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Designing optimal control pulses that drive a noisy qubit to a target state is a challenging
and crucial task for quantum engineering. In a situation where the properties of the quantum
noise affecting the system are dynamic, a periodic characterization procedure is essential to
ensure the models are updated. As a result, the operation of the qubit is disrupted frequently.
In this paper, we propose a protocol that addresses this challenge by making use of a spectator
qubit to monitor the noise in real-time. We develop a quantum machine-learning-based
quantum feature engineering approach for designing the protocol. The complexity of the
protocol is front-loaded in a characterization phase, which allow real-time execution during
the quantum computations. We present the results of numerical simulations that showcase
the favorable performance of the protocol.

I. INTRODUCTION

As quantum technology progresses more towards the Noisy Intermediate-Scale Quantum
(NISQ) devices era [1], the design and operation tasks become more challenging. One such
task is quantum control, where it is required to find a sequence of control pulses that drive
a qubit, in order to achieve a desired target such as dynamical decoupling and dynamically-
corrected gates [2–8]. The standard approach is to divide the problem into two stages. The first
is a characterization stage, which aims to produce models of the noise based on experimental
measurements. Quantum Noise Spectroscopy (QNS) is one example where the Power Spectral
Density (PSD) of the noise is estimated from coherence time measurements [9–29]. The second
stage is Optimal Control (OC), in which a cost function is optimized with respect to the control
[30–35].

The main drawback of many techniques is the use of master equations to model noisy dynam-
ics, which are only valid under certain assumptions and/or approximations (such as Markovian-
ity, or weak-coupling). In actual devices, these assumptions and approximations may not hold
[36]. Additionally, many techniques assume ideal control pulses (for example instantaneous or
unlimited bandwidth). In practice, the non-idealities will affect the performance of the device
if not accounted for during the design process. A Machine Learning (ML) approach has been
proposed recently to address these drawbacks in [37, 38]. The idea is to construct graybox
structures that consists of standard blackbox layers (such as Neural Networks (NN)), as well
as custom whitebox layers that encode quantum operations (such as quantum evolution). The
advantage of this approach is that it allows having assumptions-free models because of the use
of the blackbox layers. At the same time, it allows estimating physically-significant quantities
(such as Hamiltonians), satisfying their mathematical constraints (such as Hermiticity) due to
the use of whiteboxes. The models are trained from experimental measurements, and can then
be used to design the control.

In a typical experiment, the noise behavior can vary over time. In this case, a characterization
step at the beginning is not sufficient, and has to be repeated periodically over the course of
operation. As a result, the total time during which the qubit operates usefully (i.e. executing
quantum computations) reduces. One solution to this problem is through the use of spectator
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Figure 1: Timing diagram of the proposed protocol. The upper qubit labeled ‘D’ is the data
qubit, and the lower qubit labeled ‘S’ is the spectator qubit. At the beginning there is a

training phase that is executed once which includes characterization of the qubits and training
the machine learning models. This is followed by the testing phase in which a periodic cycle of

measurements of the spectator qubit inform the optimal control of the data qubit.

qubits [39, 40]. The idea is to use another qubit, the “spectator”, as a sensor to the noise,
instead of stopping the quantum computations on the main “data” qubit to do the sensing.
The spectator can be a low-quality qubit (and thus easier to design) as its only role is sensing
the noise. Figure 1 shows a typical timing diagram for such a protocol. In this paper, we address
the problem of designing a sensing protocol utilizing a spectator qubit for noise detection [41, 42],
i.e. there is a discrete set of possible noise profiles that can affect the qubit at any given time.
This opposes noise estimation, in which there is an infinite set of possibilities for the noise
profiles. We will utilize a “Quantum Feature Engineering” (QFE) approach, extending the
proposal in [37] and drawing analogy from the paradigm of “feature extraction” in classical
machine learning.

The rest of this paper is organized as follows. The paper starts with the problem setting
and the underlying assumptions in Section II. Next, in Section III we introduce the steps of
the protocol in detail as well as the design of the ML models it utilizes. After that, we give
details on the numerical simulations we implemented to verify the proposed ideas in section IV.
Finally, we conclude paper and show the potential extensions of the presented work in Section
V.

II. PROBLEM SETTING

The basic setup of our problem is as follows. The data qubit is subject to a Hamiltonian in
the form

HD(t) = H
(ctrl)
D (t) +H

(1)
D (t). (1)

The first term is known and deterministic, and represents the drifting and control Hamiltonians
given by

H
(ctrl)
D (t) =

1

2
ΩDσz +

1

2

∑
k∈{x,y,z}

f
(k)
D (t)σk, (2)

where ΩD is the energy gap of the qubit, σk are the Pauli matrices, and f
(k)
D (t) is the control

pulse sequence driving the qubit along the kth direction. On the other hand, the second term

H
(1)
D is an unknown stochastic Hamiltonian that encodes the noise affecting the qubit due to

interaction with the environment. We can express it generally in the form

H
(1)
D (t) =

∑
k∈{x,y,z}

β
(k)
D (t)σk, (3)
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where β
(k)
D (t) is realization of the noise random process BD(t) along the kth direction. In this

paper, we focus on the setting in which there exists a discrete set of possible processes (profiles)
that could affect the qubit at any point in time. In other words,

BD(t) ∈
{

Dk

}N

k=1
. (4)

Similarly, the spectator qubit is subject to a Hamiltonian of the form,

HS(t) = H
(ctrl)
S (t) +H

(1)
S (t), (5)

where

H
(ctrl)
S (t) =

1

2
ΩSσz +

1

2

∑
k∈{x,y,z}

f
(k)
S (t)σk. (6)

The spectator qubit energy gap ΩS and the control pulses f
(k)
S (t) need not be the same as the

data qubit. The noise Hamiltonian of the spectator can also be written in the form

H
(1)
S (t) =

∑
k∈{x,y,z}

β
(k)
S (t)σk, (7)

where β
(k)
S (t) is a realization of a random process BS(t) along the kth direction. There is also

a discrete set of possible noise profiles that affects the spectator qubit

BS(t) ∈
{

Sk

}N

k=1
. (8)

