
Efficient Quantum State Tracking in Noisy Environments

Markus Rambach,1, ∗ Akram Youssry,2, 3 Marco Tomamichel,4 and Jacquiline Romero1

1Australian Research Council Centre of Excellence for Engineered
Quantum Systems & School of Mathematics and Physics,

University of Queensland, QLD 4072, Australia.
2University of Technology Sydney, Centre for Quantum Software and Information, Ultimo NSW 2007, Australia.

3Quantum Photonics Laboratory and Centre for Quantum Computation and Communication Technology,
RMIT University, Melbourne, VIC 3000, Australia

4Department of Electrical and Computer Engineering & Centre for Quantum Technologies,
National University of Singapore, Singapore 119077, Singapore.

Quantum state tomography, which aims to find the best description of a quantum state—the
density matrix, is an essential building block in quantum computation and communication.
Standard techniques for state tomography are incapable of tracking changing states and of-
ten perform poorly in the presence of environmental noise. Although there are different ap-
proaches to solve these problems theoretically, experimental demonstrations have so far been
sparse. Our approach, matrix-exponentiated gradient tomography, is an online tomography
method that allows for state tracking, updates the estimated density matrix dynamically
from the very first measurements, is computationally efficient, and converges to a good es-
timate quickly even with noisy data. The algorithm is controlled via a single parameter, its
learning rate, which determines the performance and can be tailored in simulations to the
individual experiment. We present an experimental implementation of matrix-exponentiated
gradient tomography on a qutrit system encoded in the transverse spatial mode of photons.
We investigate the performance of our method on stationary and evolving states, as well as
significant environmental noise, and find fidelities of around 95% in all cases.

INTRODUCTION

Characterising quantum systems becomes increasingly important as quantum technologies begin to
scale up. Experiments often require verification of the prepared quantum state and detection of errors
as the state evolves, e.g., through deliberate evolution or environmental perturbations. Thus, quan-
tum state tomography—finding the density matrix that best describes a quantum system—is a task
central to quantum information processing. However, quantum state tomography (QST) is notoriously
resource-intensive [1]. Reconstructing the d-by-d density matrix of a d-dimensional quantum system
up to a fixed precision requires O(d2) parameters that can only be obtained after measuring at least
O(d3) copies of the quantum state [2]. Most common algorithms for QST (e.g. maximum likelihood
estimation [3] and least squares regression [4]) require a tomographically complete set of measurements
and are done in post-processing, thus precluding real-time control of experiments based on the QST
results.

Current experimental realisations of quantum devices often suffer from perturbations that change
over time which might happen faster than a complete set of measurements can be performed. It might
also be of interest to the experimentalist to observe the evolution of states in an experiment. Both
these scenarios require online QST—learning algorithms that continuously update the estimate of
the state description [5], and thus enable real-time control and diagnosis of errors. Recent proposals
for this include Bayesian approaches [6, 7], adaptive measurements [8–11], and machine learning
techniques [11–15]. All these techniques are also closely related to continuous learning [16, 17]—
weak measurements over time to characterise a systems evolution, motivated by feedback control to
correct errors—and Hamiltonian identification/learning [18, 19]—algorithms to determine Hamiltonian
parameters governing the dynamics or unknown structures in the system, motivated by distinguishing
and quantification of errors.

Moreover, arbitrary noise from the environment or from imperfect measurements can easily surpass
the signal strength in experiments. This degrades our ability to accurately estimate the quantum state,

∗ m.rambach@uq.edu.au

1

ar
X

iv
:2

20
5.

06
38

9v
1 

 [
qu

an
t-

ph
] 

 1
2 

M
ay

 2
02

2

mailto:m.rambach@uq.edu.au


hence the robustness of techniques is crucial. Usual efforts to circumvent this issue experimentally
try to improve the signal-to-noise ratio (SNR), which is not always feasible or indeed possible. Some
theoretical work exist, e.g., Ref. [20, 21] where the noise is formalised into the measurement, or Ref. [22]
where an algorithm robust to noisy data is designed. However, none of these consider dynamical states
and we are not aware of any experimental demonstrations.

