
ar
X

iv
:1

40
3.

43
44

v1
 [

qu
an

t-
ph

]
 1

8
M

ar
 2

01
4

Debugging Quantum Processes Using Monitoring Measurements

Yangjia Li1,2∗ and Mingsheng Ying2,1†
1State Key Laboratory of Intelligent Technology and Systems,

Tsinghua National Laboratory for Information Science and Technology,
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

2Centre for Quantum Computation and Intelligent Systems (QCIS),
Faculty of Engineering and Information Technology,

University of Technology, Sydney, NSW 2007, Australia
(Dated: September 30, 2021)

Since observation on a quantum system may cause the system state collapse, it is usually hard to
find a way to monitor a quantum process, which is a quantum system that continuously evolves. We
propose a protocol that can debug a quantum process by monitoring, but not disturb the evolution
of the system. This protocol consists of an error detector and a debugging strategy. The detector
is a projection operator that is orthogonal to the anticipated system state at a sequence of time
points, and the strategy is used to specify these time points. As an example, we show how to debug
the computational process of quantum search using this protocol. By applying the Skolem–Mahler–
Lech theorem in algebraic number theory, we find an algorithm to construct all of the debugging
protocols for quantum processes of time independent Hamiltonians.

PACS numbers: 03.67.Ac, 03.65.Ta, 03.67.Pp

I. INTRODUCTION

A major problem in physical implementation of quan-
tum computation is that errors are usually unavoidable
in practical situation. To protect the computing pro-
cess against errors, the method of fault-tolerant quantum
computation [1, 2] has been introduced and developed in
the last eighteen years. By employing many techniques of
quantum error correction [3–5], this method often leads
to results in a form of threshold theorem [2, 6]: A quan-
tum computer can be successfully implemented with high
probability if each component of the system only fails
with probability less than a threshold. The fault-tolerant
quantum computation is usually used when the errors are
caused by environment noises. The threshold condition
is possibly satisfied in this case, as the interaction be-
tween the quantum system and the environment may be
reduced by other physical techniques, such as [7].
In the present paper, we propose a so-called “debug-

ging” method to deal with another type of errors that
are not caused by environment noises but by “bugs”,
which mean unknown defects in the physical system it-
self. The prior techniques for fault-tolerant computa-
tion would generally become ineffective for such errors,
since the error threshold is mostly broken. For exam-
ple, suppose a Hadamard gate is by mistake used as a
NOT gate in a quantum computer, then this small defect
will greatly change the computing result in most cases.
A more reasonable strategy here is to find the nature
and exact position of this defect, and then repair it. To
this end, quantum measurements should be applied to
monitoring the computing process so that errors can be
detected as soon as possible after the component with

∗ liyj04@mails.tsinghua.edu.cn
† Mingsheng.Ying@uts.edu.au

bugs being executed. Remarkably, a debugging method
like this plays an indispensable role and attracts intense
studies [8] in the implementation of classical computing
systems.

Unfortunately, due to the fundamental difference be-
tween the physical behavior of quantum measurements
and that of classical ones, debugging for quantum sys-
tems is much more difficult than for classical systems,
and thus classical debugging method does not work in
the quantum scenario. Specifically, in quantum mechan-
ics, observation of a quantum system would make the
system state collapse. This interaction between observ-
ing apparatus and quantum systems on the one hand
allows quantum measurements to drive target systems as
quantum operations [5, 9], in applications like teleporta-
tion [10], entanglement distillation [11], control of quan-
tum systems [12], and one-way quantum computing [13];
but on the other hand, it makes many tasks much harder
than in the classical world, particularly when quantum
measurements are used to extract (classical) information
of given systems. The well known indistinguishability
between nonorthogonal states can somehow be seen as a
simple example. The quantum debugging task considered
here is actually another instance, where measurements
monitor the system state for possible errors. This can
be easily done for a classical process, because the trajec-
tory of a classical system is unchanged by measurements.
However, a problem in monitoring a quantum process is
that once the system had been measured, the system
state may be disturbed and then be useless for further
processing. This problem has been demonstrated to be
very serious in the quantum Zeno effect [14], that a quan-
tum process can be completely obstructed by continuing
measuring. Therefore, similar tasks are usually achieved
by quantum tomography techniques [5, 15] in the litera-
ture, in which the system state is measured only once to
keep the outcome faithful, but instead, a large number

http://arxiv.org/abs/1403.4344v1
mailto:liyj04@mails.tsinghua.edu.cn
mailto:Mingsheng.Ying@uts.edu.au

