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Quantum circuit architecture search for variational quantum
algorithms
Yuxuan Du1,2✉, Tao Huang2,6, Shan You3, Min-Hsiu Hsieh 4,5✉ and Dacheng Tao 1,2✉

Variational quantum algorithms (VQAs) are expected to be a path to quantum advantages on noisy intermediate-scale quantum
devices. However, both empirical and theoretical results exhibit that the deployed ansatz heavily affects the performance of
VQAs such that an ansatz with a larger number of quantum gates enables a stronger expressivity, while the accumulated noise
may render a poor trainability. To maximally improve the robustness and trainability of VQAs, here we devise a resource and
runtime efficient scheme termed quantum architecture search (QAS). In particular, given a learning task, QAS automatically seeks
a near-optimal ansatz (i.e., circuit architecture) to balance benefits and side-effects brought by adding more noisy quantum gates
to achieve a good performance. We implement QAS on both the numerical simulator and real quantum hardware, via the IBM
cloud, to accomplish data classification and quantum chemistry tasks. In the problems studied, numerical and experimental
results show that QAS cannot only alleviate the influence of quantum noise and barren plateaus but also outperforms VQAs with
pre-selected ansatze.
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INTRODUCTION
The variational quantum learning algorithms (VQAs)1,2, including
quantum neural network3–5 and variational quantum eigen-
solvers (VQEs)6–9, are a class of promising candidates to use
noisy intermediate-scale quantum (NISQ) devices to solve
practical tasks that are beyond the reach of classical computers10.
Recently, the effectiveness of VQAs toward small-scale learning
problems such as low-dimensional synthetic data classification,
image generation, and energy estimation for small molecules has
been validated by experimental studies11–14. Despite the promis-
ing achievements, the performance of VQAs will degrade
significantly when the qubit number and circuit depth become
large, caused by the tradeoff between the expressivity and
trainability15. More precisely, under the NISQ setting, involving
more quantum resources (e.g., quantum gates) to implement the
ansatz results in both a positive and negative aftermath. On the
one hand, the expressivity of the ansatz, which determines
whether the target concept will be covered by the represented
hypothesis space, will be strengthened by increasing the number
of trainable gates16–19. On the other hand, a deep circuit depth
implies that the gradient information received by the classical
optimizer is full of noise and the valid information is exponentially
vanished, which may lead to divergent optimization or barren
plateaus20–24. With this regard, it is of great importance to design
an efficient approach to dynamically control the expressivity and
trainability of VQAs to attain good performance.
Initial studies have developed two leading strategies to address

the above issue. The first one is quantum error mitigation
techniques. Representative methods to suppress the noise effect
on NISQ machines are quasi-probability25,26, extrapolation27,
quantum subspace expansion28, and data-driven methods29,30.
In parallel to quantum error mitigation, another way is construct-
ing ansatz with a variable structure. Compared with traditional

VQAs with the fixed ansatz, this approach cannot only maintain a
shallow depth to suppress noise and trainability issues, but also
keep sufficient expressibility to contain the solution. Current
literature generally adopts brute-force strategies to design such a
variable ansatz31–33. This implies that the required computational
overhead is considerable, since the candidates of possible ansatze
scale exponentially with respect to the qubits count and the
circuit depth. How to efficiently seek a near-optimal ansatz
remains largely unknown.
In this study, we devise a quantum architecture search scheme

(QAS) to effectively generate variable structure ansatze, which
considerably improves the learning performance of VQAs. The
advantage of QAS is ensured by unifying the noise inhibition and
the enhancement of trainability for VQAs as a learning problem. In
doing so, QAS does not request any ancillary quantum resource
and its runtime is almost the same as conventional VQA-based
algorithms. Moreover, QAS is compatible with all quantum
platforms, e.g., optical, trapped-ion, and superconducting quan-
tum machines, since it can actively adapt to physical restrictions
and weighted noise of varied quantum gates. In addition, QAS can
seamlessly integrate with other quantum error mitigation
methods25–27 and solutions for resolving barren plateaus21,34–36.
Celebrated by the universality and efficacy, QAS contributes to a
broad class of VQAs on various quantum machines.