Here, we focus on quantum state tomography using the matrix-exponentiated gradient method
(MEG) [13, 14]. The reduced computational complexity per iteration of MEG, O(d3) in contrast to
maximum likelihood and least squares regression which are both O(d4), makes it a good candidate for
online quantum state tomography. The MEG algorithm is also efficient—it does not require a full set
of measurements for each state estimate—and robust—simulations show convergence even with very
noisy measurements. Additionally, the MEG update rule ensures that the estimated state is physical
(i.e., a positive-semi definite density matrix), which is generally not guaranteed in most tomography
methods unless the estimate is projected back into the physical space, causing a bias towards low-rank
states in the estimator [23].

In this work, we experimentally demonstrate real-time, online quantum state tomography based
on MEG using a high-dimensional quantum system encoded in the transverse spatial mode of single
photons. We achieve fidelities of up to 95% even in the presence of significant noise due to statistical
fluctuations (e.g. very low count rates) and environmental effects (e.g. an ambient light source).
To our knowledge, this is the first experimental O(d3) online tomography implementation to date. A
similar O(d3) online algorithm has been proposed recently [15], however, an experiment is still lacking.

RESULTS

Overview

Matrix-exponentiated gradient tomography (MEG) [13, 14] is an online algorithm that can estimate
and track quantum states, adapted from machine learning techniques. The idea is to construct an
iterative procedure, in which an estimate ρ̂t of the (mixed or pure) quantum state at the iteration t
is updated to a more accurate estimate ρ̂t+1, given a new measurement performed on the unknown
quantum state. The matrix-exponentiated gradient update rule [14] for the estimate ρ̂t+1 is given by

ρ̂t+1 =
exp(log(ρ̂t)− ηt∇Lt)

tr exp(log(ρ̂t)− ηt∇Lt)
, (1)

where ηt is the learning rate, and Lt is the loss function,

Lt = (tr(ρ̂tXt)− yt)2, (2)

and its gradient is given by

∇Lt = 2(tr(ρ̂tXt)− yt)Xt. (3)

The pair (Xt, yt) denotes the measurement record where Xt is the measurement operator and yt is the
experimentally obtained average value of measuring the state with operator Xt. The measurements
have to be informationally-complete as a requirement for performing any quantum tomography pro-
cedure. Therefore, at each iteration, a measurement operator Xt is chosen at random from a complete
set of bases, and together with the measurement result yt, the estimate of the state ρ̂t is updated
to ρ̂t+1. The learning rate ηt determines the weight given to the new obtained information at each
iteration. For tomography on stationary states, ηt can be chosen to decrease continuously with the
number of iterations while for online state tracking it needs to be constant or adaptive, depending on
former measurement outcomes.

Compared to the originally proposed MEG in Ref. [14], we made a few changes and extensions to
reflect the conditions in our experiment (more details in the METHODS section). First, we extended
MEG to work with general higher-dimensional systems d > 2, beyond qubit systems and local Pauli
measurements, by measuring mutually unbiased bases (MUBs) [24]. However, not all MUBs are known
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for arbitrary dimensions so we introduced a second scheme which uses generalised Pauli operator
measurements [25]. These operators form an orthonormal informationally-complete basis set and can
be used to expand MEG to arbitrary high dimensions. Second, we modified the update rule in order
to make better use of the experimental data. MEG originally drew on the probability of one measured
state per iteration to update its estimate. Experimentally, we measure photon counts and need the
counts of all d states of a given basis to calculate probabilities. This means that in each iteration
we can calculate d probabilities which are now all employed to update the estimate. Third, we also
adapted MEG to account for the fact that the prepared states in our experiment are very close to
pure states—true for systems that have very high control over their preparation. In each iteration t,
we find the eigenvalues and eigenvectors of the estimated density matrix ρ̂t and pick the eigenvector
with the largest eigenvalue as our estimated state |φt〉 (density matrix ρ̂φ) for benchmarking. We

then calculate the infidelity 1− f(ρ̂φ, Ω̂ψ) = 1−
(

tr
√√

ρ̂φ Ω̂ψ

√
ρ̂φ

)2

, where f(ρ̂φ, Ω̂ψ) is the fidelity

and Ω̂ψ is the density matrix of the theoretical prepared state |ψt〉. Our results show convergence to
the unknown state within experimental limitations, most prominently mode-dependent losses, in all
investigated situations and even for excessive experimental noise.

