Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Personalized Federated Learning With a Graph

Fengwen Chen', Guodong Long', Zonghan Wu', Tianyi Zhou?? and Jing Jiang'

*

! Australian Artificial Intelligence Institute, FEIT, University of Technology Sydney
2University of Washington, Seattle
3University of Maryland, College Park
{Fengwen.Chen, Zonghan.Wu-3} @student.uts.edu.au,
{Guodong.Long, Jing.Jiang } @uts.edu.au, tianyizh@uw.edu

Abstract

Knowledge sharing and model personalization are
two key components in the conceptual framework
of personalized federated learning (PFL). Existing
PFL methods focus on proposing new model per-
sonalization mechanisms while simply implement-
ing knowledge sharing by aggregating models from
all clients, regardless of their relation graph. This
paper aims to enhance the knowledge-sharing pro-
cess in PFL by leveraging the graph-based struc-
tural information among clients. We propose a
novel structured federated learning (SFL) frame-
work to learn both the global and personalized
models simultaneously using client-wise relation
graphs and clients’ private data. We cast SFL with
graph into a novel optimization problem that can
model the client-wise complex relations and graph-
based structural topology by a unified framework.
Moreover, in addition to using an existing relation
graph, SFL could be expanded to learn the hidden
relations among clients. Experiments on traffic and
image benchmark datasets can demonstrate the ef-
fectiveness of the proposed method.

1 Introduction

Since Federated Learning (FL)[McMahan et al., 2017] was
first proposed in 2017, it has evolved into a new-generation
collaborative machine learning framework with applications
in a range of scenarios, including Google’s Gboard on An-
droid [McMahan et al., 20171, Apple’s siri |, Computer Vi-
sions [Luo et al., 2019; Jallepalli et al., 2021; He et al.,
20211, Smart Cities [Zheng et al., 20221, Finance [Long et
al., 2020] and Healthcare [Rieke et al., 2020; Xu et al., 2021;
Long erf al., 2022]. Various FL tools and packages have been
developed and open-sourced by hi-tech companies, such as

*Corresponding Author
"https://machinelearning.apple.com/research/learning-with-
privacy-at-scale
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Google?, NVIDIA?®, Intel*, Amazon °, Baidu®, and Webank”.

The vanilla FL method, known as FedAvg [McMahan et
al., 20171, is derived from a distributed machine learning
framework before it is applied to a large-scale mobile service
system. In particular, it aims to train a single shared model
at the server by aggregating the smartphones’ local model,
trained with its own data. Thus, the end-user’s private data
in each smartphone is not uploaded to the cloud server. Fe-
dAvg first proposed the non-IID challenge, a key feature of
FL. To tackle the non-IID challenge in FL, some works [Li
et al., 2018; Reddi et al., 2020] focus on training a single
robust model at the server. However, other methods aim to
learn multiple global or centric models [Ghosh et al., 2020;
Mansour et al., 2020; Xie et al., 2021], where each model
serves a cluster of clients whose data distribution is the
same or similar. More recently, personalized FL meth-
ods [Li er al., 2021; Deng et al., 2020; Tan er al., 2022;
Fallah et al., 2020] are proposed to learn many client-specific
personalized models using the global model as the compo-
nent of knowledge sharing. Therefore, the objective of FL
research has been changed from learning server-based mod-
els to client-specific models.

To learn client-specific personalized models in the FL set-
ting, knowledge sharing and personalization of local mod-
els are two key components. However, existing personalized
FL focuses on improving components of model personaliza-
tion while implementing the component of knowledge shar-
ing by simply aggregating all local models. This kind of im-
plementation overlooks the graph relationship across clients
with non-IID data. Moreover, if the degree of non-IID is very
high, aggregation across all clients will produce a low-quality
global model that will eventually impact the performance
of model personalization. From an application perspective,
graph relationship have many real-world applications, such as
traffic sensors with road maps (Figure 1), devices in a smart
home, mobile APPs using users’ social networks, and fraud

“https://www.tensorflow.org/federated
3https://nvidia.github.io/NVFlare
“https://github.com/intel/openfl
Shttps://aws.amazon.com/blogs/architecture/applying-federated-
learning-for-ml-at-the-edge/
®https://github.com/PaddlePaddle/PaddleFL
"https://github.com/Federated AI/FATE
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Figure 1: In a smart city, each devices deployed on the road can
collect data and make real-time decision without waiting for the re-
sponse of cloud servers. Each device needs to make intelligent deci-
sion based on the collected road conditions and nearby devices.

detection based on the mutual interactions of users. Adopting
these types of relation graphs will enhance the performance
of FL.