RESULTS
The mechanism of VQAs
Before moving on to present QAS, we first recap the mechanism
of VQAs. Given an input Z and an objective function L, VQA
employs a gradient-based classical optimizer that continuously
updates parameters in an ansatz (i.e., a parameterized quantum
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circuit) U(θ) to find the optimal θ*, i.e.,

θ� ¼ argmin
θ2C

Lðθ;ZÞ; (1)

where C � Rd is a constraint set, and θ are adjustable parameters
of quantum gates16,18. For instance, when VQA is specified as an
eigen-solver6, Z refers to a Hamiltonian and the objection
function could be chosen as L ¼ TrðZ ψðθÞj i ψðθÞh jÞ, where
ψðθÞj i is the quantum state generated by U(θ). For compatibility,
throughout the whole study, we focus on exploring how QAS
enhances the trainability of one typical heuristic ansatz—hard-
ware-efficient ansatz11,13. Such an ansatz is supposed to obey a
multi-layer layout,

UðθÞ ¼
YL

l¼1
UlðθÞ 2 SUð2NÞ; (2)

where Ul(θ) consists of a sequence of parameterized single-qubit
and two-qubit quantum gates, and L denotes the layer number.
Note that the arrangement of quantum gates in Ul(θ) is flexible,
enabling VQAs to adequately use available quantum resources
and to accord with any physical restriction. Remarkably, the
achieved results can be effectively extended to other representa-
tive ansatze.

The scheme of quantum architecture search
Let us formalize the noise inhibition and trainability enhancement
for VQAs as a learning task. Denote the set S as the ansatze pool
that contains all possible ansatze (i.e., circuit architectures) to build
U(θ) in Eq. (2). The size of S is determined by the qubits count N,
the maximum circuit depth L, and the number of allowed types of
quantum gates Q, i.e., jSj ¼ OðQNLÞ. Throughout the whole study,
when no confusion occurs, we denote a as the ath ansatz U(θ, a)
in S. Notably, the performance of VQAs heavily relies on the
employed ansatz selected from S. Suppose the quantum system
noise, induced by a, is modeled by the quantum channel Ea.

Taking into account of the circuit architecture information and the
related noise, the objective of VQAs can be rewritten as

ðθ�; a�Þ ¼ arg min
θ2C;a2S

Lðθ; a;Z; EaÞ: (3)

The learning problem formulated in Eq. (3) forces the optimizer to
output the best quantum circuit architecture a* by assessing both
the effect of noise and the trainability. Notably, Eq. (3) is
intractable via the two-stage optimization strategy that is broadly
used in previous literature31–33, i.e., individually optimizing all
possible ansatze from scratch and then ranking them to obtain
(θ*, a*). This is because the classical optimizer needs to store and
update O(dQNL) parameters, which forbids its applicability toward
large-scale problems in terms of N and L.
The proposed QAS belongs to the one-stage optimization

strategy. Different from the two-state optimization strategy that
suffers from the computational bottleneck, this strategy ensures
the efficiency of QAS. In particular, for the same number of
iterations T, the memory cost of QAS is at most T times more than
that of conventional VQAs. Meanwhile, their runtime complexity
is identical. The protocol of QAS is shown in Fig. 1. Two key
elements of QAS are supernet and weight sharing strategy. Both
of them contribute to locate a good estimation of (θ*, a*) within a
reasonable runtime and memory usage. Intuitively, weight
sharing strategy in QAS refers to correlating parameters among
different ansatze. In this way, the parameter space, which
amounts to the total number of trainable parameters required
to be optimized in Eq. (3), can be effectively reduced. As for
supernet, it plays two significant roles in QAS: (1) supernet serves
as the ansatz indicator, which defines the ansatze pool S (e.g.,
determined by the maximum circuit depth and the choices of
quantum gates) to be searched and (2) supernet parameterizes
each ansatz in S via the specified weight sharing strategy. QAS
includes four steps, i.e., initialization (supernet setup), optimiza-
tion, ranking, and fine tuning. We now elucidate these four steps.