We assume the existence of a fixed bijective map F , known a priori, between the noise profiles
affecting the spectator qubit and those affecting the data qubit,

F :
{

Sk

}N

k=1
→
{

Dk

}N

k=1
. (9)

Therefore, if we execute the noise detection protocol on the spectator and find the noise profile
to be Sj , then we can know for certain that the noise profile affecting the data qubit is F (Sj). A
physical example of this situation is in superconducting qubits. The data and spectator qubits
can be tuned differently such that for one of them we have a dephasing noise in the form of

H
(1)
S = β(t)σz and for the other it is in the form H

(1)
D = cβ(t)σz. It is important to ensure that

the map is a bijection, to avoid the situation where multiple spectator noise profiles map to
the same data noise profile. In practice, this map can be characterized using physical modeling
or using more sophisticated techniques including ML, however this is out of the scope of this
paper. We need the following additional assumptions:

1. The size the profiles set N is fixed.

2. The statistical properties of each individual profile Sk are fixed (can be unknown).

3. The measurements and control are fast enough such that the noise profile does not change
during measurements or during execution of a quantum gate.

4. It is possible to characterize each noise profile separately at the beginning of the protocol.

The first two assumptions are necessary in any signal detection problem, that is the existence
of fixed well-defined classes to which the signal can belong. The third assumption is fair. If
the noise switches between two profiles faster than the measurement or control time, then they
should not be treated as separate profiles, but rather one profile with non-stationary statistics.
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Note that any kind of statistics are allowed for the profiles Sk. The last assumption is the
most challenging one. In order to characterize each noise profile separately, we must know
exactly which profile is currently affecting the qubit. But this is actually the problem that
we want to solve, so we have a circular definition situation. However, it is possible to resolve
this issue by repeatedly performing the characterization process until we observe all possible
noise profiles. This process might take a long time, but it is done only at the beginning before
the actual operation of the system. Once we do the characterization, we can address noise
detection problem, where we need to know which noise profile is currently active as quick as
possible using the minimum number of measurements. A practical example is a solid-state or
a superconducting qubit operating at cryogenic temperatures. Every time the device is cooled
down, we end up with two-level fluctuators, that effectively act as the environment of the qubit.
There might be a change in the physical properties of the fluctuators after each cooling. Thus,
we repeatedly cool down the device and characterize it until we observe all possible noise profiles.
After that, during the operation of the device (or perhaps other devices of the same type), we
do not need to repeat this lengthy procedure.

In an experimental setting, it is only possible to measure the expectation value 〈O(T )〉 of
some observable O at time t = T . In what follows, we focus on the spectator qubit, however
similar expressions can be written for the data qubit. Assuming the spectator starts in the state
ρS(0), using a modified interaction picture (see [37] for a detailed derivation), we can write

〈O(T )〉 = tr
(
VO(T )U0(T )ρS(0)U †0(T )O

)
, (10)

where U0 is the unitary given by time-ordered expression

U0(T ) = T+e
−i

∫ T
0 H

(ctrl)
S (t)dt, (11)

representing the evolution of the system in the absence of noise, and VO(T ) is an operator that
encodes all information about the noise and how it interacts with control and is given by

VO(T ) = O−1 〈ŨI(T )†OŨI(T )〉c . (12)

The classical expectation 〈·〉c is taken the realizations of the noise process, and

ŨI(T ) = U0(T )UI(T )U †0(T ), (13)

with

UI(T ) = T+e
−i

∫ T
0 U†0 (t)H

(1)
S (t)U0(t)dt. (14)

The use of this formalism allows us to express the dynamics of the open quantum system
exactly without approximation or assumptions on the noise or control (as in the case of master
equations). The important note is that noise operator VO depend on both the control and
the noise. Thus, if the noise is fixed and the control is allowed to vary, then we can estimate
experimentally the operator providing a suitable encoding of the noise.

So, under the aforementioned settings and assumptions, we propose the following research
question:

Can we design a protocol to detect which noise profile is affecting the data qubit by perform-
ing a measurement on the spectator qubit?

The answer to this question is affirmative. We will develop a protocol that utilizes ML tech-
niques to model the qubits, design the optimal control pulses, and design a noise discriminator.
In the next section, we will explain the protocol in detail.
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III. METHODS

A. Quantum feature engineering

In classical ML literature, “features” refer to vectors extracted from a signal, that can be
used for a variety of applications including classification (assigning labels to signals). Features
can be “raw” such as the color of a pixel in an image or the amplitude of an audio signal, or
can be more abstract like the amplitude of a frequency component of a signal. There are three
basic steps to prepare the features for a classifier:

1. Feature generation: computing the feature vector from a given signal.

2. Feature selection: choosing a subset that best distinguishes the objects we are classifying,
based on some ranking criterion.

3. Feature extraction: applying transformations to enhance the distinguishablity between
the classes and also to reduce the dimensionality of the feature vector.

Once these steps are done, an ML blackbox structure is constructed to perofrm the classification
process. The structure is trained by minimizing a loss function (such as the mean-square
error (MSE)) with respect to the model parameters over a training set. The loss function
captures the error between the predicted label by the model, and true label, for a given set
of training examples. A training set thus consists of representative examples from each class,
where an example is a pair of feature vector and the corresponding ground truth label. After
the classifier is trained, it can then be used to classify new examples that are not part of the
training set. This is referred to as the testing stage of the classifier. The training is usually
a computationally expensive process, whereas the testing is very efficient. Traditionally, the
process of feature generation, selection, and extraction are done manually using heuristics (see
[43] for a standard text on the subject and [44] for an application in image processing). On the
other hand, in the modern paradigm of deep learning, these steps become an integrated part
of the ML structure, and the inputs become directly the raw signal. The structure includes
trainable layers that generates and extracts the features automatically as a part of the training
process. The algorithm learns the optimal features that need to be generated and how to
transform them such that the loss function is minimized. An example of this structure is the
Convolutional Neural Network (CNN).