This paper proposes a novel structured federated learn-
ing (SFL) that aims to leverage the relation graph among
clients to enhance personalized FL. In particular, we de-
sign a fine-grained model aggregation mechanism to leverage
each client’s neighbors’ local models. Specifically, a rela-
tion graph will be stored in the server, and then the client-
centric model aggregation will be conducted along the rela-
tion graph’s structure. To simplify implementation, we pro-
pose to use the Graph Convolutional Network (GCN) [Kipf
and Welling, 2016] to implement the model aggregation func-
tion; therefore, the proposed solution is easy-to-implement
by integrating FL. and GCN. In addition, we formulate the
problem in a unified optimization framework to include both
personalized FL and graph-based model aggregation. Con-
tributions of this paper are summarized as follows.

* We are the first to propose a new federated setting by
considering a relation graph among clients. Moreover,
the proposed GCN-based model aggregation mechanism
is a new and easy-to-implement idea for FL;

* The research problem has been formulated to a unified
optimization framework that can learn optimal personal-
ized models while leveraging the graph;

* The proposed method has been expanded to learn the
hidden relations among clients, and the conceptual
framework can be extended to integrate with other
model personalization techniques;

» Experiments on both the image and traffic datasets have
demonstrated the effectiveness of the proposed method.

2 Related Work

2.1 Federated Learning with Non-IID

The vanilla FL method, FedAvg [McMahan er al., 2017],
has been suffering from the non-IID challenge where each
client’s local data distribution is varied [Kairouz et al., 2021].
To tackle this challenge, [Li er al., 2019a] proposed Fed-
DANE by adapting the DANE to a federated setting. In par-
ticular, FedDANE is a federated Newton-type optimization
method. [Li er al., 2018] proposed FedProx for the general-
ization and re-parameterization of FedAvg. It adds a proximal
term to clients’ local objective functions by constraining the
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parameter-based distance between the global model and local
model. [Reddi er al., 2020] proposes to use adaptive learning
rates to FL clients and [Jiang et al., 2020] conduct attention-
based adaptive weighting to aggregate clients’ models. [Li et
al., 2019b] studies the convergence of the FedAvg on non-IID
scenarios. In summary, the early-stage FL research focuses
on learning a robust global model that usually assumes the
non-IID scenario is relatively mild. In recent times, research
on personalized FL (Sec 2.2) has attracted broad interest in
tackling severe non-IID scenarios.

2.2 Personalized Federated Learning

This section will discuss two major FL solutions to tackle
severe non-I1ID scenarios. Group-wise PFL, which is also
named clustered FL, assumes the clients can be clustered
to different groups with severe non-IID across inter-group
clients and mild non-IID across intra-group clients. Hence,
clustered FL can be categorized according to different clus-
tering methods and distance measurements. Kmeans-based
clustered FL [Xie et al., 2021] and [Mansour et al., 2020;
Ghosh et al., 2020] measured the distance using model pa-
rameters and accuracy respectively. Hierarchical clustering
[Briggs et al., 2020] has been applied to FL. Furthermore,
[Ma er al., 2022] proposed a general form to model the clus-
tered FL problem into a bi-level optimization framework,
then leveraged the important contributions among clients to
form a weighted client-based clustered FL framework.
Client-wise PFL that usually assumes each client’s data
distribution is different from others; thus, each client should
have a personalized model on their device. In general, a sim-
ple PFL method could train a global model in FedAvg, then
conduct a few steps of fine-tuning on each client [Cheng et
al., 2021]. In this framework, knowledge sharing is model
aggregation, and model personalization is local fine-tuning.
Per-FedAvg [Fallah et al., 2020] considered fine-tune as a
regularization term on the learning objective function of the
global model. Ditto [Li et al., 2021] was proposed as a bi-
level optimization framework for PFL while considering a
regularization term to constrain the distance between the lo-
cal model and global model. Investigations by [Shamsian
et al., 2021; Chen et al., 2018] that aim to train a global
hyper-network or meta-learner instead of a global model be-
fore sending it to clients for local optimization. SCAF-
FOLD [Karimireddy et al., 2020] proposes to learn person-
alized control variate that correct the local model accord-
ingly. Layer-wise personalization [Arivazhagan ef al., 2019;
Liang et al., 2020] and Representation-wise personalization
[Tan et al., 2021] are two simple but effective solution of PFL.

