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ABSTRACT

namics, and diversity, which have inflicted severe challenges on emergency

decision support services in disaster environments. Nowadays, mobile internet
technologies such as smartphones, social networks, wearable devices, and high-speed
communication are widely used, making each user a ubiquitous social sensor integrating
human and machine. Social sensors collect data from mobile devices worn or carried by
humans, intuitively perceive the environmental conditions associated with a meteorologi-
cal disaster through human senses, and have the advantages of comprehensive coverage,
communication in real-time, and low cost.

M eteorological disasters have the characteristics of suddenness, complexity, dy-

Decision briefing is an effective support mode of emergency management services for
sudden meteorological disasters, and it is also the primary way to deliver meteorological
decision knowledge. This thesis focuses on the critical technologies for the automatic
generation of meteorological event knowledge-enhanced decision briefing based on social
sensor signals, providing meteorological decision support services focusing on accurate
knowledge mining, efficient information integration, and formalized knowledge repre-
sentation for decision-makers in the decision process of sudden meteorological disasters.
The main research foci and innovations of this thesis are as follows:

1. Co-occurrence feature-based sudden meteorological event detection: Aiming at the
low detection accuracy of meteorological events caused by limited coverage of physical
sensor signal, poor timeliness, and lack of co-occurrence feature mining of meteorological
events in previous research, this thesis proposes a sentence-level feature-based
meteorological event detection model. The model is based on social sensor signals
and introduces prior meteorological knowledge through the pre-trained language model
in sentence vectorization. The wide-grained capsule network mines the attributes of the
independent and co-occurrence features of meteorological events and then undertakes the
real-time synchronous detection of multi-category co-occurrence meteorological events in
a specific period. The proposed model achieves quantitative evaluation results of 0.941,
0.862, 0.738 and 0.795 on Accuracy, Pnicro, Rmicro and Fp,icro—1, respectively, which is
significantly better than other baseline models.

2. Multiple knowledge-enhanced meteorological decision briefing generation: Aim-
ing at the low decision efficiency caused by information complexity, high chaos, and
a large amount of data in the sudden meteorological disaster environment, this the-
sis proposes a multiple knowledge-enhanced summarization model. The model
comprises a cascade structure of a summary generation module and a multiple knowledge
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enhancement module, which automatically generates meteorological decision briefing
content by guiding the summary generation process with specific meteorological event
and geographical location knowledge in the social sensor signal. The proposed model
achieves 0.2025, 0.0807, and 0.1740 of the ROUGE -1, ROUGE -2, and ROUGE - L
in the content evaluation and 0.656 of F'; score in the sentiment evaluation, significantly
better than other baseline models.

3. Meteorological event knowledge-enhanced decision briefing optimization: Aiming at
the weak decision support serviceability caused by the chaotic language style, colloquial
text, and poor formatting of the social sensor signals-based meteorological briefing con-
tent, this thesis proposes an event knowledge-enhanced briefing optimization
module. This module comprises a text form judgment model, a formalization words de-
tection model, and an event knowledge guided text formalization model, which optimizes
the transfer of the meteorological briefing content by calculating the text formalization
judgment threshold, formalization word weight, and generates formalized words. The
proposed model achieves quantitative evaluation results of 21.489 on the BLEU, which
is significantly better than other baseline models.

In addition, this thesis reports on the construction of a prototype application of the
meteorological decision briefing integrated with the above research foci, which showcases
the use of social sensor signals to provide feedback on daily meteorological events, then
provides decision support services based on meteorological decision briefing. This thesis
presents interdisciplinary research on artificial intelligence, social computing, meteoro-
logical data mining, emergency management, and intelligent decision support services,
which is a comprehensive analysis and extended application of interdisciplinary issues.
This research has significant application value for improving the decision efficiency
of meteorological departments and reducing the loss caused by sudden meteorological
disasters.
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