical data and proposed an efficient
density matrix exponentiation method to improve the computational procedure of supervised, unsupervised and
SVM algorithms. Additionally, Lloyd et al. [34] also provided quantum algorithms to execute topological analysis
for big data. Pudenz and Lidar (2012) [25] considered the verification of software and applied adiabatic quantum
computation methods to solve the quadratic binary optimization problem. Wiebe, Kappor, and Svore (2014) [31]
(Microsoft Research) modified Lloyd’s approach and proposed a quantum nearest-neighbor algorithm. Surprisingly,
they showed that the number of queries depends on the sparsity and maximum value of the training data rather
than on the feature dimension. Wang (2014) [32] combined phase estimation and the dense Hamiltonian simulation
technique to improve the ML performance in curve fitting. Cross et al. [35] considered the problem of learning
parity functions in the presence of noise. They showed that the quantum oracle is computationally efficient than the
classical counterpart. Schuld et al. [36] presented a quantum pattern classification and discussed its advantages.
Recently, Wiebe et al. [37] successfully applied quantum computers to perform an important machine learning
task—deep learning. We refer the interested readers to Ref. [17, Table 1.1], where Wittek provides a detailed
comparisons of existing quantum machine learning algorithms.

On Quantum Statistical Learning, Aı̈meur, Brassard, and Gambs [38] introduced the task of quantum clustering,
where the goal is to group similar quantum states (according to some fidelity measure) while putting dissimilar states
in different clusters. In Ref. [40], Gambs (2008) studied the task of quantum classification, in which the training
data set contains pure states from (classical) binary classes. By forming the statistical mixture states of each class,
the Helstrom measurement forms a binary classifier which minimizes the training error. Guţǎ and Kotlowski (2010)
[41] researched the problem of classifying two unknown mixed states and used the technique of local asymptotic
normality to derive the optimal classifier. Seńıs et al. [46, 47] also proposed the strategy to perform quantum
state classification. Nevertheless, the approaches developed by Gambs, Guţǎ and Kotlowski, and Seńıs et al. are
essentially quantum hypothesis testing rather than quantum ML (since they do not consider the model complexity
or sample complexity problems). In [42], Bisio et al. (2010) considered learning a unitary transformation as the
storing-retrieving problem and proposed an algorithm for learning U based on the quantum network. Further,
Bisio et al. (2011) [43] generalised the previous work to quantum instruments. Gross and Flammia et al. [44, 45]
integrated the compressed sensing methods to quantum states tomography and proposed an algorithm to practically
learn row-rank quantum states. In the latest work, Lu and Braunstein (2014) [48] studied the quantum version
of the decision tree (QDT). In their model, both the input variable x and output label y are represented as pure
states |x〉, and |y〉. The von Neumann entropy is used as the node splitting criterion to construct the quantum
decision tree classifier. Several works [33, 36, 49, 50] has engaged in developing possible models of quantum neural

1Our catalogue of quantum ML is different from the learning class Lcontextgoal , where the subscript “goal” refers to the learning goal and

the superscript “context” refers to the training data set and/or the learner’s abilities, introduced by Aı̈meur, Brassard, and Gambs [38].
According to the authors, Lcc corresponds to pure classical ML tasks. When the learner can access to a quantum computer to accelerate

the classical ML problems, it belongs to the learning class Lqc .
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Figure 1. Current Development of Quantum Machine Learning. ‘Quantum Computational Learn-
ing’ investigates how quantum machines can serve to accelerate the ML process to improve com-
putational efficiency, or to reduce sample complexity by transforming classical training data into
special sets of quantum states. In this line of research, both the input space X and output space Y
are classical. On the other hand, ‘Quantum Statistical Learning’ studies the inference of unknown
quantum states, operations, or hidden structure in the quantum system. We term the quantum
version of classical statistical/stochastic model as ‘Quantum Stochastic Model’.

Quantum Machine Learning

Quantum
Computational Learning

Quantum Statistical Learning

Computational
Complexity
Angluin [55]

Aı̈meur et al. [24, 26]
Pudenz and Lidar [25]
Cross emphet al. [35]

Lloyd et al. [27–30, 34]
Wang [32]

Wiebe et al. [31, 37]
Schuld et al. [36]

Sample Complexity
Servedio et al. [19–22]

Quantum
Stochastic Model
Bisio et al. [42, 43]
Gross et al. [44, 45]

Classificatioin:
[40, 41, 46, 47]

QDT: [48]
QNN: [33, 36, 49, 50]

QHMM: [51–54]

Sample Complexity
Aaronson [39]
and this work

network (QNN). Another interesting topic is the hidden quantum Markov model (HQMM) [51–54], where the state
of the system is described by the density operator and the transitions are determined by the completely positive
trace-nonincreasing map. It has been shown that the HQMM can be implemented by open quantum systems with
instantaneous feedback.

We summarise the current development of supervised quantum ML in Figure 1. Note that the majority of
previous works in quantum machine learning focused on computational aspects of a learning algorithm. The issue
of sample complexity exhibited in original quantum learning setting, e.g. state/process tomography, was rarely
touched. Aaronson [39] pioneered the study of the learnability problems in the quantum regime, and derived upper
bounds on the sample complexity of learning quantum states. In this work, we start from a machine learning point
of view to formalize the problems of learning quantum measurements and quantum states as learning real-valued
functions on Banach space. For learning an unknown quantum measurement, we apply a sequence of quantum
states through the measurement apparatus and obtain the statistics of each measurement outcome. Our goal is to
infer the most likely quantum measurement from the hypothesis set, which ‘behaves’ like the target measurement
on the collected data. In this paper, we mainly focus on learning an unknown two-outcome measurement, which
resembles a ‘yes-no’ instrument. For multi-outcome measurements, the results can easily be generalised2. For
learning quantum states, on the other hand, the training data set is the collection of two-outcome measurements
and the associated statistics. The core problem now is to analyse whether the target quantum measurement is
learnable and to characterise the performance of the learning tasks.

1.1. Contributions of this work. In this work, we answer the following two questions in quantum ML.

2In the scenario of learning multi-outcome measurements, each POVM element can be considered as a two-outcome POVM. Hence, the
learnability of each POVM element can be derived by following the proposed paradigm. We note that this problem can be tackled by

the multi-label learning algorithms (also called multi-target prediction or multivariate regression.)
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How many quantum states are sufficient to learn a quantum measurement? Assume there is an
unknown two-outcome quantum measurement device, and we can prepare a set of quantum states that are randomly
drawn from an unknown distribution. Suppose that the outcome statistics of the set of quantum states are known.
Can we infer the unknown quantum measurement from the quantum states at hand? How many samples of quantum
states are needed for the learning machine to decide an optimal quantum measurement from the hypothesis set? Can
the chosen candidate approximate the target measurement with the desired accuracy? These questions are typical
sample complexity problems in statistical learning theory, and the answer lies in a proper quantification of the
“effective size” of the hypothesis set. In this paper, we propose a framework (see Section 3) to connect the problems
of learning two-outcome measurements with the tasks of learning real-valued linear functional on quantum states.
By exploiting Banach space theory and the noncommutative Khintchine inequalities [58] in Random Matrix Theory,
we prove (Theorem 4.1) that the complexity measure—fat-shattering dimension—is upper bounded by O(d/ε2).
Under the same framework, other complexity measures, such as covering numbers and Rademacher complexity,
can be derived. As a result, the number of required sample states to learn an unknown quantum measurement is
proportional to the dimension of the Hilbert space.

How many quantum measurements are sufficient to learn a quantum state? Following the paradigm
of learning quantum measurements, we can similarly formalize the problem of learning an unknown state into its
dual problem. Unlike Aaronson [39], we employ tools solely from statistical learning theory to show (Theorem 5.1)
that the fat-shattering dimension is O(log d/ε2) for learning a qudit state. In addition, we also derive the covering
number and the Rademacher complexity. Our results show that all three complexity measures are characterised by
logarithmically proportional to the Hilbert dimension.

Lastly, by formulating the quantum learning problems into Bloch-sphere representation, we show that it is equiva-
lent to a neural network. Hence the classical ML algorithms can be practically applied to perform quantum ML tasks.

There are several fields that may relate to or benefit from our work.

Quantum State/Measurement Tomography. Quantum state tomography is a difficult task in physics because
the number of unknown parameters in a multi-partite quantum system grows exponentially. Aaronson pointed out
that quantum ML can serve as an alternative approach to quantum state tomography [39]. Surprisingly, learning an
unknown target state within a given accuracy requires only the number of measurements that grows logarithmically
with the dimension d. In this work, we push Aaronson’s result one step further and consider application of machine
learning framework to study quantum measurement tomography. To the best of our knowledge, there are very
few results in this direction. We hope that our result in learning quantum measurements will stimulate further
investigation into this problem.

Quantum State Discrimination. The goal of quantum state discrimination is to determine the identity
of a state in an ensemble. Whenever states are not mutually orthogonal, they cannot be perfectly discriminated.
Therefore, a possible way is ambiguous state discrimination with the goal of minimizing the error probability. Given
ε > 0 we show that the fat-shattering dimension guarantees that a set of quantum states can be discriminated into
two subsets with the worst error probability no greater than 1/2 − ε. Following the same reasoning, the quantum
states in the hypothesis set can be used to distinguish between two-outcome measurements.

Quantum Random Access Codes. The (n,m, p)-QRA coding stands for encoding an n-bit sequence into
m-qubit so that the receiver can recover any one of the bits with successful probability at least p. The information-
theoretic inequalities of n andm provide an upper bound for the fat-shattering dimension of learning quantum states.
Alternatively, we can use the complexity measure—pseudo dimension—to show that there exists no (n,m, p)-QRA
coding scheme, with n ≥ 22m. The result coincides with the work of Hayashi et al. [59]. See Section 5.4 for further
discussions.

The paper is organised as follows. In Section 2 we introduce the background of statistical learning theory
(especially on supervised learning) and describe important complexity measures. In Section 3, we formalise a
unified framework to relate the problems of learning quantum measurements and learning quantum states with the
learning real-valued functions. Based on the proposed approach, we derive learning quantum measurements and
prove the main results in Section 4. In addition, we discuss the interpretations of the to ambiguous set discrimination
and also derive the covering numbers and the Rademacher complexity. In Section 5, we consider the problem of
learning quantum states and discuss its relationship with QRA codes. In Section 6, we formulate the learning
problem into Bloch-sphere representation and discuss possible algorithms (e.g. neural networks) to implement the
quantum learning tasks. We conclude this paper in Section 7.
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Notation. In this paper, we denote a Hilbert space by H. The trace of an operator M on H is calculated as

Tr(M) :=
∑
k

ekMek,

where {ek} is any orthonormal basis on H. Let Md denote the set of all self-adjoint operators on Cd. The Hilbert-
Schmidt inner product on Md can be defined as 〈A,B〉HS := Tr(AB), where the subscript ‘HS’ will be omitted
when the context is clear. For p ∈ [1,∞), we denote the Schatten p-norm of an operator M as

‖M‖p :=

(∑
i≥1

|λi(M)|p
)1/p

,

where λi(M) is the eigenvalue of M . We denote ‖M‖∞ := supi |λi(M)| as the operator norm. Clearly, ‖ · ‖1 and
‖ · ‖2 correspond to the trace norm and Hilbert-Schmidt norm ‖ · ‖HS respectively. Slightly abusing the notation,
we also denote the conventional `p norm on Rd by ‖ · ‖p for p ∈ [1,∞]. We define the unit ball associated with the
Schatten norms as Sdp = {M ∈Md : ‖M‖p ≤ 1}. The set of bounded operators on H is denoted as B(H), which is
the set operators with finite Schatten ∞-norm. Likewise, the set of operators with finite Schatten 1-norm is called
the set of trace class operators, T (H).