Fig. 1 Paradigm of the quantum architecture search scheme (QAS). In Step 1, QAS sets up supernet A, which defines the ansatze pool S to
be searched and parameterizes each ansatz in S via the specified weight sharing strategy. All possible single-qubit gates are highlighted by
hexagons and two-qubit gates are highlighted by the brown rectangle. The unitary Ux refers to the data encoding layer. In Step 2, QAS
optimizes the trainable parameters for all candidate ansatzes. Given the specified learning task L, QAS iteratively samples an ansatz aðtÞ 2 S
from A and optimizes its trainable parameters to minimize L. A correlates parameters among different ansatzes via weight sharing strategy.
After T iterations, QAS moves to Step 3 and exploits the trained parameters θ(T) and the predefined L to compare the performance among K
ansatze. The ansatz with the best performance is selected as the output, indicated by a red smiley face. Last, in Step 4, QAS utilizes the
searched ansatz and the parameters θ(T) to retrain the quantum solver with few iterations.
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(1) Initialization: QAS employs a supernet A as an indicator for
the ansatze pool S. Concretely, the setup of the supernet A
amounts to leveraging the indexing technique to track S using a
linear memory cost. For instance, when N= 4, L= 1, and the
choices of the quantum gates are {RX, RY, RZ} with Q= 3, A indexes
RX, RY, RZ as “0”, “1”, “2”, respectively. With setting the range of a, b,
c, d as {0, 1, 2}, the index list [“a”, “b”, “c”, “d”] tracks S, e.g., [“0”, “0”,
“0”, “0”] describes the ansatz �4

i¼1RXðθiÞ and [“2”, “2”, “2”, “2”]
describes the ansatz �4

i¼1RZðθiÞ. See Method for the construction
of the ansatze pool S involving two-qubit gates. Meantime, as
detailed below, A parameterizes all candidate ansatze via weight
sharing strategy to reduce parameter space.
(2) Optimization: QAS jointly optimizes {(a, θ)} in Eq. (3). Similar

to conventional VQAs, QAS optimizes trainable parameters in an
iterative manner. At the tth iteration, QAS uniformly samples an
ansatz a(t) from S (i.e., an index list indicated by A). To minimize L
in Eq. (3), the parameters attached to the ansatz a(t) are updated to
θðtþ1Þ ¼ θðtÞ � η∂LðθðtÞ; aðtÞ;Z; EaðtÞ Þ=∂θðtÞ, with η being the learn-
ing rate. The total number of updating is set as T. Note that since
the optimization of VQAs is NP-hard37, empirical studies generally
restrict T to be less than O(poly(QNL)) to obtain an estimation
within a reasonable runtime cost.
To avoid the computational issue encountered by the two-stage

optimization method, QAS leverages the weight sharing strategy
developed in deep neural architecture search38 to parameterize
ansatze in S via a specified correlation rule. Concretely, for any
ansatz a0 2 S, if the layout of the single-qubit gates of the lth layer
between a0 and a(t) is identical with ∀ l∈ [L], then A uses the
training parameters θ(t) assigned to Ul(θ(t), a(t)) to parametrize
Ulðθ0; a0Þ, regardless of variations in the layout of other layers.
We remark that the parameterization shown above is efficient,
which can be accomplished by comparing the generated index list
and the stored index lists. In addition, the above-correlated
updating rule implies that the parameters of unsampled ansatze
are never stored in classical memory. To this end, even though the
size of the ansatze pool exponentially scales in terms of N and L,
QAS harnesses supernet and weight sharing strategy to guarantee
its applicability toward large-scale problems.
(3) Ranking: after T iterations, QAS uniformly samples K ansatze

from S (i.e., K index lists generated by A), ranks their performance,
and then assigns the ansatz with the best performance as the
output to estimate a*. Mathematically, denoted K as the set
collecting the sampled K ansatze, the output ansatz is

argmin
a2K

LðθðTÞ; a;Z; EaÞ: (4)

In QAS, K is a hyper-parameter to balance the tradeoff the
efficiency and performance. To avoid the exponential runtime
complexity of QAS, the setting of K should polynomially scale with
N, L, and Q. Besides random sampling, other methods such as
evolutionary algorithms can also be used to establish K with
better performance. See Supplementary D for details.
(4) Fine tuning: QAS employs the trained parameters θ(T) to fine

tune the output ansatz in Eq. (4).
We empirically observe fierce competition among different

ansatze in S when optimizing QAS (see Supplementary B for
details). Namely, suppose S can be decomposed into two subsets
Sgood and Sbad, where the subset Sgood (Sbad) collects ansatze in
the sense that they all attain relatively good (bad) performance via
independently training. For instance, in the classification task,
the ansatz in Sgood (Sbad) promises a classification accuracy above
(below) 99%. However, when we apply QAS to accomplish the
same classification task, some ansatze in Sbad may outperform
certain ansatze in Sgood. This observation hints the hardness of
optimizing correlated trainable parameters among all ansatze
accurately, where the learning performance of a portion of ansatze
in Sgood is no better than training them independently.