2.3 Learning with Structural Information

Learning on structural data with GCNs [Kipf and Welling,
2016] or graph neural networks [Wu et al., 2020] are ubig-
uitous in many fields for tasks such as , node classification
[Pan et al., 2016al, link prediction[Wang et al., 2017b], node
clustering[Wang et al., 2017al, and graph classification [Pan
et al., 2016b]. GCNs capture relationships between concepts
(also called nodes) in a graph using the k-hop aggregation
mechanism. Thus, a weighted hop in GCN can capture a
more complex relationship in the graph [Chen ef al., 2019;
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Figure 2: The overview of structured federated learning (SFL). A GCN module is used in the server to generate personalized client-specific
models {u; } by aggregating the collected local model parameters {v; } according to the graph structure A of all clients.

Zhang et al., 2022]. Recently, GraphFL[Wang e al., 2020]
has been proposed to explore the graph learning problem in
a federated setting. In particular, each client trains a graph
neural networks (e.g., GCNs) for learning the structured data
locally, then shares knowledge via model aggregation at the
server.

3 Problem Formulation

Given N participants in an FL system, each one has a local
dataset D; which is drawn from a distribution P;. Given the
non-IID setting, we usually assume all P; are distinct from
each other. An adjacency matrix A € {0, 1}V < represents
the topological relationship across participants. In general, a
FL system is to solve below optimal objective.

ngnG(Fl(w),...FN(w)) (D

where F; (W) is the supervised loss of the i-th client that has
a locally stored dataset D;, and all clients using the same
global model M parameterized by w. The G(.) is a function
that aggregates the local objectives. For example, in FedAvg
[McMahan et al., 2017], G(.) is a weighted average of local
lossess using the size of local dataset, ie.e., > [D;|/ > |Dj.
In general, a personalized FL system is usually modeled as

a bi-level optimization problem as below.

min hi(vi; w*) == F(v;) + AR(v;, w™)

{vi...on} )

s.t. w* € argmin G(Fy (w), ..., Fx(w))

where each client has a unique personalized model M; pa-
rameterized by v;, and w* is an optimal global model to min-
imize the loss as mentioned in the Eq. 1. R is the regular-
ization term to control model updates on clients, for example,
[Li et al., 2021] propose a L2 term ||v; —w*||? to constraint
the local updating won’t be far away to the global model.

To find the optimal solution for the loss Eq. 2, existing
personalized FL methods will take various forms, such as
fine-tuning [Cheng er al., 2021], meta-training [Fallah et al.,
20201, and partial parameter-sharing [Liang et al., 2020]. Our
proposed structured federated learning is a new solution to
leverage both structural information and model parameters
for personalized FL.
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4 Structured Federated Learning

Our proposed structured FL will formulate the below bi-level
optimization problem.

N
) min Z (F;(v;) + AR(vi, w*,u;)) + vG(A, AY)
1:N;UL:N i—1
s.t. w* € argmin G(Fy(w), ..., Fy(w))
A;j = S(’U,i,’U,j)
3)

where the A is the adjacent matrix of the pre-defined graph
among clients, and the A* is a similarity matrix among clients
using their paired distance S(u;,u;) which is the euclidean
distance of two client-specific models’ parameters.

