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We consider state redistribution of a
“hybrid” information source that has both
classical and quantum components. The
sender transmits classical and quantum in-
formation at the same time to the receiver,
in the presence of classical and quantum
side information both at the sender and at
the decoder. The available resources are
shared entanglement, and noiseless classi-
cal and quantum communication channels.
We derive one-shot direct and converse
bounds for these three resources, repre-
sented in terms of the smooth conditional
entropies of the source state. Various cod-
ing theorems for two-party source coding
problems are systematically obtained by
reduction from our results, including the
ones that have not been addressed in pre-
vious literatures.

1 Introduction
Quantum state redistribution is a task in which
the sender aims at transmitting quantum states
to the receiver, in the presence of quantum side
information both at the sender and at the re-
ceiver. The costs of quantum communication
and entanglement required for state redistribu-
tion have been analyzed in [35, 13, 36] for the
asymptotic scenario of infinitely many copies and
vanishingly small error, and in [7, 10, 2] for the
one-shot scenario. Various coding theorems for
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two-party quantum source coding problems are
obtained by reduction from these results as spe-
cial cases, such as the Schumacher compression
[24], quantum state merging [17] and the fully-
quantum Slepian-Wolf [1, 9]. However, some of
the well-known coding theorems cannot be ob-
tained from those results, such as the (fully-
classical) Slepian-Wolf (see e.g. [8]) and the clas-
sical data compression with quantum side in-
formation [11]. This is because the results in
[35, 13, 36, 7] only cover the fully quantum sce-
nario, in which the information to be transmitted
and the available resources are both quantum.

In this paper, we generalize the one-shot state
redistribution theorem in [7] to a “hybrid” situa-
tion. That is, we consider the task of state redis-
tribution in which the information to be trans-
mitted and the side information at the parties
have both classical and quantum components.
Not only quantum communication and shared en-
tanglement, but also classical communication is
available as a resource. Our goal is to derive
trade-off relations among the costs of the three
resources required for achieving the task within a
small error. The main result is that we provide
the direct and the converse bounds for the rate
triplet to be achievable, in terms of the smooth
conditional entropies of the source state and the
error tolerance. For most of the special cases that
have been analyzed in the previous literatures,
the two bounds match in the asymptotic limit
of infinitely many copies and vanishingly small
error, providing the full characterization of the
achievable rate region. Our result can be viewed
as a one-shot generalization of the classically-
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Ĉ = CZ

B̂ = BY

R̂ = RX 0Y 0Z 0

T

a aFBFA
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Figure 1: The task of state redistribution for the classical-quantum hybrid source is depicted. The black dots and
the circles represent classical and quantum parts of the information source, respectively. The wavy line represents
the entanglement resource.

assisted state redistribution protocol, proposed in
[18].

Coding theorems for most of the redistribution-
type protocols, not only for quantum or classi-
cal information source but also for hybrid one,
in one-shot scenario are systematically obtained
from our result by reduction. In this sense, our
result completes the one-shot capacity theorems
of the redistribution-type protocols in a standard
setting. As examples, we show that the coding
theorems for the fully quantum state redistribu-
tion, the fully quantum Slepian-Wolf, quantum
state splitting, quantum state merging, classical
data compression with quantum side information,
quantum data compression with classical side in-
formation and the fully classical Slepian-Wolf and
quantum state redistribution with classical side
information only at the decoder [3] can be recov-
ered. The last one would further lead to the fam-
ily of quantum protocols in the presence of classi-
cal side information only at the decoder, along the
same line as the one without classical side infor-
mation [1, 12]. In addition, our result also covers
some redistribution-type protocols that have not
been addressed in the previous literatures.

We note that the cost of resources in the hy-
brid redistribution-type protocols cannot be fully
analyzed by simply plugging the hybrid source
and the hybrid channel into the fully quantum
setting. This is because interconversion of clas-
sical and quantum communication channels re-
quires the use of entanglement resource, which is
not allowed e.g. in the fully classical scenario.

This paper is organized as follows. In Section
2, we introduce notations and definitions that will
be used throughout this paper. In Section 3,
we provide the formulation of the problem and

present the main results. The results are applied
in Section 4 to special cases, and compared with
the results in the previous literatures. The proofs
of the direct part and the converse part are pro-
vided in Section 5 and 6, respectively. Conclu-
sions are given in Section 7. The properties of
the smooth entropies used in the proofs are sum-
marized in Appendix A.

2 Preliminaries
We summarize notations and definitions that will
be used throughout this paper.

2.1 Notations

We denote the set of linear operators on a Hilbert
space H by L(H). For normalized density oper-
ators and sub-normalized density operators, we
use the following notations, respectively:

S=(H) = {ρ ∈ L(H) : ρ ≥ 0,Tr[ρ] = 1}, (1)
S≤(H) = {ρ ∈ L(H) : ρ ≥ 0,Tr[ρ] ≤ 1}. (2)

A Hilbert space associated with a quantum sys-
tem A is denoted by HA, and its dimension is
denoted by dA. A system composed of two sub-
systems A and B is denoted by AB. When M
and N are linear operators on HA and HB, re-
spectively, we denote M ⊗ N as MA ⊗ NB for
clarity. In the case of pure states, we abbreviate
|ψ〉A⊗|φ〉B as |ψ〉A|φ〉B. We denote |ψ〉〈ψ| simply
by ψ.

For ρAB ∈ L(HAB), ρA represents TrB[ρAB].
The identity operator is denoted by I. We de-
note (MA ⊗ IB)|ψ〉AB as MA|ψ〉AB and (MA ⊗
IB)ρAB(MA ⊗ IB)† as MAρABMA†. When E
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is a supermap from L(HA) to L(HB), we de-
note it by EA→B. When A = B, we use EA
for short. We also denote (EA→B ⊗ idC)(ρAC)
by EA→B(ρAC). When a supermap is given by
a conjugation of a unitary UA or a linear oper-
ator WA→B, we especially denote it by its calli-
graphic font such as UA(XA) := (UA)XA(UA)†
and WA→B(XA) := (WA→B)XA(WA→B)†.

The maximally entangled state between A and
A′, where HA ∼= HA′ , is defined by

|Φ〉AA
′

:= 1√
dA

dA∑
α=1
|α〉A|α〉A

′
(3)

with respect to a fixed orthonormal basis
{|α〉}dAα=1. The maximally mixed state on A is
defined by πA := IA/dA.

For any linear CP map T A→B, there exists
a finite dimensional quantum system E and a
linear operator WA→BE

T such that T A→B(·) =
TrE [WT (·)W †T ]. The operator WT is called a
Stinespring dilation of T A→B [25], and the lin-
ear CP map defined by TrB[WT (·)W †T ] is called
a complementary map of T A→B. With a slight
abuse of notation, we denote the complementary
map by T A→E .

2.2 Norms and Distances

For a linear operator X, the trace norm is defined
as ||X||1 = Tr[

√
X†X]. For subnormalized states

ρ, σ ∈ S≤(H), the trace distance is defined by
‖ρ−σ‖1. The generalized fidelity and the purified
distance are defined by

F̄ (ρ, σ) := ‖√ρ
√
σ‖1 +

√
(1− Tr[ρ])(1− Tr[σ])

(4)

and

P (ρ, σ) :=
√

1− F̄ (ρ, σ)2, (5)

respectively (see Lemma 3 in [29]). The trace
distance and the purified distance are related as

1
2‖ρ− σ‖1 ≤ P (ρ, ς) ≤

√
2‖ρ− σ‖1 (6)

for any ρ, σ ∈ S≤(H). The epsilon ball of a sub-
normalized state ρ ∈ S≤(H) is defined by

Bε(ρ) := {τ ∈ S≤(H)| P (ρ, τ) ≤ ε}. (7)

2.3 One-Shot Entropies
For any subnormalized state ρ ∈ S≤(HAB) and
normalized state ς ∈ S=(HB), define

Hmin(A|B)ρ|ς := sup{λ ∈ R|2−λIA ⊗ ςB ≥ ρAB}
(8)

and

Hmax(A|B)ρ|ς := log ‖
√
ρAB

√
IA ⊗ ςB‖21. (9)

The conditional min- and max- entropies (see
e.g. [26]) are defined by

Hmin(A|B)ρ := sup
σB∈S=(HB)

Hmin(A|B)ρ|σ, (10)

Hmax(A|B)ρ := sup
σB∈S=(HB)

Hmax(A|B)ρ|σ, (11)

and the smoothed versions thereof are given by

Hε
min(A|B)ρ := sup

ρ̂AB∈Bε(ρ)
Hmin(A|B)ρ̂, (12)

Hε
max(A|B)ρ := inf

ρ̂AB∈Bε(ρ)
Hmax(A|B)ρ̂ (13)

for ε ≥ 0. In the case where B is a trivial (one-
dimensional) system, we simply denote them as
Hε

min(A)ρ and Hε
max(A)ρ, respectively. We define

H
(ι,κ)
∗ (A|B)ρ

:= max{Hι
min(A|B)ρ, Hκ

max(A|B)ρ} (14)

and

Ĩεmin(A : C|B)ρ
:= Hε

min(A|B)ρ −Hε
min(A|BC)ρ. (15)

We will refer to (15) as the smooth conditional
min mutual information. For τ ∈ S(HA), we
also use the “max entropy” in the version of [23]
(see Section 3.1.1 therein). Taking the smoothing
into account, it is defined by

Hε
max′(A)τ := inf

Π:Tr[Πτ ]≥1−ε
log rank[Π], (16)

where the infimum is taken over all projections
Π such that Tr[Πτ ] ≥ 1 − ε. The von Neumann
entropies and the quantum mutual information
are defined by

H(A)ρ := −Tr[ρA log ρA], (17)
H(A|B)ρ := H(AB)ρ −H(B)ρ, (18)
I(A : B)ρ := H(A)ρ −H(A|B)ρ. (19)

The properties of the smooth conditional en-
tropies used in this paper are summarized in Ap-
pendix A.
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Figure 2: The task of state redistribution for the classical-quantum hybrid source is depicted in the diagram. The
black lines and the dashed lines represent classical and quantum systems, respectively.

3 Formulation and Results

Consider a classical-quantum source state in the
form of

ΨABCRXY ZX′Y ′Z′
s :=∑
x,y,z

pxyz|x〉〈x|X ⊗ |y〉〈y|Y ⊗ |z〉〈z|Z

⊗ |ψxyz〉〈ψxyz|ABCR ⊗ |xyz〉〈xyz|X
′Y ′Z′ .

(20)

Here, {pxyz}x,y,z is a probability distribution,
|ψxyz〉 are pure states, and {|x〉}x, {|y〉}y, {|z〉}z,
{|xyz〉}x,y,z are orthonormal bases. The systems
X ′, Y ′ and Z ′ are assumed to be isomorphic to
X, Y and Z, respectively. For the simplicity
of notations, we denote AX, BY , CZ, X ′Y ′Z ′

and RX ′Y ′Z ′ by Â, B̂, Ĉ, T and R̂, respectively.
Accordingly, we also denote the source state by
ΨÂB̂ĈR̂
s .
We consider a task in which the sender trans-

mits Ĉ to the receiver (see Figure 1 and 2). The
sender and the receiver have access to systems
Â and B̂, respectively, as side information. The
system R̂ is the reference system that is inaccessi-
ble to the sender and the receiver. The available
resources for the task are the one-way noiseless
classical and quantum channels from the sender
to the receiver, and an entangled state shared in
advance between the sender and the receiver. We
describe the communication resources by a quan-
tum system Q with dimension 2q and a “classical”
system M with dimension 2c. The entanglement
resources shared between the sender and the re-
ceiver, before and after the protocol, are given
by the maximally entangled states ΦEAEB

2e+e0 and

ΦFAFB
2e0 with Schmidt rank 2e+e0 and 2e0 , respec-

tively.

Definition 1 A tuple (c, q, e, e0) is said to be
achievable within an error δ for Ψs, if there exists
a pair of an encoding CPTP map E ÂĈEA→ÂQMFA

and a decoding CPTP map DB̂QMEB→B̂ĈFB ,
such that∥∥∥D ◦ E(ΨÂB̂ĈR̂

s ⊗ΦEAEB
2e+e0 )−ΨÂB̂ĈR̂

s ⊗ΦFAFB
2e0

∥∥∥
1

≤ δ. (21)
Note that, since M is a classical message, the en-
coding CPTP map E must be such that for any
input state τ , the output state E ÂĈEA→ÂQMFA(τ)
is diagonal inM with respect to a fixed orthonor-
mal basis. Note also that we implicitly assume
that c, q, e0 ≥ 0, while the net entanglement cost
e can be negative.

Our goal is to obtain necessary and sufficient
conditions for a tuple (c, q, e, e0) to be achievable
within the error δ for a given source state Ψs.
The direct and converse bounds are given by the
following theorems:

Theorem 2 (Direct part.) A tuple
(c, q, e, e0) is achievable within an error
4
√

12ε+ 6δ +
√

2ε for Ψs if dC ≥ 2 and it
holds that

c+ 2q ≥ max{H̃(3ε/2,ε/2)
I , H̃

(ε/2)
II }

− log (δ4/2), (22)
c+ q + e ≥ Hε/2

max(CZ|BY )Ψs − log (δ2/2), (23)
q + e ≥ Hε/2

max(C|BXY Z)Ψs − log δ2, (24)

e0 ≥
1
2(Hε2/8

max′(C)Ψs −H3ε/2
max (C|BXY Z)Ψs)

+ log δ, (25)
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where

H̃
(ι,κ)
I :=H(ι,κ)

∗ (C|AXY Z)Ψs

+Hκ
max(CZ|BY )Ψs , (26)

H̃
(ι)
II :=Hι

max(C|AXZ)Ψs

+Hι
max(C|BXY Z)Ψs (27)

and H(ι,κ)
∗ is defined by (14).

In the case where dC = 1, a tuple (c, 0, 0, 0)
is achievable for Ψs within the error δ if it holds
that

c ≥ Hε
max(Z|BY )Ψs − log δ

2

2 . (28)

Theorem 3 (Converse part.) Suppose that
a tuple (c, q, e, e0) is achievable within the error
δ for Ψs. Then, regardless of the value of e0, it
holds that

c+ 2q ≥ max{H̃ ′(ε,δ)I , H̃
′(ε,δ)
II −∆(ε,δ)}−6f(ε),

(29)
c+ q + e ≥ Hε

min(BY CZ)Ψs

−H12ε+6
√
δ

min (BY )Ψs − f(ε), (30)
q + e ≥ Hε

min(BC|XY Z)Ψs

−H11ε+8
√
δ

min (B|XY Z)Ψs−2f(ε)(31)

for any ε > 0. Here, f(x) :=
− log (1−

√
1− x2),

H̃
′(ε,δ)
I :=Hε

min(AC|XY Z)Ψs

−Hε
max(A|XY Z)Ψs

+Hε
min(BY CZ)Ψs

−H12ε+6
√
δ

min (BY )Ψs , (32)

H̃
′(ε,δ)
II :=Hε

min(AXCZ)Ψs

−Hε
max(AXZ)Ψs

+Hε
min(BC|XY Z)Ψs

−H11ε+8
√
δ

min (B|XY Z)Ψs (33)

and

∆(ε,δ) := sup
F
Ĩ7ε+4

√
δ

min (GA : Y ′|MAAX
′Z ′)F(Ψs).