A quantum state (also called density operators) on the Hilbert space H is a positive semi-definite operator with
unit trace. We identify the state space as the set of all quantum states on H, i.e. ,

Q(H) := {ρ ∈ T (H) : ρ � 0, Tr(ρ) = 1}.

A positive operator-valued measure (POVM) on H is a finite set of positive semi-definite operators {Πi}i∈I such
that ∑

i∈I
Πi = I,

where I denotes the identity operator on H. Each POVM element Πi is called a quantum effect, which serves as
an instrument to perform a yes-no measurement. We denote the set of all effects as an effect space:

E(H) := {E ∈ B(H) : O � E � I}.
All constants are denoted as C or c and are independent from other parameters. Their values may change from
line to line. The notation A . B means there is a constant c such that A ≤ cB and A ' B means both A . B and
A & B. We summarise all the notation in table 2 in Appendix A.

2. Background of Statistical Learning Theory

The starting point of this section is the mathematical formalism of the supervised machine learning. We describe
the effectiveness of a learning machine and examine the number of samples required to produce an almost optimal
function with an error rate below the desired accuracy. As will be shown later, the bound of the sample complexity
is closely related to the measures of complexity which characterise the “size” of a function class.

2.1. Supervised Machine Learning. Generally speaking, supervised learning is a ML task that infers a function
(or a learning model) by observing the data and the response to the data. In this work, we focus on the definitions
of agnostic PAC learnability and sample complexity for supervised machine learning. For more comprehensive
introduction to ML, we refer the readers to literature such as Refs. [2, 60–65].

Consider a probability space (Z, µ), where Z := X × Y with X (called the input space) a measurable space and
Y (called the output space) a closed subset of real line R. The probability distribution µ over Z is assumed to be
fixed but known only through the training data set, i.e. Zn = {(X1, Y1), . . . , (Xn, Yn)} ∈ Zn sampled independently
and identically according to the measure µ. Supervised learning aims to construct a function f : X → Y which
approximates the functional relationship between the input variable X ∈ X and the output variable Y ∈ Y from
the observed training data set. To evaluate the performance of the approximation, we define the loss function as a
measurable map `f : Z → [0,+∞) and the expected risk (also called the out-of-sample error):

L(f) = Eµ`f (X,Y ).

The loss function is usually taken as the absolute error or square error, i.e.

`f (X,Y ) = |f(X)− Y | or `f (X,Y ) = (f(X)− Y )2.
5



For convenience, we only consider the square error in this work. Other loss functions that satisfy the Lipschitz
condition can be easily generalised3.

Since we are interested in minimising the expected risk, hence the target function (or Bayes function) as t(x) =
E[Y |X = x] can be defined to achieve the minimum expected risk (called the Bayes risk), i.e.

LBayes := L(t) = inf
f
L(f),(2.1)

where the infimum is taken over all possible measurable functions from X to Y. When y is a deterministic function
of X, then Y = t(X) almost surely and L(t) = 0.

The goal of the learner is to identify the target function t from a collection of functions F , called the hypothesis
set4, which is a set of real-valued functions defined on the input space X . A learning algorithm A for hypothesis
set F is a mapping that assigns to every training data Zn some candidate function A(Zn) ∈ F , i.e.

A : ∪∞n=1Z
n → F .

The effectiveness of the learning algorithm is measured by the number of data required to produce an almost optimal
function in the sense of Eq. (2.1). Therefore, we introduce one of the most fundamental concepts in supervised
machine learning—Agnostic Probably Approximately Correct (PAC) learning model [4, 68]:

Definition 2.1 (Agnostic PAC Learnability [65], Def. 3.3). A hypothesis set F is agnostic PAC learnable if there
exist a function mF : R× R→ N and a learning algorithm with the following property: For every ε, δ ∈ (0, 1) and
for every distribution µ over Z, when running the learning algorithm on n ≥ mF (ε, δ) samples generated by µ, the

algorithm returns a hypothesis f̂ such that, with probability of at least 1 − δ (over the choice of the n training
examples),

L(f̂) ≤ inf
f∈F

L(f) + ε.

However, the expected risk L(f) = Eµ[`f (X,Y )] cannot be calculated since µ is unknown. We can only evaluate
the agreement of a candidate function over the training data set, which is called the empirical risk (also called the
in-sample error):

L̂n(f) =
1

n

n∑
i=1

`f (Xi, Yi).

For example, one of the most well-known learning algorithms is the Empirical Risk Minimization (ERM) principle
[2] that assigns a function fn ∈ F to each training data set which is “almost optimal” on the data, i.e.

fn = arg min
f∈F

L̂n(f).(2.2)

One way to evaluate the performance of the learning algorithm is to relate the risk L(fn) to the empirical risk

L̂n(fn). Following the reasoning of agnostic PAC model, our goal is hence to estimate the generalisation error ε:

L(fn) ≤ L̂n(fn) + ε(n,F).

For any algorithm that outputs a fn ∈ F , we have

L(fn)− L̂n(fn) ≤ sup
f∈F
{L(f)− L̂n(f)},

which leads to the definition of uniform Glivenko-Cantelli class (uGC class).

Definition 2.2. We say that the hypothesis set F is a uniform Glivenko-Cantelli class if for every ε > 0,

lim
n→∞

sup
µ

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} = 0.

3 A loss function `f : Z → (0,∞) is a Lipschitz function if it satisfies the Lipschitz condition

|`f (X,Y )− `g(X,Y )| ≤ L|f(X)− g(X)|
for all possible (X,Y ) ∈ Z and the quantity L ∈ R is called the Lipschitz constant. Denote by `F the set {`f : f ∈ F}. Then the

complexity measures (e.g. the covering number and Rademacher complexity) of the class `F are different from that of the hypothesis
set F by the Lipschitz constant L [66, 67], i.e.

Np(ε, `F ,m) ≤ Np(ε/L,F ,m) for p ≥ 1, m ∈ N

and

Rn(`F ) ≤ LRn(F).

Therefore, by homogeneity we may assume the loss function is the absolute error with L = 1 or the square error L = 2 for deriving the

sample complexity problems.
4Note that we use the term ‘hypothesis set’ and ‘function class’ interchangeably throughout the paper.
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The uniformity is with respect to all members of F and over all possible probability measures µ on the domain
Z. In addition to the conditions of the learnability, we also consider the bound on the rate of uniform convergence.
For every 0 < ε, δ < 1, let mF (ε, δ) be the first integer such that for every n ≥ mF (ε, δ) and any probability measure
µ,

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} ≤ δ.(2.3)

The quantity mF (ε, δ) satisfied Eq. (2.3) is called the (Glivenko-Cantelli) sample complexity of the hypothesis set
F with accuracy ε and confidence δ. The sample complexity encapsulates the number of samples required to learn
a set of functions.

Vapnik studied the relation between the uGC class and learnability [1, 2, 69] and showed that if a hypothesis set
F is a uGC class, then it is sufficient for the agnostic PAC learnability5.

Theorem 2.1 (Uniform Convergence [65, Corollary 4.4]). A training data set Zn is called ε-representative (with
respect to domain Z, hypothesis set F , loss function `, and distribution µ) if

∀f ∈ F ,
∣∣∣L̂n(f)− L(f)

∣∣∣ ≤ ε.
Then, for every ε, δ ∈ (0, 1) and every probability distribution µ over Z, a uGC class F that guarantees an ε/2-
representative set with probability of at least 1 − δ is agnostic PAC learnable. Furthermore, the ERM algorithm is
an agnostic PAC learner for F .

As a result, we consider the generalisation error ε(n,F) and the sample complexity mF (ε, δ) of the hypothesis set
F as the performance criterion to investigate whether the underlying learning problem is agnostic PAC learnability.

In summary, the fundamental problems in ML are two-fold. The first is under what conditions the machine is
agnostic PAC learnable. Secondly, the sample complexity determines the rate of the uniform convergence and the
information-theoretic efficiency of the hypothesis set F . In the next subsection, several complexity measures are
introduced to characterise the “richness” or “effective size” of the hypothesis set. In Appendix B, we show that the
sample complexity can be further expressed in terms of the complexity measures.

2.2. Measures of Sample Complexity. As discussed before, we are interested in the parameters which effectively
measure the size of a given hypothesis set. There are some well-known measures of (information) complexity6 of
the function class: combinatorial parameters, covering numbers, and Rademacher complexity.

The first combinatorial parameter—Vapnik-Chervonenkis (VC) dimension—was introduced by Vapnik and Cher-
vonenkis [72] for learning Boolean functions.

Definition 2.3 (VC Dimension). Let F be a set of {0, 1}-valued functions on a domain X . We say that F shatters
a set {x1, . . . , xn} ⊆ X if for every subset B ⊆ {1, . . . , n} there exists a function fB ∈ F for which fB(xi) = 1 if
i ∈ B, and fB(xi) = 0 if i /∈ B. Let

VCdim(F) = sup {|S| : S ⊆ X , S is shattered by F} .
The VC dimension of F (on the domain X ) is denoted as VCdim(F).

Pollard [73] generalised the concept of VC dimension and introduced the pseudo dimension to quantify the
sample complexity of a real-valued function class. The parameterised version of Pollard’s pseudo-dimension is the
scale-sensitive dimension (also called the fat-shattering dimension) introduced by Kearns and Schapire [74].

Definition 2.4 (Pseudo Dimension). Let F be a set of real-valued functions on a domain X . We say a set
S = {x1, . . . , xn} ⊆ X is pseudo-shattered by F if there exists a set {αi}ni=1 such that for every B ⊆ {1, . . . , n}
there is some function fB ∈ F for which fB(xi) ≥ αi if i ∈ B, and fB(xi) < αi if i /∈ B. Define the pseudo
dimension of F as

Pdim(F) = sup {|S| : S ⊆ X , S is pseudo-shattered by F} .
fB is called the shattering function of the set S.

There is a desirable property of the pseudo dimension that will be useful in our main theorems.

Theorem 2.2 (Pollard [73]).