The noise detection problem can be formulated using the language of features and classifica-
tion. Since the underlying physical model is based on quantum mechanics, we will refer to this
approach as “quantum feature engineering” (see Table I for the analogy with standard ML).
We need to train a classifier using features that encode information about the noise, and at the
same time accessible experimentally. The only possibility is the expectation of some observables.
However, according to Equation 10, this depends on the noise, control, initial state, evolution
time, and observable. The dependence on noise is necessary, otherwise we cannot choose the
measurements as features in the first place. The evolution time can be chosen such that we are
able to obtain useful information from the measurement. This means it is long enough for the
state to evolve non-trivially, but not too long that the system completely decoheres. The initial
state and the observable could be chosen to form an informationally-complete set. For a qubit,
this would be six eigenstates of the Pauli operators as initial states, and all the Pauli operators
as observable, which gives a total of 18 measurements. However, in many cases we can reduce
this set for efficiency purposes. For example, if we know that the noise is pure dephasing along
Z-axis, then it is sufficient to measure the Pauli X operator, with the three positive eigenstates
of the Pauli operators as initial states. This gives a total of 3 measurements. A Pauli Z mea-
surement would not reveal any information about the dephasing process. This step is analogous
to feature selection in ML. The last item to fix is the control. Now, in principle we could have
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two completely different noise profiles, but both result in the same measurements given a par-
ticular control. For example, in the case of ideal instantaneous pulses, and Gaussian stationary
zero-mean dephasing noise, the measurement 〈X(T )〉 = e−

∫
S(ω)|F (ω)|2dω 〈X(0)〉, where S(ω) is

the PSD of the noise, and |F (ω)|2 is the filter function. In this case, we could have two different
noise spectra, but the filter function happens to overlap with them in a way that results in the
same value of the integration, and thus the same measurement. Therefore, the choice of control
is important to be able to distinguish between different noise profiles. One possible heuristic
to use is the distance between the VO operators corresponding to each noise profile. We can
see that if the control is fixed, then similar to Equation 4 we can define the set of noise profiles
using the VO operators

VO(T )|
H

(ctrl)
S (t)

∈
{
V (k)

}N

k=1
, (15)

where each V (k) corresponds to one profile. Therefore, we can use formulate this as a quantum
control problem, where it required to design a control that maximally distinguishes between the
VO operators corresponding to each noise profile. The natural question to ask then is how to
evaluate the VO operators to use in an optimization algorithm. Experimentally, this quantity
is not accessible. However, we can build estimating models from characterization information
(set of random control pulses, and corresponding measurements).

B. Summary of the proposed protocol

1. spectator qubit

To sum up the proposed QFE approach, there are two different pipelines (phases) for train-
ing and testing. The training pipeline starts with the characterization information as a raw
signal, from which the VO operators are generated. An optional step would be feature selection
where we select the combination of observables and initial states that will maximizes the in-
formation obtained from the measurements if we have some prior information about the noise.
Next, we design an optimal control sequence to ensure maximum separation between classes
(i.e. maximize the distance between each V (k)), and evaluate the corresponding optimal mea-
surements. This is the feature extraction step. Finally, a classifier is trained using the simulated
optimal measurements and the correct label if the noise profile. The outcomes of this pipeline
is the optimal control pulses and the trained classifier. The training pipeline will have a long
execution time, however it is done once at the beginning of the protocol. The testing pipeline
during which the device operates is more efficient. It starts by the experimentally measuring
the observables corresponding to the the optimal control pulses. The measurements are then
passed to the trained classifier to predict the current noise profile affecting the system.

We will group the different steps of the protocol into four stages. The first stage (Section
III C) includes the characterization and estimation of the VO operators. We are going to use
an ML approach as in [37], but with a different design. The second stage presented in Section
III D will include the optimal control pulse design. In Section III E, we explain the third stage
which is training the classifier. Those three stages represent the training phase of the protocol.
The last stage represents the testing phase of the protocol and is presented in Section III F. The
proposed protocol is summarized in Figure 2.

2. data qubit

For the data qubit, We assume that a full characterization procedure is done at the beginning
and so we are able to construct a lookup table of optimal control sequences. The lookup table



7

ML QFE

Classes Noise profiles

Raw signal Characterization data

Feature generation Estimating VO

Feature selection Selecting best observables and initial states

Feature extraction Designing the optimal control pulses

Features Predicted optimal measurements

Table I: The analogy between the proposed quantum feature engineering approach for
addressing the noise detection problem, and classification

L would be indexed by the noise profile and the desired quantum gate. In other words, the
optimal control pulses fD(t) to apply given the noise profile index nD, and the desired gate G is

fD(t) = L(nD, G). (16)

Usually, we optimize a universal set of gates and not every possible gate, and thus it is possible
to construct this table. The details about how to construct such a table is out of scope of this
paper, however the general method in [37] could be used by performing it for every possible
noise profile. The characterization and lookup table construction represent the training phase
of the data qubit and is independent of the spectator qubit. The testing phase however depends
on the spectator. In this stage, once we perform the aformentioned steps on the spectator and
find that the active noise profile is nS , we simply use the map F to find the noise profile index
nD that is affecting the data qubit. Consequently, we use the lookup table L to find the optimal
pulses we need to implement a gate G. This process will be repeated periodically over the time.
The data qubit is never interrupted while executing the gates, which is the main objective of
this paper.

The remainder of this paper, including the numerical simulations, will focus on the spectator
qubit, and how the different stages are implemented. The protocol steps related to the data
qubit are standard tasks (characterization and control), and so we will not focus on these aspects
in this paper.

C. Stage I: Feature Generation

The focus in this paper is on the spectator qubit. We will construct a graybox ML structure
[37, 38] to model the qubit. It consists of whitebox layers that performs quantum calculations
and is able to generate features such as the VO operators. Additionally, it has blackbox layers
that can be trained to generate information about the noise for example. The combination of
blackboxes and whiteboxes result in an overall graybox. The proposed structure is shown in
Figure 3. The details are given next.