(34)

The supremum in (34) is taken over all CPTP
maps F : ÂĈ → AGAMA such that F(τ) is di-
agonal in MA with a fixed orthonormal basis for
any τ ∈ S(HÂĈ), and

inf
{ωxyz}

P

(
F(ΨÂĈR̂

s ),
∑
x,y,z

pxyzψ
AR̂
xyz ⊗ ωGAMA

xyz

)
≤ 2
√
δ, (35)

where we informally denoted ψARxyz ⊗ |xyz〉〈xyz|
T

by ψAR̂xyz.

The proofs of Theorem 2 and Theorem 3 will be
provided in Section 5 and Section 6, respectively.

We also consider an asymptotic scenario of in-
finitely many copies and vanishingly small error.
A rate triplet (c, q, e) is said to be asymptotically
achievable if, for any δ > 0 and sufficiently large
n ∈ N, there exists e0 ≥ 0 such that the tuple
(nc, nq, ne, ne0) is achievable within the error δ
for the one-shot redistribution of the state Ψ⊗ns .
The achievable rate region is defined as the clo-
sure of the set of achievable rate triplets. The
following theorem provides a characterization of
the achievable rate region:

Theorem 4 (Asymptotic limit.) In the
asymptotic limit of infinitely many copies and
vanishingly small error, the inner and outer
bounds for the achievable rate region are given
by

c+ 2q ≥ max{H̃I , H̃II}, (36)
c+ q + e ≥ H(CZ|BY )Ψs , (37)

q + e ≥ H(C|BXY Z)Ψs , (38)

e0 ≥
1
2I(C : BXY Z)Ψs (39)

and

c+ 2q ≥ max{H̃I , H̃II − ∆̃}, (40)
c+ q + e ≥ H(CZ|BY )Ψs , (41)

q + e ≥ H(C|BXY Z)Ψs , (42)

respectively. Here,

H̃I := H(C|AXY Z)Ψs +H(CZ|BY )Ψs , (43)
H̃II := H(C|AXZ)Ψs +H(C|BXY Z)Ψs (44)

and

∆̃ := lim
δ→0

lim
n→∞

1
n

∆(ε,δ)(Ψ⊗ns ), (45)

where ∆(ε,δ) is defined in Theorem 3.

Theorem 4 immediately follows from the one-
shot direct and converse bounds (Theorem 2 and
Theorem 3). This is due to the fully-quantum
asymptotic equipartition property [28], which im-
plies that the smooth conditional entropies are
equal to the von Neumann conditional entropy
in the asymptotic limit of infinitely many copies.

Accepted in Quantum 2021-12-24, click title to verify. Published under CC-BY 4.0. 5



That is, for any ρ ∈ S=(HPQ) and ε > 0, it holds
that

lim
n→∞

1
n
Hε

min(Pn|Qn)ρ⊗n

= lim
n→∞

1
n
Hε

max(Pn|Qn)ρ⊗n (46)

= H(P |Q)ρ. (47)

A simple calculation using this relation and the
chain rule of the conditional entropy implies that
the R.H.S.s of (22)-(25) and (29)-(31) coincide
with those of (36)-(39) and (40)-(42), respec-
tively, in the asymptotic limit of infinitely many
copies.

Due to the existence of the term ∆̃ in Inequal-
ity (40), the direct and converse bounds in The-
orem 4 do not match in general. In many cases,
however, it holds that ∆̃ = 0 and thus the two
bounds matches. This is due to the following
lemma about the property of ∆(ε,δ):

Lemma 5 The quantity ∆(ε,δ) defined in Theo-
rem 3 is nonnegative, and is equal to zero if there
is no classical side information at the decoder
(i.e. dimY = dimY ′ = 1) or if there is neither
quantum message nor quantum side information
at the encoder (i.e. dimA = dimC = 1). The
quantity ∆̃ satisfies the same property due to the
definition (45).

A proof of Lemma 5 will be provided in Section
6.4. To clarify the general condition under which
∆̃ = 0 is left as an open problem.

Remark. The results presented in this section
are applicable to the case where the sender and
the receiver can make use of the resource of clas-
sical shared randomness. To this end, it is only
necessary to incorporate the classical shared ran-
domness as a part of classical side information X
and Y .

4 Reduction to Special Cases
In this section, we apply the results presented in
Section 3 to special cases of source coding (see
Figure 3 in the next page). In principle, the re-
sults cover all special cases where some of the
components A, B, C, X, Y or Z are assumed
to be one-dimensional, and where c, q or e is as-
sumed to be zero.

Among them, we particularly consider the
cases with no classical component in the source
state and with no side information at the en-
coder, which have been analyzed in previous lit-
eratures. We also consider quantum state redis-
tribution with classical side information at the
decoder, which has not been addressed before.
We investigate both the one-shot and the asymp-
totic scenarios. The one-shot direct and converse
bounds are obtained from Theorem 2 and Theo-
rem 3, respectively, and the asymptotic rate re-
gion is obtained from Theorem 4. The analysis
presented below shows that, for the tasks that
have been analyzed in previous literatures, the
bounds obtained from our results coincide with
the ones obtained in the literatures. It should be
noted, however, that the coincidence in the one-
shot scenario is only up to changes of the types
of entropies and the values of the smoothing pa-
rameters. All entropies are for the source state
Ψs. We will use Lemma 21 in Appendix A for
the calculation of entropies.

4.1 No Classical Component in The Source
State

First, we consider the case where there is no clas-
sical component in the source state. It is de-
scribed by setting X = Y = Z = ∅. By imposing
several additional assumptions, the scenario re-
duces to different protocols.

4.1.1 Fully Quantum State Redistribution

Our hybrid scenario of state redistribution re-
duces to the fully quantum scenario, by addition-
ally assuming that c = 0. The one-shot direct
part is given by

2q ≥ H(3ε/2,ε/2)
∗ (C|A) +Hε/2

max(C|B)
− log (δ4/2), (48)

q + e ≥ Hε/2
max(C|B)− log (δ2/2), (49)

e0 ≥
1
2(Hε2/8

max′(C)−H3ε/2
max (C|B)) + log δ. (50)
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Figure 3: The relation among special cases of communication scenario analyzed in Section 4 are depicted. “SI” and
“SI-D” stand for “side information” and “side information at the decoder”, respectively. See Table 1 below for the
notations.

information source available resources

side information
at the encoder

side information
at the decoder

information
to be transmitted

communication shared
correlation

quantum A B C q e

classical X Y Z c -

Table 1

An example of the tuple satisfying the above con-
ditions is

q = 1
2(H(3ε/2,ε/2)

∗ (C|A) +Hε
max(C|B)

− log (δ4/2)), (51)

e = 1
2(−Hε

max(C|A) +Hε
max(C|B) + 1), (52)

e0 = 1
2(Hε2/8

max′(C)−H3ε/2
max (C|B)) + log δ. (53)

The achievability of q and e given by (51) and
(52) coincides with the result of [7] (see also [2]).
The one-shot converse bound is represented as

2q ≥ Hε
min(AC)−Hε

max(A) +Hε
min(BC)

−H12ε+6
√
δ

min (B)− 8f(ε), (54)

q + e ≥ Hε
min(BC)−H12ε+6

√
δ

min (B)− f(ε). (55)

The condition (54) in the above coincides with
Inequality (104) in [7]. The rate region for the
asymptotic scenario is obtained from Theorem 4,

which yields

2q ≥ H(C|A) +H(C|B), (56)
q + e ≥ H(C|B). (57)

A simple calculation implies that the above rate
region is equal to the one obtained in Ref. [13, 35].

4.1.2 Fully Quantum Slepian-Wolf

The fully-quantum Slepian-Wolf protocol is ob-
tained by setting A = ∅, c = 0. The one-shot
direct part obtained from Theorem 2 reads

2q ≥ H(3ε/2,ε/2)
∗ (C) +Hε/2

max(C|B)
− log (δ4/2), (58)

q + e ≥ Hε/2
max(C|B)− log (δ2/2), (59)

e0 ≥
1
2(Hε2/8

max′(C)−H3ε/2
max (C|B)) + log δ. (60)
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An example of the rate triplet (q, e, e0) satisfying
the above inequalities is

q = 1
2(H(3ε/2,ε/2)

∗ (C) +Hε/2
max(C|B)

− log (δ4/2)), (61)

e = 1
2(−H(3ε/2,ε/2)

∗ (C) +Hε/2
max(C|B) + 1), (62)

e0 = 1
2(Hε2/8

max′(C)−H3ε/2
max (C|B)) + log δ. (63)

The result is equivalent to the one given by [9]
(see Theorem 8 therein), with respect to q and e.
Note, however, that our achievability bound re-
quires the use of initial entanglement resource of
e+e0 ebits, whereas the one by [9] does not. The
one-shot converse bound is obtained from Theo-
rem 3, which yields

2q ≥ Hε
min(C) +Hε

min(BC)

−H12ε+6
√
δ

min (B)− 6f(ε), (64)

q + e ≥ Hε
min(BC)−H12ε+6

√
δ

min (B)− f(ε). (65)

From Theorem 4, the two-dimensional achievable
rate region for the asymptotic scenario is given
by

2q ≥ H(C) +H(C|B), (66)
q + e ≥ H(C|B), (67)

which coincides with the result obtained in [1].
It should be noted that various coding theorems
for quantum protocols are obtained from that for
the fully quantum Slepian-Wolf protocol, which
is referred to as the family of quantum protocols
[1, 12].

4.1.3 Quantum State Splitting

The task in which B = ∅, c = 0 is called quan-
tum state splitting. The one-shot direct part is
represented as

2q ≥ H(3ε/2,ε/2)
∗ (C|A) +Hε/2

max(C)
− log (δ4/2), (68)

q + e ≥ Hε/2
max(C)− log (δ2/2), (69)

e0 ≥
1
2(Hε2/8

max′(C)−H3ε/2
max (C)) + log δ. (70)

Note that if a triplet (q, e, e0) is achievable, then
(q, e+ e0, 0) is also achievable. Thus, an example

of an achievable rate pair (q, e) is

q = 1
2(H(3ε/2,ε/2)

∗ (C|A) +Hε/2
max(C)− log (δ4/2)),

(71)

e = 1
2(−H(3ε/2,ε/2)

∗ (C|A) +Hε/2
max(C) + 1) + δe0,

(72)

where we have denoted the R.H.S. of (70) by δe0.
This coincides with Lemma 3.5 in [6], up to an
extra term δe0. The one-shot converse bound is
given by

2q ≥ Hε
min(AC)−Hε

max(A) +Hε
min(C)

+ log (1− 22ε− 16
√
δ)− 6f(ε), (73)

q + e ≥ Hε
min(C) + log (1− 22ε− 16

√
δ)− f(ε).

(74)

The rate region for the asymptotic scenario yields

2q ≥ H(C|A) +H(C), (75)
q + e ≥ H(C). (76)

An example of a rate pair satisfying this condition
is

q = 1
2(H(C) +H(C|A)), (77)

e = 1
2(H(C)−H(C|A)), . (78)

This result coincides with Equality (6.1) in
[1], under the correspondence |Ψs〉ACR =
UR

′→AC
N |ϕ〉R

′R with UR
′→AC
N being some isom-

etry.

4.1.4 Quantum State Merging

Quantum state merging is a task in which A = ∅,
q = 0. The one-shot direct part is given by

c ≥ H(3ε/2,ε/2)
∗ (C) +Hε/2

max(C|B)− log (δ4/2),
(79)

e ≥ Hε/2
max(C|B)− log δ2, (80)

e0 ≥
1
2(Hε2/8

max′(C)−H3ε/2
max (C|B)) + log δ. (81)

The achievability of the entanglement cost (80)
is equal to the one given by [15] (see Theorem
5.2 therein). The one-shot converse bound is ob-
tained from Theorem 3, which yields

c ≥ Hε
min(C) +Hε

min(BC)

−H12ε+6
√
δ

min (B)− 6f(ε), (82)

e ≥ Hε
min(BC)−H11ε+8

√
δ

min (B)− 2f(ε). (83)
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The rate region for the asymptotic setting is ob-
tained from Theorem 4 as

c ≥ H(C) +H(C|B), (84)
e ≥ H(C|B). (85)

This rate region is equivalent to the results in [16,
17]. Note, however, that the protocols in [16, 17]
are more efficient than ours, in that the catalytic
use of entanglement resource is not required.

4.2 No Side Information At The Encoder

Next, we consider scenarios in which there is
no classical or quantum side information at the
encoder. This corresponds to the case where
A = X = ∅. We consider three scenarios by
imposing several additional assumptions.

4.2.1 Classical Data Compression with Quantum
Side Information at The Decoder

The task of classical data compression with quan-
tum side information was analyzed in [11]. This
is obtained by additionally setting Y = C = ∅,
q = e = e0 = 0. The one-shot direct and converse
bounds are given by

c ≥ Hε
max(Z|B)− log δ

2

2 , (86)

c ≥ Hε
min(BZ)−H12ε+6

√
δ

min (B)− f(ε), (87)

respectively. This result is equivalent to the one
obtained in [21] (see also [27]). In the asymptotic
limit, the achievable rate region is given by c ≥
H(Z|B), which coincides with the result by [11].

4.2.2 Quantum Data Compression with Classical
Side Information at The Decoder

The task of quantum data compression with clas-
sical side information at the decoder was analyzed
in [4]. This is obtained by imposing additional
assumptions Z = B = ∅, c = 0. In the entangle-
ment “unconsumed” scenario (e = 0), the direct
bounds for the one-shot case is given by

q ≥ 1
2(H(3ε/2,ε/2)

∗ (C) +Hε/2
max(C|Y ))− log δ

4

2 ,
(88)

e0 ≥
1
2(Hε2/8

max′(C)−H3ε/2
max (C|Y )) + log δ. (89)

Note that the entanglement is used only catalyti-
cally. Thus, in the asymptotic regime, the achiev-
able quantum communication rate in the entan-
glement unassisted scenario (e = e0 = 0) is ob-
tained due to the cancellation lemma (Lemma 4.6
in [14]), which reads

q ≥ 1
2(H(C) +H(C|Y )). (90)

In the case where the unlimited amount of entan-
glement is available, the converse bounds on the
quantum communication cost in the one-shot and
the asymptotic scenarios read

q ≥ 1
2(Hε

min(C) +Hε
min(C|Y )−∆ε,δ)− 6f(ε),

(91)

q ≥ 1
2(H(C) +H(C|Y )− ∆̃)

+ 1
2 log (1− 22ε− 16

√
δ). (92)

The asymptotic result (90) coincides with Theo-
rem 7 in [4], and (92) is similar to Theorem 5
therein. It is left open, however, whether the
quantity ∆̃ is equal to the function I(n,δ) that
appears in Theorem 5 of [4] (see Definition 2 in
the literature).

