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Abstract

Rate Splitting Multiple Access (RSMA) has recently emerged as a promising technique to enhance

the transmission rate for multiple access networks. Unlike conventional multiple access schemes, RSMA

requires splitting and transmitting messages at different rates. The joint optimization of the power

allocation and rate control at the transmitter is challenging given the uncertainty and dynamics of the

environment. Furthermore, securing transmissions in RSMA networks is a crucial problem because

the messages transmitted can be easily exposed to adversaries. This work first proposes a stochastic

optimization framework that allows the transmitter to adaptively adjust its power and transmission rates

allocated to users, and thereby maximizing the sum-rate and fairness of the system under the presence

of an adversary. We then develop a highly effective learning algorithm that can help the transmitter

to find the optimal policy without requiring complete information about the environment in advance.

Extensive simulations show that our proposed scheme can achieve positive covert transmission rates

in the finite blocklength regime and non-saturating rates at high SNR values. More significantly, our

achievable covert rate can be increased at high SNR values (i.e., 20 dB to 40 dB), compared with

saturating rates of a conventional multiple access scheme.
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Rate splitting multiple access, covert communications, deep reinforcement learning, power alloca-

tion, rate control.

I. INTRODUCTION

Recent years have witnessed the growing interest in six-generation (6G) networks from both

academia and industry. It is envisioned that 6G will enable the Internet-of-Things (IoT) in which

a massive number of devices can communicate via wireless environments. To accommodate such

a growing demand of connections in future wireless networks, a modern multiple access scheme

with high efficiency and flexibility is an urgent need. Rate Splitting Multiple Access (RSMA)

has recently emerged as a novel communication technique that can flexibly and efficiently

manage interference and thus increase the overall performance for the downlink of the wireless

systems [1], [2]. In RSMA, each message at the transmitter is first split into two parts, i.e.,

a common part and private part. The common parts of all the messages are combined into

a single common message. The common message is then encoded using a shared codebook.

The private messages are independently encoded for the respective users. After receiving these

messages, each user decodes the common and private messages with the Successive Interference

Cancellation (SIC) to obtain its original message. By partially decoding and partially treating

interference as noise, RSMA can enhance spectral efficiency, energy efficiency, and security of

multiple access systems [3]–[8]. Thanks to its outstanding features, RSMA can tackle many

emerging problems in 6G and gain enormous attention from both industry and academia [1].

A. Challenges of RSMA

Although possessing the advantages, the RSMA scheme is facing two main challenges. Unlike

conventional multiple access schemes, e.g., Spatial Division Multiple Access (SDMA) which

treats interference as noise or Non-Orthogonal Multiple Access (NOMA) which successively re-

moves multi-user interference during the decoding process, RSMA partially decodes the messages

and partially treat multi-user interference as noise. The RSMA transmitter hence needs to jointly

optimize the power allocation and rate control for different messages to maximize the energy

and spectral efficiency for the whole system. Aiming to address such problems, several research

works have been proposed in the literature. In [9], the authors consider a rate splitting approach

with heterogeneous Channel State Information at the Transmitter (CSIT). Two groups of CSIT

qualities are considered and the transmitter is assumed to have either partial CSIT or no-CSIT. For
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the no-CSIT scenario, the users decode their messages by treating interference as noise without

using a rate splitting strategy. In contrast, for the partial CSIT scenarion, a rate splitting strategy

is applied and a fraction of total power is allocated equally among private symbols and common

symbols. Simulation results show that with the proposed power allocation scheme, the sum-rate

of users in the group with the rate splitting strategy can gain significant improvement compared

to those in the group without using any rate splitting strategy. Similarly, in [7], the authors

study a rate splitting strategy for a multi-group of users in a large-scale RSMA system. A more

complex precoding design for power and rate allocated to users is proposed to find the maximum

sum-rate of the system. The simulation results reveal that a precoding design with rate splitting

can benefit sum-rate of the system. However, the authors in [7] only consider a perfect CSIT

scenario in which the BS is assumed to know exact information of the channel and the channel

is assumed to be fixed. In order to relax these assumptions, the authors in [6] and [10] consider

a similar system, but under imperfect CSIT. In this case, a stochastic optimization formulation

is proposed to deal with the uncertainty of the channel with imperfect CSIT. In [10], the authors

show that with rate splitting under imperfect CSIT, the sum-rate of the system can achieve

non-saturating rates at high SNR values compared to saturating rates of a conventional scheme,

i.e., SDMA. In [6], the authors further investigate the impacts of different error models on the

system performance. Numerical results reveal that in addition to the expected sum-rate gains, the

benefits of rate splitting also include relaxed CSIT quality requirements and enhanced achievable

rate regions compared with a conventional transmission scheme. A comprehensive analysis of

RSMA performance is studied in [4]. In this work, through many simulations and performance

analysis, they show that the rate splitting techniques are able to softly bridge the two extremes

of fully treating interference as noise and fully decoding interference. Thus, in comparison with

conventional multiple access approaches, e.g., SDMA and NOMA, RSMA can gain significant

rate enhancement. Although the aforementioned works propose solutions to improve system

performance for RSMA networks, the channel state distribution (or channel state matrix) is

always assumed to be known by the transmitter. In addition, optimization methods in these

works also introduce additional variables, e.g., equalizers and weights, that are highly correlated

with the channel state. Thus, unavailability or drastic changes of the channel state information,

e.g., due to mobility of users of link’s failures [12], can result in significant degradation of these

algorithms. Therefore, a more flexible framework that not only deals with the dynamics of the

environment but also efficiently manages power allocation and rate control for RSMA without
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requiring complete or partial information, e.g., posterior distributions, of the channel state, is in

an urgent need.

The second challenge that RSMA is facing is security. Although a new data rate region can be

achieved with RSMA, investigation on RSMA’s security is still in its early stage. Several works,

such as [3], [14] and [13], are proposed to address the eavesdropping issues in RSMA networks.

In particular, the authors in [3] propose a cooperative RSMA scheme to enhance the secrecy sum-

rate of the system in which the common messages can be used not only as desired messages but

also artificial noise. In this case, it is shown that the proposed cooperative secure rate splitting

scheme outperforms conventional SDMA and NOMA schemes in terms of secrecy sum-rate.

However, [3] only considers the perfect CSIT scenario in which the transmitter has complete

information of the channel state. In order to address the challenges caused by imperfect CSIT,

the authors in [14] investigate the impacts of imperfect CSIT on the secrecy rate of the system.