To relieve fierce competition among ansatze in S and further
boost performance of QAS, we slightly modify the initialization and
optimization steps of QAS. Specifically, instead of exploiting a single
supernet, QAS involves W supernets to optimize the objective
function in Eq. (3). The weight sharing strategy applied to W
supernets is independent of each other, where the parameters
corresponding to W supernets are separately initialized and
updated. At the training and ranking stages,W supernets separately
utilize a weight sharing strategy to parameterize the sampled
ansatz a(t) to obtain W values of Lðθðt;wÞ; aðtÞ;Z; EaÞ, where θ(t,w)

refers to the parameters corresponding to the wth supernet. Then,
the parameters applied to the ansatz a(t) is categorized into the
w0th supernet when w0 ¼ arg min

w2½W�
Lðθðt;wÞ; aðtÞ;Z; EaÞ.

We last emphasize how QAS enhances the learning perfor-
mance of hardware-efficient ansatz U(θ) in Eq. (2). Recall that the
central aim of QAS is to seek a good ansatz associated with
optimized parameters to minimize Lðθ; a;Z; EaÞ in Eq. (3). In
other words, given U ¼ QL

l¼1 UlðθÞ, a good ansatz is located by
dropping some unnecessary multi-qubit gates and substituting
single-qubit gates in Ul(θ) for ∀ l∈ [L]. Following this routine,
several studies have proved that removing multi-qubit gates to
reduce the entanglement of the ansatz contributes to alleviate
barren plateaus39,40. In addition, a recent study41 unveiled that the
choice of the quantum circuit architecture can significantly affect
the expressive power of the ansatz and the learning performance.
Since the objective function of QAS implicitly evaluates the effect
of different ansatze, our proposal can be employed as a powerful
tool to enhance the learning performance of VQAs. Refer to
Method for further explanation about the role of supernet,
weight sharing, and analysis of the memory cost and runtime
complexity of QAS.

Simulation and experimental results
The proposed QAS is universal and facilitates a wide range of VQA-
based learning tasks, e.g., machine learning42–45, quantum
chemistry6,14, and quantum information processing46,47. In the
following, we separately apply QAS to accomplish a classification
task and a VQE task to confirm its capability toward the
performance enhancement. All numerical simulations are imple-
mented in Python in conjunction with the PennyLane and the
Qiskit packages48,49. Specifically, PennyLane is the backbone to
implement QAS and Qiskit supports different types of noisy
models. We defer the explanation of basic terminologies in
machine learning and quantum chemistry in Appendices B and C.
Here we first apply QAS to achieve a binary classification task

under both the noiseless and noisy scenarios. Denote D as the
synthetic dataset, where its construction rule follows the proposal
of the quantum kernel classifier11. The dataset D contains n=
300 samples. For each example {x(i), y(i)}, the feature dimension of
the input x(i) is 3 and the corresponding label y(i) ∈ {0, 1} is binary.
Examples of D are shown in Fig. 2. At the data preprocessing
stage, we split the dataset D into the training set Dtr , validation
set Dva, and test set Dte with size ntr= 100, nva= 100, and nte=
100. The explicit form of the objective function is

L ¼ 1
ntr

Xntr
i¼1

~yðiÞðA; xðiÞ; θÞ � yðiÞ
� �2

; (5)

where fxðiÞ; yðiÞg 2 Dtr and ~yðiÞðA; xðiÞ; θÞ 2 ½0; 1� is the output of
the quantum classifier (i.e., a function taking the input x(i), the
supernet A, and the trainable parameters θ). The training
(validation and test) accuracy is measured by

P
i1gð~yðiÞÞ¼yðiÞ=ntr

(
P

i1gð~yðiÞÞ¼yðiÞ=nva and
P

i1gð~yðiÞÞ¼yðiÞ=nte) with gð~yðiÞÞ being the
predicted label for x(i). We also apply the quantum kernel classifier
proposed by11 to learn D and compare its performance with QAS,
where the implementation of such a quantum classifier is shown
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in Fig. 2b. See Supplementary B for more discussion about the
construction of D and the employed quantum kernel classifier.
The hyper-parameters for QAS are as follows. The number of

supernets is W= 1 and W= 5, respectively. The circuit depth for
all supernets is set as L= 3. The search space of QAS is formed by
two types of quantum gates. Specifically, at each layer Ul(θ), the
parameterized gates are fixed to be the rotational quantum gate
along Y-axis RY. For the two-qubit gates, denoted the index of
three qubits as (0, 1, 2), QAS explores whether applying CNOT
gates to the qubits pair (0, 1), (0, 2), (1, 2) or not. Hence, the size of
S equals to jSj ¼ 83. The number of sampled ansatze for ranking
is set as K= 500. The setting K � jSj enables us to understand
how the number of supernets W, the number of epochs T, and the
system noise affect the learning performance of different ansatze
in the ranking stage.
Under the noiseless scenario, the performance of QAS with three