5Agnostic PAC learnable is also called learnable with ERM, or we can say that the ERM algorithm is consistent. Recent works consider
the stability issues of the learning algorithm as one of the criterion of learnability. However, in this paper we do not deal with issues of

stability and refer interested readers to Refs. [70, 71] and the references therein.
6The complexity measures introduced in this section and the generalisation bounds derived in Section B are information-theoretic in

the sense that the learning algorithms are based on the agnostic PAC model regardless of the computational resources.
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(i) If F is a vector space of real-valued functions then Pdim(F) = dim(F).
(ii) If F is a subset of a vector space F ′ of real-valued functions then Pdim(F) ≤ dim(F ′).

Definition 2.5 (Fat-Shattering Dimension). Let F be a set of real-valued functions on a domain X . For every
ε > 0, a set S = {x1, . . . , xn} ⊆ X is said to be ε-shattered by the F if there exists a set {αi}ni=1 ⊂ R such that
for every B ⊆ {1, . . . , n} there is some function fB ∈ F for which fB(xi) ≥ αi + ε if i ∈ B, and fB(xi) < αi − ε if
i /∈ B. Define the fat-shattering dimension of F on the domain X as

fatF (ε,X ) = sup {|S| : S ⊆ X , S is ε-shattered by F} .

fB is called the shattering function of the set B and the set {αi}ni=1 is called a witness to the ε-shattering. When
the underlying space is clear, we denote it by fatF (ε). If the witness set {αi} are all equal to a constant, we call it
as the level fat-shattering dimension, fatF (ε).

In Ref. [61], a relationship between the fat-shattering dimension and the pseudo-dimension can be given.

Theorem 2.3 (Anthony and Bartlett [61]). Let F be a set of real-valued functions. Then:

(i) For all ε > 0, fatF (ε) ≤ Pdim(F).
(ii) If a finite set S is pseudo-shattered then there is ε0 such that for all ε > ε0, S is ε-shattered.

(iii) The function fatF (ε) is non-increasing with ε.
(iv) Pdim(F) = limε↓0 fatF (ε) (where both sides may be infinite).

Note that it is possible for the pseudo-dimension to be infinite, even when the fat-shattering dimension is finite
for all positive ε.

In addition to the combinatorial parameters bounding the sample complexity, there are other quantities called
covering number which measure the size of the function class by the finite approximating set. The concept of
covering number dates back to Kolmogorov et al. [75] and has been used in many areas of mathematics.

Definition 2.6 (Covering Number). Let (Y, d) be a metric space and let F ⊂ Y . For every ε > 0, the set
{y1, . . . , yn} is called an ε-cover of F if every f ∈ F has some yi such that d(f, yi) < ε. The covering number
N (ε,F , d) is the minimum cardinality of a ε-covering set for F with respect to the metric d.

To characterise the size of the function class F in machine learning, we investigate the metrics endowed by the
samples; for every sample {x1, . . . , xn} ∈ X , let µn = n−1

∑n
i=1 δxi be the empirical measure supported on that

sample. For 1 ≤ p <∞ and a function f , denote ‖f‖Lp(µn) =
(
n−1

∑n
i=1 |f(xi)|p

)1/p
and ‖f‖∞ = max1≤i≤n |f(xi)|.

Then, N (ε,F , Lp(µn)) is the covering number of F at scale ε with respect to the Lp(µn) norm.

Definition 2.7 (Entropy Number). For every class F , 1 ≤ p ≤ ∞ and ε > 0, let

Np(ε,F , n) = sup
µn

N (ε,F , Lp(µn)) ,

and

Np(ε,F) = sup
n

sup
µn

N (ε,F , Lp(µn)) .

We call logNp(ε,F , n) the entropy number of F with respect to Lp(µn) and logNp(ε,F) the uniform entropy
number.

The significance of the uniform measures of complexity (i.e. uniform entropy number and combinatorial param-
eters) lies in that they can characterise the uGC class. However, the bounds are loose. Bartlett and Mendelson
[67] considered the techniques of concentration of measures for empirical processes and proposed a random aver-
age quantity—Rademacher complexity, which capture the size of the uGC class more directly and leads to sharp
complexity bounds.

Definition 2.8 (Rademacher Complexity7[67, 74, 76]). Let µ be a probability measure on X and F be a set of
uniformly bounded functions on X . For every positive integer n, define

Rn(F) = E sup
f∈F

1√
n

∣∣∣∣∣
n∑
i=1

γif(xi)

∣∣∣∣∣ ,
where {xi}ni=1 are independent random variables distributed according to µ and {γi}ni=1 independently takes values
in {−1,+1} with equal probability (which are also independent of {xi}ni=1). The quantity Rn(F) is called the
Rademacher complexity associated with the class F .
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We remark that the complexity measures can be related among each other [77–79]:

fatF (ε) . logN2(ε,F , n) .
R2
n(F)

ε2
. fatF (ε) · log

(
1

ε

)
.

To sum up the results we have presented so far, the complexity measures, such as the combinatorial parame-
ters (e.g. VC dimension and fat-shattering dimension), covering numbers and the Rademacher complexity of the
hypothesis set control the rate of uniform convergence. By computing those quantities of the given hypothesis set
and according to Eqs. (B.1), (B.2), (B.3) and (B.4), we can estimate the bounds on the sample complexity of the
learning problems.

3. The Framework for Learning Quantum Measurements and Quantum States

In this section, we unify the two quantum learning problems at hand into learning linear functionals. In Section
3.3, we justify the proposed quantum learning model in practical situations.

3.1. Quantum Learning Problems as Linear Functional on Matrices. Recall that a physical theory aims to
predict events observed in the experiments by describing three types of apparatus: preparation, transformation, and
measurement. The preparation process of a system can be embodied by a state, while an effect is a measurement
that produces either ‘yes’ or ‘no’ outcomes in order to observe the physical experiment. However, according to
the statistical nature of Quantum Theory, only probabilities of the occurrence can be predicted (counting multiple
measurements). More precisely, assume that a system is prepared in the state ρ ∈ Q(H). Then the outcome of
every two-outcome measurement E ∈ E(H) takes the form of the probability distribution:

fE(ρ) = Tr(Eρ) = 〈E, ρ〉 ∈ [0, 1].

Note that it is a linear functional on the state space, i.e. fE : Q(H)→ R. In the theory of learning, such [0, 1]-valued
functions are called probabilistic concepts [74].

The following proposition establishes the one-to-one correspondence between fE ↔ E.

Proposition 3.1 (The Correspondence between Two-Outcome Measurement and Linear Functional). [80, Prop. 2.30]
Given a Hilbert space H, let fE be an effect, i.e. a linear map from Q(H) to the interval [0, 1]. Then there exists a
bounded operator E ∈ E(H) such that

fE(ρ) = Tr(Eρ) = 〈E, ρ〉 ∀ρ ∈ Q(H).

Furthermore, the operator E is unique in the following sense. Let E1, E2 ∈ E(H). If 〈ϕ,E1ϕ〉 = 〈ϕ,E2ϕ〉 for every
|ϕ〉 ∈ H, then E1 = E2.

The proposition states that every two-outcome measurement can be identified as a linear functional on the state
space. Consequently, the problem of learning an unknown (two-outcome) quantum measurement is equivalent to
learning a real-valued linear functional on quantum states. Here and subsequently, we call an effect to represent
either the linear functionals on Q(H) or the two-outcome measurement E ∈ E(H).

Conversely, if the measurement apparatus is chosen as some E ∈ E(H), then the measurement outcome of every
state ρ is distributed as

fρ(E) = Tr(Eρ) = 〈E, ρ〉 ∈ [0, 1] ∀ρ ∈ Q(H).

Therefore, we take the state space as the set of linear functionals on the effect space by the following proposition:

Proposition 3.2 (The Correspondence between Quantum State and Linear Functional on Effect Space). [81] Given
a Hilbert space H, let fρ be probability measure on E(H). Then there exists a quantum state ρ ∈ Q(H) such that

fρ(E) = Tr(Eρ) = 〈E, ρ〉 ∀E ∈ E(H).

Furthermore, different ρ1, ρ2 ∈ Q(H) determines different probability measures, i.e. there exists an operator E ∈
E(H) such that Tr(Eρ1) 6= Tr(Eρ2).

Similarly, according to the one-to-one correspondence between ρ ↔ fρ, learning an unknown quantum state
coincides with learning a real-valued linear functional on the effect space.

7 Some authors define the Rademacher complexity with the normalisation term as n rather than
√
n. Here we follow the notation used

in Ref. [76], which is more convenient to bound the sample complexity (e.g. Eq. (B.4)).
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3.2. Learning Linear Functionals on Banach Space. In the previous section, we establish the relationship
between quantum measurements/states and linear functional on matrices. By the duality theorem (see Theorem
3.1 below), the two quantum learning problems can be unified into the problem of learning the membership in a
Banach space. Furthermore, the real-valued function that associates with the target quantity in the Banach space
is isomorphic to the linear functional on the input space, i.e. an element in the dual space of the input space. For
example, assume the input space is the unit ball of the Schatten p-class, i.e. X = Sdp . Then the hypothesis set can

be represented as the linear functionals that are polar8 to Sdp , i.e. for all x ∈ Sdp and 1/p+ 1/q = 1,

F =
{
x 7→ 〈E, x〉 : E ∈ Sdq

}
=
(
Sdp
)◦
.

Under this duality formalism, the problems of estimating the complexity measures of the subset in a Banach space
can be transformed into the following question: Whether a set of linear functionals is agnostic PAC learnable?

Theorem 3.1 (Duality of Bounded Operator and Trace class). [82, Theorems 19.1 and 19.2] Fix a Hilbert space
H. The map E 7→ fE is an isometric isomorphism from the space of bounded operators, B(H), to the dual space of
the set of trace classes operators, T (H)∗. Conversely, the map ρ 7→ fρ is an isometric isomorphism from T (H) to
B(H)∗.

Mendelson and Schechtman [83] first investigated the fat-shattering dimension of sets of linear functionals on
Banach space and proposed the following useful result.

Lemma 3.1 (Mendelson and Schechtman [83]). The set S = {x1, . . . , xn} ⊂ BX is ε-shattered by BX∗ if and only
if {xi}ni=1 are linearly independent and for every a1, . . . , an ∈ R,

ε

n∑
i=1

|ai| ≤

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥
X

,

where BX is the unit ball of some Banach space X and BX∗ is its dual unit ball.

By restricting the values of the set {ai}ni=1 to {+1,−1}, the core idea of Lemma 3.1 is to calculate the Rademacher
series on the Banach space, where the n points Rademacher series on X is defined as

∑n
i=1 γixi, where {γi}ni=1 are

the symmetric {+1,−1}-valued random variables. Additionally, with the following duality formula for the Schatten
p-norm, we can estimate the range of the linear functional, which will helpful to further derive the complexity
measures.

