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Abstract: The end-to-end aspect-based social comment sentiment analysis (E2E-ABSA) task aims to
discover human’s fine-grained sentimental polarity, which can be refined to determine the attitude in
response to an object revealed in a social user’s textual description. The E2E-ABSA problem includes
two sub-tasks, i.e., opinion target extraction and target sentiment identification. However, most
previous methods always tend to model these two tasks independently, which inevitably hinders
the overall practical performance. This paper investigates the critical collaborative signals between
these two sub-tasks and thus proposes a novel cascade social comment sentiment analysis model
for jointly tackling the E2E-ABSA problem, namely CasNSA. Instead of treating the opinion target
extraction and target sentiment identification as discrete procedures in previous works, our new
framework takes the contextualized target semantic encoding into consideration to yield better
sentimental polarity judgment. Additionally, extensive empirical results show that the proposed
approach effectively achieves a 68.13% F1-score on SemEval-2014, 62.34% F1-Score on SemEval-2015,
56.40% F1-Score on SemEval-2016, and 50.05% F1-score on a Twitter dataset, which is higher than
the existing approaches. Ablated experiments demonstrate that the CasNSA model substantially
outperforms state-of-the-art methods, even when using fixed words embedding rather than pre-
trained BERT fine tuning. Moreover, in-depth performance analysis on the social comment datasets
further validates that our work gains superior performance and reliability effectively and efficiently
in realistic scenarios.

Keywords: machine learning; natural language processing; fine-grained sentiment analysis; fine-
tuning transformer BERT; multi-level cascade tagging scheme

1. Introduction

With the rapid advent of the internet social media era, aspect-level sentiment analysis
has received a lot of attention from both industry and academic communities. No matter
the e-commerce market, such as eBay or social forums such as Twitter and YouTube, to
improve users’ experiences and ensure its market competitiveness, it has placed increasing
attentions toward its users’ expressed sentiment polarity identification. Jalil et al. [1]
gathered a large quantity of heterogeneous “COVID-Senti” data from the social networking
media platform, Twitter. After the sophisticated data pre-processing procedure, they
analyzed the COVID-19 influence and the vaccinations’ effectiveness by focusing on these
Twitter user sentiments classification. To better embrace the industrial internet of things
(IIoT) or Industry 4.0 era, Khan et al. [2] focused on generalized aspect-based category
detection (ACD) and proposed a novel convolutional attention-based bidirectional LSTM
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for the detection of customer opinion and emotions. In this way, IIoT can provide better
services by analyzing users’ feedback.

Fine-grained sentiment polarity analysis from unstructured text is an essential task in
automatic public opinions detection and consumer reviews attitude recognition. In general,
aspect-based sentiment analysis (ABSA) has been a focus of research in recent years. Aspect-
based sentiment analysis [3], which identifies people’s opinions on specific topics, is an
extraction and classification fused problem in natural language processing (NLP). Various
ABSA works focus on the sentiment polarity (positive, neutral, and negative) of a target
word in given comments or reviews [4,5]. For example, in the restaurant service scenario,
“Nice ambience, but the highly overrated fast-food restaurant .”, the consumer mentions two
opinion targets, namely “ambience” and “fast-food restaurant”, and expresses a positive
attitude toward the first one, and negative sentiment toward the second one.

As the dominant line of research in fine-grained opinion mining, aspect-based sen-
timent analysis (ABSA) aims to identify sentiment of target entities and their aspects.
Specifically, given a target entity of interest, ABSA methods can extract its properties and
identify the sentiment expressed about those properties [6]. From a technological point of
view, the methodologies can be divided into two sub-tasks, namely opinion target extrac-
tion and target sentiment identification [4,5], which corresponds to the above-mentioned
interested target entity properties extraction and expresses sentiment identification.

Despite the previous success made in the sentiment analysis research area, most
existing methods ignore the interactive relations among these sub-tasks. As a result,
existing methods model these sub-tasks independently of each other, which hinders their
practical use performance, i.e., the goal of some methods [7–10] is only to detect the
opinion target mentioned in the text. In addition, other methods [11–15] identifying target
sentiment polarity assume that the target mention is given. To perform the ABSA task
in more practical settings, i.e., extracting the targets and the corresponding sentiments
simultaneously, one typical way is to pipeline these two sub-tasks end-to-end. Essentially,
these existing pipeline methods [7,16–19] still treat these sub-tasks as separate two steps
and are not sufficient to yield satisfactory results for the complete ABSA task. These
pipeline methods complete the ABSA task through target boundary tags (e.g., B, I, E, S,
and O) and sentiment tags (e.g., POS, NEG, and NEU) prediction. In recent years, some
ideal joint approaches [17,19–24] for ABSA have been proposed, which regard it as complex
integrated boundaries and types tagging the prediction task, and make the two sub-tasks
jointly trained. These joint methods differ from the above pipelines, and they utilize a
set of specially designed tags integrated from discrete target boundary and sentiment
tagging tasks, namely B-{POS, NEG, NEU}, I-{POS, NEG, NEU}, E-{POS, NEG, NEU},
S-{POS, NEG, NEU}, O-{POS, NEG, NEU}, denoting the beginning of, inside of, end of,
and single-word opinion target with the positive, negative and neutral sentiment, and
O denoting the positions of none of the sentiment words, respectively. An example of
introducing the differences between these tagging schemes is shown in Table 1, and we can
intuitively discover that the “Integrated” tagging solution, which is presented in Row 2,
is relatively more complex than the “Discrete” tagging scheme. The “Integrated” scheme
greatly expands the corresponding tagging species and huge search space, which is prone
to increasing the complexity of tagging predictions and decrease the performance of the
overall ABSA tagger.

Table 1. The discrete tagging approach and integrated tagging approach. “Discrete” and “Integrated”
refers to these two tagging schemes, respectively.

Input Nice Ambience , But Highly Overrated Fast-Food Restaurant .

Discrete O S O O O O B E O
O POS O O O O NEG NEG O

Integrated O S-POS O O O O B-NEG E-NEG O
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Through the above comprehensive and detailed analysis of those popular pipeline and
joint methods, we judiciously deem that it is crucial to investigate the interactive relation-
ships between these two sub-tasks for determining the target-oriented sentiment polarity
more accurately. In the relational triple extraction research area, the work CasREL [25] and
tagging decomposition strategy [26] firstly decompose the joint relational triples extraction
into head-entity (HE) and tail-entity and relation (TER) extraction sub-tasks, and formulate
the relations mapped from the subjects detection to objects detection, which finally effi-
ciently solves the triple-overlapping problem. Inspired by these works, we investigate and
exploit the high coupled inter-dependency of these sub-tasks and propose a novel cascade
social comment sentiment analysis model, namely CasNSA, to guide the identification of
sentiment polarity with the auxiliary task of the target boundary prediction.