different settings is exhibited in Fig. 2d. In particular, QAS withW=
1 and T= 10 attains the worst performance, where the validation
accuracy for most ansatze concentrates on 50–60%, highlighted by
the green bar. With increasing the number of epochs to T= 400
and fixing W= 1, the performance is slightly improved, i.e., the
number of ansatze that achieves validation accuracy above 90% is
30, highlighted by the yellow bar. When W= 5 and T= 400, the
performance of QAS is dramatically enhanced, where the validation
accuracy of 151 ansatze is above 90%. The comparison between the
first two settings indicates the correctness of utilizing QAS to
accomplish VQA-based learning tasks in which QAS learns useful
feature information and achieves better performance with respect
to the increased epoch number T. The varied performance of the
last two settings reflects the fierce competition phenomenon
among ansatze and validates the feasibility to adopt W > 1 to boost
the performance of QAS. We retrain the output ansatz of QAS under
the setting: W= 5 and T= 400, both the training and test
accuracies converge to 100% within 15 epochs, which is identical
to the original quantum kernel classifier.
The performance of the original quantum kernel classifier is

evidently degraded when the depolarizing error for the single-
qubit and two-qubit gates is set as 0.05 and 0.2, respectively.
As shown in the lower plot of Fig. 2f, the training and test
accuracies of the original quantum kernel classifier drop to 50%

(almost conduct a random guess) under the noisy setting. The
degraded performance is caused by the large amount of
accumulated noise, where the classical optimizer fails to receive
the valid optimization information. By contrast, QAS can achieve
good performance under the same noise setting. As shown in
Fig. 2e, with setting W= 5 and T= 400, the validation accuracy of
115 ansatze is above 90% under the noisy setting. The ansatz that
attains the highest validation accuracy is shown in Fig. 2c.
Notably, compared with the original quantum kernel classifier in
Fig. 2b, the searched ansatz contains fewer CNOT gates. This
implies that, under the noisy setting formulated above, QAS
suppresses the noise effect and improves the training perfor-
mance by adopting a few CNOT gates. When we retrain the
obtained ansatz with 10 epochs, both the train and test
accuracies achieve 100%, as shown in the upper plot of Fig. 2f.
These results indicate the feasibility to apply QAS to achieve noise
inhibition and trainability enhancement.
We defer the omitted simulation results and the exploration of

fierce competition to Supplementary B. In particular, we assess the
learning performance of the quantum classifier with the hardware-
efficient ansatz and the ansatz searched by QAS under the noise
model extracted from the real quantum device, i.e., “Ibmq_lima”.
The achieved simulation result indicates that the ansatz obtained
by QAS outperforms the conventional quantum classifier.
We next apply QAS to find the ground state energy of the

Hydrogen molecule13,50 under both the noiseless and noisy
scenarios. The molecular hydrogen Hamiltonian is formulated as

Hh ¼ gþP3
i¼0

giZi þ
P3

i¼1;k¼1;i<k
gi;kZiZk þ gaY0X1X2Y3

þgbY0Y1X2X3 þ gcX0X1Y2Y3 þ gdX0Y1Y2X3;

(6)

where {Xi, Yi, Zi} denote the Pauli matrices acting on the ith qubit
and the real scalars g with or without subscripts are efficiently
computable functions of the hydrogen–hydrogen bond length (see
Supplementary C for details about Hh and g). The ground state
energy calculation amounts to computing the lowest energy
eigenvalues of Hh, where the accurate value is Em=−1.136 Ha48. To
tackle this task, the conventional VQE6 and its variants7–9 optimize
the trainable parameters in U(θ) to prepare the ground state ψ�j i ¼
Uðθ�Þ 0j i�4 of Hh, i.e., Em ¼ ψ�jHhjψ�h i. The implementation

