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Abstract

We define a language-independent model of nondeterministic quantum

programs in which a quantum program consists of a finite set of quantum

processes. These processes are represented by quantum Markov chains

over the common state space. An execution of a nondeterministic quan-

tum program is modeled by a sequence of actions of individual processes.

These actions are described by super-operators on the state Hilbert space.

At each step of an execution, a process is chosen nondeterministically to

perform the next action.

A characterization of reachable space and a characterization of diverg-

ing states of a nondeterministic quantum program are presented. We

establish a zero-one law for termination probability of the states in the

reachable space of a nondeterministic quantum program. A combination

of these results leads to a necessary and sufficient condition for termina-

tion of nondeterministic quantum programs. Based on this condition, an

algorithm is found for checking termination of nondeterministic quantum

programs within a fixed finite-dimensional state space.

A striking difference between nondeterministic classical and quantum

programs is shown by example: it is possible that each of several quan-

tum programs simulates the same classical program which terminates with

probability 1, but the nondeterministic program consisting of them termi-

nates with probability 0 due to the interference carried in the execution

of them.

1 Introduction

Quantum algorithms are usually expressed at the very low-level of quantum
circuits. As pointed out by Abramsky [1], high-level, conceptual methods are
needed for designing, programming and reasoning about quantum computa-
tional systems. Along this line, intensive research on quantum programming
has been conducted in the last 15 years. Several quantum programming lan-
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guages have been defined, including QCL by Ömer [17], qGCL by Sanders
and Zuliani [18], a quantum extension of C++ by Betteli et al. [5], QPL by
Selinger [19], and QML by Altenkirch and Grattage [3]. The operational or
denotational semantics of these languages have been introduced. D’Hondt and
Panangaden [8] proposed the notion of quantum weakest precondition, and then
a predicate transformer semantics of quantum programs was presented in [23].
Also, several proof systems for verification of quantum programs have been
developed [4, 6, 7, 9, 22], and some approaches to the implementation of quan-
tum programming languages have been suggested [16, 21, 27, 25]. Furthermore,
several quantum process algebras have been proposed: CQP by Gay and Na-
garajan [12], QAlg by Jorrand and Lalire [14] and qCCS [10], to model quantum
communication and concurrency. For a more systematic exposition, we refer to
two excellent survey papers [11, 20].

Nondeterminism provides an important high-level feature in classical com-
putation for specifying programs’ behavior, without having to specify details of
implementations. Zuliani [26] found a way for embedding nondeterminism into
his quantum programming language qGCL, and then used qGCL equipped with
a nondeterministic choice constrct to model and reason about Mitchison and
Josza’s counterfactual computation [15] and quantum systems in mixed states.
In this paper, we consider a class of nondeterministic quantum programs defined
in a language-independent way. A nondeterministic quantum program consists
of a collection of quantum processes. These processes are described by quantum
Markov chains over the common state space. This model of nondeterministic
quantum programs is indeed a quantum generalization of Markov decision pro-
cesses, which are widely used in the studies of probabilistic programs, see for
example [13].

This paper focuses on the termination problem of nondeterministic quantum
programs within a fixed finite-dimensional state space. The paper is organized
as follows. In Sec. 2, we briefly review the basic notions from quantum theory
required in this paper, with an emphasis on fixing notations. In Sec. 3, a model
of nondeterministic quantum programs is defined in terms of quantum Markov
chains. In this model, an execution of a nondeterministic quantum program is
a sequence of actions of individual processes, and following Selinger [19] these
actions are depicted by super-operators on the state Hilbert space. At each step
of an execution, a process is chosen nondeterministically to perform the next
action. We define the termination probability of a nondeterministic quantum
program starting in a state according to an execution schedule. Then the ter-
mination of a nondeterministic quantum program is defined to be the infimum
of its termination probabilities over all possible schedules. At the end of this
section, we consider an example of nondeterministic quantum program consist-
ing of two quantum walks on a graph [2]. This example is interesting because it
indicates a striking difference between nondeterministic classical and quantum
programs: it is possible that each of several quantum programs simulates the
same classical program which terminates with probability 1, but the nondeter-
ministic program consisting of them terminates with probability 0 due to the
interference carried in the execution of them. In Sec. 4, we examine the reach-
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able space of a nondeterministic quantum program. By taking the arithmetic
average of the super-operators performed by individual processes, we are able
to define a deterministic quantum program whose reachable space is equal to
the reachable space of the original nondeterministic program. Furthermore, the
reachable space of the average deterministic program can be obtained by recur-
sively constructing a finite increasing sequence of subspaces of the state Hilbert
space. The notions of terminating and diverging states of a nondeterministic
quantum program are introduced in Sec. 5. The structures of the sets of termi-
nating and diverging states are clarified. In particular, it is shown that the space
of diverging pure states can also be recursively constructed in a finite number of
steps. In Sec. 6, the Hart-Sharir-Pnueli zero-one law for probabilistic concurrent
programs [13] is generalized to the case of nondeterministic quantum programs.
This quantum zero-one law enables us to discover an algorithmically checkable
termination condition for nondeterministic quantum programs in terms of reach-
able space and diverging pure states. A classical (not quantum) algorithm for
termination checking of nondeterministic quantum programs is then presented
in Sec. 7. A brief conclusion is drawn in Sec. 8.

2 Preliminaries and Notations

We assume that the reader is familiar with basic quantum theory, and the main
aim of this section is to fix notations.

2.1 Quantum states

In quantum mechanics, the state space of a physical system is described by a
complex Hilbert space H. In this paper, we only consider finite-dimensional
Hilbert spaces. We write dimH for the dimension of space H. A pure state of
a system is represented by a unit vector in the state space of the system, and
a mixed state by a (partial) density operator, that is, a positive semi-definite
matrix ρ with its trace tr(ρ) ≤ 1. We write D(H) for the set of (partial) density
operators on H. For convenience, we simply write ψ for the density operator
corresponding to pure state |ψ〉, that is, ψ = |ψ〉〈ψ|. For any two density
operators ρ and σ, their distance is defined to be ‖ ρ− σ ‖∗, where

‖M ‖∗= tr(
√
MM †)

is the trace norm of M for all operators M . Let

ρ =
∑

i

λi|ψi〉〈ψi|

be the spectral decomposition of density operator ρ. The subspace span{|ψi〉}
is called the support of ρ, written suppρ. Recall that for a family {Xi} of
subspaces of H, the join of {Xi} is defined by

∨

i

Xi = span(
⋃

i

Xi),
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and we write X ∨ Y for the join of two subspaces X and Y . Then it is easy to
verify that for any two states ρ, σ ∈ D(H),

supp(ρ+ σ) = supp(ρ) ∨ supp(σ).