Most real applications assume that the neighbors in a graph
share similar behaviors which indicate similar data distribu-
tion and intelligent models. To implement this assumption,
a distance-based penalty term G(A, A*) has been proposed
to force neighbors in a graph that have similar model param-
eters. In particular, GG is the distance between the graph’s
adjacent matrix A and model parameter-based affinity matrix
A* = S(u;,u;). To minimize this penalty term G, we will
update u using the below equation.

. .
u; € arg min z A; S (s, uy) 4
JEN(9)
In many real applications, the adjacency matrix A may not
always exist. Thus, it needs to be learned. For this case, we
can formulate the optimization problem as below.

N
oy ; (F;(v;) + AR (vs, w*,u;)) +vG(A, A¥)
s.t. w* € argmin G(Fy(w), ..., Fy(w))
Az,j = S’(ui,uj)
[Aill < K
&)

where R(.) = R(v;,w*) + R(v;,u}) is an abbreviation of
two regularization terms. G(.) is to constraint the distance
between the learned graph A and its sparse representation A*
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which is sparse and able to preserve important proximity re-
lationship among clients. Specifically, we can add use a con-
stant K to constraint each node’s LO norm || A;||. There are
various ways to measure the proximity between two clients:
for example, distance of model parameters

4.1 Optimization

To solve the optimization problem in Eq. 3, we conduct
the below steps. First, we update the v by solving the
local loss F;(v;) with two regularization terms: distance
between local model and gradient-based aggregated global
model R(v;,w*), and distance between local model and
graph-based aggregated personalized model R(v;, ;). Then,
we conduct model aggregation at the server to update w
and {u;}¥. In particular, we can use a Graph Convolution
Network (GCN) [Kipf and Welling, 2016] to implement the
graph-based model aggregation by constructing the graph: N
clients represent the node in the graph, a pre-defined adja-
cency matrix A, and each node’s attribute u; is initialized by
its local model v;. The GCN module will automatically up-
date each node’s model parameters u; by the GCN aggrega-
tor. It will satisfy the second constraint in Eq. 2. Moreover,
the global model w will be updated by aggregating all person-
alized models u; which is to satisfy the first constraint in Eq.
3. This gradient-based model aggregation across all clients is
equivalent to the read-out operator in the GCN.

To solve the optimization problem in Eq. 5, we can refine
the local update step (line 7, Algorithm 1) by adding the graph
regularization term G(A). Then, we will add a structure-
learning step in the aforementioned optimization steps for Eq.
3. In particular, we will design a graph encoder to minimize
three regularization terms of Eq. 5, as below.

N
mjnz (A[R(vi, w*) + R(vi,u;)] +vG(4))  (6)

We can construct the relation graph A using the learned
representation of nodes. We can also define a fully connected
graph with weighted edges. The GCN will not only learn
representation but also learn the structure by adjusting the
weights of edges.

4.2 Algorithm

The aforementioned optimization procedure has been im-
plemented in Algorithm 1. The optimization goal will be
achieved iterative through multiple communication rounds
between the server and clients. In each communication round,
we will have two steps to solve the bi-level optimization prob-
lem. First, we update the local model v; by conducting local
model training with supervised loss and regularization terms.
Second, we conduct model aggregation at the server using
GCN. In the case that A is not present, we will add an op-
tional step for structure learning.

S Experiment

This section discusses the experimental analysis of the pro-
posed method. In section 5.1, we choose a graph-based
benchmark dataset on traffic forecasting and an FL-based
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Algorithm 1 Structural Federated Learning - Server.

1+ Tnitialize Ao, 7, 4, {v{” Y, « v
2: for each communication roundt=0, 1, ..., T do
3 A=1[t>0]x X

4:  Local updating:
5. foreachclienti= 1,2, ..., Nin parallel do
6: Update v; for s local steps:
7. vl(t) — vft) -
1 (F00) 4 AR w®) + B, ul")
8: UZ(H_I) — vft)
9: end for

10:  Structure-based aggregating:

1L {uz('t+1)}£i1 = {Ui(t) Al

12: Update u\"™ for m steps of GON (A, {u{"™}¥ )
13wt « GON readout({ul" "™}V )

1=

14:  (Optional) Structure learning:

15: A+ Structurelearn({vitﬂ), uEtH), wtTUIN .
16: end for

benchmark dataset on image classification. In section 5.2, we
introduce the baseline and experimental settings. Then, we
compare the proposed SFL with other baselines and also per-
form the ablation study to verify this observation in section
5.3. Further analysis is provided with visualization in section
5.4 and compatibility analysis in section ??. All implementa-
tion codes are available on Github®.