2

System

Quantum P
Control

()

S

FIG. 1. The classical control information about H(t) is send-
ing to S during the execution of the process. Then at any
time t, S can decide whether or not P |ψt〉 = 0 according to
the control history. And if is it will drive P to detect possible
errors.

of copies of the process are required.

In the debugging method proposed in this paper, quan-
tum measurements are used in a different way: they are
constantly taken to monitor a quantum process but with-
out disturbances on the system state, until an error is
detected. A basic scheme is described as follows. Con-
sider a quantum system that is established to run some
computing process. It is designed to be in state |ψ0〉
initially, and then evolves under the controlled Hamil-
tonian H(t). In this way, the trajectory {|ψt〉} of the
system state would be as anticipated. The time for the
whole process is considered to be infinite, as it is usu-
ally much longer than the time for a single component
(like a gate) acting. Now suppose a bug of the system
will be involved in the process at time t′, then the sys-
tem Hamiltonian will not truly be H(t) for t ≥ t′ in the
practical execution. This causes errors in system state,
so we write ρt for the density operator of the actual state
at time t. To debug the process, we need to find a pro-
jection operator P 6= 0 of the system and a sequence of
time points t1, t2, · · · (tn → ∞), such that P |ψtn〉 = 0
for all n. The condition of P |ψt〉 = 0 means that noth-
ing can be detected by P if the system state is |ψt〉 as
anticipated. We monitor the process at time t1, t2, · · · ,
using a measurement apparatus formalized by P . This
measurement is called a monitoring measurement. Then
with probability tr(Pρtn) the error state would be de-
tected at time tn. If it really happens, then an error is
detected in the state. In this case, t′ is more likely in
[tn−1, tn] and the relevant components should be care-
fully checked. Practically, the time points t1, t2, · · · are
determined by a classical program S. Then the debug-
ging protocol is visualized as FIG. 1. Obviously, the key
step of debugging a process is to find the required projec-
tion operator P . The condition of P |ψt〉 = 0 guarantees
that the anticipated process is not disturbed by P . On
the other hand, it implies that the protocol is conclusive;
i.e., no errors would be reported when the process runs
correctly.

The aim of this paper is to develop the debugging
method for quantum systems outlined above. The paper
is organized as follows. In Sec. II, we first consider an ex-
ample debugging protocol for quantum search algorithm.
After that, we propose a general debugging scheme and
show that it can be reduced to a simpler scheme described

as in FIG 1. Then we formally define this simplified de-
bugging protocols in the case of discrete time evolution.
In Sec. III, we completely solve the debugging problem
for quantum processes with time independent Hamiltoni-
ans. More precisely, we find an algorithm to construct all
of the debugging protocols for this kind of quantum pro-
cesses by employing the celebrated Skolem–Mahler–Lech
theorem. A brief conclusion is drawn in Sec. IV.

II. DEBUGGING PROTOCOLS

A. An Example

To show how can the debugging method be truly ap-
plied, let us first consider a simple example — debugging
for the computational process of quantum search [16].
Here, we adopt the description of the Grover algorithm
in [5]. The quantum computer consists of n qubits with
|0〉⊗n as the initial state (for simplicity, we omit the aux-
iliary qubits of the oracle). A black box oracle O of form

O = I⊗n
2 − 2|x〉〈x|

is provided as input, where x ∈ {0, 1, · · · , 2n − 1} is the
index we want to find. The computer first applies H⊗n

2 ,
and then successively applies the Grover iteration

G = (2|ψ0〉〈ψ0| − I⊗n
2)O

for O(
√
2n) times, where

|ψ0〉 =
2n−1∑

k=0

|k〉/
√
2n.