2.2 Quantum operations

Super-operators formalize physical transformations between quantum states. A
super-operator E on a Hilbert space H is a linear map from linear operators on
H to themselves satisfying the following two conditions:

1. Completely positive: for any a extra state space H′ and any positive
semi-definite operator P ∈ D(H′⊗H), (I ⊗E)(P ) is always positive semi-
definite, where I : B(H′)→ B(H′) is the identity super-operator;

2. Trace-preserving: for any ρ ∈ D(H), tr(E(ρ)) = tr(ρ).

The Kraus representation theorem asserts that a linear map E is a super-
operator iff there are linear operators Ei such that

E(ρ) =
∑

i

EiρE
†
i

for all ρ ∈ D(H), and
∑

i

E†
iEi = IdH,

where IdH is the identity operator on H.
For any subspace X of H, we define the image of X under E as

E(X) =
∨

|ψ〉∈X

suppE(ψ).

In other words, if we write PX for the projection operator of X , then E(X) =
suppE(PX). Using the Kraus representation, it is easy to verify that E(supp(ρ)) =
suppE(ρ). We can also define the pre-image of X under E by

E−1(X) = {|ψ〉 ∈ H|suppE(ψ) ⊆ X}.

It is actually the maximal subspace Y satisfying that E(Y ) ⊆ X . We write X⊥

for the orthogonal complement of a subspace X , then it is also easy to verify
that

E−1(X) = (E∗(X⊥))⊥,

where the super-operator

E∗(·) =
∑

i

E†
i ·Ei

is the Schrödinger-Heisenberg dual of

E(·) =
∑

i

Ei ·E†
i .
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2.3 Quantum measurements

To acquire information about a quantum system, a measurement must be per-
formed on it. A quantum measurement on a system with state space H is
described by a collection {Mi} of linear operators on H satisfying

∑

i

M †
iMi = IdH,

where indices i stand for the outcomes that may occur in the experiment. If
the system is in state ρ ∈ D(H) immediately before the measurement, then the

probability that result i occurs is tr(MiρM
†
i ), and the state of the system after

the measurement is MiρM
†
i .

3 A Model of Nondeterministic Quantum Pro-

grams

3.1 Basic Definitions

Definition 1 Let H be a finite-dimensional Hilbert space which will be used as
the state space of programs. A nondeterministic quantum program is a pair

P = ({Ei : i = 1, · · · ,m}, {M0,M1}),

where:

1. Ei is a super-operator on H for each i = 1, · · · ,m;

2. {M0,M1} is a measurement on H.

There arem processes in the program P . The one-step running of process i is
modeled by super-operator Ei for each 1 ≤ i ≤ m. We will call P a deterministic
quantum program when m = 1, that is, there is only one process in P .

We now see how a nondeterministic quantum program be executed. We first
consider a single computation step of program P . It is achieved as follows:

• Before each step, the measurement {M0,M1} is performed on the cur-
rent state ρ to determine whether the program terminates or not. If the
outcome is 0, the program terminates; Otherwise the program goes to
complete a step then.

• In each step, an element i is nondeterministically chosen from the index
set {1, 2, · · · ,m} firstly, and then the operation Ei is performed on the

current program state. Thus, the state becomes Ei(M1ρM
†
1 ) after the

measurement and the operation Ei.

A computation of a nondeterministic quantum program is a finite or infinite
sequence of computation steps in which the same measurement is performed to
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determine termination of the program in all steps, but the super-operators per-
formed in different steps are usually different and they are nondeterministically
scheduled. Formally, the set of schedules of program P is defined to be

S = {1, 2, · · · ,m}∞
= {s1s2 · · · sk · · · : sk ∈ {1, 2, · · · ,m} for all k ≥ 0}.

We also define the set of schedule fragments of P to be

Sfin = {1, 2, · · · ,m}∗ =

∞
⋃

n=0

{1, 2, · · · ,m}n.

For convenience, we use ǫ to represent empty string. For any f = s1 · · · sm ∈
Sfin, we write |f | for the length of f , that is, |f | = m. For each n ≤ |f |, f(≤ n)
stands for the head s1 · · · sn of f . We also write the head

s(≤ n) = s1s2 · · · sn ∈ Sfin

and the tail
s(> n) = sn+1sn+2 · · · ∈ S

of s = s1s2 · · · ∈ S for each n ≥ 0. For any s = s1s2 · · · ∈ S and f = s′1 · · · s′m ∈
Sfin, we write fs for the concatenation of f and s, that is, the schedule

fs = s′1 · · · s′ms1s2 · · · .

For simplicity of presentation, we introduce the notation Ti which stands for
the super-operator defined by

Ti(ρ) = Ei(M1ρM
†
1 )

for every ρ ∈ D(H) and 1 ≤ i ≤ m. Furthermore, for any f = s1s2 · · · sn ∈ Sfin,
we write:

Tf = Tsn ◦ · · · ◦ Ts2 ◦ Ts1 ,
in particular, Tǫ(ρ) = ρ for all ρ. Let ρ ∈ D(H). If the input is state ρ, and
program P is executed according to a schedule s = s1s2 · · · ∈ S, the program
state after n steps is Ts(≤n)(ρ).

3.2 Termination Probability

Suppose that the input state to program P is ρ. For any schedule fragment
f ∈ Sfin, we define the probability that the program terminates within f as
follows:

tf (ρ) =

|f |
∑

n=0

tr(M0Tf(≤n)(ρ)M †
0 ).

If the program is executed according to a schedule s = s1s2 · · · , it is easy to
see that the probability of the program terminating in no more than n steps is
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ts(≤n)(ρ). Furthermore, the probability that the program terminates in a finite
number of steps is

ts(ρ) = lim
n→∞

ts(≤n)(ρ) =

∞
∑

n=0

tr(M0Ts(≤n)(ρ)M †
0 ).

It is obvious that tr(ρ) ≥ ts(ρ), and tr(ρ) − ts(ρ) is the divergence probability
of the program starting in state ρ and executed according to schedule s. We
can divide the termination probability ts(ρ) into two parts:

• The first part is the probability of terminating in less than n steps, that
is

ts(≤n−1)(ρ) =

n−1
∑

k=0

tr(M0Ts(≤k)(ρ)M †
0 )

= tr(ρ)− tr(M1Ts(≤n−1)(ρ)M
†
1 )

= tr(ρ)− tr(Ts(≤n)(ρ))

(1)

because all Ei (i = 1, ...,m) are trace-preserving.

• The second part is the probability of terminating in at least n steps, that
is

∞
∑

k=n

tr(M0Ts(≤k)(ρ)M †
0 )

=

∞
∑

k=0

tr(M1(Tsn+1sn+2···sn+k
◦ Ts(≤n))(ρ)M †

1 )

= ts(>n)(Ts(≤n)(ρ)).

(2)

Combining the above two equations, we get that

tr(ρ)− ts(ρ) = tr(Ts(≤n)(ρ))− ts(>n)(Ts(≤n)(ρ)). (3)

This indicates that the divergence probability of a program is an invariant
through an execution path of the program.