4.2.3 Fully Classical Slepian-Wolf

In the fully classical scenario, the Slepian-Wolf
problem is given by B = C = ∅ in addition to
X = A = ∅, and q = e = e0 = 0. The one-shot
achievability is given by

c ≥ Hε
max(Z|Y )− log δ

2

2 , (93)

and the one-shot converse bound reads

c ≥ Hε
min(Y Z)−H12ε+6

√
δ

min (Y )− f(ε), (94)

which are equivalent to the result obtained in [22].
It is easy to show that the well-known achievable
rate region c ≥ H(Z|Y ) follows from Theorem 4.

4.3 Quantum State Redistribution with Clas-
sical Side Information at The Decoder

We consider a scenario in which X = Z = ∅ and
c = 0. This scenario can be regarded as a general-
ization of the fully quantum state redistribution,
that incorporates classical side information at the
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decoder [3]. The one-shot direct bound is repre-
sented by

2q ≥ max{H̃(3ε/2,ε/2)
I , H̃

(ε/2)
II } − log (δ4/2),

(95)
q + e ≥ Hε/2

max(C|BY )− log (δ2/2), (96)

e0 ≥
1
2(Hε2/8

max′(C)−H3ε/2
max (C|BY )) + log δ,

(97)

where

H̃
(3ε/2,ε/2)
I := H

(3ε/2,ε/2)
∗ (C|AY ) +Hε/2

max(C|BY ),
(98)

H̃
(ε/2)
II := Hε/2

max(C|A) +Hε/2
max(C|BY ). (99)

The converse bound is also obtained from Theo-
rem 3. The inner and outer bounds for the achiev-
able rate region in the asymptotic limit is given
by

2q ≥ H̃II , (100)
q + e ≥ H(C|BY ), (101)

e0 ≥
1
2I(C : BY ), (102)

and

2q ≥ max{H̃I , H̃II − ∆̃}, (103)
q + e ≥ H(C|BY ), (104)

respectively, where

H̃I := H(C|AY ) +H(C|BY ), (105)
H̃II := H(C|A) +H(C|BY ). (106)

We may also obtain its descendants by further as-
suming A = 0 or B = 0, which are generalizations
of the fully quantum Slepian-Wolf and quantum
state splitting.

It is expected that various quantum communi-
cation protocols with classical side information
only at the decoder are obtained by reduction
from the above result, similarly to the family of
quantum protocols [1, 12]. We, however, leave
this problem as a future work.

5 Proof of The Direct Part (Theorem
2)
We prove Theorem 2 based on the following
propositions:

Proposition 6 A tuple (c, q, e, e0) is achievable
within the error 4

√
12ε+ 6δ for Ψs if dC ≥ 2 and

it holds that

c+ q − e ≥ Hε
max(CZ|AX)Ψs − log δ

2

2 , (107)

q − e ≥ Hε
max(C|AXY Z)Ψs − log δ2, (108)

c+ q + e ≥ Hε
max(CZ|BY )Ψs − log δ

2

2 , (109)

q + e ≥ Hε
max(C|BXY Z)Ψs − log δ2, (110)

e0 = 1
2(log dC − q − e). (111)

In the case where dC = 1 and q = e = e0 = 0,
the classical communication rate c is achievable
within the error δ if it holds that

c ≥ max{Hε
max(Z|AX)Ψs , H

ε
max(Z|BY )Ψs}

− log δ
2

2 . (112)

Proposition 7 A tuple (c, q, e, e0) is achievable
within an error 4

√
12ε+ 6δ for Ψs if dC ≥ 2 and

it holds that

c+ 2q ≥ max{H̃(ε)
I , H̃

(ε)
II } − log (δ4/2), (113)

c+ q + e ≥ Hε
max(CZ|BY )Ψs − log (δ2/2), (114)

q + e ≥ Hε
max(C|BXY Z)Ψs − log δ2, (115)

e0 ≥
1
2(log dC −Hε

max(C|BXY Z)Ψs)

+ log δ, (116)

where

H̃
(ε)
I :=Hε

∗(C|AXY Z)Ψs

+Hε
max(CZ|BY )Ψs , (117)

H̃
(ε)
II :=Hε

max(C|AXZ)Ψs

+Hε
max(C|BXY Z)Ψs (118)

and

Hε
∗(C|AXY Z)ρ :=
max{Hε

min(C|AXY Z)ρ, Hε
max(C|AXY Z)ρ}.

(119)

In the case where dC = 1, a tuple (c, 0, 0, 0)
is achievable for Ψs within the error δ if it holds
that

c ≥ Hε
max(Z|BY )Ψs − log δ

2

2 . (120)
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Proofs of Proposition 6 and Proposition 7 will
be given in the following subsections. In Section
5.1, we prove the partial bi-decoupling theorem,
which is a generalization of the bi-decoupling the-
orem [36, 7]. Based on this result, we prove
Proposition 6 in Section 5.2. We adopt the idea
that a protocol for state redistribution can be
constructed from sequentially combining proto-
cols for the (fully quantum) reverse Shannon and
the (fully quantum) Slepian-Wolf. In Section
5.3, we extend the rate region in Proposition 6
by incorporating teleportation and dense coding,
thereby proving Proposition 7. Finally, we prove
Theorem 2 from Proposition 7 in Section 5.4.

5.1 Partial Bi-Decoupling

The idea of the bi-decoupling theorem was first
introduced in [36], and was improved in [7] to fit
more into the framework of the one-shot informa-
tion theory. The approach in [7] is based on the
decoupling theorem in [15]. In this subsection, we
generalize those results by using the direct part of
randomized partial decoupling [33] to incorporate
the hybrid communication scenario.

5.1.1 Direct Part of Partial Decoupling

We first present the direct part of randomized
partial decoupling (Theorem 3 in [33]). Let ΨĈŜ

be a subnormalized state in the form of

ΨĈŜ =
J∑

j,k=1
|j〉〈k|Z ⊗ ψCSjk ⊗ |j〉〈k|

Z′ . (121)

Here, Z and Z ′ are J-dimensional quantum sys-
tem with a fixed orthonormal basis {|j〉}Jj=1, Ĉ ≡
ZC, Ŝ ≡ Z ′S and ψjk ∈ L(HC ⊗ HS) for each
j and k. Note that the positive-semidefiniteness
of ΨĈŜ implies ψjj ≥ 0 for all j and the subnor-
malization condition implies

∑J
j=1 Tr[ψjj ] ≤ 1.

Consider a random unitary U on Ĉ in the form
of

U :=
J∑
j=1
|j〉〈j|Z ⊗ UCj , (122)

where Uj ∼ Hj for each j, and Hj is the Haar
measure on the unitary group on HC . The aver-
aged state obtained after the action of the random

Ĉ = CZ Ĉ

Ŝ = SZ 0

Ĉ

U
E

 

TG�

Figure 4: The situation of partial decoupling is depicted.

unitary U is given by

ΨĈŜ
av := EU [U Ĉ(ΨĈŜ)U †Ĉ ] (123)

=
J∑
j=1

pj |j〉〈j|Z ⊗ πC ⊗ ψSj ⊗ |j〉〈j|
Z′ , (124)

where pj := Tr[ψjj ] and ψj := p−1
j ψjj . Consider

also the permutation group P on [1, · · · , J ], and
define a unitary Gσ for any σ ∈ P by

Gσ :=
J∑
j=1
|σ(j)〉〈j|Z . (125)

We assume that the permutation σ is chosen at
random according to the uniform distribution on
P.

Suppose that the state ΨĈŜ is transformed by
unitaries U and Gσ, and then is subject to the
action of a quantum channel (linear CP map)
T Ĉ→E (see Figure 4). The final state is repre-
sented as

T Ĉ→E((GZσU Ĉ)ΨĈŜ(GZσU Ĉ)†)

= T Ĉ→E ◦ GZσ ◦ U Ĉ(ΨĈŜ). (126)

We consider how close the final state is, on av-
erage over all U , to the averaged final state
T Ĉ→E ◦ GZσ (ΨĈŜ

av ), for typical choices of the per-
mutation σ. The following theorem is the direct
part of the randomized partial decoupling theo-
rem, which provides an upper bound on the aver-
age distance between T Ĉ→E ◦ GZσ ◦U Ĉ(ΨĈŜ) and
T Ĉ→E ◦ GZσ (ΨĈŜ

av ). Although the original version
in [33] is applicable to any J ≥ 1, in this paper
we assume that J ≥ 2.

Lemma 8 (Corollary of Theorem 3 in
[33]) Consider a subnormalized state ΨĈŜ ∈
S≤(HĈŜ) that is decomposed as (121). Let T Ĉ→E
be a linear trace non-increasing CP map with the
complementary channel T Ĉ→F . Let U and Gσ
be random unitaries given by (122) and (125),
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U

 

G�

C = CLCR

Z = ZLZR Z

C
CLZL

CRZR

Figure 5: The situation of partial decoupling under par-
tial trace is depicted.

respectively, and fix arbitrary ε, µ ≥ 0. It holds
that

Eσ,U
[∥∥∥T Ĉ→E ◦ GZσ ◦ U Ĉ(ΨĈŜ)

−T Ĉ→E ◦ GZσ (ΨĈŜ
av )

∥∥∥
1

]
≤
{

2−
1
2HI + 2−

1
2HII + 4(ε+ µ+ εµ) (dC ≥ 2),

2−
1
2HI + 4(ε+ µ+ εµ) (dC = 1),

(127)

where ΨĈŜ
av := EU [U Ĉ(ΨĈŜ)]. The exponents HI

and HII are given by

HI = log (J − 1) +Hε
min(Ĉ|Ŝ)Ψ

−Hµ
max(Ĉ|F )C(τ), (128)

HII = Hε
min(Ĉ|Ŝ)C(Ψ) −Hµ

max(C|FZ)C(τ). (129)

Here, C is the completely dephasing operation on
Z with respect to the basis {|j〉}Jj=1, and τ is
the Choi-Jamiolkowski state of T Ĉ→F defined by
τ ĈF := T Ĉ′→F (ΦĈĈ′). The state ΦĈĈ′ is the
maximally entangled state in the form of

|Φ〉ĈĈ′ = 1√
J

J∑
j=1
|jj〉ZZ

′
|Φr〉CC

′
. (130)

5.1.2 Partial Decoupling under Partial Trace

We apply Lemma 8 to a particular case where the
channel T is the partial trace (see Figure 5).

Lemma 9 Consider the same setting as in
Lemma 8, and suppose that Z = ZLZR,
C = CLCR. We assume that ZL and ZR are
equipped with fixed orthonormal bases {|zL〉}JLzL=1
and {|zR〉}JRzR=1, respectively, thus J = JLJR
and the orthonormal basis of Z is given by
{|zL〉|zR〉}zL,zR . Fix arbitrary ε ≥ 0. If dC ≥ 2

and

log
d2
CL

dZRdC
≤ Hε

min(Ĉ|Ŝ)Ψ + log δ
2

2 , (131)

log
d2
CL

dC
≤ Hε

min(Ĉ|Ŝ)C(Ψ) + log δ2, (132)

then it holds that

Eσ,U
∥∥∥TrZRCR ◦ G

Z
σ ◦ U Ĉ(ΨĈŜ)

−TrZRCR ◦ G
Z
σ (ΨĈŜ

av )
∥∥∥

1
≤ 4ε+ 2δ, (133)

where ΨĈŜ
av := EU∼H× [U Ĉ(ΨĈŜ)]. The same

statement also holds in the case of dC = 1, in
which case the condition (132) can be removed.

Proof: We apply Lemma 8 by the correspon-
dence µ = 0, E = ZLCL, F = ZRCR, J = dZ
and T Ĉ→ZLCL = idZLCL ⊗ TrZRCR . It follows
that Ineq. (133) holds if dC ≥ 2 and

log (dZ − 1) +Hε
min(Ĉ|Ŝ)Ψ

−Hmax(Ĉ|Z ′RC ′R)C(τ) + log δ2 ≥ 0, (134)
Hε

min(Ĉ|Ŝ)C(Ψ) −Hmax(C|Z ′RC ′RZ)C(τ)

+ log δ2 ≥ 0. (135)

Here, τ is the Choi-Jamiolkowski state of the
complementary channel of T Ĉ→ZLCL , and is
given by

τ ĈZ
′
RC
′
R = πZL ⊗ πCL ⊗ ΦZRZ

′
R ⊗ ΦCRC

′
R . (136)

Using the additivity of the max conditional en-
tropy (Lemma 15 in Appendix A), the entropies
are calculated to be

Hmax(Ĉ|Z ′RC ′R)C(τ)

= log dZL + log dCL − log dCR , (137)
Hmax(C|Z ′RC ′RZ)C(τ)

= log dCL − log dCR . (138)

Thus, Inequalities (134) and (135) are equivalent
to

log (dZ − 1) +Hε
min(Ĉ|Ŝ)Ψ

− log dZLdCL
dCR

+ log δ2 ≥ 0, (139)

Hε
min(Ĉ|Ŝ)C(Ψ) − log dCL

dCR
+ log δ2 ≥ 0. (140)

Noting that dZ = dZLdZR , dC = dCLdCR and
that (dZ − 1)/dZ ≥ 1/2, the above two inequal-
ities follow from (131) and (132), respectively.
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Thus, the proof in the case of dC ≥ 2 is done.
The proof for the case of dC = 1 proceeds along
the same line. �

5.1.3 Partial Bi-Decoupling Theorem

Based on Lemma 9, we introduce a generalization
of the “bi-decoupling theorem”[36, 7] that played
a crucial role in the proof of the direct part of
one-shot fully quantum state redistribution. We
consider the case where systems C and S are com-
posed of three subsystems. The following lemma
provides a sufficient condition under which a sin-
gle pair of σ and U simultaneously achieves par-
tial decoupling of a state, from the viewpoint of
two different choices of subsystems (see Figure 6
in the next page).

Lemma 10 (Partial bi-decoupling.) Con-
sider the same setting as in Lemma 8, assume
Z = ZLZR, C = C1C2C3, S = S1S2S3 and fix
arbitrary ε ≥ 0. If dC ≥ 2 and

log
d2
C1

dZRdC
≤ Hε

min(Ĉ|Z ′S2S3)Ψ + log δ
2

2 , (141)

log
d2
C1

dC
≤ Hε

min(Ĉ|Z ′S2S3)C(Ψ)+log δ2, (142)

log
d2
C2

dZRdC
≤ Hε

min(Ĉ|Z ′S1S3)Ψ + log δ
2

2 , (143)

log
d2
C2

dC
≤ Hε

min(Ĉ|Z ′S1S3)C(Ψ)+log δ2, (144)

there exist σ and U such that∥∥∥TrZRC2C3 ◦ GZσ ◦ U Ĉ(ΨĈS2S3Z′)

−TrZRC2C3 ◦ GZσ (ΨĈS2S3Z′
av )

∥∥∥
1
≤ 12ε+ 6δ,

(145)∥∥∥TrZRC1C3 ◦ GZσ ◦ U Ĉ(ΨĈS1S3Z′)

−TrZRC1C3 ◦ GZσ (ΨĈS1S3Z′
av )

∥∥∥
1
≤ 12ε+ 6δ.