At last, x can be obtained with probability O(1) by mea-
surement in the computational basis {|0〉, |1〉} on each
qubit. Here, we use I2 and H2 to denote the identity and
Hadamard gates, respectively.
To debug this process, we note that the system state

immediately after each Grover iteration should be always
in the two-dimensional subspace span{|x〉, |ξ〉}, where
|ξ〉 = ∑

k 6=x |k〉/
√
2n − 1. So, we can use a measurement

apparatus formalized by P = I⊗n
2 − |x〉〈x| − |ξ〉〈ξ| to de-

tect errors. The protocol is as follows: randomly choose
an integer x and provide the corresponding oracle at the
beginning, and then execute the algorithm. Immediately
after each Grover iteration G, take the monitoring mea-
surement P to detect errors. If an error system state
is detected at some time point, then the debugging pro-
tocol stops the process and reports this error. Now we
particularly discuss the following two kinds of bugs:

1. The system was not initialized. We write ρ for
the density operator of the initial system state and
write f for the fidelity of ρ and |0〉⊗n. Then it is
easy to verify that with probability (2n − 2)(1 −
f2)/(2n − 1) an error can be detected just by the
first measurement of P .

3

2. The Grover iterator was implemented with some
bugs, so it is not G but some unitary operator G′.
In most cases, the two subspaces span{G′|x〉, G′|ξ〉}
and span{G|x〉, G|ξ〉} = span{|x〉, |ξ〉} have no
common state. So |〈x|G′|ψ〉|2 + |〈ξ|G′|ψ〉|2 < 1 for
all |ψ〉 ∈ span{|x〉, |ξ〉}. We write q for the maximal
value of all |〈x|G′|ψ〉|2 + |〈ξ|G′|ψ〉|2. Then at each
measurement of P , an error will be detected with
a positive probability at least 1− q > 0.

Two advantages of the quantum debugging method are
demonstrated in this example: (1) An error may be de-
tected soon after the bugs involved. So, the process can
be just partly executed and a lot of time would be saved;
(2) A single execution of the process is usually sufficient
to detect an error, whereas a large number of copies of
the process are needed in other approaches.

B. A General Debugging Protocol

We now consider a general scheme of debugging pro-
tocols for quantum processes, in which quantum mea-
surements are in the most general form, and different
measurements can be used at different time points to de-
tect errors. First, we impose a compatibility constraint to
each monitoring measurement, such that the target sys-
tem state keeps unchanged under its action. Formally,
the compatibility can be stated as follows: let |ψ〉 be a
state and M = {M1,M2, · · · ,Mk} be a measurement.
We say that M is compatible with |ψ〉 if for all i, Mi|ψ〉
is essentially the same as |ψ〉 or vanish; that is, |ψ〉 is an
eigenstate of every measurement operator ofM:

∀i ∃λi s.t Mi|ψ〉 = λi|ψ〉. (1)

In fact, this constraint simulates the physical behavior of
a classical measurement: The states of a classical system
can be thought of as an orthonormal basis {|i〉}ki=1, and
we consider a classical measurementM = {M1, ...,Mk}
withMi = |i〉〈i|. Then the compatibility is automatically
satisfied: Mi|j〉 = δij |j〉 for each i and j.
A general protocol for debugging a quantum pro-

cess using monitoring quantum measurements consists
of three steps:

1. Set a sequence of breakpoints at time t1, t2, · · · dur-
ing the process;

2. Execute the process, and at each breakpoint
of time tn, insert a measurement Mtn =
{Mtn1,Mtn2, · · · ,Mtnkn

} that is compatible with
the anticipated system state |ψtn〉. We write
E(Mtn) = {i|Mtni|ψtn〉 = 0} for the outcomes i
that should not occur at time tn if the process be-
haves as anticipated;

3. An error is detected if the measurement outcome
at tn is some element i ∈ E(Mtn). In this case we
stop the execution and report i and tn to specify
the error type and the error position, respectively.