In general, an execution along with any schedule s ∈ S is possible for a
nondeterministic program. So, we need to consider all possible execution paths
of the program together.

Definition 2 The termination probability of program P starting in state ρ is

t(ρ) = inf{ts(ρ)|s ∈ S}.
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3.3 An Example: Quantum Walks

We consider quantum walks on a graph. Let C4 = (V,E) be a circle with four
vertices, where V = {0, 1, 2, 3} is the set of vertices, and E = {(0, 1), (1, 2), (2, 3), (3, 0)}
is the set of edges. We first define a quantum walk on C4 as follows:

• The state Hilbert space is CV , and it has {|i〉|i ∈ V } as its computational
basis;

• The initial state is |0〉. This means that the walk start at the vertex 0;

• A single step of the walk is defined by the unitary operator:

W1 =
1√
3









1 1 0 −1
1 −1 1 0
0 1 1 1
1 0 −1 1









.

It means that at any vertex, the probability of walking to the left and
walking to the right are both 1/3, and there is also a probability 1/3 of
not walking.

• The termination measurement {P0, P1} is defined by

P0 = |2〉〈2|, P1 = Id4 − |2〉〈2|,

which means that there is an absorbing boundary at vertex 2. Here, Id4
is the 4× 4 unit matrix.

This quantum walk can be seen as a deterministic quantum program (W1, {P0, P1})
starting in state |0〉. It is easy to verify that this program terminates with prob-
ability 1, that is, t(|0〉〈0|) = 1. If the unitary operatorW1 in the above quantum
walk is replaced by:

W2 =
1√
3









1 1 0 1
−1 1 −1 0
0 1 1 −1
1 0 −1 −1









,

then we get a new quantum walk, which can also be seen as a deterministic
quantum program (W2, {P0, P1}) starting in state |0〉. This new quantum walk
is terminating too. However, if we combine these two walks to form a nonde-
terministic quantum program ({W1,W2}, {P0, P1}), then it is not terminating
when starting in state |0〉. In fact, since W2W1|0〉 = |0〉, it holds that

t(|0〉〈0|) ≤ ts(|0〉〈0|) = 0

for the infinite execution path s = (12)∞ = 121212 · · · .
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4 Reachable Space

From now on, we consider a fixed nondeterministic quantum program

P = ({Ei : i = 1, · · · ,m}, {M0,M1}).

Definition 3 1. The set of reachable states of program P starting in state ρ
is

R(ρ) = {Tf (ρ)|f ∈ Sfin}.

2. The reachable space of program P starting in state ρ is the subspace of H
spanned by R(ρ), that is,

HR(ρ) =
∨

{suppσ|σ ∈ R(ρ)}.

We imagine that during the running of P , if each nondeterministic choice
of i ∈ {1, 2, · · · ,m} is made according to the uniform probability distribution,
then then P actually implements a deterministic quantum program, which can
be described as:

Definition 4 The average of P is the deterministic quantum program

P = (E , {M0,M1}),

where {M0,M1} is the same as in P, and E is the arithmetic average of E1, E2, · · · , Em,
that is,

E(ρ) = 1

m

m
∑

i=1

Ei(ρ)

for every ρ ∈ D(H).

We define:
T (ρ) = E(M1ρM

†
1 )

for every ρ ∈ D(H). Then the reachable set and reachable space of P starting
in state ρ are, respectively:

R(ρ) = {T n(ρ)|n = 0, 1, 2, ...},
HR(ρ) =

∨

{supp(σ)|σ ∈ R(ρ)}.

The following lemma shows that P and its average P have the same reachable
space.

Lemma 1 For any ρ ∈ D(H), HR(ρ) = HR(ρ).
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Proof: For each n ≥ 0, we have:

T n(ρ) = (
1

m

m
∑

i=1

Ti)n(ρ)

=
1

mn

∑

s1,s2,··· ,sn∈S

(Tsn ◦ · · · ◦ Ts2 ◦ Ts1)(ρ)

=
1

mn

∑

f∈Sfin,|f |=n

Tf (ρ).

Then the proof is completed by observing that

HR(ρ) =
∨

f∈Sfin

supp(Tf (ρ))

=

∞
∨

n=0

∨

f∈Sfin,|f |=n

supp(Tf (ρ))

=

∞
∨

n=0

supp(T n(ρ)) = HR(ρ). �

Now we only need to examine the reachable space HR(ρ). For every n ≥ 0,

we define HRn(ρ)
to be the reachable space of program P within n steps when

starting in state ρ, that is,

HRn(ρ)
=

n
∨

k=0

supp(T k(ρ)).

Then it is clear that

HR(ρ) =

∞
∨

n=0

HRn(ρ)
.

On the other hand, all elements of the increasing chain

HR1(ρ)
⊆ HR2(ρ)

⊆ · · ·

are subspace of finite-dimensional space H. There must be some n ≥ 0 such
that HRn(ρ)

= HRk(ρ)
for all k ≥ n, and thus HR(ρ) = HRn(ρ)

. Furthermore,
we have a recursive characterization of reachable spaces HRn(ρ)

.

Lemma 2 For all n ≥ 0, we have:

HRn+1(ρ)
= HRn(ρ)

∨ T (HRn(ρ)
).

Proof: It holds that

suppT n+1(ρ) = supp(T (T n(ρn)))
= T (supp(T n(ρ))) ⊆ T (HRn(ρ)).
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So, we have:
HRn+1(ρ)

⊆ HRn(ρ) ∨ T (HRn(ρ)).

Conversely, it holds that

T (HRn(ρ)) = T (supp(
n
∑

k=0

T k(ρ)))

= supp(T (
n
∑

k=0

T k(ρ))) = supp(

n
∑

k=0

T k+1(ρ))

=

n+1
∨

k=1

supp(T k(ρ)) ⊆ HRn+1(ρ).

Thus, we have:
HRn(ρ)

∨ T (HRn
(ρ)) ⊆ HRn+1(ρ)

. �

Now, we are able to prove the main result in this section.

Theorem 1 If n is the smallest integer n satisfying HRn(ρ)
= HRn+1(ρ)

, then
HR(ρ) = HRn(ρ)

.

Proof: By Lemma 1, it suffices to show that

HRn(ρ)
= HRn+1(ρ)

implies HRn+1(ρ)
= HRn+2(ρ)

,

which in turn implies HRn+k(ρ)
= HRn+k+1(ρ)

for all k ≥ 2. In fact, it follows
from Lemma 2 that

supp(T n+2(ρ)) = supp(T (T n+1(ρ)))

= T (supp(T n+1(ρ))) ⊆ T (HRn+1(ρ)
)

= T (HRn
(ρ)) ⊆ HRn+1(ρ)

.

Thus, we have HRn+2(ρ)
= HRn+1(ρ)

. �

5 Terminating States and Diverging States

Definition 5 1. For any ρ ∈ D(H), if t(ρ) = tr(ρ), then we say that ρ is a
terminating state of P.