Specifically, our framework CasNSA contains three principal components: the con-
textual semantic representation (CSR) module, target boundary recognizer (TBR) and
sentiment polarity identifier (SPI). Firstly, the CSR component encodes the social com-
ment sentences and then provides embedded vector sequences. To further investigate the
representation power of transformers [27], we simultaneously adopt a transformer-based
pre-trained language encoder (e.g., BERT [20,28]) and pre-trained word embedding (e.g.,
Word2Vec [29], and GloVe [30]) in this part. The CSR component finally provides a hidden
state, which ranges from the start to end token throughout the inputted sentence. In the
following, The TBR module utilizes the hidden states generated by the CSR component as
the inputted sentence’s semantics. At the sentiment inference time, the SPI module utilizes
the hidden state on the position “[CLS]” of the inputted token sequence and takes the
advantages of the target boundary information generated from the TBR module. In this
manner, the novel hierarchical tagging method constrains the sentiment analysis within
the specific opinion-target context and thus achieves better overall performance for the
ASBA task.

Generally speaking, compared with other mainstream approaches for the ABSA task,
our method is a simple yet insightful neural network architecture. Our CasNSA regards
the opinion-target extraction as the sequence labeling problem and regards the target-
oriented sentiment analysis as the multi-label identification problem, respectively. At
the same time, we also conduct a series of contrastive ablation experiments by designing
different constructions of the CSR component. Our experimental results demonstrate
the BERT’s absolute modeling advantage over traditional RNNs based on pre-trained
fixed embeddings (e.g., Word2Vec, and GloVe). As a result, this proves BERT’s powerful
semantic comprehension capabilities, one of the most popular transformer-based pre-
trained language models.

Additionally, experiments prove that the proposed approach provides better F1-scores
of 68.13% , 62.34% , 56.40% and 50.05% for SemEval 2014 [31], 2015 [32], 2016 [33] and
the Twitter dataset [34], respectively. To some extent, these experiments prove that our
proposed model outperforms on real-life datasets compared to many previously widely
used methods [14,17,20].

The principal contributions in this work can be summarized as follows:

• We go deep into the complete aspect-based sentiment analysis task, and formulate it as
the sequence tagging problem of the opinion-target extraction sub-task (OTE) and the
multi-label identification problem for the target-oriented sentiment analysis sub-task
(TSA). To be specific, we introduce a novel ABSA approach named CasNSA, which is
composed of three main sub-modules: contextual semantic representation module, target
boundary recognizer and sentiment polarity identifier.

• While many methods attempt to model sub-tasks’ correlations, including machine
learning methods and deep learning methods, our method attempts to address the
ABSA task by the neural network construction. To the best of our knowledge, the
unique modeling mechanism is proposed to handle the ABSA task for the first time.
Based on our formulated deduction for the complete ABSA task, we employ the
specific opinion-target context representation provided by the OTE into the TSA
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procedure, which can further constrain and guide the sentiment polarity analysis, thus
achieving better performance for the complete end-to-end ABSA task.

• The further empirical comparison result confirms the effectiveness and rationality
of our model CasNSA. We first consider the interactive relations modeling between
opinion target determining and target-specific sentiment identification. Furthermore,
the ablation study also proves that the transformer-based BERT is more efficient in
contrast with traditional pre-trained embedding methods (e.g., Word2Vec and GloVe).

This paper is structured as follows: Section 1 introduces the aspect-based social comment
sentiment analysis research background, and Section 2 describes the most relevant related
works. Section 3 is the core of this paper since it contains the preliminaries of the E2E-
ABSA task; the interactive relations formulation among the OTE sub-task and the TSA
sub-task; and the architecture details of our proposed CasNSA. Section 4 discusses all
validation experiments, including a comparison and ablation study on several widely used
datasets. Finally, Section 5 highlights the major conclusions of this work and the potential
future works.

2. Related Works

When reviewing the literature on the ABSA task, we summarize that the existing
methods can be classified into either separate approaches or end-to-end approaches. In
contrast, the end-to-end research branches can still be subdivided into pipeline approaches
and unified approaches.

2.1. Separate Approaches

It is common for a complex NLP task to decompose the task into several separate
sub-processes. The ABSA task is also treated as two-steps containing opinion-target ex-
traction (OTE) and target-oriented sentiment analysis (TSA) by most existing studies.
Some studies develop separate methods for OTE [7–10], while other methods develop
for TSA [11–15,35,36].

Li et al., 2018 [7] exploited two useful clues, namely opinion summary and aspect
detection history, and presented a new framework for tackling aspect term extraction.
Experiments over four benchmarks prove that the method can leverage the coordinate
and tagging schema constraints to help increase the aspect term extraction performance.
Jaechoon et al., 2021 [8] used the statistical analysis of sentence structures to extract the
sentiment-target word pairs. They proposed a model which contains a sentiment word
extractor and a target word extractor by utilizing parsing and statistical methods. The
proposed model shows high performance in both accuracy and F1-score, compared with
others over the dataset containing 4000 movie reviews. Xu et al., 2018 [9] focused on
supervised product reviews aspect extraction using deep learning. Unlike other highly
sophisticated supervised neural network models, they first proposed a simple but effective
CNN model employing double pre-trained embeddings, which is composed of general-
purpose embeddings and domain-specific embeddings. Their model outperforms existing
sophisticated SOTA methods without using any additional supervision.

To address the issue that RNNs are different to analyze long-term patterns, Song et al.,
2019 [35] proposed an attentional encoder network which eschews recurrence and employs
pre-trained BERT to model the context and target. Experiments show that their method
achieves a new SOTA on three public datasets. Wang et al., 2018 [13] observed that the
current memory network’s sentiment polarity detection depends on the given target and
cannot be inferred from the context. They proposed the target-sensitive memory network
to tackle this problem, and its effectiveness was experimentally evaluated. Hazarika et al.,
2021 [11] incorporated a variety of inter-aspect dependency patterns by all aspects’ simulta-
neous classification along with sentence temporal dependency representations using RNNs.
Their model effectively exploits the contextual information of the inter-aspect dependencies,
and the benchmark SemEval 2014 [31] suggests their approach’s effectiveness. To alleviate
the dilemma that most previous models rely on large-scale source data while corpora la-
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beling is especially expensive and labor-intensive, Li et al. [14] exploited a novel approach
named the coarse-to-fine task transfer, which aims to leverage knowledge learned from a
rich-resource domain. In addition, they proposed a multi-granularity alignment network
to resolve both the challenges of aspect inconsistency and cross domain’s feature mismatch.
Empirically, extensive experiments demonstrate the effectiveness of their framework.