We can actually simplify this general debugging
scheme without loss of generality. First, we show that at
each breakpoint of time t, the general quantum measure-
mentMt = {Mti} can be replaced with the two-outcome

POVM {I − Et, Et}, where Et =
∑

i∈E(Mt)
M †

tiMti is

used to indicate errors and I − Et indicates correctness.
Here I is the identity operator of the system. In fact, this
POVM performs mostly the same asMt: They are both
compatible with |ψt〉 and detect errors with the same
probability tr(Etρt). Here we denote by ρt the system
state with errors. The only disadvantage of such replace-
ment is that different error types i in E(Mt) are not
distinguished. However, this would not be a problem
because after an error being detected, the type can be
specified by further measurement. Moreover, it is even
better to use the projective measurement {I − Pt, Pt}
with Pt being the projection operator into the support
of Et. This is because the measurement also satisfies
the compatibility, and it detect errors with probability
tr(Ptρt) ≥ tr(Etρt). Therefore, it suffices to detect errors
using monitoring measurements formalized by projection
operators Pt. We will call them error detectors in what
follows.

Secondly, we assert that all of the error detectors Pt

should be chosen only from a finite set; otherwise, the
protocol would be useless. The reason is that if infinitely
many detectors are used, then to decide which one is cho-
sen at a breakpoint, the amount of information we needed
would become infinite. A specific instance is helpful to
understand this situation: At each breakpoint of time t,
we simply use Pt = ψ⊥

t as the error detector. Obviously,
it is compatible with |ψt〉 and any error of this system
state can be detected using it. However, to construct
this detector we need the complete information of |ψt〉
by classical computation; namely, the debugging proto-
col requires a classical simulation of the quantum pro-
cess, which is clearly unreasonable. So, the requirement
of finiteness is crucial for effective debugging protocols.
We write all the detectors as P1, P2, · · · , Pk. Then there
is a strategy S for the protocol to call one of them at
each breakpoint. Now we can divide the strategy S into
k parts S1, S2, · · · , Sk, where Si is a strategy that only
call Pi at corresponding breakpoints and keeps silent at
the others. Then the original debugging protocol can be
decomposed as k protocols (Pi, Si)(i = 1, 2, · · · , k), each
of which monitors the process at a part of breakpoints.
In particular, some of the protocols will constantly work
at an infinite subsequence of the breakpoints.

Therefore, we only need to investigate the debugging
protocols of such a form: it consists of an error detector
P and a strategy S; at a sequence of time points specified
by S, P is taken to detect possible errors of the system
state. We note that this simplified protocol is exactly
that visualised in FIG. 1. If all protocols in this scheme
can be found for a given quantum process, then a general
debugging task can be achieved by a simple combination
of them, with certain further analysis about the detected
errors.

4

C. Discrete Time Evolution

Since an error detector P is discretely taken in the
debugging described above, it is reasonable to consider
the discrete time evolution of the system. Specifically,
we assume that the compatibility constraint is only
checked by strategy S at given points t0, t1, ... of time.
Then it suffices to considering the corresponding states
|ψt0〉, |ψt1〉, · · · , and the state transformations between
them, which are formalized by unitary operations. In this
way, the design of a quantum process can be depicted as

|ψt0〉
Uα1→ |ψt1〉

Uα2→ |ψt2〉
Uα3→ · · · ,

where |ψtn〉 = Uαn
|ψtn−1

〉 for every n ≥ 1, and Uαn
de-

scribes the evolution of the system from time tn−1 to tn.
For realizability, we can assume that all of these unitary
operators can be chosen from a finite set {U1, ..., Um}.
Then we have αn ∈ {1, ...,m} for every n = 1, 2, Ob-
viously, a circuit model of quantum computation can be
seen as a quantum process like this, where U1, ..., Um are
the gates in the circuit. Quantum walk [17] can be con-
sidered as another example of quantum processes in this
form.
Now we rigorously define the debugging protocol (P, S)

for quantum processes formulated by such a system. An
error detector P is a projection operator in the state
Hilbert space H, and a strategy S is a function that
to each finite sequence s = α1α2 · · ·αn of indices in
{1, ...,m}, assigns a result of “yes” or “no”. Intuitively,
S(s) =“yes” (resp. “no”) means that P is (resp. not)
used to detect errors immediately after the execution of
the action sequence Uα1