(146)

The same statement also holds if dC = 1, in
which case the conditions (142) and (144) can
be removed.

Proof: Suppose that dC ≥ 2 and the inequali-
ties (141)-(144) are satisfied. We apply Lemma 9
under the correspondence CR = CαC3, S = SαS3

and CL = Cᾱ, where α = 1, 2 and ᾱ = 2, 1 for
each. It follows that

Eσ,U
∥∥∥TrZRCαC3 ◦ GZσ ◦ U Ĉ(ΨĈSαS3Z′)

−TrZRCαC3 ◦ GZσ (ΨĈSαS3Z′
av )

∥∥∥
1
≤ 4ε+ 2δ.

(147)

Markov’s inequality implies that there exist σ
and U that satisfy both (145) and (146), which
completes the proof in the case of dC ≥ 2. The
proof in the case of dC = 1 proceeds along the
same line. �

5.2 Proof of Proposition 6

To prove Proposition 6, we follow the lines of the
proof of the direct part of the fully quantum state
redistribution protocol in [36]. The key idea is
that a protocol for state redistribution can be
constructed from sequentially combining a pro-
tocol for the fully quantum reverse Shannon and
that for the fully quantum Slepian-Wolf. We gen-
eralize this idea to the “hybrid” scenario (see Fig-
ure 9 in page 34). We only consider the case
where dC ≥ 2. The proof for the case of dC = 1
is obtained along the same line.

5.2.1 Application of The Partial Bi-Decoupling
Theorem

Consider the “purified” source state

|Ψ〉ABCRXY ZT :=∑
x,y,z

√
pxyz|x〉X |y〉Y |z〉Z |ψxyz〉ABCR|xyz〉T ,

(148)

where we denoted X ′Y ′Z ′ simply by T . Let C be
isomorphic to C1C2C3 and Z to ZLZR. Fix an
arbitrary ε > 0. We apply Lemma 10 under the
following correspondense:

S1 = Â, S2 = B̂, S3 = RX ′Y ′. (149)

Note that R̂ = RX ′Y ′Z ′. It follows that if the
dimensions of C1 and C2 are sufficiently small (see
the next subsection for the details), there exist σ
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Figure 6: The situation of partial bi-decoupling is depicted. As represented by the rotary, we consider two cases
where S1C2 or S2C1 are traced out.

and U that satisfy∥∥∥TrZRC2C3 ◦ GZσ ◦ U Ĉ(ΨĈB̂R̂)

−TrZRC2C3 ◦ GZσ (ΨĈB̂R̂
av )

∥∥∥
1
≤ 12ε+ 6δ,

(150)∥∥∥TrZRC1C3 ◦ GZσ ◦ U Ĉ(ΨĈÂR̂)

−TrZRC1C3 ◦ GZσ (ΨĈÂR̂
av )

∥∥∥
1
≤ 12ε+ 6δ.

(151)

Let |Ψσ,1〉C1ZLB̂R̂DA be a purification of
TrZRC2C3 ◦ GZσ (ΨĈB̂R̂

av ) with DA being the
purifying system. Similarly, let |Ψσ,2〉C2ZLÂR̂DB

be a purification of TrZRC1C3 ◦ GZσ (ΨĈÂR̂
av )

with DB being the purifying system. Due to
Uhlmann’s theorem ([30]; see also e.g. Chapter
9 in [34]), there exist linear isometries

V DA→ZRC2C3Â, WZRC1C3B̂→DB (152)

such that∥∥∥GZσ ◦ U Ĉ(ΨĈÂB̂R̂)− VDA→ZRC2C3Â(Ψσ,1)
∥∥∥

1

≤ 2
√

12ε+ 6δ, (153)∥∥∥WZRC1C3B̂→DB ◦ GZσ ◦ U Ĉ(ΨĈÂB̂R̂)−Ψσ,2
∥∥∥

1

≤ 2
√

12ε+ 6δ. (154)

We particularly choose C1, C2, C3 and ZR so that
they satisfy the isomorphism

C1 ∼= EB, C2 ∼= FA, C3 ∼= Q,ZR ∼= M. (155)

In addition, we introduce systems C ′′, Z ′′, A1 and
B2 such that

C ′′ ∼= C,Z ′′ ∼= Z,A1 ∼= EA, B2 ∼= FB. (156)

We consider the purifying systems to be DA ≡
ZRĈ

′′ÂA1 and DB ≡ ZRĈ
′′B̂B2, where Ĉ ′′ =

C ′′Z ′′.

5.2.2 Explicit Forms of The Purifications

To obtain explicit forms of the purifications Ψσ,1
and Ψσ,2, we define a state Ψσ by

|Ψσ〉ÂB̂Ĉ
′′R̂Z :=

∑
x,y,z

√
pxyz|x〉X |y〉Y |σ(z)〉Z |z〉Z

′′

⊗ |ψxyz〉ABC
′′R|xyz〉T. (157)

From the definition (20) of the source state Ψs,
(148) of the purified source state Ψ and (157) of
the state Ψσ, it is straightforward to verify that
the states are related simply by

|Ψσ〉ÂB̂Ĉ
′′R̂Z = GZσ ◦ PZ

′′→Z′′Z |Ψ〉ÂB̂Ĉ
′′R̂ (158)

and

TrZ ⊗ CT (ΨÂB̂Ĉ′′R̂Z
σ ) = ΨÂB̂Ĉ′′R̂

s (159)

= CT (ΨÂB̂Ĉ′′R̂). (160)

Here, Let PZ′′→Z′′Z be a linear isometry defined
by

PZ
′′→Z′′Z :=

∑
z

|z〉Z
′′
|z〉Z〈z|Z

′′
, (161)

and C be the completely dephasing operation on
T with respect to the basis {|xyz〉}x,y,z. The state
Ψσ is simply represented as

|Ψσ〉ÂB̂Ĉ
′′R̂Z =

∑
z

√
pz|σ(z)〉Z |ψz〉ÂB̂Ĉ

′′RX′Y ′ |z〉Z
′
.

(162)

where

|ψz〉ÂB̂Ĉ
′′RX′Y ′

:=
∑
x,y

√
pxyz
pz
|x〉X |y〉Y |z〉Z

′′

⊗ |ψxyz〉ABC
′′R|x〉X

′
|y〉Y

′
. (163)
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It is convenient to note that

ψÂB̂RX
′Y ′

z =
∑
x,y

√
pxyz
pz

ψABRxyz ⊗ |x〉〈x|
X′⊗ |y〉〈y|Y

′
.

(164)

Due to (148) and (124), the averaged state in
(150) is calculated to be

ΨĈB̂R̂
av =

∑
z

pz|z〉〈z|Z⊗πC⊗ψB̂RX
′Y ′

z ⊗|z〉〈z|Z
′
,

(165)

where pz =
∑
x,y pxyz. It follows that

TrZRC2C3 ◦ GZσ (ΨĈB̂R̂
av )

=
∑
z

pzTrZR [|σ(z)〉〈σ(z)|]⊗ πC1

⊗ ψB̂RX′Y ′z ⊗ |z〉〈z|Z
′
. (166)

Thus, a purification Ψσ,1 of this state is given by

|Ψσ,1〉ÂB̂Ĉ
′′R̂A1C1Z = |Ψσ〉ÂB̂Ĉ

′′R̂Z |φ1〉A1C1 , (167)

where φ1 is the maximally entangled state of
Schmidt rank dC1 . In the same way, the purifica-
tion Ψσ,2 is given by

|Ψσ,2〉ÂB̂Ĉ
′′R̂B2C2Z = |Ψσ〉ÂB̂Ĉ

′′R̂Z |φ2〉B2C2, (168)

with φ2 being the maximally entangled state of
Schmidt rank dC2 . Substituting these to (153)
and (154), we arrive at∥∥∥ΨĈÂB̂R̂ − (GZσ ◦ U Ĉ)† ◦ V(ΨÂB̂Ĉ′′R̂

σ ⊗ φA1C1
1 )

∥∥∥
1

≤ 2
√

12ε+ 6δ, (169)∥∥∥W ◦ GZσ ◦ U Ĉ(ΨĈÂB̂R̂)−ΨÂB̂Ĉ′′R̂Z
σ ⊗ φB2C2

2

∥∥∥
1

≤ 2
√

12ε+ 6δ. (170)

Inequality (169) implies that the operation
(GZσ ◦ U Ĉ)† ◦ V is a reverse Shannon protocol for
the state ΨĈÂ(B̂R̂), up to the action of a linear
isometry GZσ ◦PZ

′′→Z′′Z by which Ψσ is obtained
from Ψ as (158). Similarly, Inequality (170) im-
plies that the operationW◦GZσ ◦U Ĉ is a Slepian-
Wolf protocol for the state ΨĈB̂(ÂR̂), up to the
action of GZσ ◦ PZ

′′→Z′′Z (see Figure 9 in page
34). We combine the two protocols to cancel out
(GZσ ◦ U Ĉ)† and GZσ ◦ U Ĉ . Due to the triangle
inequality, it follows from (169) and (170) that∥∥∥W ◦ V(ΨÂB̂Ĉ′′R̂

σ ⊗ φA1C1
1 )−ΨÂB̂Ĉ′′R̂Z

σ ⊗ φB2C2
2

∥∥∥
1

≤ 4
√

12ε+ 6δ. (171)

5.2.3 Construction of The Encoding and Decod-
ing Operations

Define a partial isometry

V ÂĈ′′A1→ÂZC2C3
σ

:= V ZRA1ÂĈ′′→ZRC2C3Â ◦GZσ ◦ PZ
′′→Z′′Z .

(172)

Applying the map TrZ ⊗ CT to Inequality (171),
and using (158) and (160), it follows that∥∥∥TrZ ◦W ◦ Vσ(ΨÂB̂Ĉ′′R̂

s ⊗ φA1C1
1 )

−ΨÂB̂Ĉ′′R̂
s ⊗ φB2C2

2

∥∥∥
1
≤ 4
√

12ε+ 6δ.
(173)

We construct a protocol for state redistribution
as follows: In the first step, the sender performs
the following encoding operation:

E ÂĈ′′A1→ÂZRC2C3

= TrZL ◦ V
ÂĈ′′A1→ÂZC2C3
σ ◦ CZ′′ , (174)

where CZ′′ is the completely dephasing operation
on Z ′′ with respect to the basis {|zL〉|zR〉}zL,zR .
The sender then sends the classical system ZR ∼=
M and the quantum system C3 ∼= Q to the re-
ceiver, who performs the decoding operation de-
fined by

DZRC1C3B̂→B2B̂Ĉ′′

= TrZR ◦W
ZRC1C3B̂→ZRB2B̂Ĉ′′ . (175)

Noting that TrZ = TrZL ⊗ TrZR , we obtain from
(173) that∥∥∥D ◦ E(ΨÂB̂Ĉ′′R̂

s ⊗ φA1C1
1 )−ΨÂB̂Ĉ′′R̂

s ⊗ φB2C2
2

∥∥∥
1

≤ 4
√

12ε+ 6δ. (176)

From (172) and (174), it is straightforward to ver-
ify that E(τ) is diagonal in ZR for any input state
τ . Thus, the pair (E ,D) is a state redistribu-
tion protocol for the state Ψs within the error
4
√

12ε+ 6δ.

5.2.4 Evaluation of Entropies

We analyze conditions on the size of systems C1
and C2, in order that inequalities (150) and (151)
are satisfied. We use the partial bi-decoupling
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theorem (Lemma 10) under the correspondence
(149), which reads

S1 = Â, S2 = B̂, S3 = RX ′Y ′. (177)

It follows that inequalities (150) and (151) are
satisfied if it holds that

log
d2
C1

dZRdC
≤ Hε

min(Ĉ|B̂R̂)Ψ + log δ
2

2 , (178)

log
d2
C1

dC
≤ Hε

min(Ĉ|B̂R̂)C(Ψ) + log δ2, (179)

log
d2
C2

dZRdC
≤ Hε

min(Ĉ|ÂR̂)Ψ + log δ
2

2 , (180)

log
d2
C2

dC
≤ Hε

min(Ĉ|ÂR̂)C(Ψ) + log δ2. (181)

Using the duality of the smooth conditional en-
tropy (Lemma 12), and noting that ΨÂB̂Ĉ =
ΨÂB̂Ĉ
s , the min entropies in the first and the third

inequalities are calculated to be

Hε
min(Ĉ|B̂R̂)Ψ = −Hε

max(Ĉ|Â)Ψ (182)
= −Hε

max(CZ|AX)Ψs , (183)
Hε

min(Ĉ|ÂR̂)Ψ = −Hε
max(Ĉ|B̂)Ψ (184)

= −Hε
max(CZ|BY )Ψs . (185)

Similarly, due to Lemma 23 and Lemma 26 in
Appendix A, and noting that C(Ψ) = Ψs because
of (20) and (148), we have

Hε
min(Ĉ|B̂R̂)C(Ψ)

= Hε
min(C|BRXY Z)C(Ψ) (186)

= −Hε
max(C|AXY Z)Ψs (187)

and

Hε
min(Ĉ|ÂR̂)C(Ψ)

= Hε
min(C|ARXY Z)C(Ψ) (188)

= −Hε
max(C|BXY Z)Ψs . (189)

In addition, the isomorphism (155) implies

log dC1 = e+ e0, log dC2 = e0, (190)
log dC3 = q, log dZR = c. (191)

Substituting these relations to (178)-(181), and
noting that dC = dC1dC2dC3 , we arrive at

c+ q − e ≥ Hε
max(CZ|AX)Ψs − log δ

2

2 , (192)

q − e ≥ Hε
max(C|AXY Z)Ψs − log δ2, (193)

c+ q + e ≥ Hε
max(CZ|BY )Ψs − log δ

2

2 , (194)

q + e ≥ Hε
max(C|BXY Z)Ψs − log δ2 (195)

and q + e + 2e0 = log dC . Combining these all
together, we obtain the set of Ineqs. (107)-(111)
as a sufficient condition for the tuple (c, q, e) to
be achievable within the error 4

√
12ε+ 6δ. �

5.3 Proof of Proposition 7 from Proposition 6
We prove Proposition 7 based on Proposition 6 by
(i) modifying the first inequality (107), and (ii)
extending the rate region by incorporating tele-
portation and dense coding.