Theorem 3.2 (Duality Formula for ‖A‖p). [84, Theorem 7.1] For all p ≥ 1, define q by 1/q + 1/p = 1. Then for
all A ∈Md,

‖A‖p = sup
B∈Md

{Tr(BA) : ‖B‖q = 1} .

The techniques from Mendelson and Schechtman (Lemma 3.1) and the duality formula (Theorem 3.2) can be
used to upper bound the fat-shattering dimension and the Rademacher complexity via the Rademacher series. What
remains is to compute the Rademacher series on the Banach space for both complexity measures, and we leave the
details to Sections 4 and 5.

3.3. The Justification of the Quantum Learning Model. Before proceeding to derive the complexity mea-
sures, we first address two practical issues that may arise in our quantum learning setting: (1) Only the ‘yes’
(‘1’) or ‘no’ (‘0’) outcome can be observed rather than the outcome statistics9. (2) The measurement apparatus is
not perfect (e.g. there are measurement errors in the training data set). However, we will show that the sample
complexities of the two scenarios remain the same (up to a Lipschitz constant).

The output space consists of binary measurement outcomes rather than measurement statistics. In
this case, the training sample (Xi, Yi) equals to (Xi, 1) with probability Tr(ΠXi), and (Xi, 0) with probability
1−Tr(ΠXi). We show that the covering number remains the same as the training sample (Xi,Tr(ΠXi)) considered

8In convex analysis, a convex body K ⊂ Rn is a convex compact set with nonempty interior. The gauge of a convex body K, also known

as the Minkowski functional, is defined by ‖x‖K := inf{t ≥ 0 : x ∈ tK}. If K is symmetric with respect to the origin (−K = K), then
K is a unit ball associated with the norm ‖ · ‖K and the inner product 〈·, ·〉. We define the polar of K as

K◦ =

{
x ∈ Rn : sup

k∈K
〈k, x〉 ≤ 1

}
.

In the symmetric case, K◦ is the unit ball of the dual space of (Rn, ‖ · ‖K). Here, Sd
1 is a unit ball of Schatten 1-class and Sd

∞ is a unit

ball of Schatten ∞-class. Considering the Hilbert-Schmidt inner product, Sd
1 and Sd

∞ are polar to each other.
9The situation can also occur when only one measurement is performed.
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in the quantum machine learning setting. Other complexity measures easily follow by the same argument. Assume
the underlying loss function `f satisfies the Lipschitz condition, i.e. there exists L > 0 such that

|`f (X,Y )− `g(X,Y )| ≤ L |f(X)− g(X)| .(3.1)

By denoting pX = Tr(ΠX), then the expected risk can be expressed as follows

L(f) = Eµ`f (X,Y )

= EXEY |X`f (X,Y )

= EX [pX`f (X, 1) + (1− pX)`f (X, 0)]

=: EX`′f (X,Y ).

In the third equality we use the fact that the ‘1’ (resp. ‘0’) outcome occurs with probability pX = Tr(ΠX) (resp. 1−
pX). In the last line we introduce the induced loss function `′f (X,Y ) := [pX`f (X, 1) + (1− pX)`f (X, 0)]. Then for

all X ∈ X , the distance between `′f and `′g can be calculated as

|`′f (X,Y )− `′g(X,Y )| = |pX (`f (X, 1)− `g(X, 1)) + (1− pX) (`f (X, 0)− `g(X, 0))|
≤ pX |`f (X, 1)− `g(X, 1)|+ (1− pX) |`f (X, 0)− `g(X, 0)|
≤ pX · L |f(X)− g(X)|+ (1− pX) · L |f(X)− g(X)|
= L |f(X)− g(X)| .

The second inequality follows from the triangle inequality. The next line is due to the Lipschitz condition. The
above relation shows that the distance |`′f − `′g| can be upper bounded by L|f − g|, which is exactly the same as

the upper bound for |`f − `g| (see Eq. 3.1). Recall Definition 2.6, it is clearly that the covering numbers with
respect to the induced loss function and the original loss function are bounded by the same quantity. Therefore,
the generalisation error, Eq. (2.3) and the sample complexity do not change in this scenario.

There is noise involved in the measurement procedure. In this case, we assume that the training sample
is (X,Y + n), where Y ≡ Tr(ΠX) and n is a random variable that models the measurement error. Following the
same reasoning, we can calculate the expected risk as follows

L(f) = Eµ`f (X,Y + n)

= EXEn`f (X,Y + n)

=: EX`′f (X,Y ).

In the last line, we let `′f (X,Y ) := En`f (X,Y + n). Thus,

|`′f (X,Y )− `′g(X,Y )| = |En`f (X,Y + n)− En`g(X,Y + n)|
≤ L |En [f(X)− g(X)]|
= L |f(X)− g(X)| .

Therefore, the original complexity measures (which depends on the distance of the loss function) and the induced
sample complexity hold the same.

4. Learning Quantum Measurements

In this section, we follow the quantum learning framework presented in Section 3 and explicitly show how to
derive the upper bound for the fat-shattering dimension, Rademacher complexity and the covering/entropy number.
We then discuss how these complexity measures relate to quantum state discrimination.

Recall that, in the problem of learning an unknown quantum measurement, the goal is to learn a fixed but
unknown effect Π ∈ E(Cd) through the training data set is Zn = {(ρi,Tr(Πρi))}ni=1, where {ρi}ni=1 ∈ Q(Cd) ≡ X
distribute independently according to the unknown measure µ. Note that learning Π is equivalent to learning a
two-outcome POVM {Π, I −Π}. Due to the correspondence between an quantum effect E ∈ E(Cd) and the linear
functional fE : ρ 7→ 〈E, ρ〉 on the input space X (Proposition 3.1), we consider the hypothesis set that consists of
all quantum effects10; that is,

F = {fE : E ∈ E(Cd)}.

10 The hypothesis set can be chosen as a subset of the effects space, to which the target effect Π may not belong. Then the goal is to
choose an effect in the hypothesis set that approximates the target well. We discuss this issue in Section 6. Also note that we sometimes

denote F as the subset of E(Cd) and sometimes denote it as the linear functionals formed by that subset.
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In the following, we present our main result to the question: “how many quantum states are needed to learn a
quantum measurement?” This is exactly the sample complexity problem introduced in Section 2.1. To tackle this
problem, we have to estimate the complexity measures that characterise the size of the hypothesis set.

4.1. The Fat-Shattering Dimension for Learning Quantum Measurements. Our first step is to use a
common trick in convex analysis; namely, “symmetrisation” of the state space and the effect space, to embed them
into a subset of the Banach space. In other words, the symmetric convex hull of the state space forms a unit ball
of Schatten 1-class:

Sd1 := conv(−Q(Cd) ∪Q(Cd)),
where conv(·) denotes the convex hull operation. Similarly, we have

Sd∞ := conv(−E(Cd) ∪ E(Cd)).

Now the input space X ⊂ Sd1 and the hypothesis set F consists of linear functionals which can be paremeterised by
the elements in Sd∞. That is,

F = {fE : E ∈ Sd∞}.
The main reason for introducing Sd1 and Sd∞ is that they are unit balls which are polar to each other (through the

Hilbert-Schmidt inner product). Thus, we can apply Mendelson and Schechtman’s result (Lemma 3.1) to estimate
the fat-shattering dimension.

The following is our main result in this result.

Theorem 4.1 (Fat-Shattering Dimension for Learning Quantum Measurements). For all 0 < ε < 1/2, and integer
d ≥ 2, we have

Pdim(E(Cd)) ≤ d2,

and

fatE(Cd)(ε,Q(Cd)) = min{O(d/ε2), d2}.

Proof. We first present the outline of the proof. According to the definition of the fat-shattering dimension, it follows
that the function fatF (ε) is non-increasing with ε. Hence, our first objective is to check whether the fat-shattering
dimension is unbounded. Equivalently, it suffices to find the pseudo dimension which bounds the fat-shattering
dimension (Theorem 2.3). Secondly, assume there is a set of n points that can be ε-shattered; we will find an
inequality to relate n with ε, which will prove our claim.

(i) Pseudo Dimension: Since Md is a vector space with dimension d2 and Sd∞ is a subset of Md, we can embed
Sd∞ into a real vector space of dimension d2. Since the function class F is a subset of a d2-dimensional vector space,
by Theorem 2.2 we obtain Pdim(F) ≤ d2.

(ii) Fat-Shattering Dimension: Consider any set S = {x1, . . . , xn} ⊂ Sd1 is ε-shattered by Sd∞, where n ≤ d2.
Denote a Rademacher series as

∑n
i=1 γixi, where {γi}ni=1 are independent and uniform {+1,−1} random variables

(also called Rademacher random variables). By selecting ai = γi in Lemma 3.1, we have

εn ≤

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
1

.(4.1)

We adopt a probabilistic method to upper bound the right-hand side of Eq. (4.1). If we can find a quantity C(n, d)
that upper bounds E ‖

∑n
i=1 γixi‖1, then there is a realization of {γi}ni=1 such that ‖

∑n
i=1 γixi‖1 ≤ C(n, d). As a

result, it remains to find an upper bound for the expected norm of the Rademacher series E ‖
∑n
i=1 γixi‖1.

In order to upper bound the Rademacher series, we need the powerful Noncommutative Khintchine Inequalities
[58]:

Proposition 4.1 (Noncommutative Khintchine Inequalities [58, 85]). Let {xi}ni=1 be deterministic d× d matrices,
{γi}ni=1 be independent Rademacher random variables. Then

E

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
p

≈p


(
‖(
∑n
i=1 xix

†
i )

1/2‖pp + ‖(
∑n
i=1 x

†
ixi)

1/2‖pp
)1/p

, if 2 ≤ p <∞

infxi=ai+bi

(
‖(
∑n
i=1 aia

†
i )

1/2‖pp + ‖(
∑n
i=1 b

†
i bi)

1/2‖pp
)1/p

, if 1 ≤ p ≤ 2.

where ≈p means that the equality holds up to an absolute constant depending on p, and † denotes the complex
conjugate operation.

Note that Haagerup and Musat [85] proved that the result also holds as {γi}ni=1 are independent standard complex
Gaussian random variables
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Invoking Proposition 4.1, we have

E

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
1

.

∥∥∥∥∥∥
(

n∑
i=1

x2
i

)1/2
∥∥∥∥∥∥

1

.

Since the square operation preserves Sd1 , i.e. x2
i ∈ Sd1 , for all xi ∈ Sd1 , by the convexity of Sd1 , we have 1

n

∑n
i=1 x

2
i ∈ Sd1 .

Then the problem is reduced to finding

max
{xi}∈Sd

1

√
n

∥∥∥∥∥∥
(

1

n

n∑
i=1

x2
i

)1/2
∥∥∥∥∥∥

1

= max
x∈Sd

1

√
n‖
√
x‖1,

which is essentially a convex optimisation problem

max
x∈Sd

1

√
n

d∑
j=1

√
|λi|, subject to

d∑
j=1

|λj | = 1.