Fig. 2 Simulation results for the classification task. a The illustration of some examples in D with first two features. b The implementation of
the quantum kernel classifier for benchmarking. The quantum gates highlighted by dashed box refer to the encoding layer that transforms
the classical input x(i) into the quantum state. The quantum gates located in the solid box refer to Ul(θ) in Eq. (2) with L= 3. c The output ansatz
of QAS under the noisy setting. d The validation accuracy of QAS under the noiseless case. The label “Epc= a, W= b“ represents that the
number of epochs and supernets is T= a andW= b, respectively. The x-axis means that the validation accuracy of the sampled ansatz is in the
range of [c, d), e.g., c= 0.5, and d= 0.6. e The comparison of QAS between the noiseless and noisy cases. The hyper-parameters setting for
both cases is T= 400, K= 500, andW= 5. The labeling of x-axis is identical to subfigure (d). f The performance of the quantum kernel classifier
(labeled by “Test_acc_baseline”) and QAS (labeled by “Train/Test_acc”) at the fine tuning stage under the noisy setting.
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of U(θ) is illustrated in Fig. 3a. Under the noiseless setting, the
estimated energy of VQE fast converges to the target result Em
within 40 iterations, as shown in Fig. 3c.
The hyper-parameters of QAS to compute the lowest energy

eigenvalues of Hh are as follows. The number of supernets has two
settings, i.e., W= 1 and W= 5, respectively. The layer number for
all ansatze is L= 3. The number of iterations and sampled ansatze
for ranking is T= 500 and K= 500, respectively. The search space
of QAS for the single-qubit gates is fixed to be the rotational
quantum gates along Y and Z axis. For the two-qubit gates,
denoted by the index of four qubits as (0, 1, 2, 3), QAS explores
whether applying CNOT gates to the qubits pair (0, 1), (1, 2), (2, 3)
or not. Therefore, the total number of ansatze equals to
jSj ¼ 1283. The performance of QAS with W= 5 is shown in
Fig. 3d. Through retraining the obtained ansatz of QAS with 50
iterations, the estimated energy converges to Em, which is the
same as the conventional VQE.
The performance between the conventional VQE and QAS is

largely distinct when the noisy model described in the classifica-
tion task is deployed. Due to a large amount of gate noise, the
estimated ground energy of the conventional VQE converges to
−0.4 Ha, as shown in Fig. 3c. In contrast, the estimated ground
energy of QAE with W= 1 and W= 5 achieves −0.93 and
−1.05 Ha, respectively. Both of them are closer to the target
result Em compared with the conventional VQE. Moreover, as
shown in Fig. 3e, a larger W implies a better performance of QAS,
since the estimated energy of most ansatze is below −0.6 Ha
when W= 5, while the estimated energy of 350 ansatze is above
0 Ha when W= 1. We illustrate the generated ansatz of QAS with
W= 5 in Fig. 3b. In particular, to mitigate the effect of gate noise,
this generated ansatz does not contain any CNOT gate, which is
applied to a very large noise level. Recall that a central challenge
in quantum computational chemistry is whether NISQ devices can
outperform classical methods already available51. The achieved
results in QAS can provide good guidance to answer this issue.
Concretely, the searched ansatz in Fig. 3, which only produces the
separable states that can be efficiently simulated by classical
devices, suggests that VQE method may not outperform classical
methods when NISQ devices contain large gate noise.

Note that more simulation results are deferred to Supplemen-
tary. Specifically, in Supplementary C, we exhibit more results of
the above task. Furthermore, we implement VQE with the
hardware-efficient ansatz and the ansatz searched by QAS on
the real superconducting quantum hardware, i.e., “Ibmq_ourense”,
to estimate the ground state energy of Hh. Due to the runtime
issue, we complete the optimization and ranking using the
classical backend and perform the final runs on the IBMQ cloud.
The experimental result indicates that the ansatz obtained by QAS
outperforms the conventional VQE, where the estimated energy of
the former is −0.96 Ha while the latter is −0.61 Ha. Then, in
Supplementary D, we exhibit that utilizing the evolutionary
algorithms to establish K can dramatically improve the perfor-
mance of QAS. Subsequently, in Supplementary E, we provide
numerical evidence that QAS can alleviate the influence of barren
plateaus. Last, we present a variant of QAS to tackle large-scale
problems with the enhanced performance in Supplementary F.

DISCUSSION
In this study, we devise QAS to dynamically and automatically
design ansatz for VQAs. Both simulation and experimental results
validate the effectiveness of QAS. Besides good performance, QAS
only requests similar computational resources to conventional
VQAs with fixed ansatze and is compatible with all quantum
systems. Through incorporating QAS with other advanced error
mitigation and trainability enhancement techniques, it is possible
to seek more applications that can be realized on NISQ machines
with potential advantages.
There are many critical questions remaining in the study of QAS.