5.1 Datasets

The traffic datasets are ideal for validating our hypothesis,
as the data comes with a natural topological structure and
per-user data with non-IID distribution, all collected in the
real world. We used four traffic datasets, METR-LA, PEMS-
BAY, PEMS-D4, and PEMS-DS to observe the performance
of the SFL in different real-world scenarios. We apply the
same data pre-processing procedures as described in [Wu et
al.,2019]. All the readings are arranged in units of 5-minutes.
The adjacency matrix is generated based on Gaussian kernel
[Shuman er al., 2013]. We also apply Z-score normalization
to the inputs and separate the training-set, validation-set, and
test-set in a 70% 20% and 10% ratio. The evaluation metrics
we use for the datasets include mean absolute error (MAE),
root mean squared error(RMSE), and mean absolute percent-
age error (MAPE).

For the image datasets, we applied the same train/test splits
as in the work °. We artificially partitioned the CIFAR-10
with parameter k(shards) to control the level of non-IID
data. The whole dataset is sorted according to the label and
then split into n x k shards equally, and each of n clients is

8https://github.com/dawenzi098/SFL-Structural-Federated-
Learning
Learning multiple layers of features from tiny images
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METR-LA PEMS-BAY PEMS-D4 PEMS-DS8

MAE MAPE RMSE | MAE MAPE RMSE | MAE MAPE RMSE | MAE MAPE RMSE

FedAvg 7.03  21.63 10.81 | 3.62 10.65 726 | 4496 30.03 5997 | 36.76 21.04 49.14
FedAtt 6.89 2354 1055 | 3.26 5.50 641 | 4553 30.15 60.68 | 3580 2327 47.75
SFL 522  16.55 8.98 2.96 7.62 595 | 4586 5631  59.00 | 32.95 2098  46.03
SFL* 526  16.77 8.95 3.02 7.42 6.04 | 40.75 31.06 5945 | 3582 34.68 47.82
STGCN 4.59 12.70 9.40 4.59 12.70 940 | 25.15 - 38.29 | 18.88 - 27.87
Graph WaveNet | 3.53 10.01 7.37 1.95 4.63 452 | 1871 1345 30.04 | 14.39 9.4 23.03

Table 1: Performance of traffic forecasting in federated setting

assigned k shards. In short, the smaller the shards is, the
more serious are the non-IID data issues.

5.2 Baselines and Experiment Settings

We compare our method with four representative federated-
learning frameworks including the standard FedAvg [McMa-
han er al., 2017] and three other personalization federated
frameworks, FedAtt [Ji et al., 20191, FedProx [Li ez al., 2020]
and Scaffold [Karimireddy et al., 2020]. In addition, we also
implement two fine-tune-based methods FedPer[Arivazhagan
et al., 2019] and LG-FedAvg[Liang et al., 2020]. During the
client model selection, to focus more attention on the impact
of introducing structural information during the server aggre-
gation process, we choose simple and fixed client models for
all frameworks to shield the influence of client model archi-
tecture. We use pure RNN for traffic prediction tasks with
64 hidden layer sizes. For CIFAR-10, we use ResNet9 as
the base model for all evaluated methods, For a fair compari-
son, without any additional statement, all reported results are
based on the same training set as follows. We employ SGD
with the same learning rate as the optimizer for all training
operations, use 128 for batch size, and the number of to-
tal communication rounded to 20. It is worth mentioning
that higher capacity models and larger communication rounds
can always produce a higher performance on any of those
datasets. As such, the goal of our experiment is to compare
the relative performances of these frameworks with the same

case, the results prove that our structure self-learning mod-
ule can learn in the absence of information, thus bringing a
greater than 10% performance gain. Finally, the PEMS-D8
dataset provides the performance of SFL with a worst-case
scenario where clients are few and far between. Here, the
relationships are fragile. The results confirm that the perfor-
mance lower-bound of SFL remains slightly better than the
traditional methods due to the natural data distribution skew.
This trait of SFL was carefully examined and analyzed in the
next set of experiments.