Specifically, to deal with imperfect CSIT, a worst-case uncertainty channel model is taken into

consideration with the goal to mitigate simultaneously inter-user interference and maximize the

secrecy sum-rate. The simulation results show the robustness of the proposed solution against

the imperfect CSIT of RSMA, and the secure transmission is also guaranteed. Furthermore, in

comparison with NOMA, RSMA shows significant secrecy rate enhancement. In [13], a secure

beamforming design is also proposed to maximize the weighted sum-rate under user’s secrecy

rate requirement. Unlike [3] and [14], the authors in [13] consider the presence of an internal

eavesdropper, i.e., an illegitimate user, that not only receives its messages but also wiretaps

messages intended for other legitimate users. To deal with this internal eavesdropper, all user’s

secrecy rate constraints are taken into consideration. The simulation results suggest that RSMA

can outperform the baseline scheme in terms of weighted sum-rate.

All of the above works and others in literature only focus on dealing with the passive

eavesdroppers, i.e., the eavesdroppers try to listen passively to the communication channel

to derive the original message. To deal with such passive eavesdroppers, the transmitter can

adaptively select different transmission rates [13] or utilize artificial noise [3] to confuse the

eavesdropper, and thereby minimizing the information disclosure. However, in these cases, the

eavesdropper can still detect and receive the signals from the transmitter, and thus it can still

decode the information if it has a more powerful hardware computation, e.g., through employing

cooperative processing with other eavesdroppers, or better antennas gains compared with those

of the transmitter [16], [17]. The passive eavesdropper scenario cannot address the problem in
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which the eavesdropper is able to manipulate or control the environment [16]. For example, by

manipulating the environment, the adversary can bias the resulting bits in the key establishment

process [18]. In applications requiring a high security protection, e.g., military and IoT healthcare

applications, leaking a small amount of data can result in a break of the whole system and/or

cause effects to the users. Therefore, in this work, to further prevent potential information leakage,

we focus on a more challenging adversary model in which we need to control the power and

transmission rates allocated to users, so that the adversary is unable to detect transmissions on

the channels. In this way, the possibility of leaking information can be minimized.

B. Contributions and Organization

In this work, we aim to develop a novel framework that addresses the aforementioned prob-

lems. In particular, we consider a scenario in which an adversary, i.e., a warden, is present in

the communication range of a Base Station (BS), i.e., the transmitter, and multiple mobile users,

i.e., the receivers. The warden is assumed to be able to observe constantly the channel with a

radiometer and interrupt the channel if it detects transmissions on the channel [15], [21]. Thus,

it is challenging for the BS to allocate jointly power and control transmission rates for all the

messages while hiding these messages from the warden. To minimize the probability of being

detected by the warden, a possible policy for the BS is to decrease the power allocated to the

messages, so that the warden can be confused the transmitted signals with noise. However, an

inappropriate implementation can result in zero data rates at the receivers [15]. To maximize

the transmission rate of the system and at the same time guarantee non-zero rate at each user,

we formulate the problem of the BS as a max-min fairness problem. In particular, the BS aims

to maximize the expected minimum rate (min-rate) of the system under the uncertainty of the

environment. Furthermore, we consider a covert constraint that is derived from the theory of

covert communications (i.e., low probability of detection communications) [20], [22], [23]. In

this way, our proposed framework can help the BS secretly communicate with the legitimate

mobile users with a small probability of being detected by the warden.

To find the optimal solution for the optimization formulation above, we develop a learning

algorithm based on Proximal Policy Optimization (PPO) [28]. By leveraging recent advances

of deep reinforcement learning techniques [25]–[27], our proposed algorithm can effectively

find the optimal policy for the BS without requiring complete information of the channel in

advance. Specifically, our proposed algorithm takes the feedback from users via the uplink as
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inputs of the deep neural networks and then outputs the corresponding joint power allocation and

rate control policy for the BS. This procedure is similar to the conventional optimization-based

schemes in the view of implementation and resource. The differences in our proposed algorithm

are twofold. First, our proposed algorithm is a model-free deep reinforcement learning algorithm

which does not require a complete model of the environment, i.e., the channel state matrix or

channel distribution, in advance. Second, the policy obtained by our proposed algorithm can be

adaptively adjusted in cases the channel dynamics change over time, e.g., time-varying channel.

Thus, our proposed algorithm is expected to show more flexibility and robustness against the

uncertainty and dynamics of the wireless environment. With the obtained optimal policy, we then

show that our proposed method can also achieve covert communications between the BS and

mobile users by dynamically adjusting power and transmission rates allocated to the messages.

Here, we note that our previous work presented in [24] only focuses on power allocation

problem without considering the security impact on the RSMA system. Furthermore, in this

current work, we further investigate the rate and security performance of RSMA in the finite

blocklength (FBL) regime where the achievable covert rate is limited and no longer follows

the Shannon capacity (i.e., infinite blocklength regime). Thus, our framework can be applicable

for a wide range of applications which include transmission between IoT devices where the

transmitted data is expected to be sporadic and the number of channel uses is limited. In short,

our main contributions are as follows:

• We develop a novel stochastic optimization framework to achieve the max-min fairness

of the considered RSMA network with the covert constraint. This framework enables

the BS to make optimal decisions to maximize the expected min-rate under the covert

requirement as well as the dynamics and uncertainty of surrounding environment. To the

best of our knowledge, this is the first work that considers covert communications for

RSMA. Therefore, our proposed framework is a promising solution for secure and reliable,

high data transmission rate applications.

• We propose a highly effective learning algorithm to make the best decisions for the BS.

This learning algorithm enables the BS to quickly find the optimal policy through feedback

from the users by leveraging advantages of both deep learning and reinforcement learn-

ing techniques. Furthermore, our proposed learning algorithm can effectively handle the

continuous action and state spaces for the BS through using the PPO technique.

• We conduct intensive simulations to evaluate the efficiency of the proposed framework and
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Fig. 1: Covert-aided RSMA system model.

reveal insightful information. Specifically, the simulation results show that the positive covert

rate is achievable with RSMA in the finite blocklength regime where the achievable covert

rate is limited and no longer follows the Shannon capacity (i.e., infinite blocklength regime).