Our future work includes the following several directions. First, we
will explore better strategies to sample ansatz at each iteration.
For example, the reinforcement learning techniques, which are
used to construct optimal sequences of unitaries to accomplish
quantum simulation tasks52, may contribute to this goal. Next, we
will design a more advanced strategy to shrink the parameter
space while not degrading the learning performance. Subse-
quently, to further boost the performance of QAS, we will leverage
some prior information on the learning problem such as the

Fig. 3 Simulation results for the ground state energy estimation of Hydrogen. a The implementation of the conventional VQE. b The
output ansatz of QAS under the noisy setting. c The training performance of VQE under noisy and noiseless settings. The label “Exact” refers to
the accurate result Em. d The performance of the output ansatz of QAS under both the noisy and noiseless settings. e The performance of QAS
at the ranking state. The label “W= b” refers to the number of supernets, i.e., W= b. The x-axis means that the estimated energy of the
sampled ansatz is in the range of (c, d], e.g., c=−0.6 Ha, and d=−0.8 Ha.
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symmetric property and some post-processing strategies that
remove redundant gates of the searched ansatz. In addition, we
will delve into theoretically understanding the fierce competition.
In the end, it is intriguing to explore applications of QAS beyond
VQAs such as optimal quantum control and the approximation of
the target unitary using the limited quantum gates.

METHODS
The classical analog of QAS
The classical analog of the learning problem in Eq. (3) is the neural network
architecture search38. Recall that the success of deep learning is largely
attributed to novel neural architectures for specific learning tasks, e.g., the
convolutional neural networks for image processing tasks53. However,
deep neural networks designed by human experts are generally time-
consuming and error-prone38. To tackle this issue, the neural architecture
search approach, i.e., the process of automating architecture engineering,
has been widely explored, and achieved state-of-the-art performances in
many learning tasks54–58. Despite having a similar aim, naively generalizing
classical results to the quantum scenario to accomplish Eq. (3) is infeasible
due to the distinct basic components: neurons versus quantum gates,
classical correlation versus entanglement, the barren plateau phenom-
enon, the quantum noise effect, and physical hardware restrictions. These
differences and extra limitations further intensify the difficulty of searching
the optimal quantum circuit architecture a*, compared with the classical
setting. In the following, we explain the omitted implementation details
of QAS.

Weight sharing strategy
The role of the weight sharing strategy is to reduce the parameter space to
enhance the learning performance of QAS within a reasonable runtime
and memory usage. Intuitively, this strategy correlates parameters among
different ansatze in S based on a specified rule. In this way, we can jointly

optimize (θ, a) to estimate (θ*, a*), where the updated parameters for one
ansatz can also enhance the learning performance of other ansatze when
the correlation criteria are satisfied. As explained in Fig. 4, the weight
sharing strategy adopted in QAS squeezes the parameter space from
O(dQNL) to O(dLQN). Meantime, our simulation results indicate that the
reduction of parameter space enables QAS to achieve good performance
within a reasonable runtime complexity.
We remark that through adjusting the correlation criteria applied to the

weight sharing strategy, the parameter space can be further reduced. For
instance, when all parameters in an ansatz are correlated, the size of the
parameter space reduces to O(1). With this regard, another feasible
correlation rule for QAS is unifying the single-qubit gates for all ansatze as
U3= RZ(α)RY(β)RZ(γ). In other words, QAS only adjusts the arrangement of
two-qubit gates to enhance the learning performance. From the practical
perspective, this setting is reasonable since the gate error introduced by
the single-qubit gates is much less than that of two-qubit gates.

Supernet
We next elucidate supernet used in QAS. As explained in the main text,
supernet has two important roles, which are constructing the ansatze pool
S and parameterizing each ansatz in S via the specified weight sharing
strategy. In other words, supernet defines the search space, which
subsumes all candidate ansatze, and the candidate ansatze in S are
evaluated through inheriting weights from the supernet. Rather than
training numerous separate ansatze from scratch, QAS trains supernet just
once (Step 2 in Fig. 1), which significantly cuts down the search cost.
We next explain how QAS leverages the indexing technique to construct

S when the available quantum gates include both single-qubit and two-
qubit gates. Following notation in the main text, suppose that N= 5, L= 1,
and the choices of single-qubit gates and two-qubit gates are {RY, RZ} and
fCNOT ; I4g, respectively. In QAS, supernet A indexes fRY ; RZ ;CNOT ; I4g as
{“0”, “1”, “T”, “F”}. Moreover, we suppose that the topology of the deployed
quantum machine yields a chain structure, i.e., Q1↔ Q2↔ Q3↔Q4↔Q5.
With setting a, b, c, d, e ∈ {“0”, “1”} and A, B, C, D∈ {“T”, “F”}, the index list
[“a”, “b”, “c”, “d”, “e”, “A”, “B”, “C”, “D”] tracks all candidate ansatze in S, e.g.,