2. We write T for the set of terminating states of P, that is,

T = {ρ ∈ D(H)|t(ρ) = tr(ρ)}.

The equality t(ρ) = tr(ρ) is usually called the terminating condition of pro-
gram P . The intuitive meaning of this condition is that whenever the program
starts in state ρ, it will terminate in a finite number of steps with probability
1. Some basic properties of terminating states are collected in the following:
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Lemma 3 1. ρ ∈ T iff for all R(ρ) ⊆ T , that is, for all f ∈ Sfin, Tf (ρ) is a
terminating state.

2. Suppose that ρ1, ρ2 ∈ D(H) with ρ1 + ρ2 ∈ D(H). Then ρ1 + ρ2 ∈ T iff
ρ1 ∈ T and ρ2 ∈ T .

3. Let |ψ〉 and |ϕ〉 be two pure states. If |ψ〉, |ϕ〉 ∈ T , then any pure state
|ξ〉 = a|ψ〉+ b|ϕ〉 ∈ T , where a, b ∈ C.

Proof:

1. The “if” part is obvious by putting f = ǫ. To prove the “only if” part, we
assume that ρ ∈ T . Then for any s ∈ S, it follows from Eq. (3) that

tr(Tf (ρ)) − ts(Tf (ρ)) = tr(ρ) − Tfs(ρ) = 0.

The arbitrariness of s implies that tr(Tf (ρ)) = t(Tf (ρ)).

2. If ρ1 ∈ T and ρ2 ∈ T , then t(ρi) = tr(ρi) (i = 1, 2), and

tr(ρ1 + ρ2) ≥ t(ρ1 + ρ2) = inf{ts(ρ1 + ρ2)|s ∈ S}
= inf{ts(ρ1) + ts(ρ2)|s ∈ S} ≥ t(ρ1) + t(ρ2)

= tr(ρ1) + tr(ρ2) = tr(ρ1 + ρ2).

So, t(ρ1 + ρ2) = tr(ρ1 + ρ2), and ρ1 + ρ2 ∈ T .
Conversely, if ρ1 + ρ2 ∈ T , then for each s ∈ S,

ts(ρ1) + ts(ρ2) = ts(ρ1 + ρ2)

= tr(ρ1 + ρ2) = tr(ρ1) + tr(ρ2).

Since ts(ρi) ≤ tr(ρi) (i = 1, 2), it must be that ts(ρi) = tr(ρi) (i = 1, 2).
Therefore, t(ρi) = tr(ρi), and ρi ∈ T (i = 1, 2).

3. Put |ξ〉 = a|ψ〉+ b|ϕ〉 and |ξ′〉 = a|ψ〉 − b|ϕ〉. Then we have:

t(ξ + ξ′) = t(|ξ〉〈ξ| + |ξ′〉〈ξ′|)
= t(2|a|2ψ + 2|b|2ϕ) = 2|a|2tr(ψ) + 2|b|2tr(ϕ)
= tr(ξ) + tr(ξ′) = tr(ξ + ξ′).

Note that in the above equation, we slightly abuse the notation of density
operator allowing unnormalization with trace greater than 1. This is not
problematic because of linearity. So, ξ + ξ′ ∈ T , and it follows from item
2 that ξ ∈ T . �

Definition 6 1. For any ρ ∈ D(H), if for some schedule s ∈ S, we have
ts(ρ) = 0, then we say that ρ is a diverging state of P.

2. We write D for the set of diverging states of P, that is,

D = {ρ ∈ D(H)|ts(ρ) = 0 for some s ∈ S}.
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3. We write PD for the diverging pure state of P, that is,

PD = {|ψ〉 ∈ H|ts(ψ) = 0 for some s ∈ S}.

The remainder of this section is devoted to examine the structure of diverg-
ing pure states PD, which is crucial in developing an algorithm for checking
termination of program P in Sec. 7. To this end, we introduce some auxiliary
notions:

Definition 7 1. For each schedule fragment f ∈ Sfin, we define:

PDf = {|ψ〉 ∈ H|tf (ψ) = 0}.

2. For each n ≥ 0, we define:

PDn =
⋃

f∈Sfin,|f |=n

PDf .

3. For each schedule s ∈ S, we define:

PDs = {|ψ〉 ∈ H|ts(ψ) = 0}.

By definition, we have:

PD =
⋃

s∈S

PDs.

For any s ∈ S and n1 ≥ n2, It holds that PDs(≤n1) ⊆ PDs(≤n2) because
ts(≤n1) ≥ ts(≤n2). Furthermore, we have:

PDs =
∞
⋂

n=0

PDs(≤n) (4)

since ts(·) = limn→∞ ts(≤n)(·).

Lemma 4 For any f ∈ Sfin, we have:

1. PDf is a subspace of H.

2. Let
H0 = {|ψ〉|M0|ψ〉 = 0}

be the orthogonal complementary subspace of measurement operator M0.
Then PDf ⊆ H0.

3. For each k ∈ {1, 2, · · · ,m},

PDkf = H0 ∩ T −1
k (PDf ) (5)

Proof:

13



1. Let |ψ〉, |ϕ〉 be any two states in PDf , and |ξ〉 = a|ψ〉+ b|ϕ〉 be any linear
superposition of them. Write |ξ′〉 = a|ψ〉 − b|ϕ〉. Then

tf (ξ) + tf (ξ
′) = tf (ξ + ξ′) = tf (2|a|2ψ + 2|b|2ϕ)

= 2|a|2tf (ψ) + 2|b|2tf (ϕ) = 0.

Thus tf (ξ) = 0 and |ξ〉 ∈ PDf .

2. Noting that H0 = PDǫ, it is obvious.

3. For any |ψ〉 ∈ H0 ∩ T −1
k (PDf), we have tr(Tk(ψ)) = tr(ψ) for |ψ〉 ∈ H0,

and suppTk(ψ) ⊆ PDf for |ψ〉 ∈ T −1
k (PDf). Then by Eq. (1), we obtain:

0 = tf (Tk(ψ)) = tr(Tk(ψ))− tr(M1Tf (Tk(ψ))M †
1 )

= tr(ψ)− tr(M1Tkf (ψ)M †
1 ) = tkf (ψ).

Thus |ψ〉 ∈ PDkf . It implies that

H0 ∩ T −1
k (PDf ) ⊆ PDkf .

Conversely, for any |ψ〉 ∈ PDkf ⊆ H0, we have tr(Tk(ψ)) = tr(ψ) and
then

0 = tkf (ψ) = tr(ψ)− tr(M1Tkf (ψ)M †
1 )

= tr(Tk(ψ)) − tr(M1Tf (Tk(ψ))M †
1 ) = tf (Tk(ψ)).