More interestingly, with high values of transmission power (i.e., 20 dB to 40 dB), our

achievable covert rate can be increased while the achievable covert rate of a baseline multiple

access scheme, i.e., SDMA, is saturated. Thus, beyond conventional wireless networks, our

framework can be applicable for IoT networks in which the data transmitted between devices

is expected to be sporadic and with a relatively small quantity of information .

The rest of our paper is organized as follows. Our system model is described in Section II.

Then, we formulate the stochastic optimization problem for the covert-aided RSMA networks in

Section III. We provide details of our proposed learning algorithm to maximize the covert rate

of the system in Section IV. After that, our simulation results are discussed in Section V, and

Section VI concludes the paper.

II. SYSTEM MODEL

We consider a system that consists of one M -antenna BS, a set K = {1, 2, . . . , K} of K single-

antenna legitimate users (M ≥ K), and a warden as illustrated in Fig. 1. The warden has ability
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to interrupt the channel if it detects any transmissions from the BS. The BS wants to transmit

information to the users with a minimum probability of being detected by the warden [19]. The

BS has a set of messages W = {W1, . . . ,Wk, . . . ,WK} to be transmitted to the users. The

message intended for user uk, denoted as Wk, is split into a common part W c
k and a private

part W p
k (∀k ∈ K), with the lengths of lck and lpk, respectively. The common parts of all K

messages are combined into a single common message W c. The single common message W c

and K private messages W p
k are independently encoded into streams sc (i.e., common stream),

s1, s2, . . . , sK (i.e., private streams), respectively. The transmitted signal of the BS is thus defined

as follows:

x = pcsc +
K∑
k=1

pksk, (1)

where pc and pk are the beamforming vectors for the common and private stream sc and sk,

respectively. Let hk ∈ CM×1 denote the estimated channel between the BS and user uk, hw ∈

CM×1 denote the channel between the BS and the warden. The received signal at user uk is

calculated as follows:

yk = hHk x + nk, (2)

where nk ∼ CN (0, σ2
n,k) is the Additive White Gaussian Noise (AWGN) at the receiver. Note that

the estimated channel at the BS is obtained from feedback of the users which contains estimation

errors, i.e., hk = ĥk + h̃k, where ĥk is the actual channel state and h̃k is the estimation error.

The SINRs of the common and private messages, denoted as γck and γpk , respectively, can be

calculated as follows:

γck(P) =
|hHk pc|2∑K

j=1 |hkpk|2 + 1
,

γpk(P) =
|hHk pk|2∑

j 6=k |hkpk|2 + 1
,

(3)

where P = [pc,p1, . . . ,pK ] is the beamformer of the BS. The transmission power at the BS is

constrained by tr(PPH) ≤ Pt.

In the FBL regime, the achievable covert rate of the private message W p
k at user uk is calculated

as follows [29]–[31]:

Rp
k(P, l

p
k) ≈ log2(1 + γpk)−

√
γpk(γ

p
k + 2)

lpk(γ
p
k + 1)2

Q−1(δk)

ln 2
+

log2 l
p
k

2lpk
, (4)



9

where lpk is the length of message W p
k . δk is the decoding error probability at user uk, and Q−1(·)

is the inverse Q-function of Q(x) =
∫∞
x

exp(−t
2

)dt [29]. To guarantee that the common message

W c can be correctly decoded by all the users, the achievable covert rate of the common message

is calculated by [29], [30]:

Rc
k(P, l

c
k) ≈ min

k∈K

(
log2(1 + γck)−

√
γck(γ

c
k + 2)

lck(γ
c
k + 1)2

Q−1(δk)

ln 2
+

log2 l
c
k

2lck

)
. (5)

Since Rc
k is shared between users such that Ck is the user uk’s portion of the common rate Rc

with
∑K

k=1 Ck ≤ Rc
k. The total achievable rate of the user uk is then defined by [4]:

Rtot
k = Ck +Rp

k. (6)

As a result, the covert sum-rate of the BS is defined by a sum of Rtot
k over K users, i.e.,

Rs =
∑K

k=1 R
tot
k .

With the presence of noise, the warden needs to make a binary decision, i.e., (i) the BS is

transmitting or (ii) the BS is not transmitting, based on its observations [19]. For this, the warden

distinguishes two hypotheses H0 and H1, where H0 denotes the null hypothesis, i.e., the BS

is not transmitting, and H1 denotes the alternative hypothesis, i.e., the BS is transmitting. In

particular, the two hypotheses are defined as follows:H0 : yw = zw

H1 : yw = hHwx + zw,
(7)

where yw and zw are the received signal and noise signal at the warden, respectively. x is the

transmitted signal from the BS. It is noted that the warden does not know the codebook of

transmitted signals and the hypothesis test of the warden can be performed as follows. First, the

warden collects a row vector of independent readings yw from his channel to the BS. Then the

warden generates the test statistic on the collected vector. The goal of the warden is to minimize

the error detection rate, which is given by:

ξ = PF + PM , (8)

where PF = Pr(D1|H0) is the false alarm probability and PM = Pr(D0|H1) is the miss detection

probability. D1 and D0 are the binary decisions of the warden that infer whether the BS is
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transmitting or not, respectively. We can derive the lower bound of ξ as follows [30]:

ξ ≥ 1−
√

1

2
D(P0||P1), (9)

where P0 and P1 are the probability distributions of the observations when the BS transmits (i.e.,

H1 is true) or when the BS does not transmit (i.e., H0 is true), respectively. D(P0||P1) is the

relative entropy between two probability distributions P0 and P1.

Proposition 1: The relative entropy (Kullback–Leibler divergence) between two probability

distributions P0 and P1, denoted by D(P0||P1), can be calculated as follows:

D(P0|P1) = ln
(√

gwPt + σ2
w

)
− ln (σw) +

σ2
w

2 (gwPt + σ2
w)
− 1

2
. (10)

Proof of Proposition 1 can be found in Appendix A.

In covert communications, we normally have ξ ≥ 1− ε as the covertness requirement, where

ε is an arbitrarily small value [30]. Following (9), in this paper, we adopt D(P0||P1) ≤ 2ε2 as

the covertness requirement.