We then ran experiments on the image-based CIFAR-10
dataset to further validate SFL’s ability to deal with the non-
IID data. Table 2 and 3 demonstrates SFL’s superior perfor-
mance in different levels of distribution skew for non-IID.
Note that the larger value of shards indicates that the data is
distributed more evenly across clients. For CIFAR-10, with
the mimics of an severe non-IID data environment (shards are
2 and 5), the traditional FL algorithms are not functional. Our
SFL performs significantly better than other algorithms, both
from the best 5% and worst 5% due to its unique aggrega-
tion mechanism. As the data distribution tends to iid (shards
are 10 and 20), the performance of the traditional algorithms
increases to the normal level while our SFL still maintains a
very competitive performance.

basic models, rather than comparing specific values. n Shards =2 06 Shards =5

5.3 Comparison Analysis L0 ZZ

The performance of SFL in a traffic forecasting task com- 2: _ A 03

pared with other baselines is provided in Table 1. We use sl ¥ \/\/v\\/'\/ Ve 02

SFL* to denote the SFL with structure learning enabled. In o ol

this table, we report the average MAE, MAPE, and RMSE . e AR 00

across all the clients for 60 minutes (12—time steps) ahead of 00 25 50 7.5 10.0 12.5 15.0 17.5 20.0 00 25 50 7.5 100 12.5 15.0 17.5 200
prediction. The full result can be explored in three parts. 07 Shards = 10 S— Shards =20
First, for METR-LA and PEMS-BAY there is a 25% and 06l T o 2T

18% performance improvement in terms of MAE. Since the os < o A T s
two datasets have relatively more nodes and complex struc- i Ay ,./-\\/i..,/’\( v |08 P cosonsasses
tural information (edges) as stated in Table 1, the use of a ’ 7/5('5‘” 061 et

graph convolutional network to introduce sufficient structural 03 // 04 //

information into the server aggregation process could signifi- 021 A 02/

cantly improve the performance of the FL system. Even com- 0160 25 50 75 100125 150175200 *° 45 25 50 75 100 125 150 175 200
pared with privacy non-preserved, the overall performance of —@— FcdAvg —@— FedProx ~ —@— Scaffold ~—@— FedPer

our proposed method is still very competitive. Second, the
PEMS-D4 provides us with a very practical scenario where
the structural information is missing and the SFL cannot di-
rectly benefit from this lack of structural information. In this