There are two main paths in the proposed ML structure. The first path is the control
path. It starts with the model input which is the control pulse sequence fS(t) represented in
time domain. The control pulses then passes through a whitebox layer that constructs the

Hamiltonian H
(ctrl)
S (t). After that, there is a whitebox that computes the control unitary U0(t)

by approximating the time-ordered evolution in Equation 11 as

U0(t) = e−iH
(ctrl)
S (M∆t)∆t · · · e−iH

(ctrl)
S (2∆t)∆te−iH

(ctrl)
S (∆t)∆te−iH

(ctrl)
S (0)∆t, (17)

where ∆t = t/M , and M is the number of discrete time steps.
The second path is the noise path. It starts with a custom blackbox that has two outputs.

The first is a set of normalized weights {wk}Kk=1, such that 0 ≤ wk ≤ 1, and
∑

k wk = 1. That
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Figure 2: The proposed protocol for controlling a data qubit using measurements from a
spectator qubit and quantum feature engineering. The first stage is for characterization and

training ML models for estimating the VO operators. The second stage is using quantum
control and the trained ML models to optimize the VO operator to maximize the

distinguishablity of the classes. The third stage is training a classical classifier for detecting
the noise profile. These three stages form the training phase of the protocol and are executed
once at the beginning. The testing phase of the protocol is the actual sense-control periodic

cycles. The measurements of the spectator corresponding to the optimal control sequence are
used fed into the trained classifier. The predicted label is then used to lookup the optimal

sequence that controls the data qubit given the current noise profile.

is, they form a probability distribution. These weights are trainable, so during the training
process, the loss function is optimized with respect to those weights. In order to ensure that
the conditions hold, we can simply start with a general unconstrained set of weights {w̃k}Kk=1,
and then pass them to a standard softmax activation layer that implements the transformation

wk =
ew̃k∑K
k=1 e

w̃k
. (18)

The second output of the layer is a set of trainable signals {β̂k(t)}Kk=1 that represents some noise

realizations in time domain. For each of these realizations, we construct the Hamiltonian H
(1)
S (t)

using a custom whitebox implementing Equation 7. Next, the output passes through a modified

quantum evolution whitebox that calculates the modified interaction unitary Ũ
(k)
I (T ) for each
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Figure 3: The proposed graybox structure for modeling a qubit. The input to the model is the
control pulse sequence, and the output is the observables. The structure consists of two paths.

The first path is the control path which starts with the time domain representation of the
control pulse sequence as an input, followed by the construction of the control Hamiltonian

and unitary. The second is the noise path that starts with a customized blackbox that
generate noise realizations and weights, followed by the construction of the modified

interaction picture unitary and finally the VO operator. The two paths merge at the output
layer which calculates quantum observable parameterized by the initial state of the qubit.

noise realization β̂k(t) using Equation 13. The time-ordered evolution is similarly approximated
as in Equation 17. The two paths related to the noise then merge into the “VO Construction”
layer, which is a whitebox that calculates the estimate of the operator as

V̂O(T ) =
1

K
O−1

K∑
k=1

wkŨ
(k)
I (T )†OŨ

(k)
I (T ). (19)

This equation represents an approximation of the classical expectation in Equation 12 that is
defined over a continuous distribution of all possible noise realizations, by a weighted average
over a discrete distribution of K realizations. These special weights and realizations are the
only trainable parameters in the model. Therefore, in order to minimize the loss function
(which represents the error between the predicted outputs and the actual desired outputs),
the training algorithm will be forced to find the optimal values for these parameters such that
distance between the actual VO(T ) operator and the estimated one V̂O(T ) is minimized.

The final layer in the model is the output layer which is a whitebox that calculates the
quantum measurements using Equation 10. The input to the layer is the estimated V̂O(T )
operator from the noise path, and the U0(T ) from the control path. The initial state of the
qubit is parameter of this layer, and so the layer can generate measurements for multiple initial
states. As discussed earlier, we can use the full 18 combinations of initial states and observables.
In this case, we will need separate VO construction layer for each observable connected to
a quantum measurements layer. However, we do not need multiple noise or control paths,
because the control unitary U0(T ) and the modified interaction unitary ŨI(t) do not depend
on the observables or the initial states. This is a consequence of the linearity of quantum
mechanics.

We can see the difference between the proposed structure and the original one presented
in [37]. The original design used standard blackboxes to generate a prameterization of the VO
operator. The input to the balckboxes was the control pulses. So, in some sense the model
tries to learn the modified interaction picture, which encodes the interaction of control and
noise. Whereas in this paper, we directly implement the modified interaction picture with
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suitable whiteboxes, and use a customized blackbox to generate noise parameters. Moreover,
in this paper we only use the time-domain representation of the control as the model input,
instead of having two inputs (the parameterization and time-domain representation) in [37].
This simplifies the implementation of the model. The original design in [37] can still be used in
the protocol. However, we choose to showcase a different graybox in this paper to emphasize
the idea of building physics-aware ML models. The combination of blackboxes and whiteboxes
is not unique and there is flexibility in the way we partition our model. This is similar to
standard ML practice. There are some basic blackbox structures that could be combined in
many different ways and with many hyperparameters to tune.

The dataset construction and the training and testing processes for the proposed graybox
follows very similarly the method of [37]. The MSE is used as a loss function, and an experimen-
tal dataset is constructed by applying random control pulses and measuring the observables.
The difference between this paper and [37], is that for the noise detection problem under con-
sideration, we need to repeat the whole procedure (dataset construction, model training, and
model testing) for each noise profile. Therefore, the output of this stage is a set of N trained
ML grayboxes that model the spectator qubit corresponding to each possible noise profile. We
do not use the same model for multiple profiles, each profile is associated with a different model.
They all have the same aforementioned structure, but they end up with different trained pa-
rameters because they were trained on different datasets. A final note is that this process of
constructing datasets and training ML models is very lengthy. However, it is only performed
once at the beginning of the protocol and not repeated during the execution phase.