In the covert-aided systems, the achievable data rate is usually small or asymptotically ap-

proached zero [19], [30]. To achieve the maximum rate of the system and non-zero data rate

for each user, we consider a max-min fairness problem in which the optimization problem is

formulated as maximizing the expected minimum data rate (min-rate) among users [7]. Let

L = [lc1, l
p
1, . . . , l

c
K , l

p
K ] denote the message-splitting vector and C = [C1, C2, . . . , CK ] denote the

common rates for the common messages. The stochastic optimization problem of the BS is then

formulated as follows:

max
P,L,C

min
k∈K

R̄tot
k (11a)

s.t. tr(PPH) ≤ Pt, (11b)

lck + lpk = Lk,∀k ∈ K, (11c)∑
k∈K

Ck ≤ Rc,∀k ∈ K, (11d)

D(P0||P1) ≤ 2ε2, (11e)

Rtot
k ≥ R0

k, (11f)

where R̄tot
k = Ehk∈H{Rtot

k } is the average rate of the system with H = {hk|hk = ĥk + h̃k;∀k ∈
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K} is the channel matrix of the system. R0
k is the minimum rate requirement (QoS) of user uk

and Lk is length of the message Wk. The problem in (11) can be described as follows. (11b)

and (11c) illustrate the power constraint and packet length constraint of the BS, respectively.

(11d) is the common rate constraint. (11e) and (11f) are covert constraint and QoS constraint,

respectively. Optimizing (11) is very challenging under the dynamics and uncertainty of the

communication channel, i.e., the channel gain hk between the BS and user uk changes over time,

and the channel state is unknown to the BS. In this paper, we thus propose a deep reinforcement

learning approach to obtain the optimal policy for the BS under the dynamics and uncertainty of

the environment. It is noted that we only use the channel matrix H in the optimization problem

above to illustrate the stochastic nature of the system. In the next section, we show that the

optimization problem (11) can be transformed into maximizing the expected discounted reward

in the deep reinforcement learning setting without requiring any information from channel matrix

H. Details of notations used in this paper are summarized in Table I.

III. PROBLEM FORMULATION

A. Deep Reinforcement Learning

Before introducing our mathematical formulation, we first describe the fundamentals of DRL.

In conventional reinforcement learning (RL) settings, an agent aims to learn an optimal policy

through interacting with an environment in discrete decision time steps. At each time step t, the

agent first observes its current state st in a state space S of the system. Based on the observed

state st and current policy Ω, the agent takes an action at in the action space A. The policy Ω

can be a mapping function from a state to an action (deterministic) or a probability distribution

over actions (stochastic). After taking the action at, the agent transits to a new state st+1 and

observes an immediate reward rt. The goal of the agent is to find an optimal policy that can be

obtained by maximizing a discounted cumulative reward.

In conventional RL settings, the agent usually deals with a policy search problem in which the

convergence time of the RL algorithm depends on the search space S and A. In environments

with large discrete state-action space or continuous state-action space, the optimal policy is

either nearly impossible or time-consuming to find. To address this problem, RL algorithms

combined with deep neural networks, namely DRL, show significant performance improvements

over conventional RL algorithms [33]. In DRL algorithms, the policy Ω is defined by a probability

distribution over actions, i.e., Ωθ = Pr{at|st; θ}, where θ is a parameter vector of the deep neural
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TABLE I: Summary of notations.

Variable Definition
K Number of users
M Number of antennas at the BS
Wk Message intended to transmit to user uk

W c
k ,W

p
k Common and private parts split from Wk

Lk Length of Wk (bits)
lck, l

p
k Lengths of W c

k and W p
k

Pt Transmission power of the BS
P Transmission beamformer of the BS
L Vector of messages’ lengths at the BS
C Common rate vector allocated to users

γck(P), γpk(P) SINRs of the common and private messages at user uk
hk Channel between the BS and user uk
hw Channel between the BS and warden

Rc
k(P, l

c
k), R

p
k(P, l

p
k) Achievable covert rates of W c

k and W p
k

Rtot
k Achievable rate of user uk

Rs(P, Lk) Achievable (covert) sum-rate
ε Covert requirement

D(P0||P1) Relative entropy between two probability distributions P0 and P1

R0
k Minimum rate requirement of user uk

S,A State space and action space of the BS
st, at, rt(st, at) State, action, and reward of the BS at time step t

pt Penalty of the BS for taking action at
Ωθ, θ Policy and policy parameter vector of the BS

network. The parameter vector Ωθ can be trained by action-value methods, e.g., DQN [33], or

policy gradient methods, e.g., PPO [28]. Action-value methods and policy gradient methods have

their advantages and drawbacks which we will discuss later in Section III-C. In the following,

we formulate our considered problem in the DRL setting by defining state space, action space,

and immediate reward function in which the BS is empowered by an intelligent DRL agent.

B. DRL-based Optimization Framework

We introduce the proposed DRL-based optimization framework for the joint power allocation

and transmission rate control problem of the BS as follows. The state space of the BS is defined

by:

S =
{
{hk, Lk}; 1 ≤ k ≤ K

}
, (12)
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where hk is the channel state feedback of the user uk to the BS. Lk is the length of the message

Wk intended for user uk. Note that the channel state feedback from the users contains estimation

errors, i.e., hk = ĥk + h̃k, where ĥk is the actual channel state and h̃k is the estimation error.

The channel of user uk is realized as

ĥk = gk × [1, ejφk , ej2φk , ej3φk ], (13)

where gk ∈ R and φ ∈ R are control variables [4]. The channel estimation error follows a

complex Gaussian distribution, i.e., h̃k ∼ CN (0, σ2
k), where σ2

k is inversely proportional to the

transmission power at the BS, i.e., σ2
k = gkP

−αk
t where αk is the degree of freedom (DoF)

variable [4]. Note that the channel hw of the warden is unknown to the BS and thus hw is not

included in the state space of the BS. We define the channel between the warden and the BS as

follows:

hw = gw × [1, ejφw , ej2φw , ej3φw ], (14)

At each time step t, the BS allocates the transmission power to the users, splits the messages

to common and private messages, and controls transmission rate for the messages. Thus, the

action space of the BS is defined as follows:

A = {P,L,C}. (15)

The reward function is designed to maximize the min-rate of the BS as in (11). To encourage

the BS to optimize the min-rate while the covert and QoS constraints of users are taken into

consideration, we penalize the BS for each violated constraint. For this, the immediate reward

can be defined as follows:

rt(st, at) =

mink∈KR
tot
k , if pt = 0,

0, if pt > 0.
(16)

where pt is the penalty received by the BS for action at that does not satisfy the covert constraint
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and QoS constraint in (11). The penalty pt is defined as follows:

pt =
β01 (D (P0‖P1)− 2ε2) +

∑K
k=1 βk1 (R0

k −Rtot
k )