~®— LG-FedAvg ~—@— SFL SFL*

Figure 3: Visualization of Convergence
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Shards =2 Shards =5
Mean Acc Best 5% Worst 5% Mean Acc Best 5% Worst 5%
FedAvg 18.55+21.74 | 73.20+£10.93 | 0.00£0.00 | 32.95+17.61 | 67.40£3.98 | 2.20+1.47
FedAtt 10.08 £24.46 | 90.00+£20.00 | 0.00£0.00 | 28.25+6.02 | 52.80+£0.75 | 1.40+0.80
FedProx 1249 £21.99 | 7420+ 19.65 | 0.00£0.00 | 30.11 £14.85 | 5740+ 1.85 | 4.00+1.90
Scaffold 20.20£26.73 | 90.40+1.85 | 0.00+0.00 | 30.16 £13.66 | 57.40£5.57 | 2.40+£2.87
FedPer 20.24 £18.52 | 78.30£14.26 | 0.00+£0.00 | 34.59+£18.26 | 69.25+4.68 | 429+1.24
LG-FedAvg | 16.73 £22.01 | 67.31 £12.68 | 0.00+0.00 | 31.75+14.35 | 67.24+3.53 | 2.73+£1.95
SFL 54.25 +21.72 | 100.00 £ 0.00 | 6.2 £2.22 | 45.03 £15.66 | 75.20 £4.26 | 9.20 +5.53
SFL* 50.54 £29.52 | 100.00 £0.00 | 0.00 £0.00 | 36.18 £12.74 | 62.60 £1.02 | 12.20 + 2.64
Table 2: Performance comparisons on severe non-IID scenarios with CIFAR-10
Shards = 10 Shards = 20
Mean Acc Best 5% Worst 5% Mean Acc Best 5% Worst 5%
FedAvg 4633 £11.69 | 69.40+£5.00 | 2040 £5.54 | 81.80+4.38 | 89.60+1.36 | 71.20 £ 1.94
FedAtt 40.00 £8.94 | 52.00+4.00 | 12.16 £1.40 | 76.09 £ 6.31 | 82.00+2.76 | 44.02 £1.02
FedProx 4585+ 11.55 | 68.20+£1.94 | 21.00£3.22 | 81.94+£4.64 | 89.40+1.96 | 69.40 +2.33
Scaffold 4549 £11.36 | 67.40+£2.24 | 21.60 £2.87 | 82.00 £4.38 | 90.00 £ 1.10 | 70.80 = 2.99
FedPer 46.65 £ 10.71 | 72.73 £3.71 | 31.95+4.24 | 81.71 £3.71 | 88.95+1.23 | 69.98 +1.95
LG-FedAvg | 45.63 £12.22 | 65.13 +£3.21 | 26.23+£3.17 | 80.33 £3.20 | 87.03+1.30 | 69.26 £ 1.73
SFL 51.79 £14.04 | 78.80 £2.56 | 23.00£4.90 | 81.70 £4.70 | 89.60 £0.80 | 69.60 = 1.62
SFL* 4420+ 11.85 | 67.40+£2.24 | 20.00 £3.85 | 81.25+4.78 | 89.20+0.98 | 68.40 +2.50
Table 3: Performance comparisons on relatively mild non-IID scenarios with CIFAR-10
5.4 Visualization _— - -
Fig. 3 illustrates the convergence process of SFL in differ- g g e 1
ent non-IID scenarios. Under the severe conditions where $ - 2 - ., =
shards=2, there is only a small overlap in the client data dis- v — —_— L ol e
tributions, which results in serious parameter conflicts during 3 = =0 | " i = g "
the server aggregation process, with all algorithms failing to g§= ey . =N, = =
converge. Using SFL can reduce the client parameters’ con- PEMS-BAY Similarity: 51.25% METR-LA Similarity: 51.81%
flict, thus producing a better result. When shards=5 or 10, e - - - o
SFL still has an obvious advantage on both convergence and & gem T A N
robustness. When shards=20, most FL. methods perform sim- " -.. BN ol et Cw B TR a m
ilarly because the data distribution has nearly become an IID = - - =" ; - i
scenarios. 3 _': . P T — L N e
Fig. 4 visualizes the comparison of the pre-defined rela- § - -l o |.. _,% E_#_Eﬂ: °

tion graph and the learned graph by SFL. Twenty-five clients
were selected to visualize their partial pre-defined structural
information (top half) and the learned graph (bottom half).
For image classification tasks on MNIST and CIFA-10, when
sharks = 5, the learned adjacent connection approaches pre-
defined adjacent values. In particular, the learned graph
on traffic data is relatively “comprehensive” than the pre-
defined graph because the pre-defined graphs of PEMS-LA
and PEMS-BAY are purely constructed by a road connec-
tion relationship. In contrast, the learned graph includes the
long-dependence on non-connected roads. This visualization
demonstrates that SFL not only learns knowledge from sim-
ple pre-defined graphs but also learns comprehensive hidden
relationships among clients. Moreover, the SFL also can be
combined with the existing PFL methods(e.g. LG and PER)
to further improve the performance. The detailed experiment
results can be found in the Appendix.
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MNIST Similarity: 77.57% Cifar-10 Similarity: 77.62%
Figure 4: Visualizing adjacent matrix comparison between pre-
defined graph and learned graph on four datasets

6 Conclusion

This paper is the first work to study graph-guided personal-
ized FL. A GCN-based model aggregation mechanism has
been adopted to facilitate implementation. SFL can not only
leverage the graph structure and also discover comprehensive
hidden relationships amongst clients. Experiments on GNN-
based traffic dataset and FL-based image benchmark datasets
have demonstrated the effectiveness of SFL.
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