D. Stage II: Feature Extraction

The outputs of the first stage of the protocol is a set of trained ML models corresponding to
each possible noise profile. These models could be used to predict the measurement outcomes
given the control pulses. But, they also can be used to predict the VO operators given the control
pulses by simply probing the output of the VO construction layer. Therefore, we can use this
“reduced” model as a part of an optimization routine to do quantum control tasks. As discussed
earlier, the choice of the control is crucial for the success of the detection. So, the target of the
second stage of the protocol is to find the optimal discriminating control pulses that maximally
separates the noise profiles. In order to do so, we need a criterion for the optimization. Here,
we propose a heuristic which is the average distance between the VO operators for each noise
profile. Formally, we are looking for the pulse f̂(t) that satisfies

f̂(t) = arg max
f(t)

∑
i,j∈{1,2,···N}

‖V (i) − V (j)‖, (20)

where V (i) is the VO operator of the ith noise profile and ‖ · ‖ is any matrix norm (in this
paper we choose the Frobenius norm). Now, these operators are not accessible experimentally,
therefore we need to an show that the optimal pulses also enhances the separation between the
noise profiles in the measurements space. Consider for simplicity we have two noise profiles, the
initial state is ρ(0), and the observable is the Pauli X operator. Also assume that the control is
ideal with filter function |F (ω)|2, and the noise has PSD S(ω). In this case, we can show that

VX = e−
∫
S(ω)|F (ω)|2dωσ0, (21)

where σ0 is the identity matrix. It is clear that maximizing the distance ‖V (1)−V (2)‖ is equiv-
alent to maximizing the distance |I(1) − I(2)|, where I(j) is the overlap integral of the jth noise



11

profile, i.e. I(j) = e−
∫
S(j)(ω)|F (ω)|2dω. The distance between the corresponding measurements is

|m(1) −m(2)| =
∣∣∣tr(V (1)ρc(T )σx

)
− tr

(
V (2)ρc(T )σx

)∣∣∣ (22)

=
∣∣∣tr((V (1) − V (2))ρc(T )σx

)∣∣∣ (23)

=
∣∣∣tr((I(1)σ0 − I(2)σ0

)
ρc(T )σx

)∣∣∣ (24)

=
∣∣∣tr((I(1) − I(2)

)
σ0ρc(T )σx

)∣∣∣ (25)

=
∣∣∣I(1) − I(2)

∣∣∣ |tr (ρc(T )σx)| , (26)

where ρc(t) is the closed-system evolution of the state due to control. The last step follows from
the fact the difference between the integrals is just a scalar that can be pulled out of the trace.
The first term we get depends on the noise and the control, while the second term depends on
initial state and the control. Therefore, the optimization target should be the first term, which
is why we chose the aforementioned heuristic in the first place. Maximizing the first term will
definitely increase the separability between the measurements. However, in the worst case, the
optimal control we obtain might result in an evolved state ρc(T ) that has a zero projection along
the X-axis (any state in the YZ plane). In this case the second term would vanish, and the
distance between the measurements would vanish as well. This situation can only be avoided
if we use at least three initial states that are non-coplanar in the YZ plane (for example, the
positive eigenstates of the Pauli operators). Since, ρc(T ) evolves using a closed-system unitary,
the angles between the initial states have to preserved after evolution. Therefore, no matter
how the control is chosen, there will be at least one evolved state that does not have a vanishing
X-component. This means at least one measurement will not vanish and so the worst-case
scenario is avoided. In this case, the three measurements would constitute the final extracted
feature vector that the classifier would be trained on in the next stage.

Now we can see that the use of the distance between VO is a useful heuristic. First, it
depends only on the noise and control and not the initial state. The VO formalism itself allows
the separation between the evolution due to control, and the effect of noise. If there was no
noise, all the profiles would have been the same. Therefore, we have a framework that allows us
to do feature extraction (pulse optimization) as well as feature selection (initial state selection).
The other possible scenario was to optimize the distance between the measurements directly,
In this case we probe the output of the trained ML models instead of the VO construction
layer outputs. Although this is possible, we prefer to use the distance between VO as a more
“natural” heuristic. A final note, is that although this argument depends on the ideal filter
function formalism for simplicity, we will show in the numerical simulations that it works as
well for general noise and control.

E. Stage III: Classifier Training

After the second stage of the proposed protocol is executed, we obtain the optimal control
pulse that best discriminates between the different noise profiles. The next step would be to
train a classifier for the noise detection. The inputs to the NN will be the measurements that
correspond to the optimal control pulses. These measurements will be estimated from the
trained ML models from stage 1. This is the second use of the trained models, besides using
them for pulse design. For each noise profile, we use the corresponding trained model to estimate
the value of the measurement. The desired output of the classifier will be the class label using
one-hot encoding, i.e. the label would be a vector of all zeros except at the position of the
correct profile, in which case it takes the value 1. This means the first profile will be labeled as
[1, 0, · · · 0], the second profile as [0, 1, 0, · · · 0], etc. Therefore, a training example can be defined
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as a pair of vectors, the first being the estimated measurements and second is the encoding of
the noise profile. This implies the training set will consist of exactly N examples. In practice,
this is not sufficient to train a standard ML classifier. Therefore, we construct the training set
of the classifier differently. For each of the N basic examples, we generate R replicas each with
white Gaussian noise added to the measurements. In signal processing, adding artificial noise
to a signal to achieve a useful target is referred to as “dithering”. There are two reasons for
performing this step. The first is as we mentioned to increase the size of the training set from
N to NR. The second is to model actual errors that we would encounter in the testing phase.
These errors manifest themselves as discrepancies between the predicted measurements using
the trained models, and the measurements we obtain experimentally. There are two sources of
such errors:

• Experimental errors such as State Preparation and Measurement (SPAM) and finite-
sampling.

• Prediction errors due to the use of ML models.