Therefore, |ψ〉 ∈ T −1
k (PDf ). We obtain:

PDkf ⊆ H0 ∩ T −1
k (PDf ). �

We see that PDs is a subspace of H0 for every s ∈ S by combining Eq. (4)
and Lemma 4.

Lemma 5

PD =

∞
⋂

n=0

PDn.

Proof: For any state |ψ〉 ∈ PD, there is some s ∈ S such that

|ψ〉 ∈ PDs ⊆ PDs(≤n) ⊆ PDn

for all n ≥ 0. Thus,

PD ⊆
⋂

PDn.

Conversely, we prove that
⋂

PDn ⊆ PD. Suppose that |ψ〉 ∈ PDn for all
n ≥ 0. Put

X = {f ∈ Sfin|tf (ψ) = 0}.
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Then what we need to do is to find some schedule s ∈ S such that s(≤ n) ∈ X
for all n. To this end, put

Ef = {g ∈ X |f is a prefix of g}

for each f ∈ Sfin. We consider the set

X ′ = {f ∈ Sfin|Ef is an infinite set}.

It holds that X ′ ⊆ X since Ef = ∅ for all f 6∈ X . So, it suffices to find some
s ∈ S such that s(≤ n) ∈ X ′ for all n. Now we are going to construct such
a schedule s, and our strategy is to define the head s(≤ n) of s by induction
on n. First, s(≤ 0) = ǫ ∈ X ′ as Eǫ = X is an infinite set. Suppose that
s(≤ n) = s1s2 · · · sn ∈ X ′ is already defined. Then there must be some sn+1 ∈
{1, 2, · · · ,m} such that s(≤ n+ 1) = s1s2 · · · snsn+1 ∈ X ′. This is because

Es(≤n) = {s(≤ n)} ∪
m
⋃

i=1

Es(≤n)i

is an infinite set, and thus at least one of Es(≤n)1, Es(≤n)2, · · · , Es(≤n)m should
be an infinite set. �

It is also easy to verify that for any n, PDn+1 ⊆ PDn. On the other hand,
each PDn is the union of a finite number of subspaces of H. The following
technical lemma will help us to further clarify the structure of PD.

Lemma 6 Suppose that Xk is the union of a finite number of subspaces of H
for all k ≥ 1. If X1 ⊇ X2 ⊇ · · · ⊇ Xk ⊇ · · · , then there exists n ≥ 1 such that
Xk = Xn for all k ≥ n.

Proof: If for some k ≥ 1, Xk = ∅, then the result is obvious. So we can
assume that Xk 6= ∅ for all k ≥ 1. It suffices for us to prove the lemma
for a special case that X1 is a single subspace of H, and then the general
case can be obtained by putting X0 = H and considering the extended chain
X0 ⊇ X1 ⊇ · · · ⊇ Xk ⊇ · · · .

Now, we prove the special case by induction on dimX1. First, for dimX1 =
0, Xk = {0} for all k and the result holds. For dimX1 ≥ 1, we only need to
consider the nontrivial case that Xl 6= X1 for some l. We choose the minimum
one of such l, then X1 = X2 = · · · = Xl−1 and Xl is a proper subset of X1. Let

Xl =
⋃b

i=1 Pi, where P1, P2, · · · , Pb are subspaces of H. Then for all k ≥ l,

Xk = Xk ∩Xl =
b
⋃

i=i

(Xk ∩ Pi),

and for each i ∈ {1, 2, · · · , b}, Pi is a proper subspace ofX1 and we have dimPi <
dimX1. Therefore, noting that Xk ∩ Pi is still a finite union of subspaces, by
induction hypothesis, the descending chain Pi ⊇ Xl+1 ∩ Pi ⊇ Xl+2 ∩ Pi ⊇ · · ·
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terminates at some ni ≥ l, that is Xk ∩ Pi = Xni
∩ Pi for all k ≥ ni. Let

n = max{ni : i = 1, 2, · · · , l}, then for all k ≥ n we have

Xk =

b
⋃

i=1

(Xk ∩ Pi) =
b
⋃

i=1

(Xn ∩ Pi) = Xn. �

Now we can assert that there exists n ≥ 0 such that PDk = PDn for all
k ≥ n, and thus PD = PDn by combining Lemmas 4, 5 and 6. Indeed, we are
able to prove an even stronger result presented in the following:

Theorem 2 Let n be the smallest integer satisfying PDn = PDn+1. Then
PD = PDn.

Proof: We only need to prove that for any n ≥ 0, PDn = PDn+1 implies
PDn+1 = PDn+2. Assume that PDn = PDn+1 and |ψ〉 ∈ PDn+1. We are
going to show that |ψ〉 ∈ PDn+2. By definition, there is f = s1s2 · · · sn+1 ∈
Sfin such that |ψ〉 ∈ PDf . Put f ′ = s2s3 · · · sn+1. By Eq. (5), we have
supp(Ts1(ψ)) ⊆ PDf ′ . On the other hand, it follows from the assumption that

PDf ′ ⊆ PDn = PDn+1 =
⋃

g∈Sfin,|g|=n+1

PDg.

Since PDf ′ and all PDgs are subspaces of the finite dimensional Hilbert space
H, and a finite-dimensional Hilbert space cannot be the union of its proper
subspaces (see Theorem 1.2 of [28] for reference), there must be some g =
r1r2 · · · rn+1 ∈ Sfin such that PDf ′ = PDf ′ ∩ PDg and thus supp(Ts1(ψ)) ⊆
PDg. We have |ψ〉 ∈ T −1

s1
(PDg). Furthermore, we put g′ = s1r1r2 · · · rn+1.

Then by Eq. (5), |ψ〉 ∈ PDg′ ⊆ PDn+2. �

6 Quantum Zero-One Law

For simplicity of presentation, from now on, we only consider normalized input
state ρ, that is, we always assume that tr(ρ) = 1.

Definition 8 The reachable termination probability of program P starting in
state ρ is the infimum of termination probability of the program starting in a
state reachable from ρ, that is,

h(ρ) = inf{t(σ)|σ ∈ D(HR(ρ)), tr(σ) = 1}.

The following lemma gives a characterization of terminating states in terms
of reachable termination probability. It is obviously a strengthening of Lemma 3.1.

Lemma 7 ρ ∈ T (i.e. t(ρ) = 1) if and only if h(ρ) = 1.
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Proof: The “only if” part is obvious. To prove the “if” part, we assume that
h(ρ) = 1. Then for any f ∈ Sfin, it follows from Lemma 3.1 that t(Tf (ρ)) = 1.
Since Tf (ρ) can be decomposed as a convex combination of its eigenvectors, by
Lemma 3.2 we see that t(ψ) = 1 whenever |ψ〉 is an eigenvectors of Tf (ρ). We
write:

VR(ρ) = {eigenvectors of Tf (ρ)|f ∈ Sfin}.
Then HR(ρ) = spanVR(ρ), and Lemma 3.3 implies t(ψ) = 1 for any |ψ〉 ∈ HR(ρ).
Finally, for all σ ∈ D(HR(ρ)), since σ is a convex combination of pure states
in HR(ρ), we assert that t(σ) = 1 by using Lemma 3.2 once again. Therefore,
h(ρ) = 1. �

To prove the zero-one law for reachable termination probability, we need
the following technical lemma. It is obvious by definition that the reachable
set is closed under Tf , that is, Tf (R(ρ)) ⊆ R(ρ) for every f ∈ Sfin. The same
conclusion is valid for the reachable space but no so obvious.