Aiming at reducing the gap between human-level interpretability and the accuracy of
the ABSA task, Yadav et al. [37] designed an interpretable learning architecture for aspect-
based sentiment analysis (ABSA), employing the recently introduced Tsetlin Machines [38].
Their experiment successfully provided a human-interpretable ABSA architecture with
comparable accuracy. It is worth noticing that the main selling point of their method is the
transparent and interpretable learning approach rather than accuracy.

2.2. Pipeline Approaches

In order to make these separate works in practical use for the complete ABSA task,
one typical way is to pipeline these two sub-tasks together to a relatively integrated
method [6,7,9,16–19,39].

To alleviate the challenge that a sequence tagging formulation always suffers from a
huge search space and sentiment inconsistency, Hu et al., 2019 [16] proposed a span-based
extract-then-classify pipeline framework. In this pipeline framework, multiple opinion
targets are directly extracted from the sentence under the target span boundaries’ supervi-
sion, and corresponding polarities are then classified using their span representations. It is
worth noticing that they further investigated the pipeline, joint, separate variant models,
and their pipeline model achieved the best performance compared with the other two
models. Li et al. [17] heuristically combined their previous works HAST [7] and TNet [18]
as a pipeline approach, in which these two sub-modules are the current state-of-the-art
models on the tasks of target boundary detection and target sentiment classification, respec-
tively. To demonstrate the effectiveness of the work, Chen et al. [19] proposed RACL for
which they constructed four pipeline baselines through several SOTA separate methods’
combinations, with DECNN [9] and CMLA [39] for the sub-task of OTE, TCap [40] and
TNet [18] for the sub-task of TSA.

2.3. Unified Approaches

Unfortunately, the above pipeline studies usually suffer from the error propagation
challenge from the upstream to the downstream, and the two sub-tasks’ inter-relevance is
largely neglected. To alleviate these issues, many joint frameworks [17,19–24,41,42] aim to
learn the OTE, and TSA sub-tasks jointly are proposed, as these collaborative features can
enhance the two sub-tasks in a mutual way.

Finding that the sentiment scope within which each named entity is embedded is
typically not explicitly annotated in the data, and unlike traditional methods that cast
this task as simple sequence labeling, Li et al. (2017) [41] proposed a novel approach that
can explicitly model the latent sentiment scopes and achieve better results compared to
existing approaches [43] based on conventional conditional random fields (CRFs) [44].
Ma et al., 2018 [24] carefully designed the hierarchical stack bidirectional gated recurrent
units (HSBi-GRU) to jointly learn both sub-tasks’ abstract features. They proposed a HSBi-
GRU based joint model that allows the target label to have an influence on their judgement
for the sentiment label. Experiments demonstrate that their joint learning approach out-
performs other baselines and the HSBi-GRU’s effectiveness in learning abstract features.
Li et al., 2019 [17] involved a two-layer recurrent neural network stacked in which the
lower layer performs the auxiliary of predicting the target boundary and guides the upper
layer to predict the unified tags for the primary task of target-oriented sentiment analysis.
Meanwhile, they introduced a gate mechanism that modifies the interrelation between the
previous and current word features to maintain the opinion target’s sentiment consistency.
Li et al., 2019 [20] investigated the pre-trained language models, e.g., BERT contextualized
embedding modeling power on the E2E-ABSA task. They introduced four alternative
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model implementations (e.g., linear layer, RNN layer, self-attention mechanism and condi-
tional random fields) to explore BERT’s potential semantic modeling power. In addition,
they standardized the comparative study by utilizing a hold-out validate dataset to pick an
optimal model, which was always neglected by previous related works. To fully exploit the
interactive relations among aspect term extraction, opinion term extraction and aspect-level
sentiment classification, Chen et al., 2020 [19] proposed a relation-aware collaborative
learning (RACL) framework, which allows the three sub-tasks to work coordinately via the
relation induction and multi-task learning mechanisms in a stacked multi-layer network.
Experiments for the E2E-ABSA task on three real-world datasets prove that their RACL
framework outperforms the unified baselines.

Motivated by the success of disentangled representation learning in the computer
vision field, Silva et al. [45] investigated the effectiveness of the powerful disentangled
representation learning (DRL) [46], and they utilized the decoding-enhanced BERT with
disentangled attention (DeBERTa) [47] to solve the ABSA tasks. Experimental results on
the ABSA’s benchmarks [31] show that incorporating disentangled attention can yield a
promising performance and outperforms many state-of-the-art models.

Existing unified approaches solve the pipelines’ error propagation issue and are pre-
dominant on the E2E-ABSA task now, but the existing problems, such as the complex search
in huge space (integrated labels selection, e.g., B,I,O,E-{POS,NEG,NEU}) and the neglect of
modeling the interrelation on the OTE and TSA sub-tasks have become the bottleneck of fur-
ther improving the accuracy and F1-score of the E2E-ABSA task. Following these questions,
we present CasNSA’s whole architecture and corresponding technological innovations.

3. The CasNSA Framework: Architecture Details

On the whole, our CasNSA framework can be subdivided into three principal sub-
modules: contextual semantic representation block (CSR), target boundary recognizer
(TBR) and sentiment polarity identifier (SPI). For the CSR module, we try several specific
model structure implementations which derive from combinations of two variants of CSR
and three variants of SPI to pick the optimal model settings. The overall architecture of
our CasNSA within alternative sub-modules is shown in Figure 1, and we describe its
details below.

3.1. Task Preliminaries

In this work, given a user comment sentence {w1, . . . , wi, . . . , wL}, where L means the
length of this sentence, end-to-end fine-grained aspect-based sentiment analysis (ABSA) is
formulated as sequence tagging problems and multi-label classification problems. Specifi-
cally, it handles the sub-tasks: opinion-target extraction (OTE) and target-oriented sentiment
analysis (TSA).

Definition 1. Opinion-target extraction (OTE) aims to predict a sequence of target-oriented
position tags Yt = {yt

1, . . . , yt
i , . . . , yt

L}, in which yt
i ∈ {B, I, S, O} denoting the beginning of,

inside of, single token of, and outside of an opinion target. In particular, this sequence tagging
task can be instantiated in many ways, including conditional random fields (CRFs) tagger, binary
tagger, etc. In this paper, we employ the simple binary tagger, which adopts two identical binary
classifiers to detect the start and end positions of each opinion target, and we describe its concrete
implementations in Section 3.4.