And so to increase the robustness of the classifier, we must have noisy examples from each class,
and hence the dithering step. Regarding the probability distribution of the dithering noise, there
might be better distributions that takes into account models of those errors, however, this out
of scope of this paper. The strength of the dithering noise have to be chosen carefully, to avoid
the situation where all the classes overlap completely. At the end, the errors we are discussing
should be minimal in practical situations. Note, that the dithering noise we are discussing in
this context is artificial due to imperfections of the experiments and models. It has nothing to
do with fundamental quantum noise that affects the evolution of the qubit, and which we aim
to detect.

For the architecture of the classifier, we choose a standard NN blackbox to build the classifier.
It consists of three layers: the first has N neurons, the second has 3N neurons, and the last layer
has N neurons. The two hidden layer have a hyperbolic tangent activation while the output
layer has softmax activation. We use an ADAM [45] optimization algorithm and the MSE as
loss function. In general, there is a great flexibility to choose the hyperparameters defining the
architecture, apart from the output layer which has to be chosen that way to generate a one-hot
encoding. Once the training set is constructed for the classifier, the training is performed, and
we also generate a very similar testing dataset to check the performance of the classifier.

This is the final stage of the training phase of our proposed protocol. The outcomes of this
phase is the optimal control pulse sequence that best discriminated between the different noise
profiles, and a trained classifier that acts on the corresponding optimal measurements. All of
those stages are performed at the beginning before the actual operation of the device. At this
point we are ready to move on the testing phase.

F. Stage IV: Testing

The testing phase of the protocol consists of one stage that is repeated periodically. The
steps involved are very efficient and thus can be executed in real-time as opposed to the training
phase that requires extensive characterization as well as computations. The first step is to
experimentally measure the spectator qubit using the control pulses and initial states obtained
from the training phase. This will constitute a feature vector that is then passed to the trained
classifier. Although, the classifier is originally trained on simulated measurements, because of
the dithering step, we still expect it to perform adequately. The output of the classifier would
be a probability distribution of the different noise profiles given the measurements. In the ideal
case, we would expect the distribution to be completely concentrated at the correct label. In
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practice, this might not happen and we may end up with a broader distribution that still peaks
around the correct class. This is still perfectly fine, since we can simply infer the class label as

n̂D = arg max
i∈{1,2,···N}

ŷi, (27)

where [ŷ1, ŷ2, · · · ŷN ] is the output of the classifier. The undesired situation is that when two or
more entries have exactly the same value. In this case, the prediction would be chosen randomly
between the corresponding noise profiles. This will result probably in a misclassification, which
is in fact naturally expected for any detection system. In terms of quantum noise, this means
that we cannot differentiate between two or more noise profiles. This implies one of the following
possibilities:

• The noise profiles are actually extremely close to each other, that we could consider them
in fact one profile without a noticeable effect on the performance of the device.

• The noise profiles might still be different, but under the control constraints and capa-
bilities available in the experiment, there is no way to practically differentiate between
them.

In either case, it is impossible to distinguish between the noise profiles unless we change the
control. By control constraints we mean maximum bandwidth, maximum amplitude, minimum
pulse width, etc. These are imposed by the available hardware in the experiment, and they
directly affect every stage in the protocol. When we perform the characterization, we use pulses
having these constraints. Also, when we optimize to find the discriminating pulses, we must
impose the constraints so that it is possible to implement them experimentally in the testing
stage. Therefore, we have to consider the separability of noise profiles in the context of available
control. We will give an example of a numerical simulation of this situation later in this paper.

Once, the noise profile is detected, we can use the fixed map F as discusses earlier to infer
the noise profile that is affecting the data qubit. And so we can instantaneously load the proper
pulse sequence that implements a desired gate of the data qubit using the pre-built lookup
table L. This ends the stage, which can then be repeated periodically. The data qubit is never
interrupted while executing the gates, the spectator is used instead. And so the objective of
the proposed protocol is met. The performance of the classifier will be determined completely
by the spectator qubit, under the assumption that the map F is fixed. If the spectator qubit
is of low-quality, then it might be an advantage because in this case it might be more sensitive
to the quantum noise in the environment. In the next section, we will discuss the numerical
simulations that supports the presented ideas.

IV. SIMULATION RESULTS

In this section, we show details about the numerical simulations that were performed to
demonstrate the proposed protocol. We implemented the numerical experiments in this paper
using Python and Tensorflow [46] and Keras [47]. The source code is publicly available as well
as the datasets and the trained models that were used to generate the results in this paper1.
We will focus on the simulations of the stages of the protocol related to the spectator qubit
only and not the data qubit. The section starts with an overview on the implementation details
including the different simulation parameters and particularities of the protocol for the training
phase. Next, we present the results of the testing phase by which we can assess the performance
of the overall protocol. We end the section with a discussion on the significance of the obtained
numerical results.

1 https://github.com/akramyoussry/QFEND

https://github.com/akramyoussry/QFEND
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A. Training Phase

1. Stage I

The first stage in the proposed protocol aims to construct a set of characterization data for
each possible noise profile, and train a corresponding ML graybox. The dataset will consist of
pairs of random control pulses and corresponding measurement outcomes. We will simulate this
process numerically. So, we choose a Hamiltonian for the spectator qubit that is a single-axis
dephasing in the form

H(t) =
1

2
fx(t)σx +

1

2
(Ω + β(t))σz, (28)

where fx(t) is the control pulses, Ω is the qubit energy gap, and β(t) is the noise process. The
evolution time interval is fixed to be [0, T ], and is discretized into M steps. The values of the
simulation parameters are T = 1 , M = 1024, and Ω = 12. For the quantum observables,
we choose the Pauli X, and with three positive eigenstates of the Pauli operators as an initial
states. Thus we have only three measurements to perform. We use the same Monte Carlo based
technique for the simulating the noisy evolution as in [37]. The number of noise realizations
over which we take average is K = 2000.

For the noise profiles, we are going to generate realizations for six different random processes
and we will choose different subsets to showcase the different possibilities that could occur in
an actual experiment. The six profiles are as follows:

1. N0: noiseless (i.e. β(t) = 0)

2. N1: β(t) is defined via its PSD, which take the form of a 1/f noise with a cutoff followed
by a Gaussian bump. This can be expressed as SZ(f) = 1

f+1u(15 − f) + 1
16u(f − 15) +

0.5e−(f−30)2/50, where u(·) is the unit step function.