5.3.1 Modification of Inequalities (107) and (112)

We argue that the smooth conditional max en-
tropy in the R.H.S. of Inequality (107) is modified
to be Hε

max(C|AXZ)Ψs . Consider a “modified”
redistribution protocol as follows: In the begin-
ning of the protocol, the sender prepares a copy
of Z, which we denote by Z̃. The sender then
uses XZ̃ as the classical part of the side informa-
tion, instead of X alone, and apply the protocol
presented in Section 5.2.1. The smooth max en-
tropy corresponding to the first term in (107) is
then given by (see Lemma 24)

Hε
max(CZ|AXZ̃)Ψs = Hε

max(C|AXZ)Ψs . (196)

For the same reason, the term Hε
max(Z|AX)Ψs

in the condition (112) is modified to be
Hε

max(Z|AXZ̃)Ψs , which is no greater than zero
(see Lemma 21 and Lemma 24). It should be
noted that the entropies in the other three in-
equalities are unchanged by this modification.

5.3.2 Extension of the rate region by Teleporta-
tion and Dense Coding

To complete the proof of Theorem 2, we extend
the achievable rate region given in Proposition 6
by incorporating teleportation and dense coding.
More precisely, we apply the following lemma
that follows from teleportation and dense coding
(see the next subsection for a proof):

Lemma 11 Suppose that a rate tuple
(ĉ, q̂, ê, ê0) is achievable within the error δ.
Then, for any λ, µ ≥ 0 and e0 ≥ 0 such that

− ĉ2 ≤ λ− µ ≤ q̂, ê0 ≤ e0, (197)

the tuple (c, q, e, e0) := (ĉ+2λ−2µ, q̂−λ+µ, ê+
λ+ µ, e0) is also achievable within the error δ.
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Proof of Proposition 7: Due to Proposition 6
and Lemma 11, a tuple (c, q, e, e0) is achievable
within the error δ if there exists λ, µ ≥ 0 and
ê0 ≤ e0 such that the tuple

(ĉ, q̂, ê, ê0) :=
(c− 2λ+ 2µ, q + λ− µ, e− λ− µ, ê0) (198)

satisfies

ĉ+ q̂ − ê ≥ H1, (199)
q̂ − ê ≥ H2, (200)

ĉ+ q̂ + ê ≥ H3, (201)
q̂ + ê ≥ H4, (202)

q̂ + ê+ 2ê0 = log dC (203)

and ĉ, q̂ ≥ 0. Here, we have denoted the R.H.S.s
of Inequalities (108)-(110) by H2, H3 and H4, re-
spectively, and that of (196) by H1. Substituting
(198) to these inequalities yields

c+ q − e ≥ H1 − 2µ, (204)
q − e ≥ H2 − 2λ, (205)

c+ q + e ≥ H3 + 2λ, (206)
q + e ≥ H4 + 2µ, (207)

q + e+ 2ê0 = log dC + 2µ (208)

and

c− 2λ+ 2µ ≥ 0, (209)
q + λ− µ ≥ 0. (210)

Thus, it suffices to prove that, for any tu-
ple (c, q, e, e0) satisfying Inequalities (113)-(116),
there exist ê0 ≤ e0 and λ, µ ≥ 0 such that the
above inequalities hold. This is proved by noting
that the inequality (113) is expressed as

c+ q + e−H3 ≥ max{H2, H
′
2} − q + e, (211)

q + e−H4 ≥ H1 − c− q + e, (212)

where

H ′2 := Hε
min(C|AXY Z)Ψs − log δ2. (213)

The L.H.S. of (211) and (212) are nonnegative be-
cause of Inequalities (114) and (115). Thus, there
exists λ, µ ≥ 0 such that 2λ and 2µ are in between
both sides in (211) and (212), respectively. This
implies (204)-(207). We particularly choose

µ = 1
2(q + e−H4), ê0 = 1

2(log dC −H4).
(214)

A simple calculation leads to (208). Noting that
H3 ≥ H4 by the data processing inequality, it
follows from (206) that

c− 2λ ≥ H3 − q − e ≥ H4 − q − e = −2µ,
(215)

which implies (209). Inequality (210) is obtained
by combining (207) with 2λ ≥ max{H2, H

′
2} −

q + e. Note that

H ′2 +H4

= Hε
min(C|AXY Z)Ψs

+Hε
max(C|BXY Z)Ψs − 2 log δ2 (216)

= Hε
min(C|AXY Z)Ψs

−Hε
min(C|ARXY Z)Ψs − 2 log δ2 (217)

≥ 0, (218)

where the third line follows from Lemma 26. This
completes the proof of Theorem 2. �

5.3.3 Proof of Lemma 11 (see also Section IV in
[18])

We first consider the case where λ − µ ≥ 0,
and prove that the tuple (c, q, e, e0, δ) := (ĉ +
2λ − 2µ, q̂ − λ + µ, ê + λ + µ, ê0, δ) is achiev-
able if a rate tuple (ĉ, q̂, ê, ê0, δ) is achievable and
ĉ, q̂ ≥ 0. Suppose that there exists a protocol
(E ,D) with the classical communication cost ĉ,
the quantum communication cost q̂, the net en-
tanglement cost ê and the catalytic entanglement
cost ê0 that achieves the state redistribution of
the state Ψs within the error δ. We construct
a protocol (E ′,D′) such that the λ − µ qubits of
quantum communication in the protocol (E ,D) is
simulated by quantum teleportation, consuming
λ−µ ebits of additional shared entanglement and
2λ− 2µ bits of classical communication. The net
costs of the resources are given by ĉ + 2λ − 2µ,
q̂−λ+µ, ê+λ−µ and the catalytic entanglement
cost is ê0, which implies achievability of the tuple
(ĉ+ 2λ− 2µ, q̂ − λ+ µ, ê+ λ+ µ, ê0, δ).

Second, we consider the case where λ− µ ≤ 0.
Suppose that there exists a protocol (E ,D) with
the classical communication cost ĉ, the quantum
communication cost q̂ and the net entanglement
cost ê that achieves the state redistribution of the
state Ψs within the error δ. We construct a pro-
tocol (E ′′,D′′) such that the 2µ−2λ bits of classi-
cal communication in (E ,D) is simulated by dense
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coding, consuming µ−λ ebits of shared entangle-
ment and µ − λ qubits of quantum communica-
tion. The net costs of the resources are given by
ĉ−2µ+2λ, q̂+µ−λ, ê+µ−λ and the catalytic en-
tanglement cost is ê0, which implies achievability
of the tuple (ĉ−2µ+2λ, q̂+µ−λ, ê+µ+λ, ê0, δ).
�

5.4 Proof of Theorem 2 from Proposition 7

The achievability for the case of dC = 1 immedi-
ately follows from the condition (120) in Propo-
sition 7. Thus, we only consider the case where
dC ≥ 2.

Let Π be a projection onto a subspace HCΠ ⊆

HC such that dim[HCΠ ] = 2H
ε2/8
max′ (C)Ψs and that

Tr[ΠΨC
s ] ≥ 1−ε2/8. Such a projection exists due

to the definition of Hmax′ given by (16). Consider
the “modified” source state defined by

ΨÂB̂ĈΠR̂
s,Π := Π(ΨÂB̂ĈR̂

s )Π. (219)

From the gentle measurement lemma (see Lemma
32 in Appendix B), it holds that

P (Ψs,Ψs,Π) ≤ ε

2 , ‖Ψs −Ψs,Π‖1 ≤
ε√
2
. (220)

Thus, due to the definitions of the smooth en-
tropies (12) and (13), we have

Hε/2
max(CZ|BY )Ψs ≥ Hε

max(CΠZ|BY )Ψs,Π
(221)

≥ H3ε/2
max (CZ|BY )Ψs , (222)

H
3ε/2
min (C|AXY Z)Ψs ≥ Hε

min(CΠ|AXY Z)Ψs,Π
(223)

and so forth.
Suppose that the tuple (c, q, e, e0) satisfies In-

equalities (22)-(25) in Theorem 2. It follows that

c+ 2q ≥ max{H̃(ε,ε)
I , H̃

(ε)
II }Ψs,Π − log (δ4/2),

(224)
c+ q + e ≥ Hε

max(CΠZ|BY )Ψs,Π − log (δ2/2),
(225)

q + e ≥ Hε
max(CΠ|BXY Z)Ψs,Π − log δ2,

(226)

e0 ≥
1
2(log dCΠ −H

ε
max(CΠ|BXY Z)Ψs,Π)

+ log δ. (227)

Thus, due to Proposition 7, the tuple (c, q, e, e0)
is achievable within an error 4

√
12ε+ 6δ for the

state Ψs,Π. That is, there exists a pair of an en-
coding CPTP map E ÂĈΠEA→ÂQMFA

Π and a decod-
ing CPTP map DB̂QMEB→B̂ĈΠFB

Π , such that∥∥∥DΠ ◦ EΠ(ΨÂB̂ĈΠR̂
s,Π ⊗ ΦEAEB

2e+e0 )

−ΨÂB̂ĈΠR̂
s,Π ⊗ ΦFAFB

2e0

∥∥∥
1
≤ 4
√

12ε+ 6δ. (228)

Define an encoding map E ÂĈEA→ÂQMFA and a
decoding map DB̂QMEB→B̂ĈFB for the state Ψs

by

E ÂĈEA→ÂQMFA(τ)
= EΠ(ΠCτΠC) + Tr[(IC −ΠC)τ ]ξ0, (229)

where ξ0 is an arbitrary fixed state on ÂQMFA,
and D = DΠ. Note that the system CΠ is natu-
rally embedded into C. By the triangle inequal-
ity, we have∥∥∥D ◦ E(ΨÂB̂ĈR̂

s ⊗ ΦEAEB
2e+e0 )−ΨÂB̂ĈR̂

s ⊗ ΦFAFB
2e0

∥∥∥
1

≤
∥∥∥D ◦ E(ΨÂB̂ĈR̂

s ⊗ ΦEAEB
2e+e0 )

−D ◦ E(ΨÂB̂ĈR̂
s,Π ⊗ ΦEAEB

2e+e0 )
∥∥∥

1

+
∥∥∥D ◦ E(ΨÂB̂ĈR̂

s,Π ⊗ ΦEAEB
2e+e0 )

−ΨÂB̂ĈR̂
s,Π ⊗ ΦFAFB

2e0

∥∥∥
1

+
∥∥∥ΨÂB̂ĈR̂

s,Π ⊗ ΦFAFB
2e0 −ΨÂB̂ĈR̂

s ⊗ ΦFAFB
2e0

∥∥∥
1
(230)

≤
∥∥∥DΠ ◦ EΠ(ΨÂB̂ĈR̂

s,Π ⊗ ΦEAEB
2e+e0 )

−ΨÂB̂ĈR̂
s,Π ⊗ ΦFAFB

2e0

∥∥∥
1

+ 2
∥∥∥ΨÂB̂ĈR̂

s −ΨÂB̂ĈR̂
s,Π

∥∥∥
1

(231)

≤ 4
√

12ε+ 6δ +
√

2ε, (232)

Here, Inequality (231) follows from DΠ ◦
EΠ(ΨÂB̂ĈR̂

s,Π ⊗ΦEAEB
2e+e0 ) = D ◦ E(ΨÂB̂ĈR̂

s,Π ⊗ΦEAEB
2e+e0 )

and the monotonicity of the trace distance, and
the last line from (220) and (228). Hence, the
tuple (c, q, e, e0) is achievable within an error
4
√

12ε+ 6δ +
√

2ε for the state Ψs, which com-
pletes the proof of Theorem 2. �

6 Proof of The Converse Part
(Theorem 3 and Lemma 5)
We prove the one-shot converse bound (Theo-
rem 3). The proof proceeds as follows: First, we
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Figure 7: The purified picture of the task is depicted in the diagram. The black lines and the dashed lines represent
classical and quantum systems, respectively.

construct quantum states that describe the state
transformation in a redistribution protocol in a
“purified picture”. Second, we prove four entropic
inequalities that hold for those states. Finally, we
prove that the four inequalities imply the three in-
equalities in Theorem 3, thereby completing the
proof of the converse bound. We also analyze
the properties of the function ∆(ε,δ), and prove
Lemma 5.

6.1 Construction of States

Let U ÂĈEA→ÂQMFAĜA
E and U B̂QMEB→B̂ĈFBĜB

D
be the Stinespring dilations of the encoding op-
eration E and the decoding operation D, respec-
tively, i.e.,

E = TrĜA ◦ UE , D = TrĜB ◦ UD. (233)

We define the “purified” source state |Ψ〉 by

|Ψ〉ABCRXY ZT :=∑
x,y,z

√
pxyz|x〉X |y〉Y |z〉Z |ψxyz〉ABCR|xyz〉T ,

(234)

and consider the states

|Ψ̃〉ÂQMFAĜAB̂R̂EB := UE |Ψ〉ÂB̂ĈR̂|Φ2e+e0 〉
EAEB ,
(235)

|Ψf 〉ÂB̂ĈR̂FAFBĜAĜB := UD|Ψ̃〉. (236)

The state Ψ̃ is a purification of the state after the
encoding operation, and Ψf is the one after the
decoding operation. See Figure 7 for the diagram.

Due to the relation (6) between the trace dis-
tance and the purified distance, the condition
(21) implies that

P
(
CT (Ψf )ÂB̂ĈR̂FAFB ,ΨÂB̂ĈR̂

s ⊗ ΦFAFB
2e0

)
≤ 2
√
δ,

(237)

with CT being the completely dephasing oper-
ation on T with respect to the basis {|xyz〉}.
Due to an extension of Uhlmann’s theorem (see
Lemma 30 in Appendix B), there exists a pure
state |Γ〉ÂB̂ĈĜAĜBR̂, which is represented in the
form of

|Γ〉 =
∑
x,y,z

√
pxyz|x〉X |y〉Y |z〉Z

|ψxyz〉ABCR|φxyz〉ĜAĜB |xyz〉T , (238)

such that

P
(
ΨÂB̂ĈR̂FAFBĜAĜB
f ,ΓÂB̂ĈĜAĜBR̂ ⊗ ΦFAFB

2e0
)

≤ 2
√
δ. (239)

Using this state, we define

|Γ̃〉ÂQMFAĜAB̂R̂EB

:= U †D|Γ〉
ÂB̂ĈĜAĜBR̂|Φ2e0 〉FAFB . (240)

Due to the isometric invariance of the purified
distance, it follows from (239) and (236) that

P
(
Ψ̃ÂQMFAĜAB̂R̂EB , Γ̃ÂQMFAĜAB̂R̂EB

)
≤ 2
√
δ.

(241)

Relations among the states defined as above are
depicted in Figure 8. Some useful properties of
these states are presented in the following, and
will be used in the proof of the converse part.
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Figure 8: Relations among the states Ψ̃, Γ̃, Ψ, Γ and Ψs are depicted.