State Estimation and Online Tracking

We investigated the qutrit (d = 3) state estimation and online tracking performance of MEG using
mutually unbiased bases (MUBs) and generalised Pauli operator measurements, which makes the
algorithm applicable to higher dimensions. We also investigated MEG performance in the presence of
small and large statistical and environmental noise. In all cases we continuously evolve the prepared
state in time following

|ψt〉 = exp (−iσωt) |ψ0〉 , (4)

with σ a Hermitian matrix and ω = 1.3
ttot

the rate of change dependent on the total amount of iterations
ttot. The rate of change was chosen to allow the state to evolve to a minimum fidelity compared to
the initial state and then back to its initial state. We studied three possible cases of σ: 03,3 which is
the 3-dimensional zero matrix, σz which is the generalised 3-dimensional Pauli Z matrix given by

σz =
1√
3

1 0 0

0 1 0

0 0 −2

 , (5)

and σr which is a general random Hermitian matrix. The zero matrix results in the identity evolution
leaving the initial state stationary, while the other two matrices simulate a rotation in the Hilbert
space of a qutrit. To ensure a fair comparison, the learning rate—a crucial parameter for performance
and convergence of the algorithm—is kept constant at η = 5, which shows good performance in all
cases albeit not optimal for σ = 03,3. The learning rate can be optimised individually, dependent on
investigated scenario and physical system.

An initial baseline measurement using MUBs and high signal rates (N ≈ 106 photons per mea-
surement) is shown in Fig. 1(a). The high count rate ensures that statistical Poissonian distributed
counting noise (∆N =

√
N ≈ 103), background (Nback ≈ 50) and dark counts (Ndark ≈ 100), are

negligible and do not deteriorate the performance. For this case, the algorithm finds density matrices
with a median purity above 99.6% in all investigated scenarios, as to be expected for our system where
we have a high degree of control over the state preparation. Since the fidelities in the experiments
are very high, we plot the infidelity, 1 − f(ρ̂φ, Ω̂ψ), for clarity. The solid lines in Fig. 1(a) are the
median infidelities of 50 randomly chosen states of qutrits (according to Haar measure), with the
shaded regions bounded by the upper and lower quartile (50± 25)%.

In theory, MEG can estimate any quantum state with arbitrary precision and accuracy given an
infinite amount of iterations. However, experimental imperfections such as misalignment and mode-
dependent loss significantly limit the minimum infidelities achievable by QST algorithms (not just
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Figure 1. MEG on qutrits for (a) high signal rates (N ≈ 106 photons per measurement) using MUBs, (b)
low signal rates (N ≈ 102 photons per measurement) using MUBs, and (c) low signal rates using generalised
Pauli operators. In each case, three scenarios according to different time evolutions of the states (Eq. 4) are
investigated: stationary (blue), σz (red), and a random unitary σr (black). Solid lines are median performances
of the algorithm out of 50 randomly chosen states (according to Haar measure). The shaded regions are the
interquartile ranges.

MEG). The infidelities for MEG listed in Tab. 1 are similar to those obtained using other quantum
state tomography algorithms applied to our system, e.g. root-approach and maximum-likelihood
estimators [26] where we set set the rank to 1.

We next show the robustness of MEG to noise using MUBs, reducing the count rate per iteration to
N ≈ 102. This means that the values for Poissonian, dark, and background noise become comparable
and play a significant role in state estimation and tracking. Robustness to noise in the limit of a small
number of repeated preparations of the unknown state—here the number of photons—is especially
interesting for systems like ions and superconducting qubits, as the preparation is considerably more
time consuming compared to our system. Again, we benchmark the performance of MEG by calculat-
ing the infidelity in each iteration, see Fig. 1(b). State estimation and online tracking are in excellent
agreement with an overall mean infidelity ∼ 5.5%, slightly higher than in the high count rate case,
but well within the uncertainty bars. This already shows the robustness of the modified algorithm to
noise. Infidelities below 10% are achieved within around 15 iterations, four times more than in the
baseline measurement with high count rates (see Tab. 1 for details).