β0 +
∑K

k=1 βk

=
β0

β0 +
∑K

k=1 βk
1
(
D(P0||P1)− 2ε2

)
︸ ︷︷ ︸

Covert penalty

+
1

β0 +
∑K

k=1 βk

K∑
k=1

βk1
(
R0
k −Rtot

k

)
︸ ︷︷ ︸

QoS penalty

,
(17)

where β0 and βk are control variables. 1(a− b) is the indicator function in which 1(a− b) = 1

if a− b > 0, and otherwise 1(a− b) = 0. The meaning of pt can be expressed as follows. The

penalty is increased with each of covert or QoS constraints, i.e., (11e) and (11f), multiplying

with corresponding weights β0 and βk (k = 1, 2, . . . , K). The penalty is then normalized so that

pt ∈ [0, 1] (i.e., the first line of (17)). The penalty can be rewritten as the sum of two components,

i.e., covert penalty and QoS penalty as shown in the second line of (17). Note that the penalty of

the BS can be calculated by using the feedback mechanism. Once the users receive the messages

from the BS, they calculate the data rates of the messages and send the calculated data rates

back to the BS along with their minimum rate requirements (QoS requirements) [34]. Based on

the feedback from users, the BS can calculate the corresponding QoS penalty. Similarly, the BS

can be notified by the users if the channel is interrupted by the warden and the covert penalty

can be calculated accordingly. Our designed immediate reward aims to encourage the BS to

minimize the penalty pt to 0. Thus, the max-min fairness is guaranteed while covert and QoS

constraints are satisfied.

C. Optimization Formulation

We consider a stochastic policy Ωθ of the BS (i.e., Ωθ : S × A → [0, 1]), as a probability

that action at is taken given the current state st, i.e., Ωθ = Pr{at|st; θ}, where θ is the policy

parameter vector of the deep neural network. Let J(Ωθ) denote the expected discounted reward

of the BS by following policy Ωθ:

J(Ωθ) = Eat∼Ω,st∼P

[ ∞∑
t=0

τ trt(st, at)
]
, (18)

where P(st+1|st, at) is the state transition probability distribution which models the dynamics

of the environment, i.e., the dynamics of channel state information. Here, P is unknown to the
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BS. Our goal is to find the optimal policy Ω∗θ for the BS that maximizes J(Ωθ), i.e.,

max
Ωθ

J(Ωθ)

s.t. at ∼ Ωθ(at|st),

st+1 ∼ P(st+1|st, at).

(19)

Maximizing J(Ωθ) is very challenging as we consider that the state and action spaces are

continuous. It is noted that in (19), we do not require the complete information of the channel,

i.e., channel matrix H in (11), as other works in literature [6], [7], [9], [10]. Instead, the patterns

of the channel can be learned through feedback from the users with deep neural networks. For

this, we develop a learning algorithm based on a policy gradient method, namely Proximal Policy

Optimization (PPO) [28], to approximate the optimal policy of the BS. PPO is a sample-efficient

algorithm which can work under the large continuous state and action spaces and can deal with

the uncertainty of the channel state.

IV. PROXIMAL POLICY OPTIMIZATION ALGORITHM

A. PPO Algorithm

As we discussed in Section III-A, action-value methods and policy gradient methods have

their own advantages and drawbacks. In action-value methods, each action of the agent can be

categorized by a real positive value, e.g., Q-value [33], and once the optimal policy is obtained,

the optimal actions can be obtained by selecting the maximum action-value at each state. This

family of algorithms is well studied for environments with discrete action space, e.g., a game

requires a player to turn left, right, or jump. Thus, the action-value methods are suitable for

discrete action space and the optimal policy can be effectively estimated if the number of actions

are relatively small. However, in many cases, the action of an agent cannot be categorized by

discrete action-values, e.g., a task requires controlling a robot arm by using continuous force. For

this, policy gradient methods can be applied by directly estimating the policy of the agent instead

of using a greedy selection over action-values. The policy of the agent can be a distribution,

e.g., Gaussian, over actions. Therefore, instead of finding the action-values of the agent, policy

gradient algorithms aim to find the “shape” of the action distribution, i.e., mean and variance of

the distribution.
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Fig. 2: PPO policy update at the BS.

In our problem, all considered actions in (11) are continuous, and thus only gradient policy

methods can be used. In the following, we describe an effective algorithm based on PPO [28] to

maximize the min-rate of the BS. The operation of PPO in our proposed framework is illustrated

in Fig. 2. In particular, input of the policy update procedure is the joint state of channel and

packets’ lengths to be sent at the BS. Output is the BS’s policy, i.e., action distributions. We

use one Gaussian distribution to illustrate the output of the policy update in Fig. 2 for the

sake of presentation simplicity. In our actual implementation, the action of the BS has multiple

dimensions and each dimension can be represented by a Gaussian distribution which differs in

mean and variance values. The details of PPO algorithm are as follows.

The PPO uses two deep neural networks as a policy parameter vector and a value function

vector, denoted by θ and Θ, respectively, to efficiently update the policy. The policy parameter

vector θ can be updated by using a gradient ascent method as follows:

θt+1 = θt + αĝt, (20)

where α is the step size, and ĝt is a gradient estimator. The gradient estimator ĝt can be calculated

by differentiating a loss function as follows:

ĝt = ∇θL(θ). (21)
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It can be observed from (20) and (21) that the choice of the loss function L(θ) has a significant

impact on the policy update. L(θ) should have a small variance so that it does not cause bad

gradient updates which result in significant decreases of J(Ωθ). Since continuous action space

is sensitive to the policy update, a minor negative change in updating θ can lead to destructively

large policy updates [28]. To overcome this problem, PPO algorithm uses a loss function LPPO(θ)

to replace L(θ):

LPPO(θ) = min
( Ωθ

Ωθold

Ât, u(ε, Ât)
)
, (22)

where Ât is the advantage function and u(ε, Ât) is the clip function. Ât estimates whether the

action taken is better than the policy’s default behavior and u(·) limits significant updates which

may degrade J(Ωθ). The advantage function at time step t can be defined by:

Ât(st, at; θ) = Qt(st, at; θ)− Vt(st; Θ), (23)

where Qt(st, at; θ) = Eat∼Ωθ,st∼P

[∑∞
l=0 τ

lrt(st+l, at+l)
]

is the action value function and Vt(st; Θ) =

Est∼P
[∑∞

l=0 τ
lrt(st+l, at+l)

]
is the state value function. The clip function is thus defined as

follows [28]:

u(ε, Ât) =

(1 + ε)Ât, if Ât ≥ 0,

(1− ε)Ât, if Ât < 0.
(24)

The idea of PPO is to prevent the new policy from being attracted to go far away from the old

policy Ωold. The first term inside the min operator in (22), i.e., Ωθ
Ωθold

Ât, is the surrogate objective

which takes into consideration the probability ratio between the new policy and old policy, i.e.,
Ωθ

Ωθold
. The second term, i.e., u(ε, Ât), removes the incentive for moving this probability ratio

outside of the interval [1 − ε, 1 + ε]. The pseudo-code of the PPO algorithm is described in

Algorithm 1.

The main steps of the PPO algorithm can be described as follows. First, a policy parameter

vector θ0 and a value function parameter vector Θ0 are randomly initialized (i.e., lines 2 and 3

in Algorithm 1). Second, at each policy update episode, numbered by k, the BS collects a set

of trajectories Bk, i.e., a batch of state, action, and reward values, by running current policy Ωθk

over T time steps (i.e., line 5). After that, the cumulative reward is calculated as in line 6. Next,

the BS computes the advantage function as in (23) (i.e., line 6). With the obtained advantage

function, the loss function can be calculated as (22) and the policy parameter vector can be
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Algorithm 1: Proximal Policy Optimization (PPO)
1 Input:
2 Initialize policy parameter vector θ0,
3 Initialize value function parameter vector Θ0,
4 for k = 0, 1, 2, . . . do
5 Collect set of trajectories Bk = {υt; υt = (st, at, rt)} by running policy Ωθk in the

environment
6 Compute cumulative reward R̂t =

∑T
t=0 τ

trt
7 Compute advantage function Ât as in (23)
8 Update the policy by maximizing the objective (22):

θk+1 = argmax
θ

1

|Bk|T
∑
υ∈Bk

T∑
t=0

LPPO(θ),

9 Fit value function by regression on mean-squared error:

Θk+1 = argmin
Θ

1

|Bk|T
∑
υ∈Bk

T∑
t=0

(
Vt (st; Θ)− R̂t

)2

10 end
11 Outputs: Ω∗θ = Pr(at|st; θ)

updated as line 8 in Algorithm 1. Finally, the value function parameter vector can be updated

as in line 9. The procedure is repeated until the cumulative reward values converge to saturating

values.

B. Complexity Analysis

We further analyze the computational complexity of the PPO algorithm used in our considered

system. Since the PPO uses deep neural networks as an approximator function, the complexity

mostly depends on updating these networks. As the two deep neural networks in PPO share the

same architecture, the complexity of updating these networks can be analyzed as follows. Each

network consists of an input layer X0, two fully-connected layers X1 and X2, and an output layer

X3. Let |Xi| be the size of the layer Xi, i.e., the number of neurons in layer Xi. The complexity

of the two networks can be calculated by 2(|X0||X1| + |X1||X2| + |X2||X3|). At each episode

update, a trajectory, i.e., a batch of state, action, and reward values, are sampled by running the

current policy to calculate the advantage function and value function to update the network. Thus,

the total complexity of the training process is O
(

2T |Bk|(|X0||X1|+|X1||X2|+|X2||X3)
)

, where

|Bk| is the size of the trajectory sampled from environment. There are two main reasons that
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PPO is a sample-efficient algorithm. First, the size of a trajectory Bk is relatively small, i.e., from

hundreds to thousands [28], compared with the size of a replay memory in conventional action-

value methods, e.g., from 50,000 to 1,000,000 in DQN [33] . Here, in our simulations, |Bk| is set

at 200. Second, the size of the output layer of PPO is equal to the number of action dimensions.

As a result, the size of the output layer can be significantly smaller than those of action-value

methods that discrete continuous action space into different chunks to compute the action values,

e.g., Q-values. Clearly, the architecture of the deep neural networks are simple enough to be

implemented in the base stations which are usually equipped with sufficient computing resources.

V. PERFORMANCE EVALUATION

A. Parameter Setting

We consider our simulation parameters as follows. We use the same parameters for the RSMA

and covert communications as those in [4], [30]. The total transmission power of the BS is

set to be Pt = 20 (dB). The control variables of channel in (13) are set at (g1, g2, g3) =

(1.0, 0.8, 0.2), and (φ1, φ2, φ3) = (0, π
9
, 2π

9
). Furthermore, the channel estimation errors are set

at σ2
1 = P−0.6

t , σ2
2 = 0.8P−0.6

t , and σ2
3 = 0.2P−0.6

t [4]. Those equivalent values for the warden

in (14) are set as gw = 0.4 and φw = π
6
. The covert requirement parameter ε = 0.1 [30]. Unlike

conventional transmission schemes, covert communications require a relatively low data rate

to hide information from the warden/adversary. Therefore, we set the QoS requirements of the

users to be R0
1 = R0

2 = R0
3 = 10−4 (bps/Hz). We assume that the length of message Wk to be

sent at the BS follows uniform distribution with the minimum and maximum values are 0 and 1

kilobits, respectively, i.e., Lk ∼ U(0, 1.0) (kilobits). The number of antennas at the BS and the

number of users are set as M = K = 3.

For the deep neural networks, our parameters are set as follows. The two deep neural networks

representing the policy parameter vector and the value function vector, i.e., θ and Θ, respectively,

share the same architecture. Each deep neural network has two fully connected layer and each

layer contains 64 neurons. The number of neurons in the output layer is equal to the number

of dimensions of action, i.e., 3K + 1. The number of neurons in the input layer is equal to the

number of dimensions of the joint state at the BS (as shown in Fig. 2), i.e., 2K. The learning

rate and clip values of PPO are adopted from [28].