6.1.1 Decomposition of UE and UD

Since M is a classical system, we may, without
loss of generality, assume that UE and UD are
decomposed as

UE =
∑
m

|m〉M |m〉MA⊗ vÂĈEA→ÂQFAG̃Am , (242)

UD =
∑
m

|m〉MB 〈m|M⊗ uB̂QEB→B̂ĈFBGBm . (243)

Here, MA and MB are quantum systems iso-
morphic to M with the fixed orthonormal basis
{|m〉}m, the operators um are linear isometries,
and ĜA and ĜB are such that ĜA ≡ G̃AMA and
ĜB ≡ GBMB. It follows that

UD ◦ UE =
∑
m

|m〉MA |m〉MB ⊗ (um ◦ vm). (244)

Since Z is a classical system, we may further as-
sume that vm are decomposed as

vm :=
∑
z

|z〉Z
′′
〈z|Z ⊗ vÂCEA→ÂQFAGAm,z , (245)

where Z ′′ is a system isomorphic to Z with the
fixed orthonormal basis {|z〉}z and G̃A ≡ GAZ

′′.
The operators vm,z are linear operators such that∑
m v
†
m,zvm,z = I for all z. It should be noted

that ĜA = GAMAZ
′′.

6.1.2 Properties of Ψ̃ and Ψf

Since |Ψ̃〉 is defined as (235) by UE that is in the
form of (242), it is decomposed into

|Ψ̃〉 =
∑
m

√
qm|m〉M |m〉MA |Ψ̃m〉, (246)

with some probability distribution {qm}m and
pure states {|Ψ̃m〉}m. Thus, we have

CM (Ψ̃) =
∑
m

qm|m〉〈m|M⊗|m〉〈m|MA⊗|Ψ̃m〉〈Ψ̃m|,

(247)

where CM is the completely dephasing operation
onM with respect to the basis {|m〉}m. Similarly,
due to (244), (235) and (236), the state |Ψf 〉 is
decomposed into

|Ψf 〉 =
∑
m

√
qm|m〉MA |m〉MB |Ψf,m〉. (248)

From (245), it holds that 〈z1|Z
′
〈z2|Z

′′
|Ψf 〉 ∝

δz1,z2 . Thus, the states |Ψf,m〉 are further de-
composed into

|Ψf,m〉 =
∑
z

√
qz|m|z〉Z

′′
|Ψf,m,z〉|z〉Z

′
. (249)

6.1.3 Properties of Γ

From the definition (238), it follows that

CT (Γ) =∑
x,y,z

pxyz|xyz〉〈xyz|XY Z ⊗ |ψxyz〉〈ψxyz|ABCR

⊗ |φxyz〉〈φxyz|ĜAĜB ⊗ |xyz〉〈xyz|T (250)

and that

TrT (Γ) =
∑
x,y,z

pxyz|xyz〉〈xyz|XY Z

⊗ |ψxyz〉〈ψxyz|ABCR ⊗ |φxyz〉〈φxyz|ĜAĜB .
(251)

Both states are ensembles of pure states on
ABCRĜAĜB, classically labelled by xyz on
XY Z or T , that are decoupled between ABCR
and ĜAĜB. It follows from (250) that

TrĜAĜB ⊗ C
T (Γ) = ΨÂB̂ĈR̂

s . (252)

Due to (248), (249) and Lemma 31 in Appendix
B, we may, without loss of generality, assume that
|φxyz〉 is in the form of

|φxyz〉ĜAĜB = |φ′xyz〉
GAMAĜB |z〉Z

′′
(253)
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and

|φ′xyz〉
GAMAĜB

:=
∑
m

√
pm|xyz|m〉MA |m〉MB |φm,xyz〉GAGB .

(254)
Substituting this to (250), we have

CT (Γ)AGAMAXY ZT

=
∑
x,y,z

pxyz|xyz〉〈xyz|XY Z ⊗ |z〉〈z|Z
′′

⊗ ψAxyz ⊗ φGAMA
xyz ⊗ |xyz〉〈xyz|T. (255)

Thus, the state CT (Γ) given by is classically co-
herent in ZZ ′′. Denoting pxyzpm|xyz by pm,xyz, it
follows from (250) that

CT ◦ CMA(ΓAGAMAĜBT )
=
∑
x,y,z

pm,xyz ψ
A
xyz ⊗ |m〉〈m|

MA ⊗ |m〉〈m|MB

⊗ |φm,xyz〉〈φm,xyz|GAGB ⊗ |xyz〉〈xyz|T ,
(256)

with CMA being the completely dephasing opera-
tion on MA with respect to the basis {|m〉}m. It
should also be noted that

ΓAGAMAXY Z

=
∑
x,y,z

pm,xyz|m〉〈m|MA⊗ψAxyz

⊗ φGAm,xyz⊗|xyz〉〈xyz|
XY Z . (257)

6.2 Inequalities for Proving Theorem 3
As an intermediate goal for the proof of Theorem
3, we prove that the following four inequalities
hold for the states Ψs and Γ defined by (20) and
(238), respectively:

c+ q − e ≥ Hε
min(AXCZ)Ψs −Hε

max(AXZ)Ψs

−H7ε+2
√
δ

min (GA|MAAXZ)Γ − 4f(ε),
(258)

q − e ≥ Hε
min(AC|XY Z)Ψs −Hε

max(A|XY Z)Ψs

−H5ε+2
√
δ

min (GAMA|XY Z)Γ − 3f(ε),
(259)

c+ q + e ≥ Hε
min(BY CZ)Ψs −H12ε+6

√
δ

min (BY )Ψs

+H5ε+2
√
δ

min (GAMA|XY Z)Γ − f(ε),
(260)

q + e ≥ Hε
min(BC|XY Z)Ψs −H11ε+8

√
δ

min (B|XY Z)Ψs

+H7ε+6
√
δ

min (GA|MAAXY Z)Γ − 2f(ε),
(261)

where f(x) := − log (1−
√

1− x2). The proof of
these inequalities will be given in the following
subsections. We will extensively use the proper-
ties of the smooth conditional entropies, which
are summarized in Appendix A.

6.2.1 Proof of Inequality (258)

We start with

e+ e0 +Hε
min(AXCZ)Ψs

= e+ e0 +Hε
min(AXCZ)Ψ (262)

≤ Hε
min(AXCZEA)Ψs⊗Φ2e+e0

(263)

= Hε
min(AXFAĜAQM)Ψ̃ (264)

≤ Hε
max(QM) +H4ε

min(AXFAĜA|QM)Ψ̃
+ 2f(ε) (265)

≤ c+ q +H4ε
min(AXFAĜA|M)Ψ̃ + 2f(ε), (266)

where (262) follows from ΨÂĈ
s = ΨÂĈ ; (263) from

the superadditivity of the smooth conditional min
entropy for product state (Lemma 16); (264) from
the fact that |Ψ̃〉 is obtained from |Ψ〉|Φ2e+e0 〉
by an isometry UE as (235), under which the
smooth conditional entropy is invariant (Lemma
14); (265) from the chain rule (360); and (266)
from the dimension bound (Lemma 19).

The third term in (266) is further calculated as

H4ε
min(AXFAĜA|M)Ψ̃ (267)
≤ H4ε

min(AXFAĜA|M)CM (Ψ̃) (268)

= H4ε
min(AXZ ′′FAGAMA|M)CM (Ψ̃) (269)

= H4ε
min(AXZ ′′FAGA|MA)Ψ̃ (270)

≤ H4ε+2
√
δ

min (AXZ ′′FAGA|MA)Γ̃ (271)

= H4ε+2
√
δ

min (AXZ ′′FAGA|MA)Γ⊗Φ2e0 (272)

≤ H4ε+2
√
δ

min (AXZ ′′GA|MA)Γ + e0 (273)

= H4ε+2
√
δ

min (AXZGA|MA)Γ + e0 (274)
≤ Hε

max(AXZ|MA)Γ

+H7ε+2
√
δ

min (GA|MAAXZ)Γ + e0 + 2f(ε)
(275)

≤ Hε
max(AXZ)Γ

+H7ε+2
√
δ

min (GA|MAAXZ)Γ + e0 + 2f(ε)
(276)

= Hε
max(AXZ)Ψs

+H7ε+2
√
δ

min (GA|MAAXZ)Γ + e0 + 2f(ε).
(277)
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Here, (268) follows from the monotonicity of the
smooth conditional entropy (Lemma 13); (269)
from ĜA ≡ GAMAZ

′′; (270) from Lemma 23 and
the fact thatMA is a classical copy ofM as (247);
(271) from the continuity of the smooth condi-
tional entropy (Lemma 20) and the fact that Γ̃
and Ψ̃ are 2

√
δ-close with each other as (241);

(272) from the fact that Γ̃ is converted to Γ by UD
as (240), which does not change the reduced state
on AXZ ′′FAGAMA; (273) from the dimension
bound (Lemma 19); (274) from the fact that Z ′′ is
a classical copy of Z, due to (255); (275) from the
chain rule (360); (276) from the fact that condi-
tioning reduces the entropy due to the monotonic-
ity of the smooth conditional entropy (Lemma
13); and (277) from the fact that ΓAXZ = ΨAXZ

s .
Combining these inequalities, we obtain

e+ e0 +Hε
min(AXCZ)Ψs

≤ c+ q + 2f(ε) +Hε
max(AXZ)Ψs

+H7ε+2
√
δ

min (GA|MAAXZ)Γ + e0 + 2f(ε),
(278)

which implies (258).

6.2.2 Proof of Inequality (259)

We have

e0 +H2ε+2
√
δ

min (ÂĜA|T )CT (Γ) (279)

= e0 +H2ε+2
√
δ

min (B̂ĈRĜB|T )CT (Γ) (280)

≥ H2ε+2
√
δ

min (B̂ĈRFBĜB|T )CT (Γ)⊗Φ2e0
(281)

= H2ε+2
√
δ

min (B̂REBQM |T )CT (Γ̃) (282)

≥ Hε+2
√
δ

min (B̂REBM |T )CT (Γ̃)

+Hmin(Q|B̂REBMT )CT (Γ̃) − f(ε) (283)

≥ Hε+2
√
δ

min (B̂REBM |T )CT (Γ̃) − q − f(ε). (284)

Here, (280) is from the fact that Γ is a pure state
on ÂB̂ĈR̂ĜAĜB as (238), which is transformed
by CT to an ensemble of classically-labelled pure
states, to which Lemma 27 is applicable; (281)
from the dimension bound (Lemma 19); (282)
from the fact that Γ̃ is obtained from Γ⊗Φ2e0 by
an isometry as (240) under which the smooth con-
ditional entropy is invariant (Lemma 14); (283)
from the chain rule (359); and (284) from the di-
mension bound (Lemma 18).

The first term in (284) is further calculated to
be

Hε+2
√
δ

min (B̂REBM |T )CT (Γ̃) (285)

≥ Hε
min(B̂REBM |T )CT (Ψ̃) (286)

= Hε
min(ÂFAĜAQ|T )CT (Ψ̃) (287)

= Hε
min(ÂFAĜAQM |T )CT⊗CM (Ψ̃) (288)

≥ Hε
min(ÂFAĜAQM |T )CT (Ψ̃) (289)

= Hε
min(ÂĈEA|T )CT (Ψ)⊗Φe+e0

(290)

≥ Hε
min(ÂĈ|T )CT (Ψ) + e+ e0 (291)

= Hε
min(AC|XY Z)Ψs + e+ e0. (292)

Inequality (286) is from the continuity of the
smooth conditional entropy (Lemma 20) and the
fact that Γ̃ and Ψ̃ are 2

√
δ-close with each other

as (241); (287) from Lemma 27 and the fact
that Ψ̃ is a pure state on ÂB̂R̂QMFAĜAEB as
(235), which is transformed by CT to an ensem-
ble of classically-labelled pure states; (288) from
ĜA = GAMAZ

′′ and the fact thatM is a classical
copy of MA as (247); (289) from the monotonic-
ity of the smooth conditional min entropy under
unital maps (Lemma 13); (290) from the isomet-
ric invariance of the smooth conditional entropy
(Lemma 14) and the fact that Ψ̃ is obtained by an
isometry UE from Ψ as (235); (291) from the su-
peradditivity of the smooth conditional entropy
(Lemma 16); and (292) from CT (Ψ) = Ψs and
the property of the smooth conditional entropy
for CQ states (Lemma 23).

The second term in (279) is bounded as

H2ε+2
√
δ

min (ÂĜA|T )CT (Γ)

= H2ε+2
√
δ

min (AGAMA|XY Z)Γ (293)
≤ Hε

max(A|XY Z)Γ

+H5ε+2
√
δ

min (GAMA|AXY Z)Γ + 2f(ε) (294)
= Hε

max(A|XY Z)Ψs

+H5ε+2
√
δ

min (GAMA|XY Z)Γ + 2f(ε). (295)

Here, (293) follows from ĜA ≡ GAMAZ
′′ and the

fact that CT (Γ) is classically coherent in XX ′ and
in ZZ ′′ because of (255); (294) from the chain rule
(360); and (295) from ΓAXY Z = ΨAXY Z

s and the
fact that the system A in the conditioning part
is decoupled from GAMA when conditioned by
XY Z as (251) in addition to Lemma 25.
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Combining these all together, we arrive at

e0+Hε
max(A|XY Z)Ψs

+H5ε+2
√
δ

min (GAMA|XY Z)Γ+2f(ε)
≥ Hε

min(AC|XY Z)Ψs + e+ e0 − q − f(ε).
(296)

This completes the proof of Ineq. (259).

6.2.3 Proof of Inequality (260)

We first calculate

Hε
min(BY CZ)Ψs

= Hε
min(BY CZ)Γ (297)

≤ H12ε+4
√
δ

min (BY CZFBĜB)Γ⊗Φ2e0

−H5ε+2
√
δ

min (FBĜB|BY CZ)Γ⊗Φ2e0 + f(ε)
(298)

≤ H12ε+4
√
δ

min (BY CZFBĜB)Γ⊗Φ2e0

− e0 −H5ε+2
√
δ

min (ĜB|BY CZ)Γ + f(ε)
(299)

= H12ε+4
√
δ

min (BY EBQM)Γ̃

− e0 −H5ε+2
√
δ

min (ĜB|BY CZ)Γ + f(ε).
(300)

Here, (297) follows from ΨBY CZ
s = ΓBY CZ ; (298)

from the chain rule (359); (299) from the super-
additivity of the smooth conditional entropy for
product states (Lemma 16); and (300) from the
fact that Γ̃ is obtained by an isometry U †D from
Γ⊗ Φ2e0 as (240).