Lemma 8 If ρ ∈ D(HR(ρ)), then for any f ∈ Sfin, Tf (ρ) ∈ D(HR(ρ)).

Proof: As HR(ρ) is finite-dimensional, we can find a finite subset F of Sfin
such that

HR(ρ) =
∨

g∈F

supp(Tg(ρ)).

Thus, for any σ ∈ D(HR(ρ)), there exists some positive real number λ such that

σ ≤ λ
∑

g∈F

Tg(ρ).

Let
δ = λ

∑

g∈F

Tg(ρ)− σ ∈ D(HR(ρ)).

Then for any k ∈ {1, 2, · · · ,m},

Tk(σ) + Tk(δ) = Tk(σ + δ) = Tk(λ
∑

g∈F

Tg(ρ))

= λ
∑

g∈F

Tgk(ρ) ∈ D(HR(ρ)).

So, we have Tk(σ) ∈ D(HR(ρ)). Moreover, we obtain Tf (σ) ∈ D(HR(ρ)) for any
f = k1 · · · km ∈ Sfin by induction on m. �

Now we are ready to present the main result in this section.

Theorem 3 (Zero-One Law) For any ρ, we have h(ρ) = 0 or 1.

Proof: We write h = h(ρ) and argue that h > 0 implies h = 1. Assume
h > 0. Then for any ε > 0, there exists some σ ∈ D(HR(ρ)) such that tr(σ) = 1
and h ≤ ts(σ) ≤ h+ ε for some s ∈ S. We can choose a sufficiently large integer
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n such that ts(≤n−1)(σ) ≥ h/2 because limn→∞ ts(≤n)(σ) = ts(σ) ≥ h. Applying
Eq. (1), we get:

1− tr(Ts(≤n)(σ)) = ts(≤n−1)(σ) ≥ h/2. (6)

On the other hand, we put λ = tr(Ts(≤n)(σ)). Then it follows from Lemma 8
that

1

λ
Ts(≤n)(σ) ∈ D(HR(ρ)).

Also, it holds that tr[ 1
λ
Ts(≤n)(σ)] = 1. So, by the definition of h(ρ) we have

t( 1
λ
Ts(≤n)(σ)) ≥ h. Consequently,

ts(>n)(Ts(≤n)(σ)) ≥ t(Ts(≤n)(σ)) = λt(
1

λ
Ts(≤n)(σ))

≥ λh = h · tr(Ts(≤n)(σ)).

Then employing Eq. (3), we obtain:

h+ ε ≥ ts(σ) = 1− tr(Ts(≤n)(σ)) + ts(>n)(Ts(≤n)(σ))
≥ 1− tr(Ts(≤n)(σ)) + h · tr(Ts(≤n)(σ)).

(7)

Now combining Eqs. (6) and (7) yields:

ε ≥ (1− h)(1− tr(Ts(≤n)(σ))) ≥ (1− h)h
2
.

Finally, as ε can be arbitrarily small, it holds that h = 1. �
From the definition of h(ρ) we see that if h(ρ) = 1, then termination prob-

ability ts(σ) = 1 for any state σ in the reachable space HR(ρ) of ρ and any
schedule s ∈ S. What happens when h(ρ) = 0? The following proposition
answers this question.

Lemma 9 If h(ρ) = 0 then there exists some σ ∈ D(HR(ρ)) and s ∈ S such
that ts(σ) = 0.

Proof: The proof is divided into three steps. First, we show that if h(ρ) = 0
then t(σ) = 0 for some σ ∈ D(HR(ρ)). For any two states δ, θ ∈ D(HR(ρ)), and
any s ∈ S, we have:

t(δ) ≤ ts(δ) = ts(θ) + ts(δ − θ)
≤ ts(θ) + ts(

√

(δ − θ)2) ≤ ts(θ) + tr
√

(δ − θ)2

= ts(θ)+ ‖ δ − θ ‖∗
ts(θ)→t(θ)→ t(θ)+ ‖ δ − θ ‖∗

(8)

Since h(ρ) = 0, we can find a sequence {σn} in D(HR(ρ)) such that t(σn) →
0 (n→∞). Furthermore, sequence {σn} has an accumulation point σ because
D(HR(ρ)) is compact and satisfies the first countability axiom. Thus, there is a
subsequence {σik} of {σn}, which converges to σ. It follows from Eq. (8) that

t(σ) ≤ t(σik )+ ‖ σ − σik ‖∗→ 0 (k →∞).
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Second, we prove that if t(σ) = 0, then there exists some 1 ≤ k ≤ m such
that t(Tk(σ)) = 0. It suffices to see that for any s ∈ S, Eq. (3) yields:

0 = t(σ) ≥ ts(σ) = 1− tr(Ts1 (ρ)) + ts(>1)(Ts1 (ρ))

≥ ts(>1)(Ts1(ρ)) ≥ t(Ts1(ρ)) ≥
m

min
k=1

t(Tk(ρ))

Third, we show that if σ ∈ HR(ρ) satisfies t(σ) = 0 then ts(σ) = 0 for
some schedule s ∈ S. We recursively construct s = s1s2 · · · ∈ S such that
t(Ts(≤n)(σ)) = 0 for all n ≥ 0. For n = 0, t(Tǫ(σ)) = t(σ) = 0. Sup-
pose that s1s2 · · · sn is already defined and t(Ts1s2···sn(σ)) = 0. Then ac-
cording to the conclusion in the above paragraph, we can find sn+1 such that
t(Ts1s2···snsn+1

(σ)) = t(Tsn+1
(Ts1s2···sn(σ))) = 0. Finally, we get:

ts(σ) =

∞
∑

n=0

tr(M0Ts(≤n)(σ)M †
0 ) = 0

because tr(M0Ts(≤n)(σ)M †
0 ) ≤ t(Ts(≤n)(σ)) = 0 for all n ≥ 0. �

7 An Algorithm for Termination Checking

A combination of the results obtained in Sec. 4, 5 and 6 leads to a necessary
and sufficient condition for termination of program P .

7.1 A Termination Condition

Theorem 4 For any input state ρ, ρ ∈ T (i.e. t(ρ) = 1) if and only if HR(ρ) ∩
PD = {0}.