We furthermore studied the performance of MEG under high noise, but using generalised Pauli
operator measurements rather than MUBs, shown in Fig. 1(c). As generalised Pauli operators can be
mathematically defined using them instead of MUBs is a powerful tool to describe states far beyond
the qubit. We observe that state estimation and online tracking are again in excellent agreement and
the overall mean infidelity ∼ 5.1% is slightly better than in the MUB case, but overlapping within
uncertainty bars. This demonstrates that generalised Pauli measurements is a viable path to extend
MEG towards arbitrary high dimensions in realistic experimental settings. The initial convergence
towards the unknown state is slower with around 25 iterations necessary to reach an infidelity of 10%.
This is to be expected as MUBs span the qutrit state space more efficiently compared to the Pauli
operator measurements. Tab. 1 shows details of the performance.

Since a changing state leads to changing probabilities of finding a system in a particular state,
we also show that we are able to follow these probabilities. Fig. 2 illustrates one example of these
probabilities pi = |〈i|ψt〉|2 for the logical basis states |i〉 , i = 0, 1, 2, out of the 50 randomly chosen
qutrits analysed in Fig. 1. The theoretically expected probabilities in the experiment (dashed lines) are
followed nicely by online state tracking of the deterministic evolution in the experiment (solid lines).
This confirms that the low infidelities directly correspond to the capability to predict measurement
outcomes on the states well. We also highlight that MEG quickly converges to a useful estimate (after
3-4 iterations), even though the initial guess is a completely mixed qutrit (pi = 1/3∀ i) to avoid bias
in the results. The small offset between theory and experiment could be further decreased by using
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Figure 2. Tracking of a quantum state under randomly chosen Hermitian evolution σr. MEG can track the
theoretical (dashed) deterministic evolution of a state experimentally (solid). The three probability components
pi for the logical basis states i = 0, 1, 2 (blue, red, black) follow the theory nicely. Starting at an initial guess
of a completely mixed state, useful predictions for pi are obtained very effectively after 3-4 iterations.

an adaptive learning rate.

Noisy MEG

We tested the efficacy of MEG under significant environmental noise experimentally—by adding a light
bulb close to the detector while keeping the signal rate at N ≈ 102 photons per measurement—and
in simulations—adding Poissonian distributed noise to the raw data. The strength of the noise in the
experiment is controlled via the distance and angle of the light bulb to the single photon detector. As
a proof of principle demonstration, we only looked at stationary states using MUBs in our experiment,
yet the simulations show similar behaviour for all estimation and online tracking scenarios investigated
in the previous section. The median infidelities of 50 randomly chosen states for different methods
(solid—experiment, dashed—simulation) and noise strengths (colours) are shown in Fig. 3. Shaded
uncertainty ranges similar to Fig. 1 are omitted for clarity. As expected, the achievable infidelity and
number of iterations to get there both become higher as the noise increases, however, MEG is showing

Table 1. MEG performance indicators. Top: iterations needed to reach 10% infidelity. Bottom: mean infidelity.
All values achieved with a constant learning rate η = 5. Uncertainties are the boundaries of the interquartile
ranges.

Signal rate (Hz)
MUB Pauli operators

σ = 03,3 σ = σz σ = σr σ = 03,3 σ = σz σ = σr

Iterations for Infidelity < 10%

102 14 +17
−10 13 +26

−6 16 +26
−12 30 +32

−21 23 +68
−14 24 +38

−17

106 4 +2
−1 4 +3

−1 4 +4
−1

Mean Infidelity

102 5.3 +3.2
−2.2 5.4 +3.4

−2.4 5.6 +3.4
−2.5 4.9 +2.8

−2.0 5.4 +3.5
−2.4 5.0 +3.3

−2.1

106 3.4 +1.8
−1.2 5.1 +2.2

−1.9 4.7 +2.3
−1.9
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Figure 3. MEG performance under excessive noise in experiment (exp, solid) and simulation (sim, dashed)
with low signal rates (∼ 102 photons per measurement), using MUBs. Median performance out of 50 randomly
chosen states |ψ0〉 (experiment) and 20 runs each (total of 50×20 = 1000 traces) of added Poissonian distributed
noise (simulation). Uncertainty ranges omitted for clarity.

exceptional robustness.