The first term in (300) is further calculated to
be

H12ε+4
√
δ

min (BY EBQM)Γ̃ (301)

≤ H12ε+6
√
δ

min (BY EBQM)Ψ̃ (302)

≤ H12ε+6
√
δ

min (BY EB)Ψ̃ + c+ q (303)

= H12ε+6
√
δ

min (BY EB)Ψ⊗Φe+e0 + c+ q (304)

≤ H12ε+6
√
δ

min (BY )Ψs + e+ e0 + c+ q, (305)

where (302) follows from the continuity of the
smooth conditional entropy (Lemma 20) and
the fact that Γ̃ and Ψ̃ are 2

√
δ-close with each

other as (241); (303) from the dimension bound
(Lemma 19); (304) from the fact that Ψ̃ is con-
verted to Ψ⊗Φe+e0 by an operation UE by Alice
as (235), which does not change the reduced state

on BY EB; and (305) from the dimension bound
(Lemma 19) and ΨBY

s = ΨBY .
For the third term in (300), we have

H5ε+2
√
δ

min (ĜB|BY CZ)Γ (306)

≥ H5ε+2
√
δ

min (ĜB|BCXY Z)Γ (307)

= H5ε+2
√
δ

min (ĜB|XY Z)Γ (308)

= H5ε+2
√
δ

min (ĜA|XY Z)Γ (309)

= H5ε+2
√
δ

min (GAMA|XY Z)Γ (310)

Here, (307) is from the monotonicity of the
smooth conditional entropy (Lemma 13); (308)
from the fact that Γ is decoupled between BC
and ĜB when conditioned by XY Z as (251),
and the property of the smooth conditional en-
tropy (Lemma 25); (309) from Lemma 27 and the
fact that ΓĜAĜBXY Z is an ensemble of classically-
labelled pure states on ĜAĜB as (251); and (310)
from ĜA ≡ GAMAZ

′′, Lemma 23 and the fact
that Z ′′ is a classical copy of Z due to (255).

Combining these all together, we arrive at

Hε
min(BY CZ)Ψs

≤ H12ε+6
√
δ

min (BY )Ψs + e+ c+ q + f(ε)

−H5ε+2
√
δ

min (GAMA|XY Z)Γ. (311)

6.2.4 Proof of Inequality (261)

We have

e+ e0 +H11ε+8
√
δ

min (B|XY Z)Ψs (312)

= e+ e0 +H11ε+8
√
δ

min (ACR|XY Z)Ψs (313)

= e+ e0 +H11ε+8
√
δ

min (ÂĈR|T )Ψs (314)

= e+ e0 +H11ε+8
√
δ

min (ÂĈR|T )CT (Ψ) (315)

≥ H11ε+8
√
δ

min (ÂĈEAR|T )CT (Ψ)⊗Φ2e+e0
(316)

= H11ε+8
√
δ

min (ÂQMFAĜAR|T )CT (Ψ̃) (317)

≥ H10ε+8
√
δ

min (ÂMFAĜAR|T )CT (Ψ̃)

+Hmin(Q|ÂMFAĜART )CT (Ψ̃) − f(ε) (318)

≥ H10ε+8
√
δ

min (ÂMFAĜAR|T )CT (Ψ̃) − q − f(ε)
(319)

= H10ε+8
√
δ

min (B̂EBQ|T )CT (Ψ̃) − q − f(ε), (320)

where (313) follows from Lemma 27; (314) from
Lemma 23 and the fact that T = X ′Y ′Z ′ is a clas-
sical copy ofXY Z; (315) from Ψs = CT (Ψ), (316)
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from the dimension bound (Lemma 19), (317)
from the fact that Ψ̃ is obtained from Ψ⊗Φ2e+e0
by applying the isometry UE as (235), under
which the smooth conditional entropy is invari-
ant (Lemma 14), (318) from the chain rule (359),
(319) from the dimension bound (Lemma 18),
and (320) from Lemma 27 and the fact that Ψ̃ is a
pure state on ÂB̂R̂FAĜAQMEB as (235), which
is converted by CT to an ensemble of classically-
labelled pure states.

The first term in (320) is further calculated to
be

H10ε+8
√
δ

min (B̂EBQ|T )CT (Ψ̃) (321)

= H10ε+8
√
δ

min (B̂EBQ|T )CT⊗CM (Ψ̃) (322)

≥ H10ε+8
√
δ

min (B̂EBQ|TM)CT⊗CM (Ψ̃) (323)

= H10ε+8
√
δ

min (B̂EBQM |TMA)CT⊗CMA (Ψ̃) (324)

= H10ε+8
√
δ

min (B̂ĈFBĜB|TMA)CT⊗CMA (Ψf )
(325)

≥ H10ε+6
√
δ

min (B̂ĈFBĜB|TMA)CT⊗CMA (Γ)⊗Φ2e0

(326)

≥ H7ε+6
√
δ

min (ĜB|TMA)CT⊗CMA (Γ)⊗Φ2e0

+Hε
min(B̂ĈFB|TĜBMA)CT⊗CMA (Γ)⊗Φ2e0

− f(ε). (327)

Inequality (322) is due to the fact that CM does
not change the reduced state on B̂EBQT ; (323)
from the monotonicity of the conditional entropy
(Lemma 13); (324) from the property of the
conditional entropy for classical-quantum states
(Lemma 23) and the fact that MA is a classical
copy of M as (247); (325) from the fact that Ψf

is obtained from Ψ̃ by the isometry UD as (236),
under which the smooth conditional entropy is
invariant; (326) from the continuity (Lemma 20)
and the fact that Γ⊗ Φ2e0 is 2

√
δ-close to Ψf as

(239); and (327) from the chain rule (359).
The second term in (327) is further calculated

as

Hε
min(B̂ĈFB|TĜBMA)CT⊗CMA (Γ)⊗Φ2e0

(328)

≥ Hε
min(B̂Ĉ|TĜBMA)CT⊗CMA (Γ) + e0 (329)

≥ Hε
min(B̂Ĉ|TĜBMA)CT (Γ) + e0 (330)

= Hε
min(B̂Ĉ|T )CT (Γ) + e0 (331)

= Hε
min(B̂Ĉ|T )Ψs + e0 (332)

= Hε
min(BC|XY Z)Ψs + e0, (333)

where (329) follows from the superadditivity of
the smooth conditional entropy (Lemma 16);
(330) from the monotonicity of the smooth con-
ditional entropy (Lemma 13); (331) from Lemma
25 and the fact that the state CT (Γ) is decoupled
between B̂Ĉ and ĜBMA when conditioned by T
as (250); (332) from Equality (252); and (333)
from Lemma 23.

The first term in (327) is calculated as

H7ε+6
√
δ

min (ĜB|TMA)CT⊗CMA (Γ) (334)

= H7ε+6
√
δ

min (GA|TMA)Γ (335)

= H7ε+6
√
δ

min (GA|MAXY Z)Γ (336)

= H7ε+6
√
δ

min (GA|MAAXY Z)Γ, (337)

where (335) is from ĜB = GBMB, Equality (256)
and Lemma 27; (336) from Lemma 23 and the
fact that T = X ′Y ′Z ′ is a copy of XY Z as (238);
and (337) from Lemma 25 and the fact that the
state Γ is decoupled between A and GA when
conditioned by MAXY Z as (257).

Combining these all together, we arrive at

e+ e0 +H11ε+8
√
δ

min (B|XY Z)Ψs

≥ −q +H7ε+6
√
δ

min (GA|MAAXY Z)Γ

+Hε
min(BC|XY Z)Ψs + e0 − 2f(ε). (338)

This completes the proof of Inequality (261). �

6.3 Proof of Theorem 3 from Inequalities
(258)-(261)
Since Γ is diagonal inMAXY Z as (257), and due
to the properties of the smooth conditional en-
tropies for classical-quantum states (Lemma 25),
we have

H5ε+2
√
δ

min (GAMA|XY Z)Γ ≥ 0, (339)

H7ε+6
√
δ

min (GA|MAAXY Z)Γ ≥ 0. (340)

Thus, Inequalities (260) and (261) implies In-
equalities (30) and (31) in Theorem 3, respec-
tively. Summing up both sides in (259) and (260)
yields

c+ 2q ≥ Hε
min(AC|XY Z)Ψs −Hε

max(A|XY Z)Ψs

+Hε
min(BY CZ)Ψs

−H12ε+6
√
δ

min (BY )Ψs − 4f(ε)

= H̃
′(ε,δ)
I − 4f(ε). (341)
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Similarly, combining Inequalities (258) and (261),
we obtain

c+ 2q ≥ Hε
min(AXCZ)Ψs −Hε

max(AXZ)Ψs

+Hε
min(BC|XY Z)Ψs

−H11ε+8
√
δ

min (B|XY Z)Ψs

−H7ε+2
√
δ

min (GA|MAAXZ)Γ

+H7ε+6
√
δ

min (GA|MAAXY Z)Γ − 6f(ε)
(342)

= H̃
′(ε,δ)
II −∆′(ε,δ)Γ − 6f(ε), (343)

where we have defined

∆′(ε,δ)Γ :=H7ε+2
√
δ

min (GA|MAAXZ)Γ

−H7ε+6
√
δ

min (GA|MAAXY Z)Γ. (344)

In the following, we prove that

∆′(ε,δ)Γ ≤ ∆(ε,δ). (345)

Combining this with (343) in addition to (341),
we arrive at Inequality (29) in Theorem 3.

We start by noting that

∆′(ε,δ)Γ = H7ε+2
√
δ

min (GA|MAAX
′Z ′)Γ

−H7ε+6
√
δ

min (GA|MAAX
′Y ′Z ′)Γ

(346)

≤ Ĩ7ε+4
√
δ

min (GA : Y ′|MAAX
′Z ′)Ψ̃ (347)

The first line follows from Lemma 23 and the fact
that XY Z is a copy of X ′Y ′Z ′ as (238), and the
second line from the continuity bounds for the
smooth conditional entropy (Lemma 20) and the
definition of the smooth conditional min mutual
information (15). Hence, it suffices to prove that
there exists an operation F : ÂĈ → AGAMA

satisfying

F(ΨÂĈR̂
s ) = Ψ̃AGAMAR̂, CMA ◦ F = F (348)

and that Ψ̃ satisfies the condition

inf
{ωxyz}

P

(
Ψ̃AGAMAR̂,

∑
x,y,z

pxyzψ
AR̂
xyz ⊗ ωGAMA

xyz

)
≤ 2
√
δ. (349)

Recall that the state |Ψ̃〉 is obtained by
an encoding isometry U ÂĈEA→ÂQMFAĜA

E from
|Ψ〉|Φ2e+e0 〉 as (235), where ĜA = GAMAZ

′′. We
define an operation F : ÂĈ → AGAMA by

F(τ) := TrQMFAXZ′′ ◦ UE(τ ⊗ π
EA
2e+e0 ). (350)

Noting that UE is in the form of (242), this implies
(348). To obtain the decoupling condition (349),
note that, since Ψ̃ is converted by an operation
by Bob to Ψf as (236), it holds that Ψ̃AGAMAR̂ =
ΨAGAMAR̂
f . Thus, tracing out B̂ĈFAFBĜBXZ ′′

in (239), we obtain

P
(
Ψ̃AR̂GAMA ,ΓAR̂GAMA

)
≤ 2
√
δ. (351)

Due to (238), the state Γ is in the form of

ΓAR̂GAMA =
∑
x,y,z

pxyzψ
AR
xyz ⊗ φGAMA

xyz ⊗ |xyz〉〈xyz|T .

(352)

This implies (349) and completes the proof of In-
equality (29). �

6.4 Property of ∆(ε,δ) (Proof of Lemma 5)
Due to the definition of the smooth conditional
min mutual information (15) and (34), it is
straightforward to verify that ∆ε,δ ≥ 0. The
equality holds if Y ′ ∼= Y is a one-dimensional
system, that is, if there is no classical side infor-
mation at the decoder. In the case where there
is neither quantum message nor quantum side in-
formation at the encoder, i.e.

dA = dC = 1, Â = X, Ĉ = Z, (353)

the source state Ψs is represented as

ΨXZB̂R̂
s =

∑
x,y,z

pxyz|x〉〈x|X⊗|y〉〈y|Y⊗|z〉〈z|Z⊗ ψBR̂xyz .

(354)

Thus, for any CPTP map F : XZ → GAMA, we
have

F(Ψs)GAMAR̂ =
∑
x,y,z

pxyzω
GAMA
xz ⊗ ψR̂xyz, (355)

where ωxz := F(|x〉〈x|X⊗|z〉〈z|Z). It follows that

F(Ψs)GAMAX
′Y ′Z′

=
∑
x,z

pxzω
GAMA
xz ⊗ |xz〉〈xz|X

′Z′

⊗
(∑

y

py|xz|y〉〈y|Y
′
)
, (356)

and consequently, Ĩ7ε+4
√
δ

min (GA : Y ′|MAX
′Z ′) =

0. This implies ∆ε,δ = 0, and completes the proof
of Lemma 5. �
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7 Conclusion

In this paper, we investigated the state redistri-
bution of classical and quantum hybrid sources
in the one-shot scenario. We analyzed the costs
of classical communication, quantum communi-
cation and entanglement. We obtained the direct
bound and the converse bound for those costs in
terms of smooth conditional entropies. In most of
the cases that have been analyzed in the previous
literatures, the two bounds coincide in the asymp-
totic limit of infinitely many copies and vanish-
ingly small error. Various coding theorems for
two-party source coding tasks are systematically
obtained by reduction from our results, includ-
ing the ones that have not been analyzed in the
previous literatures.

To investigate the protocol that are covered by
our result, but have not been addressed in the
previous literature, in detail is left as a future
work. Another direction is to explore the fam-
ily of quantum communication protocols in the
presence of classical side information only at the
decoder. It would also be beneficial to analyze
the relation between our results and the one-shot
bounds for entanglement-assisted communication
of classical and quantum messages via a noisy
quantum channel [32].
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A Definitions and Properties of Smooth Entropies
In this appendix, we summarize the properties of the smooth conditional entropies that are used in
the main text. For the properties of the purified distance used in some of the proofs, see Appendix B.

A.1 Basic Properties
Lemma 12 (duality: see e.g. [29]) For any subnormalized pure state |ψ〉 on system ABC, and
for any ε > 0, Hε

max(A|B)ψ = −Hε
min(A|C)ψ.

Lemma 13 (monotonicity: Theorem 18 in [29] and Theorem 6.2 in [26]) For any ρAB ∈
S≤(HAB), 0 ≤ ε ≤

√
Tr[ρ], any unital CPTP map E : A → C and any CPTP map F : B → D, it

holds that Hε
min(A|B)ρ ≤ Hε

min(C|D)E⊗F(ρ).

Lemma 14 (isometric invariance: Lemma 13 in [29]) For any ε ≥ 0, ρAB ∈ S≤(HAB) and
any linear isometries U : A→ C and V : B → D, Hε

min(A|B)ρ = Hε
min(C|D)U⊗V(ρ).