In the following, we investigate the performance of our proposed PPO algorithm on RSMA

and SDMA systems, denoted as P-RSMA and P-SDMA, respectively. To further understand
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Fig. 3: (a) Average min-rate and (b) average sum-rate with Pt = 30 (dB) allocated for 3 users.

the impacts of covert communications on both RSMA and SDMA systems, we run various

simulations for scenarios in the FBL regime and infinite blocklength (IBL) regime. It is noted

that in the IBL regime, the BS can achieve full data rate with Shannon capacity and the covert

constraint, i.e., constraint (11e), is temporarily removed. In the case of covert communications

under consideration with FBL, the optimization problem is fully considered as in (11). Further-

more, we introduce other baselines in which a Greedy algorithm is applied. This is to evaluate

efficiency of the proposed learning algorithm. These baselines, denoted as G-RSMA and G-

SDMA, aim to obtain the maximum immediate reward at each time step, compared with all

the historical reward values stored in a buffer, without considering the long-term cumulative

reward. In the following, we investigate the performance of all the aforementioned schemes.

The considered metrics are (i) average (covert) min-rate (or average reward) and (ii) average

(covert) sum-rate.

B. Simulation Results

1) Convergence property: We first investigate the convergence performance of the proposed

P-RSMA and P-SDMA in the IBL regime (lines (3), (4), (7), and (8) in Fig. 3). It can be

observed from Fig. 3 that the proposed P-RSMA achieves the highest min-rate and sum-rate

values, followed by P-SDMA (lines (3) and (4)). The reason is that in the IBL regime, the

BS can obtain the data rate with full Shannon capacity. The results also suggest that RSMA
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Fig. 4: (a) Average min-rate and (b) average sum-rate vs. transmission power Pt (dB).

outperforms SDMA in both min-rate and sum-rate, which strongly confirms that RSMA performs

better than SDMA [4]. In the same IBL regime, the min-rate and sum-rate obtained of G-RSMA

and G-SDMA are much lower than those of P-RSMA and P-SDMA (lines (7) and (8)). The

reason is that the Greedy algorithm only considers historical rewards and immediate rewards

without aiming to maximize the long-term reward. Unlike the Greedy scheme, the PPO with

deep neural networks can iteratively update the policy toward the maximum cumulative reward.

Furthermore, bad updates negating the reward values are eliminated with clip function (24).

Thus, the learning curves obtained by P-RSMA and P-SDMA are much more stable.

In the FBL regime, it can be observed that the min-rate and sum-rate obtained by all the

schemes are much lower than those in the IBL regime (lines (1), (2), (5), and (6)). The reason

is that (i) the data rate is no longer following the Shannon capacity and (ii) the data rate is

reduced close to 0 to achieve covertness [19]. With G-RSMA and G-SDMA (lines (5) and (6)),

the min-rate and sum-rate are 0. In other words, the Greedy algorithm can only achieve covert

communications by reducing the data rate to 0 and no information can be exchanged between

the BS and users. With P-RSMA and P-SDMA (lines (1) and (2)), both min-rate and sum-rate

values are relatively small but remained positive when the algorithm converges. These results

confirm that with the proposed PPO algorithm, the BS and users can exchange covert information

without being detected by the warden.
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Fig. 5: (a) Average min-rate and (b) average sum-rate vs. covert requirement (ε).

2) Impacts of transmission power: Next, in Fig. 4 we vary the transmission power Pt at

the BS and evaluate the performance of the proposed schemes. Similarly, we first discuss the

performance of all the schemes in the IBL regime. It can be observed that the min-rate and sum-

rate obtained by P-RSMA and P-SDMA increase with the transmission power at the BS (lines

(3) and (4)). Unlike RSMA, SDMA’s data rate is saturated with high transmission power [7]. In

low power transmission region (e.g., 0 dB to 20 dB), the difference between RSMA and SDMA

is insignificant [2]. Similar to the results in Fig. 3, the min-rate and sum-rate of G-RSMA and

G-SDMA are much lower than those of P-RSMA and P-SDMA.

In the FBL regime, it can be observed that the min-rate and sum-rate obtained by P-RSMA and

P-SDMA are much lower than those in the IBL regime (lines (1) and (2)). When Pt increases,

the data rates of P-RSMA and P-SDMA remain unchanged at 0.007 bps/Hz for the average min-

rate and 0.05 bps/Hz for the average sum-rate. These results imply that with the proposed PPO

algorithm, the covert communications between the BS and users can be maintained at a positive

rate. In other words, the covertness can always be achieved regardless of the transmission power

at the BS. Unlike the PPO, the Greedy algorithm can only hide information from the warden

by reducing the data rate to 0 or no information can be exchanged (lines (5) and (6)).

3) Impacts of covert constraint: In Fig. 5, we evaluate the impacts of the covert constraint to

the system performance by varying ε in (11e). Similarly, we first discuss the results in the IBL

regime. Since the impacts of the covert constraint are not considered in this regime, it is clearly
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Fig. 6: (a) Average min-rate and (b) average sum-rate vs. maximum blocklength (Lk).

observed that the average min-rate and sum-rate values of P-RSMA and P-SDMA (lines (3) and

(4)) remain stable and significantly higher than those of the baselines G-RSMA and G-SDMA

(lines (7) and (8)) with the increase of the covert constraint parameter ε.

In the FBL regime, the average min-rate and sum-rate values obtained by P-RSMA and P-

SDMA remain stable as ε increases (lines (1) and (2)). In particular, these saturated values

are 0.007 bps/Hz for min-rate and 0.05 bps/Hz for sum-rate. For the baselines G-RSMA and

G-SDMA (lines (5) and (6)), the obtained min-rate and sum-rate values are equal to 0, which

illustrates that these baselines cannot achieve covert transmissions in the considered setting.

4) Impacts of blocklength: Finally, in Fig. 6, we investigate the impacts of blocklength,

i.e., the length Lk of the message Wk being sent at the BS, to the system performance. We

vary the distributions of the packet length Lk at the BS with different intervals. In particular,

we consider nine distribution intervals that are U [0, 0.1],U [0.1, 0.2], U [0.2, 0.3], . . . ,U [0.8, 0.9]

(Kilobits). Note that in Fig. 6, we denote these distributions by their maximum values for the

sake of simplicity. It can be observed that, in the IBL regime where Lk → ∞, the values of

min-rate and sum-rate of all the schemes are independent with the blocklength (lines (3), (4), (7),

and (8)). However, in the FBL regime, the min-rate and sum-rate values obtained by P-RSMA

and P-SDMA decrease as the blocklength increases (lines (1) and (2)). In other words, the higher

the blocklength of message is sent from the BS, the lower the data rate can be achieved. This

finding is similar to mathematical analysis derived in [19]. According to [19], the number of bits
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that can be covertly transmitted, denoted as n, asymptotically approaches zero and n follows a

square root law, i.e., O(
√
n)/n→ 0 as n→ 0. Unlike the positive data rate values achieved by

the proposed schemes, the min-rate and sum-rate values of the baselines G-RSMA and G-SDMA

remain at 0 (lines (5) and (6)).