Definition 2. target-oriented sentiment analysis (TSA) aims to conduct the label classification for
every specific opinion target. TSA detects its corresponding sentiment polarity for each possible target
from three sentiment type, containing positive, negative and neutral. Specifically, given a sentence
S = {w1, . . . , wi, . . . , wL} and all opinion target T = {t1, . . . , ti, . . . , tN}, the TSA-relevant
component predicts the possible tag Ys =

{
ys

1, . . . , ys
i , . . . , ys

N
}

where ys
i ∈ {POS, NEG, NEU}

for each ti, denoting the positive, negative and neutral sentiments, respectively. For this sub-task,
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we employ three different feature recognition procedures to determine the optimal model setting, and
the concrete details are shown in Section 3.5.

OR
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……
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Figure 1. The architecture overview of CasNSA. The three key components CSR, SPI and TBR is
shown from bottom to top.

3.2. Explicit Task Modelling

Here, let us deeply explore the interactive relational mappings between the sub-tasks
of OTE and TSA. The goal of E2E-ABSA is to identify a set including all possible opinion
targets T = {t1 . . . ti . . .} and its corresponding sentiment polarities S = {s1 . . . si . . .}. We
directly design and formulate the E2E-ABSA overall training objective toward this goal. In
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contrast with previous approaches, such as that of Li et al., 2019 [20], where the optimization
objective is defined right at the integrated tagging scheme, including ‘B-POS’, ‘I-NEG’ and
‘E-NEU’, our optimization function considers the interrelation hidden in the integrated tags.
Then, we can model the E2E-ABSA as the sequence tagging and multi-label classification
separately.

Formally, given a user review di from the training dataset D and a set of potentially
opinion-oriented targets and corresponding sentiments Ri = {(ti, si)} in di, we aim to
maximize the whole optimized target likelihood of the training dataset D.

Probability Score(D,R) =
|D|

∏
i=1

 ∏
(ti ,si)∈Ri

p((ti, si) | di)

 (1)

=
|D|

∏
i=1

 ∏
ti∈Ri

p(ti | di) ∏
si∈Ri |ti

p(si | ti, di)

 (2)

=
|D|

∏
i=1

 ∏
ti∈Ri

L

∏
j=1

(
pt

j

)I
{

yt
j=1

}(
1− pt

j

)I
{

yt
j=0

}
∏

si∈Ri |ti

N

∏
k=1

(ps
k)

I{ys
k=1}(1− ps

k)
I{ys

k=0}
 (3)

where Equation (1) denotes the overall optimizing goal, (ti, si) ∈ Ri denotes all existing
targets and their sentiments of the i-th sentence di ∈ D, respectively. This formula means
the probabilistic optimization for predicting sentimental target entities in all corpora and
the corresponding sentiment categories. Equation (2) denotes the inter-scheme tag de-
pendencies modeling between target detection and sentiment polarity identification. We
decompose the last joint probabilistic optimization into two step-by-step cascade proba-
bilistic optimizations. Firstly, we extract all sentiment target entities. Secondly, we perform
the corresponding sentiment discrimination based on the context semantics of the extracted
entities. Equation (3) further decomposes the target optimizing function of the complete
E2E-ABSA task. More specifically, we transfer the opinion-target entity extraction task
to the binary label classification and transfer the target-oriented sentiment analysis task
to the standard multi-label classification task. We utilize the standard cross-entropy loss
function [48] to optimize it.

This formulation provides several benefits. At first, in Equation (2), we take the mutual
dependencies between the two sub-tasks into consideration, which almost all related
researchers often neglect. The sub-tasks would be mutually influenced such that errors in
each component can be constrained by the other, and thus it can help model the fine-grained
aspect-based sentiment analysis better. Then, the E2E-ABSA task decomposition revealed
in Equation (3) decreases the tagging complexity because the substitution of most unified
approaches adopts the integrated tagging schemes, such as ‘B-POS’ and ‘I-NEG’. Finally,
this sophisticated formulation represents the deep hierarchical neural network and thus
can be instantiated in many implementations.

3.3. Contextual Semantic Representation Block

In the beginning, given a user comment S = {w1, w2, . . . , wL} for sentiment analysis,
we need to interpret the natural language sequence S into a sequence of semantic feature
vectors V = {v1, v2, . . . , vL}. As is shown in the bottom right of Figure 1, following most
traditional methods [17,19,27,49], we employ the pre-trained word embeddings (e.g., GloVe,
and Word2Vec) to transfer the sentence tokens into a sequence of the vector. To investigate
the language modeling power armed with Transformer, as is shown in the bottom left
of Figure 1, besides using pre-trained GloVe, we simultaneously introduce an alternative
scheme which utilizes the multi-layer bidirectional Transformer-based language model
BERT [28] as the sentence encoder.

• Scheme 1: As is illustrated in the bottom right of Figure 1, we first use the 300 dimension
GloVe [30] to initialize word embeddings. In the model training and reference time,
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we add an extra marker ’[START]’ before the start index of the inputs to generate the
sentence-level feature vector. Then the embedding operation queries each word’s corre-
sponding embedding and conducts the transfer process {[START], w1, w2, . . . , wL} →{

v[START], v1, v2, . . . , vL

}
. To prevent the vanishing-gradient problem [50] existing in

RNNs, we choose the two-layer Bi-LSTM as the basic encoder in which the Bi-LSTM
hidden size is set to 200. Existing works [12] have demonstrated a better learning
capability than the original LSTM. Compared with vanilla recurrent neural network
LSTM, bidirectional-LSTM is the same as LSTM in the mechanical aspect, but Bi-LSTM
allows the reversed information flow in which the inputs can be fed from the end index
to the beginning index. Finally, the encoder layer provides a forward hidden state(−−−−−→

h[START],
−→
h1 ,
−→
h2 , . . . ,

−→
hL

)
and a backward hidden state

(←−−−−−
h[START],

←−
h1 ,
←−
h2 , . . . ,

←−
hL

)
. We

list the LSTM feature propagation’s relevant formulations as follows:

fj = σ
(

Wx f xj + Wh f
−−→
hj−1 + b f

)
(4)

ij = σ
(

Wxixj + Whi
−−→
hj−1 + bi

)
(5)

oj = σ
(

Wxoxj + Who
−−→
hj−1 + bo

)
(6)

cj = fj ◦ cj−1 + ij tanh
(

Wxcxj + Whc
−→
h j−1 + bc

)
(7)