Lemma 15 (additivity: see Section I C in [19]) For any ρ ∈ S(HAB) and σ ∈ S(HCD), it
holds that

Hmax(AC|BD)ρ⊗σ = Hmax(A|B)ρ +Hmax(C|D)σ. (357)

Lemma 16 (superadditivity: Lemma A.2 in [15]) For any states ρAB, σCD and any ε, ε′ ≥ 0,
it holds that

Hε+ε′
min (AC|BD)ρ⊗σ ≥ Hε

min(A|B)ρ+Hε′
min(C|D)σ. (358)

Lemma 17 (chain rule: see [31]) For any ε > 0, ε′, ε′′ ≥ 0 and ρ ∈ S≤(HABC), it holds that

Hε+ε′+2ε′′
min (AB|C)ρ ≥ Hε′

min(B|C)ρ +Hε′′
min(A|BC)ρ − f(ε), (359)

Hε′
min(AB|C)ρ ≤ Hε′′

max(B|C)ρ +Hε+ε′+2ε′′
min (A|BC)ρ + 2f(ε), (360)

where

f(ε) := − log (1−
√

1− δ2). (361)

Lemma 18 (dimension bounds: Corollary of Lemma 20 in [29]) For any state ρAB and ε ≥ 0,
it holds that

Hε
min(A|B)ρ ≥ − log dA, (362)

Hε
max(A|B)ρ ≤ log dA. (363)

Lemma 19 (dimension bound: Lemma 21 in [9]) For any state ρABC and ε > 0, it holds that

Hε
min(AB|C)ρ ≤ Hε

min(A|C)ρ + log dB. (364)

Lemma 20 (continuity) For any ε, δ ≥ 0, any ρAB and σAB ∈ Bδ(ρ), it holds that

Hε+δ
min (A|B)ρ ≥ Hε

min(A|B)σ. (365)

Proof: Let σ̂AB ∈ Bε(σ) be such that Hε
min(A|B)σ = Hmin(A|B)σ̂. Due to the triangle inequality

for the purified distance, it holds that

P (ρ, σ̂) ≤ P (ρ, σ) + P (σ, σ̂) ≤ ε+ δ, (366)

which implies σ̂ ∈ Bε+δ(ρ). Thus, we obtain Inequality (365) as

Hε
min(A|B)σ = Hmin(A|B)σ̂ ≤ sup

ρ̂∈Bε+δ(ρ)
Hmin(A|B)ρ̂ = Hε+δ

min (A|B)ρ. (367)

�

Accepted in Quantum 2021-12-24, click title to verify. Published under CC-BY 4.0. 28



Lemma 21 (one-dimensional system.) Suppose that dA = 1. For any ε ≥ 0 and ρ ∈ S(HAB), it
holds that

0 ≤ Hε
min(A|B)ρ ≤ − log (1− 2ε), (368)

0 ≥ Hε
max(A|B)ρ ≥ log (1− 2ε). (369)

Proof: Since dA = 1, there exists a fixed vector |e〉 ∈ HA such that IA = |e〉〈e| and that any
ρ̃ ∈ S≤(HAB) is represented as |e〉〈e|A ⊗ ρ̃B. Due to the definition of the smooth conditional min
entropy, we have

Hε
min(A|B)ρ ≥ Hmin(A|B)ρ (370)

= sup
σB∈S=(HB)

Hmin(A|B)ρ|σ (371)

≥ Hmin(A|B)ρAB |ρB (372)
= sup{λ ∈ R|2−λIA ⊗ ρB ≥ ρAB} (373)
= sup{λ ∈ R|2−λ|e〉〈e|A ⊗ ρB ≥ |e〉〈e|A ⊗ ρB} (374)
= 0. (375)

This implies the first inequality in (368). To prove the second inequality in (368), let ρ̂ ∈ Bε(ρ) and
σB ∈ S=(HB) be such that

Hε
min(A|B)ρ = Hmin(A|B)ρ̂ = Hmin(A|B)ρ̂|σ. (376)

By definition, it holds that

2−Hε
min(A|B)ρIA ⊗ σB ≥ ρ̂AB, (377)

which is equivalent to

2−Hε
min(A|B)ρ |e〉〈e|A ⊗ σB ≥ |e〉〈e|A ⊗ ρ̂B. (378)

By taking the trace in both sides, we obtain

2−Hε
min(A|B)ρ ≥ Tr[ρ̂]. (379)

The R.H.S. of the above inequality is evaluated as

Tr[ρ̂] = ‖ρ̂‖1 ≥ ‖ρ‖1 − ‖ρ− ρ̂‖1 ≥ 1− 2ε, (380)

where the last line follows from (6) and the condition ρ̂ ∈ Bε(ρ). This implies the second inequality
in (368). Inequality (369) follows due to the duality relation (Lemma 12). �

A.2 Classical-Quantum States

Lemma 22 (Lemma A.5 in [15]) For any state ρABK ∈ S=(HABK) in the form of

ρABK =
∑
k

pkρ
AB
k ⊗ |k〉〈k|K , (381)

where ρk ∈ S=(HAB), 〈k|k′〉 = δk,k′ and {pk}k is a normalized probability distribution, it holds that

Hmin(A|BK)ρ = − log
(∑

k

pk · 2−Hmin(A|B)ρk

)
. (382)
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Lemma 23 (Lemma A.7 in [15]) For any state ρABK1K2 ∈ S≤(HABK1K2) in the form of

ρABK1K2 =
∑
k

pkρ
AB
k ⊗ |k〉〈k|K1 ⊗ |k〉〈k|K2 , (383)

where 〈k|k′〉 = δk,k′, and for any ε ≥ 0, it holds that

Hε
min(AK1|BK2)ρ = Hε

min(A|BK2)ρ = Hε
min(A|BK1)ρ. (384)

Lemma 24 (Lemma 29 in [33]) In the same setting as in Lemma 23, it holds that

Hε
max(AK1|BK2)ρ = Hε

max(A|BK2)ρ = Hε
max(A|BK1)ρ. (385)

Lemma 25 Consider a state in the form of

ρACK =
∑
k

pkρ
A
k ⊗ σCk ⊗ |k〉〈k|

K . (386)

For any ε > 0, it holds that

Hε
min(A|CK)ρ = Hε

min(A|K)ρ ≥ 0. (387)

Proof: It is straightforward to verify that there exists a quantum operation E : K → CK such that
ρACK = E(ρAK). Due to the monotonicity of the smooth conditional min entropy under operations
on the conditioning system, we have

Hε
min(A|K)ρAK ≤ Hε

min(A|CK)ρACK = Hε
min(A|CK)E(ρAK) ≤ Hε

min(A|K)ρAK , (388)

which implies Hε
min(A|CK)ρ = Hε

min(A|K)ρ. The non-negativity follows due to Lemma 22 as

Hε
min(A|K)ρ ≥ Hmin(A|K)ρ = − log

(∑
k

pk · 2−Hmin(A)ρk

)
≥ − log

(∑
k

pk

)
= 0, (389)

which completes the proof. �

A.3 Classically-labelled Pure States

Lemma 26 Consider a state in the form of

ρABCK =
∑
k

pk|ψk〉〈ψk|ABC ⊗ |k〉〈k|K . (390)

For any ε > 0, it holds that

Hε
max(A|BK)ρ = −Hε

min(A|CK)ρ. (391)

Proof: It is straightforward to verify that a purification of the state ρ, defined by (390), is given by

|ψρ〉ABCKK
′

=
∑
k

√
pk|ψk〉ABC |k〉K |k〉K

′
. (392)

Due to the duality of the smooth conditional entropies (Lemma 12), we have

Hε
max(A|BK)ρ = Hε

max(A|BK)ψρ = −Hε
min(A|CK ′)ψρ = −Hε

min(A|CK)ρ, (393)

which completes the proof. �
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Lemma 27 Consider the same setting as in Lemma 26. For any ε > 0, it holds that

Hε
min(A|K)ρ = Hε

min(B|K)ρ. (394)

Proof: To prove (394), let ρ̂AK ∈ Bε(ρ) and ς ∈ S=(HK) be such that

Hε
min(A|K)ρ = Hmin(A|K)ρ̂ = Hmin(A|K)ρ̂|ς . (395)

With C being the completely dephasing operation on K with respect to the basis {|k〉}k, it holds that

P (C(ρ̂), C(ρ)) ≤ P (ρ̂), ρ) ≤ ε. (396)

In addition, if

2−λIA ⊗ ςK ≥ ρ̂AK , (397)

then

2−λIA ⊗ C(ς)K ≥ idA ⊗ CK(ρ̂AK). (398)

Thus, without loss of generality, we may assume that both ρ̂AK and ς are diagonal in {|k〉}k. That is,
we may assume that ρ̂AK and ς are in the form of

ρ̂AK =
∑
k

p̂kρ̂
A
k ⊗ |k〉〈k|

K , ς =
∑
k

qk|k〉〈k|. (399)

Suppose that the Schmidt decomposition of |ψk〉 is given by

|ψk〉 =
∑
j

√
µj|k|ej|k〉A|fj|k〉B, (400)

Define linear operators vk : HA → HB and V : HA ⊗HK → HB ⊗HK by

vk :=
∑
j

|fj|k〉B〈ej|k|A (∀k) (401)

and V :=
∑
k vk ⊗ |k〉〈k|

K . It is straightforward to verify that ρBK = V ρAKV †. Thus, due to the
monotonicity of the purified distance under trace non-increasing CP maps (Lemma 7 in [29]), it holds
that

P (ρBK , V ρ̂AKV †) ≤ P (ρAK , ρ̂AK) ≤ ε. (402)

Applying V to the both sides in condition (397), it follows that

2−λV (IA ⊗ ςK)V † ≥ V ρ̂AKV †. (403)

Noting that IB ≥ (v†kvk)B, this implies that

2−λIB ⊗ ςK ≥ V ρ̂AKV †. (404)

Thus, we arrive at

Hε
min(A|K)ρ ≤ Hε

min(B|K)ρ. (405)

By exchanging the roles of A and B, we also obtain the converse inequality. This completes the proof
of Equality (394).
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B Properties of The Purified Distance
We summarize the properties of the purified distance, used in Appendix A to prove the properties of
the smooth conditional entropies.

Lemma 28 (monotonicity: Lemma 7 in [29]) For any subnormalized states ρ, σ ∈ S≤(H) and
for any completely positive trace non-increasing map E, it holds that P (ρ, σ) ≥ P (E(ρ), E(σ)). Conse-
quently, for any linear isometry U , it holds that P (ρ, σ) = P (U(ρ),U(σ))

Lemma 29 For any normalized state ρ on system A and any normalized pure state |φ〉 on system
AB, the purified distance satisfies

P (ρA, φA) = min
|ψ〉AB

P (|ψ〉〈ψ|, |φ〉〈φ|) =
√

1− max
|ψ〉AB

|〈ψ|φ〉|2, (406)

where the minimum and the maximum are taken over all purifications |ψ〉 of ρ.

Proof: Follows from Definition 4 and Lemma 8 in [29]. �

Lemma 30 Consider a state Γ on KAB and a pure state |Ψ〉 on KABC in the form of

|Ψ〉 =
∑
k

√
pk|k〉K |ψk〉ABCD, Γ =

∑
k

pk|k〉〈k|K ⊗ |γk〉〈γk|AB. (407)

There exists a set of pure states {|φk〉}k on CD such that, for the state

|Γ̃〉 =
∑
k

√
pk|k〉K |γk〉AB|φk〉CD, (408)

it holds that

P
(
|Γ̃〉〈Γ̃|, |Ψ〉〈Ψ|

)
= P

(
ΓKAB, CK ◦TrCD(|Ψ〉〈Ψ|)

)
, (409)

where C is the completely dephasing operation on K with respect to the basis {|k〉}k.

Proof: It is straightforward to verify that a purification of the state CK ◦TrCD(|Ψ〉〈Ψ|) is given by

|Ψp〉 =
∑
k

√
pk|k〉K |ψk〉ABCD|k〉K

′
, (410)

and that any purification of the state ΓKAB to the system KABCDK ′ is in the form of

|Γp〉 =
∑
k

√
pk|k〉K |γk〉AB|ξk〉CDK

′
, (411)

with {|ξk〉}k being a set of orthogonal states. A simple calculation yields

|〈Ψp|Γp〉| =
∑
k

pk|(〈ψk|ABCD〈k|K
′)(|γk〉AB|ξk〉CDK

′)|. (412)

The maximum of the above quantity over all orthogonal {|ξk〉}k is achieved by {|ξk〉}k that is decom-
posed into |ξk〉CDK

′ = |φk〉CD|k〉K
′ . Using this {|φk〉}k, we define a state |Γ̃〉 by

|Γ̃〉 :=
∑
k

√
pk|k〉K |γk〉AB|φk〉CD (413)

and a purification of ΓKAB by

|Γ∗p〉 :=
∑
k

√
pk|k〉K |γk〉AB|φk〉CD|k〉K

′
. (414)
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It follows that

max
{ξk}k

|〈Ψp|Γp〉| = |〈Ψp|Γ∗p〉| (415)

=
∑
k

pk|〈ψk|ABCD|γk〉AB|φk〉CD| (416)

= |〈Ψ|Γ̃〉|. (417)

In addition, the states |Ψp〉 and |Γ∗p〉 are obtained by a linear isometry PK→KK′ :=
∑
k |k〉

K |k〉K
′
〈k|

from |Ψ〉 and |Γ̃〉as

|Ψp〉 = PK→KK
′ |Ψ〉, |Γ∗p〉 = PK→KK

′ |Γ̃〉 (418)

Thus, due to the property of the purified distance (Lemma 29 and Lemma 28), it follows that

P
(
|Γ̃〉〈Γ̃|, |Ψ〉〈Ψ|

)
= P

(
|Γ∗p〉〈Γ∗p|, |Ψp〉〈Ψp|,

)
= P

(
ΓKAB, CK ◦TrCD(|Ψ〉〈Ψ|)

)
, (419)

which completes the proof. �

Lemma 31 Consider the same setting as in Lemma 30, and assume that C and D are composite
systems C0MC and D0MD, respectively, where MC and MD are isomorphic quantum systems with an
orthonormal basis {|m〉}m. In addition, suppose that the state Ψ is classically coherent in MCMD,
i.e., that

‖〈m|MC 〈m′|MD |Ψ〉‖ ∝ δm,m′ . (420)

Then, without loss of generality, we may assume that the states |φk〉 are classically coherent inMCMD.

Proof: It is straightforward to verify that the state Ψ is classically coherent in MCMD if and only
if all ψk are classically coherent in MCMD. Consequently, the maximum of each term in (416) is
achieved by φk that is classically coherent in MCMD, which completes the proof. �

Lemma 32 (gentle measurement: Lemma 5 in [20] and Corollary of Lemma 7 in [5]) Let
ε ∈ (0, 1], ρ ∈ S(H) and Λ ∈ L(H) be such that 0 ≤ Λ ≤ I and Tr[Λρ] ≥ 1− ε. It holds that

‖ρ−
√

Λρ
√

Λ‖1 ≤ 2
√
ε, P (ρ,

√
Λρ
√

Λ) ≤
√

2ε. (421)
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Ĉ

| �,1i

| �i

| i

|�1i

G�U

W

ZR

Z

C1C3

ZL

| �,2i

| �i

|�2i
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Figure 9: The construction of encoding and decoding operations in the proof of the direct part is depicted. (i) is
obtained by cancelling out GσU and (GσU)†, corresponding to Inequality (171) obtained from (153) and (154). (ii)
follows from the fact that the state |Ψσ〉 is obtained from |Ψ〉 by applying P and Gσ, due to (158). In (iii), we trace
out Z ≡ ZLZR and apply the completely dephasing operation C to X ′Y ′Z ′. See Inequalities (173) and (176) that
are obtained from (171). Note that the source state Ψs is obtained from |Ψ〉 and |Ψσ〉 as (160).
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