, Uα2
, · · · , Uαn

. For simplicity,
we write Us = Uαn

· · ·Uα2
Uα1

for the composition of the
corresponding unitary actions. To warrant the proto-
col actually realizable, the following three conditions are
necessary:

1. (Compatibility) S(s) =“yes” implies PUs|ψt0〉 = 0.

2. (Computability) A classical algorithm can be found
to compute S.

3. (Liveness) For any infinite sequence α1α2 · · · of in-
dices 1, ...,m there are infinitely many n’s such that
S(α1α2 · · ·αn) =“yes”.

The first two conditions are easy to understand. The
liveness comes from the fact that P should constantly be
applied in the process represented by α1α2 · · · , so that
bugs involved at any time could be detected.
Based on the above definition of debugging protocol, a

debugging problem can be formally stated as follows:

• Given an initial state |ψt0〉 and a set of unitary op-
erations U1, U2, · · · , Um that describe the discrete-
time evolution of a quantum process, how can we
find all the protocols (P, S) satisfying Compatibil-
ity, Computability and Liveness?

III. DEBUGGING FOR TIME-INDEPENDENT

HAMILTONIANS

A. A Basic Theorem

We now solve the debugging problem for the case where
the designed Hamiltonian is time independent. Specifi-
cally, our solution consists of the following three steps:

1. We find a method to check whether or not a given
projection operator P can be used as an error de-
tector;

2. For each eligible P , we show that a strategy S can
be constructed as a periodic function;

3. We present a procedure that can compute all the
debugging protocols (P, S) for any given process.

Let H be the state Hilbert space of the system, and H
the system Hamiltonian which is time independent. To
define debugging protocols (P, S), we consider the dis-
crete time evolution of the system between a sequence
of time points 0,∆t, 2∆t, · · · , where ∆t is a fixed pe-
riod of time which can be appropriately chosen in prac-
tice. Then at time n∆t, the anticipated system state
is |ψn〉 = Un|ψ0〉, where |ψ0〉 is the initial state and
U = exp(−iH∆t/~) is the unitary transformation of time
evolution in a single period. As defined in Subsec. II-C,
a debugging protocol for this system consists of an er-
ror detector P which is an projection operator of H, and
a strategy S which is a function specifying (by assigning
“yes”) an infinite sequence of integers i1, i2, · · · such that
PU in |ψ0〉 = 0 for all n. Our task is to find the detector
P and the strategy S.
Obviously, a necessary condition of P being an error

detector is that PUn|ψ0〉 = 0 for infinitely many n. To
investigate how this condition can be satisfied, we need
the following theorem:

Theorem 1. Let |ψ0〉 be a vector, U a unitary operator
and P a projection operator in a finite dimensional space
H. If Z = {n|PUn|ψ0〉 = 0} is an infinite set, then
an arithmetic progression {pn + r|n = 0, 1, · · · } can be
algorithmically found in Z.

The proof of Theorem 1 is postponed to next subsec-
tion. Here we see how this theorem can be used in our
investigation of a debugging protocol (P, S). First, the
infiniteness condition of Z can be checked, as it is equiv-
alent to the existence of the arithmetic progression. Sec-
ond, this condition is not only necessary but also suffi-
cient for P being an error detector. In fact, if it holds for
P , then we can construct a strategy S as a periodic func-
tion that assigns “yes” to the integers pn+r, n = 0, 1, · · · ,
and “no” to the others. Moreover, by making the arith-
metic progression {pn + r|n = 0, 1, · · · } exist in Z, we
have a procedure to compute all the error detectors P .
Such a procedure will be carefully described in Subsec.
III-C based on the proof of the theorem.