−→
hj = oj ◦ tanh

(
cj
)

(8)

The variables f j, ij and oj in the above equations are the input, forget and output
gate’s activation vectors, respectively. The three gated states f j, ij and oj are calculated
through a series of complex operations. The updated new memory of LSTM corre-
sponds to the matrix multiplication of the input token feature xj and the updating
matrix Wx f , Wxi and Wxo. The remained old memory of LSTM corresponds to the

matrix multiplication of the last hidden state
−→
h j−1 and the forgotten matrix Wh f , Whi

and Who. Finally, LSTM converts the logical value into a prob-value between 0 and
1 through an activation function σ. Furthermore, ◦ is the cell state vector, and σ and
tanh are the sigmoid and hyperbolic tangent functions.
After the information flows through LSTM, we concatenate the forward

−→
hj and back-

ward
←−
hj and obtain the combined features H = {h[START], h1 . . . hj . . . hL} where the

j-th hidden state hj = [
−→
hj ;
←−
hj ], then the obtained hidden state sequence H is used by

the other two downstream tasks, OTE and TBR.
• Scheme 2: For the sake of the disadvantage that the traditional fixed embedding layer

(e.g., Word2Vec, and GloVe) only provides a single context-independent representation,
as is illustrated in the bottom left of Figure 1, our CSR module further adopts pre-train
Transformer BERT [28] during our experiments. Here, we briefly introduce BERT.
Bidirectional encoder representations from Transformers, or BERT, is a revolutionary
self-supervised pre-train technique that learns to predict intentionally hidden (masked)
sections of text. Crucially, the representations learned by BERT have been shown to
generalize well to downstream tasks. When BERT was first released in 2018, it achieved
state-of-the-art results on many NLP benchmarks. Specifically, BERT is composed
of a stack of N (N ∈ {8, 12, 16, . . . }) identical Transformer blocks. We denote the
Transformer block as Trans f ormer = {TransBlockL}N

1 , in which N represents the
BERT’s depth.
Firstly, we pack the sequence of vector inputs {h[CLS], h1 . . . , hL} as H0, where the hi
is the initialized BERT embedding vector of the i-th token of the sentence. Then the
L− layer transformer blocks refine the token-level semantic representation layer by
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layer. Taking the j-th transformer blocks step as an example, the BERT hidden features
Hj are calculated through Equation (9):

H j = TransBlock j(H j−1) (9)

where the H j = {hj
[CLS], hj

1 . . . , hj
L} denotes the j-th BERT feature representations and

the H j−1 = {hj−1
[CLS], hj−1

1 . . . , hj−1
L } denotes the {j-1}-th BERT feature representations.

Finally, we regard HL as the contextualized representations of the input sentence,
and our CasNSA’s other key components (OTE and TBR) use them for the further
downstream model-reasoning step.

3.4. Target Boundary Recognizer

Similar to the CRF decoding layer, we employ two (start position and end position)
binary classifiers with a softmax decoding layer on top of BERT as an opinion-target
boundary tagging step. The two classifiers jointly mark each opinion-target’s start and end
position as “1” and mark the current tags which are irrelevant to target boundaries as “0”.
In particular, if the current boundary tag denotes the beginning of any opinion target, the
“[START]” tagger which aims to detect the start position of this target is tagged with “1”,
and the “[END]” is tagged with “0”; if the current boundary tag denotes the end of any
opinion target, the “[END]” tagger which aims to detect the end position of this target is
tagged with “’1’, and the “[START]” is tagged with “0”. The single-word opinion target
position is tagged with “1” in both of the classifiers. During the multi-targets detection, we
adopt the proximity principle, which regards the phrase between the “[START]” classifier’s
“1”-tagged position and the corresponding nearest “[END]” classifier’s “1”-tagged position.
We calculate the probability of whether the character is an opinion-targets boundary by the
following formulations.

pstart
i = σ(Wstart hi + bstart ) (10)

pend
i = σ(Wend hi + bend ) (11)

where the hi represents the i-th output vector of the contextual semantic representation module,
W(·) and b(·) are the learnable matrix weights and bias values of the “[START]” and “[END]”
classifiers, σ(·) denotes the activation function, and the whole two formulas of pstart

i and
pend

i denote the encoded representations of the i-th character in the input sentence. It
considers a position to be a boundary and marks the position as “1” when the encoded
representations pstart

i and pend
i exceed a certain threshold (e.g., 0.5 in this paper), otherwise

it regards it as a relevant character and marks it as “0”.
As shown in Table 2, different from the traditional decoding layers (e.g., CRF), this

example concisely illustrates our novel binary tagging strategy. More especially, the token
“designs” is the first and also the last word of the opinion-target “designs”, so tags are both
“1” in the “[START]” and “[END]” classifiers when recognizing these single-word target
boundaries.

Table 2. This is an example that vividly shows our proposed binary opinion-target boundary
tagging strategy.

Sentence The Reason I Choose Apple MacBook Is Their Designs And User Experiences

[START] 0 0 0 0 1 0 0 0 1 0 1 0
[END] 0 0 0 0 0 1 0 0 1 0 0 1
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After the target boundary recognizer generating the tag sequences Y[START] = {pstart
i }L

i=1,
Y[END] = {pend

i }
L
i=1, we compute the objective by utilizing the binary cross-entropy loss

function [48]:

Jspi(Θ) = − ∑
s∈D

L

∑
i=1

( ˆpstart
i · log

(
pstart

i
)
+ ˆpend

i · log
(

pend
i

)
) (12)

where D and L denote the training set and the length of one sentence in D, pstart
i and

ˆpstart
i are the i-th token’s gold tag and the predicted value by the “[START]” binary clas-

sifier, pend
i and ˆpend

i are the i-th token’s gold tag and the predicted value by the “[END]”
binary classifier.

3.5. Sentiment Polarity Identifier

Similar to the target boundary recognizer, the sentiment polarity identifier also uses the
contextual semantic representation output features as its inputs. However,the key features that
the target-oriented sentiment identification requires include (1) the depended opinion target;
(2) the context that indicates the sentence-level sentiments; (3) the mutual relationships
between the opinion-target features, and the contexts. Under these considerations, we
propose the target and context joint-aware representation ti, given a extracted i-th opinion
target in which its start and end indices of the sentence are j and k, and we define ti
as follows:

ti = [htarget; hcontext] =
[
[hj : hk]; hc

[CLS]

]
(13)

Formally, we take [hj : hk] = {hj, hj+1, ...hk} as htarget, in which hj and hk denote
the start and end position feature representations of the i-th opinion target. We regard
the output vector hc

[CLS] which is located on the “[CLS]” position in BERT or “[START]”
position in Bi-LSTM as the sentence-level context semantic hcontext. For multiple word
opinion target representation [hj : hk] where j 6= k, we employ the mean-pooling operation
to incorporate these word features to htarget.