Since the square root is concave, we attain the maximum when |λj | = 1/d, for j = 1, . . . , d. That is,

E

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
1

. max
x∈Sd

1

√
n

d∑
i=1

√
λi =

√
nd.(4.2)

Consequently, there is a realization of {γi}ni=1 such that ‖
∑n
i=1 γixi‖1 ≤

√
nd, ∀xi ∈ Sd1 . Combined with Eq. (4.1),

we have n ≤ d/ε2 which proves our claim.
�

In the following proposition, we will demonstrate that the upper bound is tight.

Proposition 4.2. Considering a Hilbert space Cd, there exist infinitely many sets of d quantum states that can be
1/2-shattered by the effect space.

Proof. Consider arbitrary d mutually orthogonal rank-1 projection operators (pure states) {ρi}di=1 on Cd as the
input states. Now for every B ⊆ {1, . . . , d}, denote fB : ρ→ 〈

∑
i∈B ρi, ρ〉, for some ρ ∈ Q(Cd). Note that one can

easily check
∑
i∈B ρi ∈ E(Cd). Then for i ∈ B, we have

fB(ρi) =

〈∑
i∈B

ρi, ρ

〉
= 〈ρi, ρi〉
= 1.

Similarly, fB(ρi) = 0 if i /∈ B. As a result, {ρi}di=1 is 1/2-shattered by {fB}. �

4.2. The Rademacher Complexity. Following the paradigm in Section 4.1, we calculate the Rademacher com-
plexity of the effect space E(Cd) via the duality formula, Theorem 3.2, and the noncommutative Khintchine in-
equality, Proposition 4.1.

Theorem 4.2 (Rademacher Complexity for Learning Quantum Measurements). Assume the input space is the
state space X = Q(Cd) and the hypothesis set F = {fE : ∀E ∈ E(Cd)}. Then the Rademacher complexity is

Rn(E(Cd)) = O
(√

d
)
.
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Proof. Recall the definition of the Rademacher complexity (Definition 2.8). We have

√
nRn(Sd∞) = E sup

E∈Sd
∞

∣∣∣∣∣
n∑
i=1

γifE(xi)

∣∣∣∣∣
= E sup

E∈Sd
∞

∣∣∣∣∣
n∑
i=1

γi〈E, xi〉

∣∣∣∣∣
= E sup

E∈Sd
∞

∣∣∣∣∣
〈
E,

n∑
i=1

γixi

〉∣∣∣∣∣
≤ E

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
1

.
√
nd.

The third line is due to the duality formula (Theorem 3.2), and the last relation follows from Eq. (4.2). This
completes the proof. �

4.3. The Entropy Number. The covering number (and the related entropy number) follows directly from the
Rademacher complexity by the Sudakov’s minoration theorm.

Theorem 4.3 (Sudakov’s Minoration Theorem). [78, 86, 87] Let T be an index set. Let X = (Xt)t∈T be a
sub-Gaussian process11 with L2-metric dX (i.e. dX(s, t) = ‖Xs −Xt‖2) for s, t ∈ T ). Then for each ε > 0,

ε(logN (ε, T , dX))1/2 ≤ CE sup
t∈T
‖Xt‖1,

for some constant C.

Corrollary 4.1 (Entropy Number for Learning Quantum Measurements). Assume the input space is the state
space X = Q(Cd) and the hypothesis set F = {fE : ∀E ∈ E(Cd)}. Then for each ε > 0, the covering number of the
function class is

logN2(ε, E(Cd), n) = O(d/ε2).

Proof. The upper bound of the empirical L2 entropy number by the Rademacher complexity follows directly from
the Sudakov’s minoration theorem. Denote the (vector-valued) stochastic process by

Xf :=
1√
n

(γ1f(x1), . . . , γnf(xn)),

where x1, . . . , xn are independently drawn from X according to some distribution µ. Then the distance measure
can be calculated as

dX(f, g) = ‖Xf −Xg‖2 =
1√
n

(
n∑
i=1

|f(xi)− g(xi)|2
)1/2

= ‖f − g‖L2(µn) .

Invoke Theorem 4.3 and 4.2 to obtain

logN (ε,F , L2(µn)) = logN (ε,F , dX)

≤ C2

(
E supf∈F ‖Xf‖1

)2
ε2

= C2Rn(F)2

ε2

≤ C2 d

ε2
.

Note that the right-hand side in the last line does not depend on the distribution µ. Hence the entropy number
logN2(ε,F , n) = supµn

logN (ε,F , L2(µn)) = O(d/ε2) follows. �

11A stochastic process is called sub-Guassian if there exists σ > 0 such that E exp(θXt) ≤ exp(σ2θ2/2) for all θ ∈ R and t ∈ T . Note

that both Gaussian process and Rademacher process belong to sub-Gaussian process.
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The pseudo dimension of the effect space Pdim(Cd) = d2 means that we need d2 parameters to exactly determine
a POVM element. Note that it coincides the number of measurements in the quantum measurement tomography
(since E(Cd) lies in a d2-dimensional real vector space). However, if we relax the criterion by tolerating an ε accuracy,
then the effect space can be covered by N2(ε, E(Cd)) = exp(d/ε2) balls each with radius ε. In other words, we need
logN2(ε, E(Cd)) = d/ε2 samples to identify which ball the target POVM element lies in. That is the meaning of the
entropy number. By applying the quantum learning model to quantum measurement tomography, we can specify
a “PAC” candidate POVM element with accuracy ε and confidence δ with only d/ε2 samples, which quadratically
speed-up the original scheme.

4.4. The Relationship to Quantum State Discrimination. Quantum State Discrimination studies how to
optimally distinguish a set of quantum states according to a figure of merit [88, 89].

There are nevertheless some limitations in quantum state discrimination because the states cannot always be
perfectly discriminated. Moreover, it may not be necessary to find the exact state in some scenario. Therefore,
Zhang and Ying [90] considered quantum set discrimination, where the goal is to identify which set the given state
belongs to. Now we relate the concepts of the fat-shattering dimension to quantum set discrimination.

Definition 4.1 (ε-separable Set). A set S = {x1, . . . , xn} ⊂ Md is ε-(linearly) separable with respect to the set
W ⊆Md if and only if for any subset B ⊆ S there exists an ε-strip which separates B from its complement S \B.
In other words, there exist w ∈ W and a ∈ R such that 〈w, x〉 ≥ a + ε/2 when x ∈ B and 〈w, x〉 ≤ a − ε/2 when
x ∈ S \B.

It is not difficult to see that an 2ε-separable set correspond to the task of quantum set discrimination with
ensemble S = {x1, . . . , xn}, where the error probability that a given state can be classified to a set is no greater
than (1 − ε)/2. One interesting question to ask is what the maximum cardinality of the 2ε-separable set is. The
following proposition shows that the fat-shattering dimension equals this quantity.

Proposition 4.3. Denote the function class F = {ρ → 〈E, ρ〉 : E ∈ E(Cd)}. Assume there exists a set S =
{x1, . . . , xn} ⊂ Q(Cd) that is 2ε-separable with respect to E(Cd). Then the maximum cardinality of the set S is
fatF (ε).

Proof. Recall from Definition 2.5 that the set S = {x1, . . . , xn} is 2ε-separable with respect to E(Cd) if and only if
fatε(F) ≥ n. Then the proposition is equivalent to show that fatε(F) = fatε(F).

Because fatε(F) ≤ fatε(F) by definition, it suffices to show fatε(F) ≥ fatε(F). Given ε > 0, choose a set
S = {x1, . . . , xn} with the largest integer n such that S is ε-shattered by F (with {si}ni=1 witnessing the shattering).
Without loss of generality, we assume some si 6= 1/2. We then choose an arbitrary subset B ⊆ {1, . . . , n} that
contains i. By the definition of fat-shattering dimension, there exists si := s(xi) such that there is some function
EB ∈ F for each set B ⊂ S so that 〈EB , xi〉 ≥ si + ε, if i ∈ B. Also, we have 〈EB̄ , xi〉 ≤ si − ε, where B̄ = S \ B.
Now denote EB̄ := I − EB̄ such that

〈EB̄ , xi〉 = 1− 〈EB̄ , xi〉 ≥ 1− si + ε.

Since F is convex, set E′B := 1
2 (EB + EB̄) ∈ F which satisfies

〈E′B , xi〉 ≥ 1/2 + ε.

Similarly, let E′
B̄

:= I − E′B , we have

〈E′B̄ , xi〉 ≤ 1/2− ε.
The same argument holds for other si 6= 1/2. It follows that the level fat-shattering dimension (witnessed by 1/2)
also achieves the cardinality n of the ε-shattered set, which completes the proof. �

5. Learning Quantum States

In this section, we consider the problem of learning an unknown quantum state ρ′ ∈ Q(Cd) through the training
data set Zn = {(Ei,Tr(ρ′Ei))}ni=1, where {Ei}ni=1 ∈ X = E(Cd) are independently sampled according to an unknown
distribution µ′. By Proposition 3.2, the hypothesis set consists of the linear functional fρ : E 7→ 〈E, ρ〉 on E(Cd):

F ′ = {fρ : ∀ρ ∈ Q(Cd)}.
Similarly, we embed the input space into the unit ball of Schatten∞-class, i.e. X = Sd∞. Then the hypothesis set

is the collection of linear functionals on the input space, i.e. Sd1 . In the following, we aim to calculate the complexity
measures of Sd1 , which characterise the sample complexity of learning quantum states. It is interesting to see that
the proofs derived in this section (i.e. the complexity measures of learning quantum states) parallel with that in
the previous section (i.e. the complexity measures of learning quantum measurements) due to the duality relation
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in Theorem 3.1. Finally, we discuss the relationship of the fat-shattering dimension with quantum random access
codes.

5.1. The Fat-Shattering Dimension for Learning Quantum States. Under the framework presented in
Section 3, we characterising the input space X ⊂ Sd∞ and the hypothesis set F ′ consisting of the linear functionals
with elements in Sd1 . That is,

F ′ = {fρ : ρ ∈ Sd1}.

Therefore, we have the main result of deriving the fat-shattering dimension of the state space.

Theorem 5.1 (Fat-Shattering Dimension for Learning Quantum States). For all 0 < ε < 1/2 and integer d ≥ 2,
we have

Pdim(Q(Cd)) ≤ d2 − 1,

and

fatQ(Cd)(ε, E(Cd)) = min{O(log d/ε2), d2 − 1}.

Proof. Following the same fashion as in the proof of Theorem 4.1, we first estimate the pseudo dimension and then
the fat-shattering dimension.

(i) Pseudo Dimension: The state space lies in the set {x ∈Md : ‖x‖1 = 1}, which is the sphere of Sd1 , i.e.Q(Cd) ⊂
∂Sd1 . Since ∂Sd1 can be embedded into a real vector space of dimension d2 − 1, we have Pdim(Q(Cd)) ≤ d2 − 1.