5

B. Proof of Theorem 1

A key step in the proof of Theorem 1 is to explore the
implication of the infiniteness of Z. For this purpose,
we employ some techniques from the previous research
on the famous Skolem’s problem [18]. Consider a linear
recurrent sequence {an}∞n=0, which satisfies the linear re-
currence relation:

an+d = cd−1an+d−1 + cd−2an+d−2 + · · ·+ c0an (2)

for all n ≥ 0. Let Z = {n|an = 0} be the set of indices
of null elements of {an}. A way relating the above linear
recurrent sequence to the behavior of a quantum system
is putting an = 〈φ|Mn|ψ〉 for two quantum states |φ〉, |ψ〉
and a quantum operationM of a d dimensional quantum
system. Remarkably, this technique has already been
successfully used to solve several important problems in
quantum information theory. For example, the condition
〈φ|Mn|ψ〉 = 0 is interpreted as the acceptance condition
of finite quantum automata in [19] forM being a unitary
operator, and as the occurrence of specific quantum mea-
surement outcomes in [20] for M being a measurement
operator, respectively. The decision problems considered
in [19, 20] are similar to the Skolem’s emptiness prob-
lem [21]. What we need in the proof of our result is the
following [22]:

Theorem 2 (Skolem–Mahler–Lech). In a field of char-
acteristic 0, let a sequence {an}∞n=0 satisfy a recurrence
relation of form Eq. (2), then the set Z of indices of
null elements of this sequence is semi-linear, namely, is
a union of a finite set and finitely many arithmetic pro-
gressions.

To apply this theorem to our problem, we decom-
pose P =

∑ |φi〉〈φi|, where states |φi〉 form an or-
thonormal basis of the image space of P . Let λd −
cd−1λ

d−1−cd−2λ
d−2−· · ·−c0 be the characteristic poly-

nomial of U . Then for each |φi〉, we can invoke The-
orem 2 for an = 〈φi|Un|ψ0〉 and assert that the set
Zi = {n|〈φi|Un|ψ0〉 = 0} is semi-linear. Furthermore, we
see that Z = ∩Zi is also semi-linear. Thus, the infinite-
ness of Z in Theorem 1 actually implies that it contains
at least one arithmetic progression.
There is still a gap between the existence of the arith-

metic progression in Theorem 1 and its algorithmic con-
struction. Here we further present an algorithm to find p
and r such that PUpn+r|ψ0〉 = 0 for all n = 0, 1, · · · . Of
course we should assume that all operators and states are
represented by matrices and vectors of rational complex
numbers.
Finding number p: We can algorithmically find a pos-

itive integer p satisfying the following condition:

• for any two eigenvalues λ and µ of U , (λ/µ)p = 1
provided (λ/µ)n = 1 for some integer n.

Indeed, it suffices to find the smallest positive integer
n satisfying (λ/µ)n = 1 for each fixed pair of λ, µ, and
then p can be chosen as the least common multiple of

all these n. We note that all roots of the characteris-
tic polynomial f(x) of U ⊗ U † are exactly all quotients
λ/µ of two eigenvalues of U . Moreover, for each quotient
λ/µ, if n is the smallest positive integer number satisfying
(λ/µ)n = 1, then λ/µ should be a root of the nth cyclo-
tomic polynomial Φn(x), and Φn(x) should be a divisor
of f(x) since Φn(x) is irreducible in the field of rational
numbers. Therefore, all of such n can be obtained by
checking whether or not Φn(x)|f(x).
Moreover, we prove that the number p enjoys an

property: for any subspace K of H, UpK = K pro-
vided UnK = K for some integer n. We observe that
UnK = K if and only if a set of eigenvectors of Un