We observe that up to Nback ≈ 2 kHz of experimental and simulated noise (not shown explicitly in
the figure), the infidelities are comparable to the no noise case within uncertainty bars. This corre-
sponds to a signal-to-noise ratio SNR≈ 0.05, so only one in 20 photons carry the actual information
on the unknown quantum state prepared in the experiment. It is noteworthy that even at 0 kHz
of artificially introduced noise, the naturally occurring counting noise together with background and
dark count rates are almost double the signal count rate, i.e., ∼ 170 compared to ∼ 100 photons per
measurement. Experimental and simulated data for Nback = [1, 2.5] kHz show good overlap within
uncertainty bars, indicating the validity of the noise model in simulation. Therefore we expect to
achieve infidelities of around 10% up to SNR≈ 0.01 (orange dashed line). The seemingly smoother
performance of the simulations stems from 20 runs of randomly added shot-to-shot noise for each of
the 50 investigated states. In other words, the results from simulations reflect the median infidelity of
50× 20 = 1000 traces, compared to 50 in the experiment.

DISCUSSION

We have presented an efficient tomography algorithm to track the continuous evolution of quantum
states despite significant environmental noise. Our approach, matrix-exponentiated gradient tomog-
raphy (MEG), uses machine learning techniques to iteratively update an estimate of a quantum state
in real time. We have extended the original online tomography proposal [14] to arbitrary high-
dimensional systems (qudits) and experimentally demonstrated the algorithm with a qutrit encoded
in the shape of photons. We have shown that MEG is highly resilient to noise: we are able to estimate
the quantum state with high fidelities, and accurately predict probabilities of measurement outcomes
for different types of evolution and signal strengths. Our technique will enable applications that ben-
efit from efficient online tomography, e.g., quantum process tomography [27, 28] and quantum error
mitigation [29]/correction [30].

Our results can be extended to process tomography through the Choi-Jamio lkowski isomor-
phism [31, 32], which allows us to represent a channel using a quantum state that lives in a d2-
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dimensional Hilbert space. In this case, the process estimation becomes state estimation, and MEG
could be utilised for the procedure. This provides a more efficient solution compared to standard
process tomography which requires computational complexity O(d8) by using a tomographically com-
plete set of states in preparation and measurement, even O(d10) for an over-complete set [33]. The
bottleneck of the standard procedure comes from the matrix-vector multiplications required for the
estimation procedure. On the other hand, for the MEG update rule, the bottleneck operation is the
matrix exponential which is computationally more efficient (see [14] and references within).

METHODS

Experimental Setup and Measurement

The quantum states are encoded in the transverse spatial mode—the shape—of single photons. We
describe these modes in the Laguerre-Gaussian basis {|li, pi〉} [34], where each randomly chosen state
is given by the superposition |ψ〉=

∑
i ci |li, pi〉 (with

∑
i |ci|2 = 1). For the investigated qutrits in

the experiment we use the three logical basis states {|0〉 ≡ |−1, 0〉 , |1〉 ≡ |0, 2〉 , |2〉 ≡ |1, 0〉}, keeping
the Gouy phase of the same order and therefore preventing the shape from rotating as the photons
propagate [35]. The experiment is conducted with highly attenuated CW laser light (Thorlabs, mean
photon number |α|2 = 0.01) together with two spatial light modulators (SLM, Meadowlark Optics)
and a single photon detector (Perkin-Elmer, ∼ 100 Hz dark count rate). The first SLM is used to
prepare the unknown quantum state |ψt〉 via a hologram that changes phase and amplitude of the
initial state |l = 0, p = 0〉 from the laser source. A second hologram displayed on the other SLM is
then measuring the state |ψm〉 from one randomly chosen basis set (see MEG Estimation Extensions
section for details). Finally, a single-mode fibre and the detector are acting as a local filter with the
number of detected photons proportional to the overlap |〈ψm|ψt〉|2 between the prepared and measured
mode. The schematic, details, and characterisation of the simple but effective prepare-and-measure
experiment are described extensively in Ref. [36] and its supplemental material.