3. N2: β(t) is a stationary Gaussian colored noise defined via its autocorrelation matrix.
The coloring of the noise is simulated by performing a convolution of a white Gaussian
noise signal with some deterministic signal.

4. N3: β(t) is a non-stationary Gaussian colored noise defined via its autocorrelation matrix.
The non-stationarity is simulated by multiplying the stationary noise by some determin-
istic signal in time domain.

5. N4: β(t) is a non-stationary non-Gaussian colored noise defined via its autocorrelation
matrix. The non-Gaussianity is simulated by applying a non-linear function (in this paper
we choose squaring) to a Gaussian noise.

6. N5: β(t) is almost identical with the N1 profile, the only difference is the a slight shift in
the location of the bump. The PSD is given by SZ(f) = 1

f+1u(15 − f) + 1
16u(f − 15) +

0.5e−(f−40)2/50.

For each of these noise profiles, we will create a dataset that consists of 10000 examples, where
one example is a pair of a control pulse sequence, and the corresponding quantum measurements.
The control takes the form of a train of Gaussian pulses of fixed width, and random amplitude
and position in the form

fx(t) =
n∑

k=1

Ake
− (t−µk)

2

2σ2 , (29)
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where n = 5, σ = 1
6

T
2n , Ak is chosen randomly in the interval [−100, 100], and µk is chosen

randomly such that there are no overlapping pulses.
After the datasets are created, simulating the collection of experimental characterization

data, we train a separate ML model on each dataset. We select 9000 examples for training and
1000 examples for testing. The number of training iterations is 1000. Supplementary Figure 5
shows the MSE evaluated over the training and testing examples as a function of the iteration
number.

2. Stage II

The second stage after training the ML models for each noise profile is finding the optimal
discriminating pulse sequence. Here we introduce three different scenarios, where we want to
discriminate between N = 5 profiles as follows:

1. Scenario 1: The noise profiles are highly separable. In this case we use the N0, N1, N2,
N3, and N4 profiles.

2. Scenario 2: Some of the noise profiles are close. Here we use the the N5, N1, N2, N3, and
N4 profiles.

3. Scenario 3: The noise profiles are highly separable, but the control is limited to the range
[−1, 1]. Similar to Scenario 1, we use the the N0, N1, N2, N3, and N4 profiles.

For each of these three scenarios, we run the pulse optimizer for 500 iterations. The optimal
pulse sequence we obtain for each scenario is shown in Figure 6. The numerical experiments
show in fact that these optimal pulses are not unique. If we run the optimizer multiple times,
we can get different pulses.

3. Stage III

After we obtain the optimal control pulses, we proceed to final stage in the training phase
of the protocol which is training the classifier on simulated optimal measurements. The first
step is to use the trained ML models from stage 1 to simulate the three outcomes when we the
input is the optimal pulses. These outcomes are the components of the feature vector. Next,
we construct the dithered dataset by generating R = 10000 noisy replicas of the feature vector
for each class. Since we have five profiles to distinguish, the total number of examples in the
dataset is 50000. The examples are then randomly split into training and testing with a split
ratio of 0.1. The classifier is then trained for 500 iterations.

This procedure is repeated for each of the three scenarios discussed in the simulations of
Stage 2. With this, the training phase of the protocol is concluded. The outcomes are the
optimal control pulses, and the trained classifier for each of the three scenarios.

B. Testing Phase

With the training phase of the protocol fully executed, we are ready to simulate the testing
phase. This is when we can actually asses the performance of the protocol. The procedure
is to experimentally measure the spectator qubit applying the optimal control pulse, and then
passing the measurement outcomes to the trained classifier. Then the procedure is repeated
periodically over time.

So, there are two main elements to simulate this part of the protocol. The first is simulating
the optimal measurements. Here we once more use the Monte Carlo simulation that was used
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(c) Scenario 3

Figure 4: The confusion matrix for the three scenarios evaluated over 104 examples. The first
scenario is when the noise profiles are highly separable, the second is when some profiles are
close and the control is unlimited, and the final scenario is when some profiles are close and
the control is limited. Each row in the confusion matrix represents the groundtruth class,

while the columns represent the predictions by the classifier. Each entry is the corresponding
percentage of times the classifier predicted a particular class given the groundtruth.

to create the datasets. We emphasize that we do not use the trained ML models of stage 1 in
the training phase. Additionally, we reduce the number of noise realizations from K = 2000
to K = 1000. In a real experiment, this corresponds to a decreasing the number of shots we
average over, and thus would speed-up the sensing step of the protocol. This is desired because
at this stage, the protocol should operate in real-time. Moreover, this decreases the accuracy of
the measurement, and thus it will act a good test to the robustness of the trained classifier to
artificial noise. On the other hand, when we perform the characterization of the device at the
beginning, we sacrifice the time in order to get high quality datasets to enhance the performance
of the ML graybox models.

The second element is simulating the process of the noise profile changing in time. For this,
we generate a random sequence of integers i1, i2, · · · iL of length L = 10000, where ik denotes
the index of the current noise profile. Then we simply loop over each index, generate the set of
noise realizations corresponding to this profile, and run the quantum simulations as described
previously. Different noise realizations are generated on the fly at each step in the sequence.
This ensures there is enough randomness to mimic an actual experiment. After we run the
simulation and get the measurement outcomes, we pass it to the trained classifier and store the
predicted profile.

For each scenario, we do the aforementioned procedure, and then we calculate the confusion
matrix as a metric for the performance of the protocol for this scenario. This is a widely-used
metric in ML to assess the performance of classification algorithms. The confusion matrix C is
an N ×N matrix, where the element Cij is defined to be the percentage of times the classifier
predicted the label j whereas the groundtruth label is i. Thus, the sum of any row should be
100%. The best case is when the confusion matrix is a diagonal matrix with entries of 100%. In
other cases, the confusion matrix can be helpful as it can show which classes are getting mixed
by the classifier. Figure 4 shows the confusion matrix for the three scenarios.