forms a basis of K. From this observation, it suffices
to prove that any eigenvector of Un is an eigenvector of
Up. More generally, we show that any eigenspace E of
Un is included in some eigenspace of Up. We note that
all eigenvectors of U are eigenvectors of Un, so we can
choose a set of eigenvectors of U to form a basis B of E.
Consider any two of these vectors, written as |ψ〉 and |φ〉,
and we write λ and µ, respectively, for the corresponding
eigenvalues of U . Then we have (λ/µ)n = 1, and accord-
ing to our choice of p, (λ/µ)p = 1. So |ψ〉 and |φ〉 are
in the same eigenspace of Up. As these two states are
arbitrarily chosen, it implies that all of the vectors in B
are in the same eigenspace of Up. Thus E is included in
it.
Finding number r: Let K = {|ψ〉|P |ψ〉 = 0} be the

kernel space of P . For any integer q, we write Kq for the
maximal subspace of K satisfying U qKq = Kq. Then
Kq can be calculated by the iteration Kq ← Kq ∩U qKq,
putting Kq ← K initially. On the other hand, we show
that

Kq = {|ψ〉 ∈ K|Unq|ψ〉 ∈ K for all integer n ≥ 0}. (3)

First, for any state |ψ〉 ∈ Kq, one can easily verify from
the definition of Kq that Unq|ψ〉 ∈ Kq ⊆ K for all
n. Secondly, if some state |ψ〉 satisfies Unq|ψ〉 ∈ K
for all n, then we consider the subspace of K: K ′ =
span{Unq|ψ〉|n = 0, 1, · · · }. We have U qK ′ = K ′, and
thus |ψ〉 ∈ K ′ ⊆ Kq from the maximality of Kq. There-
fore, Eq. (3) holds.
To make Upn+r|ψ0〉 = 0 for all n ≥ 0, it suffices to cal-

culate Kp and then find r from {0, 1, · · · , p−1} such that
U r|ψ0〉 ∈ Kp. Now we only need to prove the following
claim:

• Whenever there exists an arithmetic progression
{an + b|n = 0, 1, · · · } in Z, the number r can be
found as above.

In fact, by Eq. (3), {an+b|n = 0, 1, · · · } ⊆ Z means that
U b|ψ0〉 ∈ Ka. We note that UaKa = Ka implies UpKa =
Ka by the property of p stated above. Thus, Ka ⊆ Kp

due to the maximality of Kp. So we have U b|ψ0〉 ∈ Kp.
If we put r = b− cp ∈ {0, 1, · · · , p− 1} as the remainder
of b divided by p, then U r|ψ0〉 ∈ U−cpKp = Kp. So r can
be obtained in the algorithm. This completes the proof
of Theorem 1.

6

C. Construction of the Debugging Protocols

Now we can construct all debugging protocols (P, S)
for a given process using the proof of Theorem 1. A
necessary and sufficient condition of error detectors P is
that PUpn+r|ψ0〉 = 0 (n ≥ 0) for the integer p and some
r ∈ {0, 1, · · · , p − 1}. So the construction of (P, S) is
achieved in four steps:

1. Compute the number p from the given unitary op-
erator U . An algorithm for finding p was already
presented in the proof of Theorem 1.

2. Arbitrarily choose a number r ∈ {0, 1, · · · , p − 1},
and compute the subspace

Vr = span{Upn+r|ψ0〉|n = 0, 1, · · · , d− 1},

where d is the dimension of the system.

3. P can be chosen as any projection operator satis-
fying PVr = 0. In particular, we choose it as the
one with image space V ⊥

r , since it is of the maxi-
mal rank and thus can detect as many as possible
errors.

4. S is constructed as the periodic function that
specifies the arithmetic progression {pn + r|n =
0, 1, · · · }.

As an instance, we show how the above procedure
can be used to construct a debugging protocol for the
quantum search process in Subsec. II-A. The computa-
tional process of quantum search can be formalized in
our model: the Hilbert space H is of dimension N = 2n,

the initial state is |ψ0〉 =
∑N−1

k=0 |k〉/
√
N and the unitary

transformation is

G = (2|ψ0〉〈ψ0| − I⊗n
2)(I⊗n

2 − |x〉〈x|),

where x ∈ {0, 1, · · · , N − 1} is a given integer. Then
the number p, number r, and projection operator P are
determined as follows:

1. To obtain the number p, we calculate the charac-
teristic polynomial of G that is

(λ− 1)N−2(λ2 + 2(1− 2/N)λ+ 1).