Then, the assembled features ti which contain all relevant signals about the i-th target
for sentiment polarity identifying are sent to the sentiment polarity identifier (we mark it
as fSPI), and then the SPI module predicts the corresponding sentiment polarity labels
SSPI

i ∈ {[POS], [NEG], [NEU]}.
SSPI

i = fSPI
(
ti
)

(14)

The SPI component’s feature decoding function fSPI can be instantiated in many
ways. In our experiments, we explore several methods to conduct the feature integration
procedure, including (1) simple bitwise adding; (2) simple vector concatenation; and (3)
CNN-based feature extraction:

f1
SPI
(
[htarget; hcontext]

)
= htarget + hcontext (15)

f2
SPI
(
[htarget; hcontext]

)
= htarget ⊕ hcontext (16)

f3
SPI
(
[htarget; hcontext]

)
= CNN(htarget ⊕ hcontext) (17)

These feature incorporation steps are illustrated in the top part of Figure 1. Among
them, after the bitwise adding layer and vector concatenate layer, an extra full connection
layer is employed. The CNN-based method generates the intermediate feature by running
a CNN on the character sequence of ti, and the window size of CNN’s convolutional kernel
for the feature-based vector is set to 3. In the last layer of the whole network, we add a linear
layer whose output dimension is set to 3 in this setting, and the target-oriented sentiment
polarity can be classified smoothly. For training, we perform a multi-label classification
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by adopting cross entropy [48] as the loss function, and the loss of the sub-task sentiment
polarity identifying is calculated by the following:

Jspi(Θ) = − ∑
s∈D

∑
ti∈Ts

Ŝti · log(Sti ) (18)

where D and s denote all training samples and one training instance of D, ti is the i-th
opinion target revealed in s, Sti is the gold label of target-oriented sentiment polarity, and
Ŝti is the sentiment prediction result.

It is worth noting that ti is the gold opinion target at the training time. In contrast, at
the inference time, we select the predicted opinion target one by one from TBR module to
complete the joint extraction task.

3.6. Training Objective of Target and Sentiment Joint Extractor

Following the previous unified work [25,26,51], we combine the two sub-tasks loss
function, and the objective Juni f y(Θ) is defined as follows:

Juni f y(Θ) = Jtbr(Θ) + λ · Jspi(Θ) (19)

where λ is a coefficient to moderate the mutual contribution weight of these two
sub-tasks, and we set it as 1 during our experiments. We train and optimize the model
parameters by minimizing Juni f y(Θ) through the Adam stochastic gradient descent [52]
over shuffled mini-batches in which each batch contains 16 training samples.

4. Experimental Results
4.1. Datasets and Evaluation Metrics

Datasets. We evaluate our proposed CasNSA on four widely benchmark datasets,
including SemEval challenges 2014 [31], 2015 [32], 2016 [33], and the Twitter dataset [34,43].
These benchmark statistics are summarized in Table 3. The SemEval 2014 dataset includes
reviews from two domains: restaurant and laptop. We merged them as the total SemEval
2014 dataset. The SemEval 2015 and SemEval 2016 datasets contain thousands of restaurant
reviews. The Twitter dataset was built by Mitchell et al. [43], which is a small English
dataset that yielded about 3288 unique sentiment pairs, such as <tweet, NEU>.

Table 3. This is an example which shows our proposed binary opinion-target boundary
tagging strategy.

Dataset # POS # NEG # NEU Train Dev Test Total

SemEval2014 4226 1986 1442 5477 608 1600 7685
SemEval2015 1241 445 70 1183 685 130 1998
SemEval2016 1712 565 101 1799 200 676 2675

Twitter 698 271 2254 1903 220 234 2357

Evaluation Metrics. Following previous works [17,19–21,41], we adopt the stan-
dard macro-averaged precision (macro-P), macro-averaged recall (macro-R), and macro-
averaged F1-score (macro-F1) percentages as evaluation metrics. For each token in all
evaluated sentences, a token-level sentiment polarity prediction is marked correct if and
only if its predicted tag equals its gold tag, otherwise we mark it false.

4.2. Parameter Settings

During the contextual representation procedure, we examine our CasNSA with two
types of word representations: the pre-trained word embedding and the pre-trained lan-
guage transformer encoder. Specifically, in the former implementation, the 300-dimension
GloVe [30] vectors are employed as the pre-trained word embedding; the hidden state
dimension is set to 256. In the latter implementation, we use the “bert-base-uncased” BERT
which has 12 transformer blocks and a hidden dimension size of 768 as the pre-trained
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encoder. We denote these two implementations as CasNSAGloVe and CasNSABERT . The
learning rate is set as 1 × 105. The training batch size is 36 for each iteration. In total,
we train the model for up to 100 fixed epochs using the Adam optimizer [52]. After the
fifth training epoch, we conduct a model evaluation on the development set per training
epoch. We train 10 models with different random seeds and report the average results
following these setting. As for the sentiment polarity identifier component, which integrates
the opinion-target feature with sentence-level contextual representation, the CNN convo-
lutional kernel size is set to 3; the hidden size of the extra full connection layer is set to
200. we initialize all linear and RNN layer parameters by applying the Xavier-Uniform [53]
strategy to all weight matrices. All biases are initialized from the uniform distribution
U (−0.2,0.2). Intuitively [17,19], the ratio coefficient λ between the objective Jspi(Θ) and the
objective Jtbr(Θ) is empirically set as 1.

4.3. Compared Models

To evaluate the effectiveness of CasNSA for the complete E2E-ABSA task, we compare
it with several strong state-of-the-art baselines as follows:

• LSTM-CRF [54] is a standard sequence tagging framework, which is constructed
through the LSTM and CRF decoding layer.

• BERT-LSTM-CRF [55] Different from the above LSTM-CRF model, BERT-LSTM-CRF
is a competitive model which employs pre-trained language model BERT rather than
the pre-trained word embeddings to learn the character-level word representations.

• E2E-TBSA [17] E2E-TBSA is a novel framework which involves two stacked LSTMs
for performing the OTE and TBR sub-tasks, respectively. Meanwhile, it utilizes a
unified tagging scheme to formulate ABSA as a sequence tagging problem.