C. Discussion

The numerical simulations in this section show a promising performance for the proposed
protocol. There are two main results to explore. The first is the performance of the proposed
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graybox ML model of the qubit. We can see from the plot of the MSE curves in Figure 5 that
the model is able to learn the training examples, reflected by the training MSE curve decreasing
with iterations. Additionally, the model is able to generalize as demonstrated by the testing
MSE curve also decreasing with iterations, and not being significantly far from the training
MSE curve. This was the case for the six noise profiles, which shows the ability of the model
to learn diverse types of quantum noise.

The second results is the performance of the classifier as depicted by the confusion matrix in
Figure 4. This actually reflects the performance of the whole protocol, since the results do not
depend solely on the classifier design, but rather on all other steps. In Scenario 1, the profile
N0, N1, N2, N3, and N4 were used, with the control pulses allowed to have the full range. We
can see that the protocol was able to successfully classify all the labels correctly, and so the
confusion matrix was diagonal with 100%. This means that the noise profiles are separated given
the optimal control so there were no misclassifications. The result is also significant because
the classifier is trained on the predicted measurements from the graybox, but tested on actual
simulated measurements, and yet it succeeded in the task.

In Scenario 2, we have the profiles N5, N1, N2, N3, and N4. Now, profiles N5 and N1 are very
close to each other. We see from the confusion matrix that the classifier was able to correctly
classify all profiles, but there were misclassifications between those two profiles. This is exactly
the expected behavior. This implies that under the constraints of the control pulses, these two
profiles almost identical. It is also interesting that the confusion does not propagate into other
classes, it is confined between N5 and N1 cases, with bias towards classifying both N5 and N1
examples to N1.

In Scenario 3, it is similar to the first one, with the profiles chosen to be N0,N1,N2,N3, and N4.
The difference is that the pulse optimizer now has an extra constraint that the amplitudes should
be restricted to [−1, 1]. In this case, we see a degradation in the performance of the classifier
with misclassifications happening across various classes. This is an interesting result, because
we know from scenario 1 that is it possible to distinguish between those profiles. However, due
to the constraints of the control, it was not possible. This means that effectively some profiles
become indistinguishable. This situation is very similar to standard quantum control. There
is always a trade-off between the fidelity of a desired quantum gate, and the constraints of the
allowed control (such as amplitude or bandwidth). This result shows that the effect of quantum
noise is dependent on the control, and not just its statistical properties. This can be understood
as well using the language of frames (see [48]).

V. CONCLUSION

In this paper, we proposed a protocol for noise detection in a data-spectator qubit system.
The spectator is used to sense the noise to prevent the interruption of the data qubit during
execution of a quantum computation. All the complexity of the protocol is concentrated in the
characterization phase, allowing a real-time execution during the quantum computations. The
protocol is designed following a quantum feature engineering approach to allow the utilization
of machine learning methods. We presented a complete framework consisting of a novel graybox
model for feature generation, a quantum control method for feature extraction, and a classifier.
The numerical simulations show a promising performance of the protocol and is consistent with
intuition about the behavior in various scenarios.

There are limitations and extensions that can be explored in the future. The first and most
challenging limitation is the assumption that we have labeled characterization data. In other
words, we are able to associate the characterization to a particular noise profile. We have
discussed the possibility of doing this in some practical situations, but it is still a complex
procedure generally. This cannot be avoided because we used supervised learning methods to
design the protocol. However, there is a rich literature about unsupervised learning in which
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we can classify examples into classes without the requirement of knowing the labels beforehand.
This might work for noise detection applications because we are not interested in the label itself
(as is the case in many applications such as object detection in images). Another limitation
is the assumption of the known fixed mapping between the data and spectator noise profiles.
It will be interesting to design protocol to characterize this map. Alternatively, it might be
possible to design a graybox that takes into account both qubits so that we do not need to
characterize the map separately.

There are other limitations that come from the use of ML methods such as the requirement
of large datasets for training, which can cause problems for large quantum systems. Therefore,
a theoretical analysis of the optimal observables would help in reducing the amount of required
measurements. In this paper, we chose a heuristic that allowed us to select a small set instead
of a informationally-complete set. It would be interesting to explore theoretical tools such as
quantum information theory to do this task. Additionally, we saw that in situations where the
control is constrained, the distinguishability between noise profiles is affected. It will be an
interesting theoretical extension to study this problem and understand how exactly the trade-
offs occur. This would facilitate the design of the protocol, because if we know that one or
more profiles are not distinguishable under our control constraints, then we do not need to have
different graybox models and datasets for them.

Regarding the numeric simulations, we made many choices regarding the design of the various
machine learning tools. While our choices show a promising performance, there are many
other possibilities that could lead to better results. It is also important to test the presented
ideas on an actual experiment. A first simple test would be injecting noise artificially to an
almost noiseless qubit, and assess the performance of the protocol. Finally, we presented a new
application for the quantum feature engineering approach which is noise detection, besides the
original proposal in [37, 38] for characterization and control of quantum systems. It would be
interesting to explore further applications in other areas of quantum engineering.
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Orlando, S. Gustavsson, L. Viola, and W. D. Oliver, Nature Communications 10, 3715 (2019).
[19] L. M. Norris, G. A. Paz-Silva, and L. Viola, Phys. Rev. Lett. 116, 150503 (2016).
[20] G. Ramon, Phys. Rev. B 100, 161302 (2019).
[21] G. A. Paz-Silva, L. M. Norris, F. Beaudoin, and L. Viola, Phys. Rev. A 100, 042334 (2019).
[22] G. A. Paz-Silva, L. M. Norris, and L. Viola, Phys. Rev. A 95, 022121 (2017).
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Appendix A: Supplementary Figures
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Figure 5: The MSE evaluated for the training and testing examples for each of the simulated
datasets corresponding to each noise profile.
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Figure 6: The optimal discriminating pulses for the three scenarios described in the main text.
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