We only consider the case of N > 4. It is easy
to verify that for any two eigenvalues λ, µ of G, if
(λ/µ)n = 1 for some n then λ = µ. So we have
p = 1.

2. Now r ∈ {0, 1, · · · , p − 1} can only be 0 because
p = 1. Then

V0 = span{Un|ψ0〉|n = 0, 1, · · · , N − 1}
= span{|x〉, |ξ〉},

where |ξ〉 = ∑
k 6=x |k〉/

√
N − 1.

3. We choose P = I⊗n
2 − |x〉〈x| − |ξ〉〈ξ| to make the

condition PV0 = 0 be satisfied.

As p = 1 and r = 0, P is applied immediately after
each action of G. We see that this protocol constructed
by the procedure presented in this subsection is exactly
that given in Subsection II-A.

IV. CONCLUSION

In this paper, we proposed a scheme for debugging a
quantum process, in which quantum measurements are
used to monitor the system without disturbances on its
behaviour. We discovered a procedure to construct all de-
bugging protocols in this scheme for quantum processes
with time independent Hamiltonians. However, the prob-
lem of debugging quantum processes is still open for the
case of time dependent Hamiltonians.

ACKNOWLEDGEMENT

We are grateful to Runyao Duan, Yuan Feng and
Nengkun Yu for useful discussions. This work was partly
supported by the Australian Research Council (Grant
No: DP110103473 and DP130102764).

[1] P. W. Shor, in Proc. 37th Annual Symposium on Foun-
dations of Computer Science, 56-65 (IEEE Press, Los
Alamitos, 1996).

[2] A. Y. Kitaev, Russ. Math. Surv. 52, 1191 (1997).
[3] P. W. Shor, Phys. Rev. A 52, 2493 (1995).
[4] A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).
[5] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
2000).

[6] E. Knill, R. Laflamme, and W. H. Zurek, Science 279,
342 (1998).

[7] J. Zhang, A. M. Souza, F. D. Brandao, and D. Suter,
Phys. Rev. Lett. 112. 050502 (2014).

[8] M. Leucker and C. Schallhart, Journal of Logic and Alge-
braic Programming, 78, 293 (2009); G. J. Myers, The Art
of Software Testing (John Wiley and Sons, Inc. 1979).

[9] R. Y. Duan, Y. Feng, and M. S. Ying, Phys. Rev. Lett.
103, 210501 (2009).

[10] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A.
Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895
(1993).

[11] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher,
J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76,
722 (1996).

[12] C. Altafini, and F. Ticozzi, IEEE Transactions on Auto-
matic Control, 57, 1898 (2012).

7

[13] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86,
5188 (2001).

[14] B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18,
756 (1977).

[15] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.
78, 390 (1997); I. L. Chuang and M. A. Nielsen, J. Mod.
Opt. 44, 2455 (1997).

[16] L. Grover, in Proc. 28th Annual ACM Symposium on the
Theory of Computing, 212-219 (ACM Press, New York,
1996).

[17] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and
J. Watrous, in Proc. 33rd Annual ACM Symposium on

the Theory of Computing, 37-49 (ACM Press, New York,
2001).

[18] T. Skolem, in Proc. 8th Congress of Scandinavian Math-
ematicians, 163-188, (Stockholm, 1934).

[19] V. D. Blondel, E. Jeandel, P. Koiran and N. Portier,
SIAM J. Comput. 34, 1464 (2005).

[20] J. Eisert, M. P. Müller and C. Gogolin, Phys. Rev. Lett.
108, 260501 (2012).

[21] V. Halava, T. Harju, M. Hirvensalo and J. Karhumaki,
TUCS Technical Report, 683 (2005).

[22] C. Lech, Ark. Mat. 2, 417-421 (1953).