Proof: By the zero-one law (Theorem 3) together with Lemma 7, we only
need to prove that h(ρ) = 0 iff HR(ρ)∩PD 6= {0}. If HR(ρ)∩PD 6= {0}, then we
arbitrarily choose |ψ〉 ∈ HR(ρ) ∩ PD,〈ψ|ψ〉 = 1 and it holds that ψ ∈ D(HR(ρ))
and t(ψ) = 0. Thus, by definition we have h(ρ) = 0. Conversely, if h(ρ) = 0,
then it follows from Lemma 9 that there exist σ ∈ D(HR(ρ)) and s ∈ S with
ts(σ) = 0. Now, let |ψ〉 be an eigenvector of σ. Then |ψ〉 ∈ HR(ρ) and ts(ψ) = 0.
This means that |ψ〉 ∈ HR(ρ) ∩ PD 6= {0}. �

Since we have shown in Sec. 5 that PD is a finite union of subspaces, the
above condition can be checked by compute the intersections of subspaces pairs
for given HR(ρ) and PD. Therefore, an algorithm for termination checking
can be obtained by simply combining an algorithms for computing reachable
states and an algorithm for computing diverging pure states, which are presented
in the next two subsections. An application of these algorithms to checking
termination of the example program considered in Sec. 3.3 is presented in the
Appendix.
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7.2 An Algorithm for Computing Reachable States

Given a nondeterministic quantum program P and a initial state ρ, Algorithm 1
compute the reachable space HR(ρ) based on Theorem 1.

Algorithm 1: Computing Reachable States

input : An orthonormal basis B0 of supp(ρ), and a Kraus representation

of T (·) = ∑r
j=1 Ej ·E†

j .
output: An orthonormal basis B of HR(ρ).
set of states B ← ∅;
(* the number of elements of B *)
integer l← 0;
(* the index of the state under considering *)
integer i← 1;
(* put B to be B0 initially *)
for |x〉 ∈ B0 do

l ← l + 1;
|bl〉 ← |x〉;
B ← B ∪ {|bl〉};

end
while i ≤ l do

for j ← 1 to r do

|x〉 ← Ej |bi〉 −
∑l

k=1〈bk|Ej |bi〉|bk〉;
if |x〉 6= 0 then

l← l + 1;

|bl〉 ← |x〉/
√

〈x|x〉;
B ← B ∪ {|bl〉};

end

end
i← i+ 1;

end
return

Correctness and complexity of the algorithm: Since B keeps to be a set of
orthonormal states, l ≤ dimH always holds during the execution. Thus, the
algorithm terminates after at most dimH iterations of the while loop. Consider
any execution of the algorithm. B = B0 at the beginning, and it is convenient to
write Bi−1 for the instance of B immediately before the iteration of while loop
for i. Then spanBi = spanBi−1 ∪ suppT (bi) ⊆ spanBi−1 ∪ T (spanBi−1). By
Lemma 2, it is easy to prove that spanBi ⊆ HRi(ρ)

by induction on i. Then for
the output B, we have spanB ⊆ HR(ρ). On the other hand, we have spanB =
spanB ∪ T (spanB) upon termination of the algorithm. Then HRn(ρ)

⊆ spanB
can be also proved for all n by induction. Therefore HR(ρ) = spanB.

To get an upper bound of the running time of the algorithm, we write d =
dimH and consider each iteration of the while loop: There are r new states
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|x〉 being calculated, and each calculation is done in time O(d2) by multiplying
a d × d matrix and a d-dimensional vector. Noting that r ≤ d2, the time
complexity is d · r ·O(d2) = O(d5) in total. �

7.3 An Algorithm for Computing Diverging Pure States

Algorithm 2 compute the set of diverging states for a given nondeterministic
quantum program. The idea comes from Theorem 2: We calculate PDn from
PDn−1, until the condition PDn = PDn−1 holds. For convenience, we write
Jn = {PDf : f ∈ Sfin, |f | = n} and thus

⋃

P∈Jn
P = PDn. Then to check if

PDn = PDn−1, it suffices to check if for any P ∈ Jn−1, there exists Q ∈ Jn
such that P ⊆ Q.

Algorithm 2: Computing Pure Diverging States

input : The projection operator of H0.
output: A set of subspaces J0.
(*to record Jn−1*)
set of subspaces J0 ← ∅;
(*to record Jn*)
set of subspaces J1 ← {H0};
bool b← 0;
bool c← 0;
while ¬b do

J0 ← J1;
J1 ← ∅;
for P ∈ J0 do

for k ← 1 to m do
J1 ← J1 ∪ {T −1

k (P ) ∩H0};
end

end
(*test if PDn = PDn−1*)
b← 1;
for P ∈ J0 do

c← 0;
for Q ∈ J1 do

c← c ∨ (P ⊆ Q);
end
b← b ∧ c;

end

end
return J0

Correctness of the algorithm: We prove by induction on n that after the nth
iteration of while loop, J1 becomes {PDf : f ∈ Sfin, |f | = n}. For n = 0,
J1 = {H0} = {PDǫ}. Suppose the result holds for n − 1. At the beginning of
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the nth iteration, J0 ← J1 = {PDf : f ∈ Sfin, |f | = n − 1}, and then J1 is
calculated from J0 by

J1 = {H0 ∩ T −1
k (P ) : 1 ≤ k ≤ m,P ∈ J0}

= {H0 ∩ T −1
k (PDf ) : 1 ≤ k ≤ m, f ∈ Sfin, |f | = n− 1}

= {PDkf : 1 ≤ k ≤ m, f ∈ Sfin, |f | = n− 1}
= {PDf : f ∈ Sfin, |f | = n}.

Here, PDkf = H0 ∩ T −1
k (PDf ) comes from Eq. (5). So we get the correctness

of the algorithm. �
It is worth noting that the termination of this algorithm comes from the de-

scending chain condition in Lemma 6, but the terminating time n is unbounded
there. So, it is still unclear how to estimate the number of iterations of the
while loop in Algorithm 2, and consequently the complexity of computing the
set of diverging states of nondeterministic quantum programs remains unsettled.

7.4 An example: Quantum Walks

This subsection is a continuation of Sec. 3.3. We show how to apply our algo-
rithms developed above to the nondeterministic quantum program ({W1,W2}, {P0, P1}).
In Sec. 3.3, we have shown that this program is not terminating for initial state
|0〉 by observing a diverging path 1212 · · · . Here, we give an algorithmic check
for this fact.