• BERT+SAN [20] This is one of the competitive E2E-ABSA models which stacks a
designed self-attention network (SAN) [56] layer on the top of the BERT feature
extractor backbone.

• RACLGloVe [19] RACL is a relation-aware collaborative learning framework with
multi-task learning and relation propagation techniques. RACLGloVe is one of the two
RACL implementations which outperforms many state-of-the-art pipeline baselines
and unified baselines for the E2E-ABSA task.

• ABSA-DeBERTa [37] ABSA-DeBERTa is a simple downstream fine-tuning model
using BERT with disentangled attention for aspect-based sentiment analysis. ABSA-
DeBERTa’s disentangled attention mechanism incorporates complex dependencies
between aspects and sentiments words and thus obtains state-of-the-art results on
benchmark datasets.

The above works are all powerful and representative of the fine-grained aspect-
based sentiment analysis task. Based on their officially released code, we instantiate
their model, reproduce their performance, and report the corresponding performance in
the next subsection.

4.4. Overall Comparison Results

Table 4 shows the performance comparisons of our models against other methods for
end-to-end textual sentiment analysis. The evaluation metric calculation includes extracting
all the exact opinion targets and identifying their corresponding polarities. Our proposed
approach, CasNSA and its several variants, overwhelmingly outperforms all other pipelines
and achieve state-of-the-art results in terms of the precision/recall/F1-value evaluation
metrics on four widely used datasets. The best-performing model of the SemEval2014,
SemEval2015 and Twitter benchmarks is the pre-trained BERT-based model Bert-CasNSA-
svc. CasNSA applies the simple vector concatenate operation as a feature integration
procedure, which obtains F1-scores of 68.13%, 56.40% and 50.05% on the SemEval2014,
SemEval2015 and Twitter benchmarks, respectively; the best-performing model of the
SemEval2015 benchmark is the pre-trained BERT-based model Bert-CasNSA-cnn which
applies the CNN convolutional operation as feature integration. Thus, Bert-CasNSA-cnn
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obtains an F1-score of up to 62.34%; more precisely, as presented in Rows 6, 7 and 8,
which are in the second group, even without taking advantage of the pre-trained language
model BERT, CasNSAGloVe, which only utilizes pre-trained word embeddings, is still
competitive to the existing state-of-the-art methods. From the results of ABSA-DeBERTa, we
can observe that the disentangled attention BERT indicates promising results over the four
benchmarks, showing that the detachment of the position and content vectors can help to
solve the ABSA tasks. Although our model overall performance may be inferior to ABSA-
DeBERTa, our model still has certain advantages compared to other SOTA models due to
our novel tagging decomposition. The disentangled representation learning (DRL) [46]
enhanced pre-trained language model DeBERTa is indeed a popular and advantageous
strategy for handling many downstream language understanding tasks. Motivated by the
success of disentangled representation learning, we plan to further investigate the effect
of disentangled representation learning on the improvement of model performance in the
next stage of research.

Table 4. Comparison results of different methods on the development sets for the fine-grained
sentiment analysis task. The first group includes the pipeline competitors, the second group contains
our CasNSA variants. The models that have marked * denote that the results are quoted directly from
their original published literature rather than our reproduction results. Bold marks the best scores
among all models, and the second best scores are underlined.

Models SemEval2014 SemEval2015 SemEval2016 Twitter

Prec Rec F1-val Prec Rec F1-val Prec Rec F1-val Prec Rec F1-val

LSTM-CRF 58.66 51.26 54.71 60.74 49.77 54.71 53.71 50.27 51.91 53.74 42.21 47.26
BERT-LSTM-CRF 53.31 59.40 56.19 59.39 52.94 55.98 57.55 50.39 53.73 43.52 52.01 47.35

E2E-TBSA∗ 69.83 56.76 61.62 63.60 52.27 57.38 58.96 51.41 54.92 53.08 43.56 48.01
BERT+SAN ∗ 71.32 61.05 65.79 - - - 60.75 50.24 55.00 - - -
RACLGloVe

∗ 77.24 59.06 66.94 69.90 53.03 60.31 59.28 52.56 55.72 52.37 46.75 49.40
ABSA-DeBERTa 81.57 64.74 72.19 92.68 63.24 75.18 94.07 69.27 79.79 71.56 53.69 61.35

GloVe-CasNSA-sba 66.79 61.18 63.86 63.15 55.20 58.91 57.52 50.15 53.58 52.33 45.52 48.69
GloVe-CasNSA-svc 69.21 62.55 65.71 65.28 54.74 59.55 59.56 49.76 54.22 53.17 44.96 48.72
GloVe-CasNSA-cnn 68.47 61.72 64.92 64.74 54.64 59.26 60.08 49.14 54.06 52.60 44.80 48.39

Bert-CasNSA-sba 70.66 62.43 66.29 65.37 57.35 61.10 62.23 51.12 56.13 54.76 45.56 49.74
Bert-CasNSA-svc 71.29 65.24 68.13 67.38 56.95 61.73 62.17 51.61 56.40 56.93 44.65 50.05
Bert-CasNSA-cnn 70.48 65.60 67.95 66.82 58.65 62.34 61.48 51.37 55.97 55.62 45.06 49.79

As is illustrated in Table 4, the comparisons among the second group, which include
our CasNSA variants, can be regarded as the ablation analysis of our works. From the
second group, we conclude that our CasNSA-based methods can handle the complexity
of the fined-grained sentiment analysis task. The results that describe the analysis of our
decomposition innovation of the E2E-ABSA task are competitive when compared with
other pipelines. As is shown in Rows 1 and 6, our CasNSA variant GloVe-CasNSA-sba
obtains a much better performance of 63.86% than the standard pipeline LSTM-CRF on
the SemEval2014 benchmark. Similar phenomena have also existed on other benchmarks.
Furthermore, we notice that the CasNSA variants that utilize the simple bit-wise adding
operation finally obtain a poor F1 score on the development set. This may be due to
the valuable feature loss during the information forward transmission. In short, this
comprehensive experiment analysis shows that our proposed method achieves stable
and competitive performance. It further demonstrates the effectiveness of our proposed
E2E-ABSA task composition strategy in handling the sentiment polarity identification task.

4.5. Case Study

To investigate the superiority of the CasNSA method, in this section we conduct the
following case analysis on the results of several examples by several compared methods.
We choose RACLGloVe (denoted as PIPELINE) as one typical competitor. The analysis
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procedure includes the CasNSAGloVe and CasNSABERT model implementation, as we wish
to fully investigate the performance difference between the pre-trained language model
and pre-trained word embeddings. In addition, we choose the simple vector to concatenate
the operation as the sentiment polarity identifier, as it achieves better performance than
other implementations in the above comparison experiments.