(ii) Fat-Shattering Dimension: For every {xi}ni=1 ∈ Sd∞, we have to calculate the Rademacher series E ‖
∑n
i=1 γixi‖∞.

However, in the scenario of learning quantum states the input space lies in the Schatten ∞-class. We have to esti-
mate the spectral norm of the Rademacher series. Benefiting from the recent development of matrix concentration
inequalities, Tropp [91] proved the following results:

Proposition 5.1 (Upper Bound for Rademacher Series [91]). Consider a finite sequence {xi} of deterministic Her-
mitian matrices with dimension d, and let {γi} be independent Rademacher variables. Form the matrix Rademacher
series

Y =
∑
i

γixi.

Compute the variance parameter

σ2 = σ2(Y ) = ‖E
(
Y 2
)
‖∞.

Then

E‖Y ‖∞ ≤
√

2σ2 log d.

Note that the result also holds for the case {γi} being standard complex Gaussian variables.

Invoking Tropp’s development of matrix concentration inequalities (see Proposition 5.1), we have

E

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
∞

≤
√

2σ2 log d,(5.1)

where σ2 :=
∥∥∥E (

∑n
i=1 γixi)

2
∥∥∥
∞

. Straightforward computation shows that

σ2 =

∥∥∥∥∥∥E
(

n∑
i=1

γixi

)2
∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥E
∑

i,j

γiγjxixj

∥∥∥∥∥∥
∞

=

∥∥∥∥∥
n∑
i=1

x2
i

∥∥∥∥∥
∞

≤ n.

We get

E

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
∞

≤
√

2n log d.

Then there is a realization of {γi}ni=1 such that ‖
∑n
i=1 γixi‖∞ ≤

√
2n log d, ∀xi ∈ Sd∞.

From Lemma 3.1, by selecting ai = γi, εn ≤ ‖
∑n
i=1 γixi‖∞. Combining the inequalities, we have n ≤ O(log d/ε2)

completing the proof. �
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5.2. The Rademacher Complexity. By repeating the procedure introduced in Section 4.2, we can compute the
Rademacher complexity of the state space.

Theorem 5.2 (Rademacher Complexity for Learning Quantum States). Assume the input space is the effect space
X = E(Cd). The hypothesis set F defined on X is the state space Q(Cd). Then the Rademacher complexity of
hypothesis set is

Rn(Q(Cd)) = O
(√

log d
)
.

Proof. Recall from the definition of the Rademacher complexity. We have

√
nRn(Sd1 ) = E sup

ρ∈Sd
1

∣∣∣∣∣
n∑
i=1

γifρ(Ei)

∣∣∣∣∣
= E sup

ρ∈Sd
1

∣∣∣∣∣
n∑
i=1

γi 〈Ei, ρ〉

∣∣∣∣∣
= E sup

ρ∈Sd
1

∣∣∣∣∣
〈

n∑
i=1

γiEi, ρ

〉∣∣∣∣∣
≤ E

∥∥∥∥∥
n∑
i=1

γiEi

∥∥∥∥∥
∞

.
√
n log d.

The forth line is due to the duality formula, Theorem 3.2. The last relation follows from Eq. (5.1), which completes
the proof. �

5.3. The Entropy Number.

Corrollary 5.1 (Entropy Number for Learning Quantum States). Assume the input space is X = E(Cd). The
function class F defined on X is the state space Q(Cd). Then for each ε > 0, the covering number of the function
class is

logN2(ε,Q(Cd), n) = O(log d/ε2).

Compared with the entropy number of the effect space, the result of the state space is proportional to the
logarithmic dimension. The intuition behind this is that the unit ball of Schatten ∞-class is much larger than the
unit ball of Schatten 1-class. Thus, it requires more ε-radius ball to cover the whole effect space than the state
space. From the volumetric perspective, the fact will be more evident. Denote | · | as the Lebesgue measure on the
Banach space of the Schatten class. It can be calculated that

|E(Cd)|1/d2

|Q(Cd)|1/(d2−1)
'
(
|Sd∞|
|Sd1 |

)1/d2

' d,

which shows that the volume of the effect space is essentially exponential (in the dimension d) to the state space.
Recall that the complexity measures are the quantity to estimate the effective size of the hypothesis set. Accordingly,
it is reasonable that the complexity measures of the effect space are exponentially compared with that of the state
space. In other words, the results of Theorem 4.1 demonstrate the richness of the effect space.

5.4. The Relationship to Quantum Random Access Codes. The learnability of quantum states was first
addressed by Aaronson [39]. Ingeniously, he applied the results of Quantum Random Access Coding [92] to provide
an information-theoretic upper bound on the fat-shattering dimension for learning m-qubit quantum states. We
first give the definitions of QRA codes then discuss Aaronson’s result.

Definition 5.1 (Quantum Random Access Coding). An (n,m, p)-QRA coding is a function that maps n-bit
strings x ∈ {0, 1}n to m-qubit states ρx satisfying the following: For every i ∈ {1, . . . , n} there exists a POVM
Ei = {Ei0, Ei1} such that Tr(Eixi

ρx) ≥ p for all x ∈ {0, 1}n, where xi is the i-th bit of x.

If there exists an (n,m, p)-QRA coding, we have the fact that the sets {Ei}ni=1 are (p− 1/2)-shattered by {ρy}
and the constant value 1/2 witnesses the shattering. That is,

m ≥ (1−H(ε+ 1/2))n ≥ c · ε2n.(5.2)
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Therefore, the inequality gives an upper bound on the level fat-shattering dimension, i.e. fatQ(Cd)(p − 1/2) =

O(m/ε2). Conversely, fat-shattering dimension with scale (p−1/2) does not guarantee the existence of an (n,m, p)-
QRA coding (since there may be some si < 1/2), while provide an upper bound on the success probability p if it
exists.

However, in the case that functions in F have a bounded range of [0, 1], Gurvits [93] utilised the Pigeonhole
principle to relate the level fat-shattering dimension with the fat-shattering dimension.

Theorem 5.3 (Gurvits [93]). For any hypothesis set F consisting of [0, 1]-valued functions, we have

(2(1− 2ε)/ε)−1fatF (2ε) ≤ fatF (ε/2) ≤ fatF (ε/2).(5.3)

By definition, fatF (ε) ≤ fatF (ε). However, from the above theorem, the dependencies on the dimension d are of
the same order for both the level fat-shattering dimension and the fat-shattering dimension. Consequently, from
Eq. (5.2) we have fatF (ε) = O(m/ε2), which leads to fatF (ε) = O(m/ε2) according to the inequalities in Eq. (5.3).
Thus we recover Aaronson’s result.

Theorem 5.4 (Aaronson [39]). The fat-shattering dimension for learning the class of all m-qubits, F , is fatF (ε) =
O(m/ε2).

We remark that it is unknown whether fatF (ε) = fatF (ε) for F = Q(Cd).

Proposition 5.2. There is no (22m,m, p)-QRA coding for 1/2 < p ≤ 1 and positive integer m.

Hayashi et al. [59] showed that there is no (22m,m, p)-QRA coding for 1/2 < p ≤ 1. This result can be directly
derived from Theorem 5.1, which shows that Pdim(Q(Cd)) ≤ d2 − 1. The dimension d of m-qubit is 2m. Then the
upper bound of the pseudo dimension shows that there is no d2 = 22m two-outcome POVMs that can be shattered
(by the function class of the state space), which coincides with Hayashi et al’s result.

6. The Algorithms for Quantum Machine Learning

In the previous sections, we demonstrate the information-theoretical analysis of the quantum learning problems.
In this section, provide a constructive way to implement quantum ML tasks by representing the learning framework
in Bloch space.

We gather all the materials and derivations concerning the Bloch-sphere representation into Appendix C. Recall
from Eq. (C.6) that the function class of rank-k effects and their mixture can be represented as the following affine
functional:

Fk = conv

(
{r 7→ k

d

(
1 + (d− 1)r · n(k)

)
}
)
,

where r is the Bloch vector of the quantum state; n(k) (see Eq. (C.3)) parameterises the function in the hypothesis
set Fk. Moreover, it can in turn be written as

Fk = σ(v · r + v0),

where σ : R→ R is called the activation function. The Bloch vector r ∈ Rd2−1 is the input vector; [v0,v] ∈ Rd2 is
the input weights. Each map r 7→ σ(v · r + v0) can be thought of as a function computed by the linear perceptron.
Using the terminology from the theory of neural network [61], each Fk is called the single-layer neural network (see
Appendix D for more details).

Considering the function class of the whole effect space, we exploit the convexity of the effect space, and obtain
the following result:

F =

d∑
k=0

wk · k
d

(
1 + (d− 1)r · n(k)

)
=:

1

d
(n0 + (d− 1)r · n) ,

where
∑d
k=0 wk = 1. This is called the two-layer neural network (also called the single-hidden layer net). Based

on this formulation, the tasks of learning quantum measurements can be implemented by existing neural network
algorithms or other classical ML algorithms. We note that the neural network formulation for learning quantum
states follows in the same way by virtue of the duality.

Additionally, the fat-shattering dimension for Fk can easily be bounded from the classical results in neural
networks. We have the following corollary.

Corrollary 6.1. Suppose the hypothesis set Fk consists of rank-k projection operators and their mixture. We have

fatFk
(ε) ≤ k(d− 1)(d− k)

(dε)
2 , k = {0, 1, . . . , d}.
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Proof. Since Fk is a linear function class on Rd−1, invoking the classical results from Anthony and Bartlett [61]:

fatF (ε) ≤ a2b2

ε2
,

where F = {w 7→ 〈w,x〉 : ‖x‖2 ≤ b, ‖w‖2 ≤ a, x,w ∈ Rd2−1}.
Therefore, it remains to calculate the coefficients in Eq. (C.4). Since ‖r‖2 ≤ 1, and∥∥∥∥∥k(d− 1)

d

√
d− k
k(d− 1)

∥∥∥∥∥
2

=

√
k(d− 1)(d− k)

d2
,

the result follows. �

We can see from the corollary that the fat-shattering dimension increases when the the rank k approaches a half
of the Hilbert space dimension d, which means that the classes {Fk} form a hierarchical structure. Operationally,
the hypothesis set F1 can be chosen at first. It can then be enlarged into conv(F0 ∪F1 ∪F2) and so forth until the
whole effect space is considered. This is called the structural risk minimisation (SRM [2]), and is usually adopted
in classical ML to avoid overfitting. Here we give two examples to illustrate the concepts in Corollary 6.1.

Example 6.1 (Learning rank-1 Projection Valued Measures (PVMs): Qubit system attains the upper bound).
The fat-shattering dimension of rank-1 projection operators and their mixture in a qubit system can be bounded
by

fatF1(ε) ≤ (N − 1)2

(Nε)2
=

1

4ε2
.