VI. CONCLUSION

In this paper, we have developed a novel dynamic framework to jointly optimize power

allocation and rate control for the RSMA networks under the uncertainty of surrounding environ-

ment and with requirements about covert communications. In particular, our proposed stochastic

optimization framework can adjust its transmission power together with message splitting based

on its observations from surrounding environment to maximize the rate performance for the

whole system. Furthermore, we have developed a learning algorithm that can not only help to

BS to deal with continuous action and state spaces effectively, but also quickly find the optimal

policy for the BS without requiring the completed information about surrounding environment

in advance. Extensive simulations have demonstrated that with the obtained policy, the BS can

dynamically adjust power and transmission rates to users, so that the achievable covert rate

can be maximized. At the same, the BS can minimize the probability of being detected by the

warden.

APPENDIX

A. Relative entropy D(P0|P1) between two distributions P0 and P1

As defined in the hypothesis test of the warden in (7), we have the distribution of the i.i.d.

Gaussian random variables with variance σ2
w is P0 = N (0, σ2

w), which corresponds to the case

when the BS is not transmitting. Note that the warden does not know the codebook. Therefore,

the warden’s probability distribution of the transmitted symbols is of zero-mean i.i.d. Gaussian

random variables with variance Pf . Since we have the signal x is transmitted with power Pt at the

transmitter and channel between the warden and the BS is defined in (14), we have Pf = gwPt.

Therefore, the distribution of P1 is as follows:

P1 = N (0, Pf + σ2
w)

= N (0, gwPt + σ2
w).

(25)
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Let a = σw and b =
√
gwPt + σ2

w, we have the respective probability distribution functions of

P0 and P1 are as follows:

p0(x) =
1√
2πa

e
−1
2

(x
a

)2 , (26)

p1(x) =
1√
2πb

e
−1
2

(x
b

)2 . (27)

The relative entropy between P0 and P1 is then calculated by:

D(P0|P1) =

∫ +∞

−∞
p0(x) ln

p0(x)

p1(x)
dx

=

∫ +∞

−∞

1√
2πa

e
−1
2

(x
a

)2 ln
( b
a
e

−1
2

[
(x
a

)2−(x
b

)2
])

dx

=

∫ +∞

−∞

1√
2πa

e
−1
2

(x
a

)2
(

ln
( b
a

)
− 1

2

[(x
a

)2 −
(x
b

)2])
dx

= − 1

2
3
2
√
πa3b2

∫ +∞

−∞

((
b2 − a2

)
x2 − 2a2b2 ln

(
b

a

))
e−

x2

2a2 dx︸ ︷︷ ︸
D1

(apply linearity).

(28)

Now we need to solve D1. We expand D1 and apply linearity:

D1 =

∫ +∞

−∞

((
b2 − a2

)
x2e−

x2

2a2 − 2a2b2 ln

(
b

a

)
e−

x2

2a2

)
dx

=
(
b2 − a2

) ∫ +∞

−∞
x2e−

x2

2a2 dx︸ ︷︷ ︸
D2

−2a2b2 ln

(
b

a

)∫ +∞

−∞
e−

x2

2a2 dx︸ ︷︷ ︸
D3

(29)

We first solve D2. For this, we integrate D1 by parts, i.e.,
∫
fg′ = fg−

∫
f ′g. Let f = x and

g′ = xe−
x2

2a2 , we can calculate f ′ = 1 and g = −a2e−
x2

2a2 . We now have:

D2 = −a2xe−
x2

2a2 −
∫ +∞

−∞
−a2e−

x2

2a2 dx︸ ︷︷ ︸
D4

. (30)

D4 can be solved as follows. We substitute u = x√
2a
→ dx =

√
2a du. D4 becomes:
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D4 = −
√
πa3

√
2

∫ +∞

−∞

2e−u
2

√
π

du. (31)

Note that we have a special integral in D4, i.e.,
∫ +∞
−∞

2e−u
2

√
π

du = erf(u) is a Gauss error

function. Let’s plug in D4:

D4 = −
√
πa3 erf(u)√

2

= −

√
πa3 erf

(
x√
2a

)
√

2
(undo substitution u =

x√
2a

).

(32)

Plug D4 in D2:

D2 =

√
πa3 erf

(
x√
2a

)
√

2
− a2xe−

x2

2a2 . (33)

Once D2 is solved, D3 =
∫ +∞
−∞ e−

x2

2a2 dx can be calculated as follows. Let’s substitute u =

x√
2a
→ dx =

√
2a du. D3 becomes:

D3 =

√
πa√
2

∫ +∞

−∞

2e−u
2

√
π

du. (34)

Use the previous result of Gauss error function, we have:

D3 =

√
πa erf(u)√

2

=

√
πa erf

(
x√
2a

)
√

2
(undo substitution u =

x√
2a

).

(35)

Once D2 and D3 are solved, let’s plug (33) and (35) into (29):

D1 = (b2 − a2)D2 − 2a2b2 ln

(
b

a

)
D3

= −
√

2
√
πa3b2 ln

(
b

a

)
erf

(
x√
2a

)
+

√
πa3 · (b2 − a2) erf

(
x√
2a

)
√

2
− a2 ·

(
b2 − a2

)
xe−

x2

2a2

(36)
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Finally, we have:

D(P0|P1) = − 1

2
3
2
√
πa3b2

D1

=

 ln
(
b
a

)
erf
(

x√
2a

)
2

−
(b2 − a2) erf

(
x√
2a

)
4b2

+
(b2 − a2)xe−

x2

2a2

2
3
2
√
πab2

∣∣∣∣∣∣
+∞

−∞

= ln(b)− ln(a) +
a2

2b2
− 1

2
.

(37)

Undo substitution for a = σw and b =
√
gwPt + σ2

w, we have:

D(P0|P1) = ln
(√

gwPt + σ2
w

)
− ln (σw) +

σ2
w

2 (gwPt + σ2
w)
− 1

2
. (38)

The proof of Proposition 1 is now completed.
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