Computing the reachable space: We use Algorithm 1 to compute the reach-
able space HR(|0〉〈0|). The Kraus operators of T (·) are E1 = W1P1 and E2 =
W2P1. We write Bi,j and |xi,j〉 for the instance of B and |x〉 respectively, for
index i and index j during the execution. Then B is calculated by a finite
number of iterations of while loop as follows:

Initially we have

l = 1,

|b1〉 = |0〉,
B0 = {|b0〉};

for the iteration of i = 1,
for j = 1,

E1|b1〉 = (|0〉+ |1〉+ |3〉)/
√
3,

|x1,1〉 = (|1〉+ |3〉)/
√
3 6= 0,

l = 1 + 1 = 2,

|b2〉 = (|1〉+ |3〉)/
√
2,

B1,1 = {|b1〉, |b2〉};

22



for j = 2,

E2|b1〉 = (|0〉 − |1〉+ |3〉)/
√
3,

|x1,2〉 = (−|1〉+ |3〉)/
√
3 6= 0,

l = 2 + 1 = 3,

|b3〉 = (−|1〉+ |3〉)/
√
2,

B1,2 = {|b1〉, |b2〉, |b3〉};

for the iteration of i = 2,
for j = 1,

E1|b2〉 = (−|1〉+ 2|2〉+ |3〉)/
√
6,

|x2,1〉 = 2|2〉/
√
6 6= 0,

l = 3 + 1 = 4,

|b4〉 = |2〉,
B2,1 = {|b1〉, |b2〉, |b3〉, |b4〉};

for j = 2,

E2|b2〉 = (2|0〉+ |1〉 − |3〉)/
√
6,

|x2,2〉 = 0;

for the iteration of i = 3,
for j = 1,

E1|b3〉 = (−2|0〉+ |1〉+ |3〉)/
√
6,

|x3,1〉 = 0;

for j = 2,

E2|b3〉 = (−|1〉 − 2|2〉 − |3〉)/
√
6,

|x3,2〉 = 0;

for the iteration of i = 4,
for j = 1,

E1|b4〉 = 0,

|x4,1〉 = 0;

for j = 2,

E2|b4〉 = 0,

|x4,2〉 = 0.

So the output is

B = {|0〉, (|1〉+ |3〉)/
√
2, (−|1〉+ |3〉)/

√
2, |2〉},
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and the reachable space HR(|0〉〈0|) = spanB is actually the whole state space.
Computing the set of pure diverging states: We use Algorithm 2 to compute

the set of pure diverging states PD. In the algorithm, PDf is recursively
calculated by Eq. (5). Specifically, here we have

Tk(·) =WkP1 · (WkP1)
† (k = 1, 2)

and then the projection operator of H0 ∩ T −1
k (P ) is exactly P1 ∩ W−1

k PWk.
Now, we calculate each PDf recursively on |f | as follows:

For |f | = 0, we initially have

PDǫ = P1 = Id4 − |2〉〈2|;
for |f | = 1,

to compute PD1 we get that

W−1
1 |2〉 = (|1〉+ |2〉+ |3〉)/

√
3,

W−1
1 PDǫW1 = {W−1

1 |2〉}⊥,

then

PD1 = P1 ∩W−1
1 PDǫW1 = |0〉〈0|+ |−〉〈−|,

where |−〉 = (|1〉 − |3〉)/
√
2;

to compute PD1 we get that

W−1
2 |2〉 = (|1〉+ |2〉 − |3〉)/

√
3,

W−1
2 PDǫW2 = {W−1

2 |2〉}⊥,
then

PD2 = P1 ∩W−1
2 PDǫW2 = |0〉〈0|+ |+〉〈+|,

where |+〉 = (|1〉+ |3〉)/
√
2;

for |f | = 2,
to compute PD11 we get that

W−1
1 |0〉 = (|0〉+ |1〉 − |3〉)/

√
3,

W−1
1 |−〉 = (−|1〉+ 2|2〉 − |3〉)/

√
6,

then

PD11 = (|0〉+ |1〉 − |3〉)(〈0|+ 〈1| − 〈3|)/3;
to compute PD21 we get that

W−1
2 |0〉 = (|0〉+ |1〉+ |3〉)/

√
3,

W−1
2 |−〉 = (−2|0〉+ |1〉+ |3〉)/

√
6,
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then

PD21 = P1 ∩W−1
2 PD1W2 = |0〉〈0|+ |+〉〈+|;

to compute PD12 we get that

W−1
1 |0〉 = (|0〉+ |1〉 − |3〉)/

√
3,

W−1
1 |+〉 = (2|0〉 − |1〉+ |3〉)/

√
6,

then

PD12 = P1 ∩W−1
1 PD1W1 = |0〉〈0|+ |−〉〈−|;

to compute PD22 we get that

W−1
2 |0〉 = (|0〉+ |1〉+ |3〉)/

√
3,

W−1
2 |+〉 = (|1〉 − 2|2〉 − |3〉)/

√
6,

then

PD22 = (|0〉+ |1〉+ |3〉)(〈0|+ 〈1|+ 〈3|)/3.
Since PD1 = PD12 and PD2 = PD21, we have PD = PD1 ∪ PD2.
Finally, we get that

HR(|0〉〈0|) ∩ PD = span{|0〉, |−〉} ∪ span{|0〉, |+〉} 6= {0}.

So, this program is not terminating.

8 Conclusion

In this paper, we defined a mathematic model of nondeterministic quantum pro-
grams, in which a program consists of a collection of quantum processes, each
process is represented by a quantum Markov chain over the common state space,
and the execution of these processes are nondeterministically scheduled. The
advantage of this model is that it is independent of the details of its implemen-
tations so that we can focus our attention on examining high-level behaviors of
nondeterministic quantum programs. In particular, a termination condition for
nondeterministic quantum programs was found, and a classical (not quantum)
algorithm for their termination checking was designed. To achieve these results,
several new mathematical tools have been developed to attack the difficulty
arising from the combined complexity of quantum setting and nondeterminism:

• We established a quantum zero-one law for termination probability of
nondeterministic quantum programs. This law allows us to reduce the
termination checking problem to emptiness checking of the intersection
of the reachable space and the space of diverging pure states, instead of
calculating the terminating probabilities over infinitely many execution
schedules.
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• We found an equivalence between the reachable space of a collection of
super-operators and that of their arithmetic average.

• It was shown that the descending chain condition holds for finite unions
of subspaces of a finite-dimensional Hilbert space. This helps us to extend
our proof techniques for a single subspace to the case of multiple subspaces,
which are unavoidable when nondeterministic choices are present.

For the further studies, an immediate topic is to extend the results presented
in this paper to quantum concurrent programs where not all but only fair ex-
ecution schedules are allowed. A major difficulty for such an extension comes
from an essential difference between quantum concurrent programs and classi-
cal (and probabilistic) concurrent programs. In the classical case, the behavior
of a concurrent program can be visualized as a directed transition graph, in
which only an ordering structure determined by transition relation exists. In
the state space of a quantum concurrent program, however, a linear algebraic
structure and a transition relation lives together. Those methods of searching in
the state space of a classical (and probabilistic) concurrent program developed
in the literature (see for example [13]) are not effective in the quantum case
because they usually violate the linear algebraic structure of the state space of
a quantum program. It seems that a new theory of quantum graphs, where
their linear algebraic and ordering structures are coordinated well, is essential
for the studies of quantum concurrent programs.
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