As observed in the S1 and S3, the PIPELINE method fails to extract the two opinion
targets, while our CasNSAs method both correctly produces the right target boundary
of “sweets” and “built-in applications”. It demonstrates that our target boundary recognizer
features’ decoding capacity is effectiveness and powerful compared to other standard
approaches.

S2 shows the benefits of our interactive relational dependencies modeling between
the OTE sub-task and TSA sub-task. The PIPELINE method becomes lost in contexts and
makes a false sentiment prediction “NEU” for “Sushi”. In contrast, CasNSAGloVe and
CasNSABERT both correctly recognize the sentiment polarity “POS” for “Sushi” with the
help of the consideration of opinion-target contextualized semantic features.

Notice that example S3 fully demonstrates the effectiveness of our work innovations.
At first, the PIPELINE method is insufficient for exploiting the contextualized semantic
features and fails to recognize the correct target “built-in applications”, especially for those
targets with several words inside long-distance sentences. Instead, owing to our proposed
novel target boundary recognizer, CasNSAGloVe and CasNSABERT correctly filter out the
target “built-in applications”. Meanwhile, although the target information can guide the
model to predict the sentiment more accurately, the error is probably inherited due to the
lack of contextualized features extracted by pre-trained word embeddings (e.g., GloVe).
According to the results given in the last row of Table 5, we can obviously observe that
the BERT-based CasNSA implementation successfully identifies the positive sentiment
polarity of “iPhoto” while PIPELINE and GloVe-based CasNSA cannot. This observation il-
lustrates the powerful sequential analysis capacity of the pre-trained language model BERT,
which helps outperform other methods in many natural language processing tasks. The
above cases further validate the effectiveness and superiority of our proposed hierarchical
framework CasNSA in handling the fine-grained sentiment analysis task.

Table 5. Case analysis. The “OTE” column contains the results from the Target Boundary Recognizer
(TBR) module for the sub-task of opinion-target extraction (OTE) and the “TSA” column contains the
results from the Sentiment Polarity Identifier (SPI) module for the sub-task of target-oriented sentiment
analysis (TSA). Words in red and italic are annotated aspect/opinion target terms with subscripts
denoting their sentiment polarities. The marker (%) denotes the incorrect prediction and (!) denotes
the correct prediction. We choose the RACLGloVe as the PIPELINE method.

S1 Sentence 1: The [teas]pos are great and all the [sweets]pos are homemade.
S2 Sentence 2: [Sushi]pos so fresh that it crunches in your mouth.
S3 The [performance]pos seems quite good, and [built-in applications]pos like [iPhoto]pos work great with my phone and camera.

Sentence
PIPELINE CasNSAGloVe CasNSABERT

OTE TBR OTE TBR OTE TBR

S1
teas (!) POS (!) teas (!) POS (!) teas (!) POS (!)

None (%) None (%) sweets (!) POS (!) sweets (!) POS (!)
S2 Sushi (!) NEU (%) Sushi (!) POS (!) Sushi (!) POS (!)

S3

performance (!) POS (!) performance (!) POS (!) performance (!) POS (!)
None (%) None (%) built-in applications (!) POS (!) built-in applications (!) POS (!)
iPhoto (!) None (%) iPhoto (!) None (%) iPhoto (!) POS (!)

5. Conclusions and Perspectives

Amidst the sentiment polarity distinguished for internet social user comments, we
investigate the importance and effectiveness of interactive relations between sub-task
opinion target extraction and sub-task target sentiment identification, which is always
neglected by most of the related domain researchers. To some extent, many researchers are
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discouraged from performing further explorations, due to these two sub-tasks being highly
coupled together. Specifically, we propose a novel collaborative learning framework named
cascade social sentiment analysis (CasNSA) to tackle this critical challenge. Our CasNSA
model takes advantage of the opinion target contextualized semantic features provided
by the opinion target extraction sub-task to guide the sentiment polarity identification for
predicting the aspects-oriented sentiment polarities more accurately. Extensive empirical
results show that the proposed approach effectively achieves a 68.13% F1-score on SemEval-
2014, 62.34% F1-score on SemEval-2015, 56.40% F1-score on SemEval-2016, and 50.05%
F1-score on the Twitter dataset, which is higher than the existing approaches.

In particular, the most important novelty of this paper can be summarized in two main
respects: (1) to solve the significant problems brought from the discrete modeling between
the target sentiment and the opinion target extraction task, our target sentiment distinguish
module utilizes the opinion target contextualized semantic features generated by the target
extraction module when predicting the sentiment polarity, and thus ensures the sentiment
polarity identification quality; (2) we investigate the superiority of the BERT encoding
capability by introducing the BERT encoder as the social users’ comment contextualized
feature representations generator. The model’s outstanding performance when using
BERT fine-tuning firmly proves that the multi-head self-attention based Transformer is still
predominant in capturing aspect-based sentiment and robust to the insufficient sample
overfitting dilemma. Meanwhile, different from other pipeline methods, the novel unified
framework CasNSA is designed to handle the aspect-based social comment sentiment
analysis task in an end-to-end fashion. As a result, the CasNSA jointly predicts the target
boundary position associated with the target-oriented sentiment polarity, thereby effectively
tackling the incident error accumulation issue that exists in most pipeline methods.

Moreover, the empirical comparison results illustrate the superiority of our proposed
model and the effectiveness of our proposed model’s sub-components, such as the hierar-
chical cascade sequence tagging unit and the BERT encoder. We believe E2E-ABSA will
continue to be an attractive and promising research direction with realistic industrial and
domestic scenarios, such as intelligent recommendation, smart personal assistant, big data
mining services, and automatic customer services.

In the future, we plan to study the following major problems. (i) To support real-
world dynamic application scenarios, the social comment sentiment analysis application is
always updated quickly and inevitably needs to cover new scenarios in real time. How
can we augment our framework’s business coverage for handling different scenarios
automatically and incrementally? (ii) This framework is built on relatively small datasets
under weak supervision without prior external knowledge. How can we introduce external
knowledge such as world wide web textual target-entity descriptions and other open-
domain knowledge to improve our CasNSA framework’s performance?
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
NLP Natural Language Processing–An AI research area
E2E-ABSA End-to-End Aspect-Based Sentiment Analysis–a specific NLP research task
BERT Bidirectional Encoder Representations from Transformers–pre-trained language model
SOTA State-Of-the-Art–obtain the best performance until now
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