Consider two quantum states ρr1 = |1〉〈1|, ρr2 = |−〉〈−| with corresponding Bloch vectors r1 = (0, 0,−1), r2 =
(−1, 0, 0). To shatter these two quantum states, we construct four quantum effects with the Bloch vectors:

n00 =
1√
2

(1, 0, 1), n10 =
1√
2

(1, 0,−1),

n11 =
1√
2

(−1, 0,−1), n01 =
1√
2

(−1, 0, 1).

Since the angles between the states and effects are either π/4 or 3π/4, we have

(Tr(En00
ρr1),Tr(En00

ρr2)) = (
1

2
(1− 1√

2
),

1

2
(1− 1√

2
)), (Tr(En10

ρr1),Tr(En10
ρr2)) = (

1

2
(1 +

1√
2

),
1

2
(1− 1√

2
)),

(Tr(En11
ρr1),Tr(En11

ρr2)) = (
1

2
(1 +

1√
2

),
1

2
(1 +

1√
2

)), (Tr(En01
ρr1),Tr(En01

ρr2)) = (
1

2
(1− 1√

2
),

1

2
(1 +

1√
2

)).

Clearly these four quantum effects 1
2
√

2
-shatter (r1, r2) and achieve the fat-shattering dimension fatF1( 1

2
√

2
) = 2.

The case of three quantum states follows similarly. Consider r1 = (1, 0, 0), r2 = (0, 1, 0), r3 = (0, 0, 1), and
nijk = (i, j, k) for i, j, k ∈ {0, 1}. With some calculations, the eight quantum effects 1

2
√

3
-shatter (r1, r2, r3) and

achieve the fat-shattering dimension fatF1
( 1

2
√

3
) = 3.

It is worth emphasising that the dual problem of learning quantum states is equivalent to learning quantum
measurements when the hypothesis set consists of rank-1 projections and their mixture. The reason is that the
two mathematical objects are exactly the same, i.e. conv(F1) = Q(Cd). In this scenario, the dual problem has
the same results, which is optimal in the sense of Quantum Random Access codes (i.e. (2,1,0.85)-QRA codes [94]).
Furthermore, we note that the measurements in the (2,1,0.85)-QRA codes and the input states (ρr1 , ρ

⊥
r1), (ρr2 , ρ

⊥
r2)

in this example are mutually unbiased bases (MUB) which attain the upper bound of the qubit system.

Example 6.2 (Rank equals a half the Hilbert space dimension). Consider a quaternary Hilbert space, i.e. C4. First,
we show that there exist no two quantum states that can be 1/2-shattered by the convex hull of rank-1 projection
operators. Consider two arbitrary different quantum states S = {ρi}2i=1. If the function class F1 can 1/2-shatter
the set S, then there must be an effect E ∈ F1 such that Tr(Eρ1) = Tr(Eρ2) = 1. Clearly, it can be achieved only
when E is a rank-1 projection and the two quantum states are both equal to E, which contradicts the assumption.

Second, we show there exist two quantum states that can be 1/2-shattered by the rank-2 projection operators.
Assume ρi = |i− 1〉〈i− 1|, i = 1, 2. We construct four quantum effects as follows:

E11 =


1

1
0

0

 , E01 =


0

1
1

0

 , E10 =


1

0
1

0

 , E00 =


0

0
1

1
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in the computational basis. The two quantum states can then be 1/2-shattered by these four quantum effects. This
example demonstrates that the set of rank-2 projections is richer than the set of rank-1 projections in terms of the
complexity measures.

Remark. The readers may contemplate the pros and cons of Bloch-sphere representation when analysing the fat-
shattering dimension. Indeed, Bloch-sphere representation provides a geometric picture so that we have more
concrete ideas of the linear relation between quantum measurements and states. Furthermore, in Example 6.1 we
see how the extreme points (projection operators) and MUB play the role in the fat-shattering dimension. However,
it is difficult to fully characterise the region of the Bloch space. To the best of our knowledge, the most convenient
metric used in Bloch-sphere representation is the Euclidean norm, which corresponds to the Hilbert-Schmidt norm
(Schatten 2-norm) in the state space, i.e.

‖ρr1 − ρr2‖HS =

√
d− 1

2d
‖r1 − r2‖2.

Recalling that conv
(
−Q(Cd) ∪Q(Cd)

)
= Sd1 ⊂ Sd2 ⊂ Sd∞ = conv

(
−E(Cd) ∪ E(Cd)

)
, the Hilbert-Schmidt norm is

not efficient in characterising the state space (that is why some regions in the Bloch sphere are not representative as
valid states). On the other hand, the unit ball of Schatten 2-class is not sufficient to contain Sd∞, so we have to scale

up the Hilbert-Schmidt norm by a factor
√
d (since ‖ · ‖2 ≤

√
d‖ · ‖∞). Then we may overestimate the effective size

of the effect space. As a result, directly analysing the linear functionals between Sd1 and Sd∞ is the most efficient way
of calculating the fat-shattering dimension. We emphasise that with Bloch-sphere representation, all the quantum
measurements/states are transformed into Euclidean space, where existing ML algorithms (e.g. perceptron learning
algorithm, neural network, SVM, etc.) can be applied to conduct the learning tasks. It is also worth considering
other metrics (e.g. Bures metric, or other `p norms in Bloch-sphere representation) and parameterisation methods
(e.g. Weyl operator basis, polarisation operator basis, Majorana representation, etc.) in our quantum ML framework.
We leave it as future work.

When learning an (M + 1)-outcome POVM measurement {Πj}Mj=0, with
∑M
j=0 Πj = I, we can simply follow the

procedure discussed so far. Now the training data set consists of {(ρi,Tr(Πρi)}ni=1, where

Tr(Πρi) := (Tr(Π1ρi), . . . ,Tr(Πnρi)) .

This is called multi-target prediction or multi-label classification. Each target Πj can be independently learned by
the individual function class F .

It is worth mentioning that Gross and Flammia et al. [44, 45] proposed a quantum state tomography method
via compressed sensing, which is similar to our setting of learning quantum states. The main goal of the work is
to concentrate on states ρ that can be well approximated by density matrices of rank r � d and to reconstruct
a density matrix ρ̂ based on m randomly sampled Pauli operators. With certain constraint coefficients λ and
m ≥ Crd log6 d, they show

‖ρ̂− ρ‖1 ≤ C0rλ+ C1‖ρc‖1,
where ρc = ρ− ρr is the residual part and ρr is the best rank-r approximation to ρ.

7. Conclusions

Table 1. The Complexity Measures of The Quantum Learning Problems.

Learning Quantum Measurements Learning Quantum States

Pseudo Dimension d2 d2 − 1
Fat-Shattering Dimension fatF (ε) d/ε2 log d/ε2

Uniform Entropy Number logN2(ε,F) d/ε2 log d/ε2

Rademacher Complexity Rn(F)
√
d

√
log d

Sample Complexity mF (ε, δ) max{d, log(1/δ)}/ε2 max{log d, log(1/δ)}/ε2

In this paper, we formalise the problems of learning quantum measurements and quantum states and anal-
yse the learnability. We solved the sample complexity problems for learning quantum measurements and quan-
tum states. In the scenario of learning (two-outcome) quantum measurements, the fat-shattering dimension is
min

{
O
(
d/ε2

)
, d2
}

. We also showed that the fat-shattering dimension for its dual problem—learning quantum

states—is min
{
O
(
log d/ε2

)
, d2 − 1

}
. Our proof is entirely based on tools from classical learning theory, and pro-

vides an alternative proof for Aaronson’s result [39]. We also derived other important complexity measures for
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these two tasks, and the results are summarized in Table 1. Our results demonstrated that learning an unknown
measurement is a more daunting task than learning an unknown quantum state. The intuition is that, since the
effect space is much larger than the state space, it is reasonable that the fat-shattering dimension of the effect space
is larger, too.

Finally, by exploiting general Bloch-sphere representation, we show that our learning problems are equivalent
to a neural network so that classical ML algorithms can be applied to learn the unknown quantum measurement
or state. Our work could provide a new viewpoint to the study of quantum state and measurement tomography.
We also discuss connections between the quantum learning problems and other fields in QIP such as existence of
QRA Codes and quantum state discrimination. We hope that the development of our results would stimulate more
theoretical studies in quantum statistical learning, and more applications in quantum information processing and
related areas can be discovered.

Appendix A. Notation Table

Appendix B. Sample Complexity in Terms of Complexity Measure

In Section 2.2, we introduce several complexity measures. In this section, we list some well-known deviation
formula to express the generalisation error and sample complexity in terms of those complexity measures.

It has been established that any set of Boolean functions is a uGC class (i.e. PAC learnable) if and only if it
has a finite VC dimension [95, 96]. Additionally, the finite VC dimension provides an upper bound for the sample
complexity of the Boolean function class.

Theorem B.1 (Vapnik et al. [67, 95, 96]). Let C be an absolute constant and F be a class of Boolean functions
which has a finite VC dimension d. Then, for every 0 < ε, δ < 1,

sup
µ

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} ≤ δ,

provided that n ≥ C
ε2 (d log(2/ε) + log(2/δ)).

Therefore, the sample complexity is bounded by

mF (ε, δ) ≤ C

ε2
max

{
d log

1

ε
, log

1

δ

}
.(B.1)

Following the same reasoning as in Theorem B.1, the analogous results can be drawn: the hypothesis set F is a
uGC class if and only if it has a finite fat-shattering dimension for every ε > 0 [79, 97, 98]. We have the following
theorem:

Theorem B.2 (Bartlett et al. [79, 97, 98]). There is an absolute constant C such that for every F consisting of
bounded functions and every 0 < ε, δ < 1,

sup
µ

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} ≤ δ,

provided that n ≥ C
ε2 (fatF (ε/8) · log(2/ε) + log(8/δ)).

Therefore, the sample complexity is bounded by

mF (ε, δ) ≤ C

ε2
max

{
fatF (ε) · log

1

ε
, log

1

δ

}
.(B.2)

The entropy number is distribution-independent and is closely related to the learnability of the function class.
Dudley et al. [99] showed that a class F consisting of bounded functions is a uGC class if and only if that there is
some 1 ≤ p ≤ ∞ such that for every ε > 0,

lim
n→∞

logNp(ε,F , n)

n
= 0.

In addition, we have the following theorem:

Theorem B.3 (Polland [73]). Let F be a set of bounded functions.