MEG Estimation Extensions

Measurement Schemes

We use two measurement schemes to perform our state estimation and online tracking. The first scheme
is utilising Mutually Unbiased Bases (MUBs) [24], measurements that are convenient to perform on
the photonic system in our experiments. For a d-dimensional quantum system, we have d + 1 basis
sets, each set consists of d states. However, complete sets of MUBs are not know for every dimension
and so, we also introduced a second scheme using generalised Pauli operators [25]. These operators
are given by the set {ujk, vjk, wl}

ujk = |j〉〈k|+ |k〉〈j| , 0 ≤ j ≤ k ≤ d (6a)

vjk = −i |j〉〈k|+ i |k〉〈j| , 0 ≤ j ≤ k ≤ d (6b)

wl =

√
2

l + 1

−l |l〉〈l|+ l∑
j=0

|j〉〈j|

 . 0 ≤ l ≤ d (6c)

The operators reduce to the Pauli and Gell-Mann matrices for d = 2 and d = 3, respectively. The total
number of operators is d2 − 1, and for each operator, there are d eigenstates that could be measured.
The generalised Pauli operators form an orthonormal basis set, and thus are informationally-complete.

Modified update rule

The learning rate is usually chosen to be adaptive to guarantee convergence in the case of noisy
measurements as shown in [14]. However, upon exploring the effect of choosing different learning
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rates, we found that a constant learning rate is sufficient to obtain an estimate with the maximum
possible accuracy obtainable given our experimental capabilities. Thus, we fix the learning rate to be
ηt = η = 5.

The measurement schemes we use provide us with more information at each iteration. In the
case of MUB measurements, we randomly select a basis at each iteration. In order to calculate
the probabilities, we need to projectively measure all states of that basis for normalisation of the
measurement counts. The same holds when we use generalised Pauli measurements, we still need to
measure all the eigenstates of a given Pauli operator. Therefore, we modify the loss function to include
multiple measurement results obtained at a given iteration as follows.

Lt =
d∑
i=1

(
tr(ρ̂tX

(i)
t )− y(i)t

)2
, (7)

with gradient

∇Lt = 2
d∑
i=1

(
tr(ρ̂tX

(i)
t )− y(i)t

)
X

(i)
t , (8)

where X
(i)
t = |ψi〉〈ψi| is the projector of the ith state of the MUB (or Pauli operator) basis that

was randomly chosen at iteration t out of d + 1 (or d2 − 1) possible bases, and y
(i)
t is the measured

probability.
Since we are restricting the experiments to pure states in our investigations, we can increase the

estimation accuracy using this prior information. The method we use is to project the state into the
subspace of its largest eigenvalue, or equivalently, finding the pure state closest to our estimate in
fidelity. We illustrate this method with an example: we can write the estimated density matrix ρ̂t of
a pure quantum state |φt〉 in the form

ρ̂t = λ |φt〉〈φt|+ (1− λ)ρ̂noise, (9)

where the parameter λ ∈ [0, 1] indicates the noise strength, and ρ̂noise = Id/d is the completely mixed
state representing the noise in the estimate, with Id the d dimensional identity matrix. The special
cases λ = 0 and λ = 1 correspond to the noiseless and completely noisy states respectively. Now, let
|γt〉 be an eigenstate of ρ̂t with eigenvalue γt, i.e., ρ̂t |γt〉 = γt |γt〉. Then, we can write

γt = 〈γt|ρ̂t|γt〉 (10a)

= λ 〈γt|φt〉 〈φt|γt〉+ (1− λ)
〈γt|Id|γt〉

d
(10b)

= λ |〈γt|φt〉|2 +
1− λ
d

. (10c)

From there, we can see that the maximum eigenvalue is

γt,max = λ +
1− λ
d

, (11)

which is obtainable when there is maximum overlap between γt and φt, in the best case |〈γt|φt〉|2 = 1,
i.e., |γt〉 = |φt〉. This shows that the true pure state |φt〉 is an eigenvector of the density matrix ρ̂t
corresponding to the maximum eigenvalue, in other words, closest to our estimator in fidelity. So,
after each iteration we calculate the eigenvalues of the state estimate and select the corresponding
eigenvector to be the estimate of the pure state |φt〉.

DATA AVAILABILITY

All the generated datasets used in this study are publicly available on Figshare at https://figshare.
com/projects/Efficient_Tracking_of_Noisy_Quantum_States/130433.
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CODE AVAILABILITY

The source code for the proposed theoretical methods is publicly available on github at https://

github.com/akramyoussry/MEG_state_tracking.
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