Fig. 4 A visualization of weight sharing strategy. The upper left panel depicts the potential ansatze when N= 3, L= 2, and the choices of
quantum gates are {RX, RY} with Q= 2. The total number of ansatze is QNL= 64. The upper right panel illustrates how to use the indexing
technique to accomplish the weight sharing. The label “ai” refers to the ansatz a(i). Namely, for any two ansatze, if the indexes in the lth array
are identical (highlighted by the blue and brown regions), then their trainable parameters in the lth layer are the same. The two heatmaps
demonstrated in the lower panel visualize the trainable parameters of 64 ansatze. The label “θi” refers to the parameter assigned to the i-th
rotational quantum gate. Note that when the weight sharing strategy is applied, the trainable parameters are reused for different ansatze, as
indicated by the dashed circles.
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[“0”, “0”, “0”, “0”, “0”, “T”, “T”, “T”, “T”] describes the ansatz
ðQ4

i¼1 CNOTi;iþ1Þð�5
i¼1RYðθiÞÞ and [“1”, “1”, “1”, “1”, “1”, “F”, “F”, “F”, “F”]

describes the ansatz �5
i¼1RZðθiÞ.

Memory cost and runtime complexity
We first analyze the runtime complexity of QAS. In particular, at the first
step, the setup of supernet, i.e., configuring out the ansatze pool and the
correlating rule, takes O(1) runtime. In the second step, QAS proceeds T
iterations to optimize trainable parameters. The runtime cost of QAS at
each iteration scales with O(d), where d refers to the number of trainable
parameters in Eq. (1). Such cost origins from the calculation of gradients via
parameter shift rule, which is similar to the optimization of VQAs with a
fixed ansatz. To this end, the total runtime cost of the second step is O(dT).
In the ranking step, QAS samples K ansatze and compares their objective
values using the optimized parameters. This step takes at most O(K)
runtime. In the last step, QAS fine tunes the parameters based on the
searched ansatz with few iterations (i.e., a very small constant). The
required runtime is identical to conventional VQAs, which satisfies O(d).
The total runtime complexity of QAS is hence O(dT+ K).
We next analyze the memory cost of QAS. Specifically, the first step

requests O(QNL) memory to specify the ansatze pool via the indexing
technique. Recall the memory cost in this step is dominated by configuring
the index space, which requests at most O(QNL) memory. This is because in
the worst case, the allowed Q choices of quantum gates for the varied
qubit at the varied layer are exactly different. To store information that
describes choices of gates for different qubits at a different position, the
memory cost scales with O(QNL). In the second step, QAS totally outputs T
index lists corresponding to the architecture of T ansatze. This requires at
most O(TNL) memory cost. Moreover, QAS explicitly updates at most Td
parameters (we omit those parameters that are implicitly updated via
weight sharing strategy, since they do not consume the memory cost). To
this end, the memory cost of the second step is O(TNL+ Td). In the third
step, QAS samples K index lists that describe the circuit architecture of K
ansatze. This requires at most O(KNL) cost. Moreover, according to the
weight sharing strategy, the memory cost of storing the corresponding
parameters is O(Kd). The memory cost of the last step is identical to the
conventional VQAs with a fixed ansatz, which is O(d). The total memory
cost of QAS is hence O(Td+ TNL+ Kd).
To better understand how the computational complexity scales with

N, L, and Q, in the following, we set the total number of iterations in Step
2 and the number of sampled ansatze in Step 3 as T= O(QNL) and K= O
(QNL), respectively. Note that since the size of S becomes indefinite, it is
reasonable to set K as O(QNL) instead of a constant used in the
numerical simulations. Under the above settings, we conclude that the
runtime complexity and the memory cost of QAS are O(dQNL) and O
(dQNL+ QN2L2), respectively.
We remark that when W supernets are involved, the required memory

cost and runtime complexity of QAS linearly scales with respect to W.
Moreover, employing adversarial bandit learning techniques59 can exactly
remove this overhead (see Supplementary A for details).

DATA AVAILABILITY
The datasets generated and/or analyzed during the current study are available from
Y.D. on reasonable request.
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