(i) For every 0 < ε < 1, any n ≥ 8/ε2, and any probability measure µ,

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} ≤ 8N1(ε/8,F , n) exp(−nε

2

128
).
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Table 2. Summary of Notation

Notation Mathematical Meaning

H the (separable) Hilbert space
d the dimension of the linear space
R, N the set of real numbers and positive integers
Cd the linear space of d-dimensional complex vectors
Md the set of all self-adjoint operators on Cd
Tr the trace function on Md

A† the conjugate transpose of A
〈A,B〉 = Tr(B†A), the Hilbert-Schmidt inner product on Md;

also stands for conventional inner product on Cd
B(H) the set of bounded operators on H
T (H) the set of trace class operators (i.e. finite trace) on H
O the zero operator on H.
I the identity operator on H.
A � B = A−B � O, the standard partial ordering
‖M‖p the Schatten p-norm on Md, which reduces to the `p norms on Cd.
Sdp ={M ∈Md : ‖M‖p ≤ 1}, the unit ball of Schatten p-class
|ϕ〉 the unit vector on H
ρ, σ the quantum state on H, i.e. ρ = ρ† ∈ T (H), with Tr(ρ) = 1
E, Π the POVM element on H, i.e. O
Q(H) state space, the set of all states on H
E(H) effect space, the set of all POVM elements on H
X the input space, or called the instances domain (the set)
Y the output space, or called the labels domain (the set)
Z = X × Y
F the hypothesis set of functions f : X → Y
µ a distribution on Z
Zn a training data set of n elements independently according to µ
`f : Z → (0,∞) loss function
Pr, E probability and expectation of a random variable
L(f) = Eµ[`f (X,Y )], the ensemble error

L̂n(f) = 1/n
∑n
i=1 `f (Xi, Yi), the empirical error over the training data set Zn

VCdim(F) Vapnik-Chervonenkis dimension of the function class F
Pdim(F) pseudo dimension of the function class F
fatF (ε) fat-shattering dimension of the function class F with ε > 0
fatF (ε) level fat-shattering dimension of the function class F with ε > 0
N (ε,F , τ) covering number of F with metric τ and ε > 0
logN (ε,F , τ) entropy number
Rn(F) Rademacher complexity of the function class F on Zn
γi uniformly {+1,−1}-valued random variables or called Rademacher variables
O the big O notation; f = O(g) means f(x) ≤ cg(x)

for some positive c, x0 and all x ≥ x0

A . B = A ≤ cB
for some constant c

A ' B both A . B and A & B

(ii) For every 0 < ε, δ < 1,

sup
µ

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} ≤ δ,

provided that n ≥ C
ε2 (logN1(ε,F) + log(2/δ)).
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Therefore, the sample complexity is bounded by

mF (ε, δ) ≤ C

ε2
max

{
N1(ε,F), log

1

δ

}
.(B.3)

Theorem B.4 (Bartlett and Mendelson [67]). For any 0 < δ < 1, with probability at least 1− δ and for all f ∈ F
we have,

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} ≤ δ,

provided that n ≥ C
ε2 max {Rn(F), log(1/δ)}.

Therefore, the sample complexity is bounded by

mF (ε, δ) ≤ C

ε2
max

{
Rn(F), log

1

δ

}
(B.4)

Appendix C. Learning Framework in Bloch-sphere Representation

When illustrating the state space on a finite dimensional Hilbert space Cd, it is convenient to adopt a geometric
parameterisation method called Bloch-sphere representation [100–102]. Here, we provide another point of view on
our quantum learning framework. The key idea is to represent the quantum objects in a Euclidean space, wherein
classical techniques of traditional ML can be applied. Although the Bloch-sphere representation method may not be
as direct as the machinery we used in Sections 4 and 5, it does gain more insights into our quantum ML problems.

Based on the orthogonal basis {I,Λ1, . . . ,Λd2−1} of SU(d), any state ρr on Cd can be represented in a Bloch
vector r through:

ρr =
1

d

I + cd

d2−1∑
i=1

riΛi

 =
1

d
(I + cdr ·Λ),(C.1)

where cd :=
√

d(d−1)
2 and the dot product corresponds to the conventional Euclidean inner product, and

ri =

√
d

2(d− 1)
Tr (ρrΛi) ∈ R, i = 1, . . . , d2 − 1.

Define the Bloch vector space as the set of Bloch vectors, which are representative of the valid states on Cd as

Ωd := {r ∈ Rd
2−1 : r =

√
d

2(d− 1)
Tr (ρr ·Λ)}.

Now we calculate the linear functional of En ∈ E1 acting on the state ρr (where Ek denotes the convex hull of
rank-k projection operators):

Tr(Pnρr) = Tr

(
1

d2
(I + cdr ·Λ)(I + cdn ·Λ)

)
= Tr

(
1

d2
[I + cd(r ·Λ + n ·Λ) + c2d(r ·Λ)(n ·Λ)]

)
=

1

d
+
c2d
d2

Tr ((r ·Λ)(n ·Λ))

=
1

d
(1 + (d− 1)r · n) .

Consequently, we have the affine functionals with elements in the convex hull of rank-1 projection operators, i.e.

F1 = {ρr 7→
1

d
(1 + (d− 1)r · n) : n ∈ Ωd}.

In order to characterise the quantum effects associate with higher dimensional projection operators, it is useful
to consider the algebraic properties of the projection operators. The set of projection operators on Cd is not
a vector space but corresponds to an orthocomplemented lattice. Therefore, the sum of two projections, say
P and Q, is a projection only when they are orthogonal, i.e. PQ = QP = O. Based on this fact, now let
{Pn1

, . . . , Pnd
} be arbitrary mutually orthogonal rank-one projections on Cd. To each of them, we associate a unit

Bloch vector ni such that Pni
= 1

d (I + cdni · Λ), i = 1, . . . , d. It can be verified by Eq. (C.1) that the Bloch
vectors {n1, . . . ,nd} form a (d− 1)-dimensional (regular) simplex since the angle between any two Bloch vectors is
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θ(ni,nj) = cos−1(− 1
d−1 ). With a slight abuse of notation, denote a rank-k projection Pn(k)

as the summation of

arbitrary k different projections from the set {Pn1 , . . . , Pnd
}. More formally, we denote an index set Ik ⊆ {1, . . . , d}

with cardinality k, and Pn(k)
=
∑
i∈Ik Pni , where we adopt the convention that the empty sum is zero. Hence,

when a rank-k projection Pn(k)
∈ Fk acts on the state ρr, we have:

Tr(Pn(k)
ρr) =

∑
i∈Ik

1

d
(1 + (d− 1)r · ni)

= k · 1

d
(1 + (d− 1)r · n(k)),(C.2)

where

n(k) :=
1

k

∑
i∈Ik

ni(C.3)

is the centroid of the (k − 1)-face of the simplex ∆d−1 subtended by the vectors {ni}i∈Ik .The `2-norm of n(k) can
be calculated as the Euclidean distance from the center of the simplex ∆d−1 to the centroid of (k − 1)-face; that is

‖n(k)‖2 := rd,k =

√
d− k
k(d− 1)

< 1, k ∈ {1, 2, . . . , d}.(C.4)

Intuitively, we can interpret the value Tr(Pn(k)
ρr) as an operator Pn(k)

acting on the state ρr, and then scaled by k.

Since every quantum effect can be composed into the extremal effects (i.e. projection operators) of the effect
space [103]. We can represent Tr(Enρr) for all En ∈ E(Cd) as:

d∑
k=0

wk · k
d

(
1 + (d− 1)r · n(k)

)
=

1

d
(n0 + (d− 1)r · n) ,(C.5)

where
∑d
i=0 wk = 1, 0 ≤ n0 ≤ d and ‖n‖2 ≤ maxk∈{0,1,...,d}

√
k(d−k)
d−1 .

By utilising the bijection relationship of quantum state ρr and its corresponding Bloch vectors r, we can associate
the input space as the Bloch vector space, i.e. X = Ωd. Denote the function class Fk as the linear functionals of Ek
acting on ρr. According to Eq. (C.2), we have:

Fk = conv

(
{r 7→ k

d

(
1 + (d− 1)r · n(k)

)
}
)
.(C.6)

For the rank-0 projection operator, the class consists of only one element, i.e. F0 = {O}. We can see from the above
equation that the affine coefficient is fixed such that Fk consists of linear functionals. For the class of all quantum
effects F = E(Cd), by Eq. (C.5) we have a similar result:

F = {r 7→ 1

d
(n0 + (d− 1)r · n) : n ∈ Rd

2−1}, r ∈ Ωd,

where n0 can be upper bounded by d and ‖n‖2 can be bounded by k · rd,k =
√

k(d−k)
d−1 . Clearly, F = E(H) is the

function class consisting of the affine functionals. However, we can easily convert this formulation into a linear
form by letting r̃ = [1, r], and ñ = [n0,n]. The intuition behind this is that when characterising the learnability of
quantum measurements, all we need is to bound the complexity measures of the class of linear functionals.

Appendix D. Neural Networks

Here we briefly introduce the theory of Neural Networks. Readers may refer to Ref. [61] for more details. The
basic computing unit in a neural network is the (simple) perceptron (see Fig. 2), which computes a function from
Rd to R:

f(r) = σ(v · r + v0),

for input vector r ∈ Rd, where v = (v1, . . . , vd) ∈ Rd and v0 ∈ R are adjustable parameters, or weights (the
particular weight v0 being known as the threshold). The function σ : R→ R is called the activation function. In the
scenario of binary classification, the activation function may be chosen as the sign function; in the case of real-value
outputs, σ(·) may satisfy some Lipschitz conditions. Note that the decision boundary of the binary perceptrons is
the affine subspace of Rd defined by the equation v · r + v0 = 0.

When using a simple perceptron for a binary classification problem, the perceptron learning algorithm (PCA)
finds adequate parameters v and v0 to well fit the training data set. The algorithm starts from an arbitrary initial
parameter and updates the parameter when there are misclassified data. For example, if now the function computes
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(r, y) (with r ∈ Rd and y ∈ {0, 1}), the algorithm adds η(y − f(r))[r,−1] element-wise to [v, v0], where η is a fixed
step constant. PCA iterates until a termination criterion is reached.

The second example is the two-layer networks (also called single-hidden layer nets) (see Fig. 3). The network
can compute a function of the form

f(r) =

k∑
i=1

wkσ(vi · r + v0i) + w0,

where wi ∈ R, i = 0, . . . , k, are the output weights, [vi, v0i] are the input weights. The positive integer k is the
number of hidden units. One can use a ‘gradient descent’ procedure to adjust the parameters to minimize the
squared errors over the training data.

Figure 2. Consider a qubit system. A measurement in F1 can be characterised by a simple
perceptron with 3-dimensional input data and the activation function σ. The ‘1’ node is a bias
node and v0 is the corresponding bias weight. The input vector is the Bloch vector r ∈ Ω2. The
output variable y = f(r) is computed by the simple perceptron. Hence the problem of learning an
unknown measurement Π ∈ F1 is to infer the simple perceptron, i.e. the values of {vi}4i=1.
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Figure 3. Single-hidden layer net computes 3-dimensional input data with activation function σ
and three hidden units, which correspond to Fi for i = 0, 1, 2. The value v0k corresponds to the
bias weight of the k-th hidden unit. The single-hidden net represents a quantum measurement in
E(C2).
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