This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

A Hierarchical Attention Network for
Cross-Domain Group Recommendation

Ruxia Liang, Qian Zhang™, Member, IEEE, Jianqiang Wang ", and Jie Lu

Abstract—Many online services allow users to participate
in various group activities such as online meeting or group
buying, and thus need to provide user groups with services that
they are interested. The group recommender systems (GRSs)
emerge as required and provide personalized services for various
online user groups. Data sparsity is an important issue in
GRSs, since even fewer group-item interactions are observed.
Moreover, the group and the group members have complex
and mutual relationships with each other, which exacerbates the
difficulty in modeling the preferences of both a group and its
members for recommendation. The cross-domain recommender
system (CDRS) is a solution to alleviate data sparsity and assist
preference modeling by transferring knowledge from a source
domain which has relatively dense data to another. The existing
CDRSs are usually developed for individual users and cannot be
directly applied for group recommendation. To alleviate the data
sparsity issue in GRSs, we first study the cross-domain group
recommendation problem and propose a hierarchical attention
network-based cross-domain group recommendation method,
called HAN-CDGR. HAN-CDGR takes the advantage of data
from a source domain to benefit recommendation generation for
both the individual users and groups in the target domain which
has data sparsity and cannot generate accurate recommendation.
In HAN-CDGR, a hierarchical attention network is constructed
to learn and model individual and group preferences, with
consideration of both group members’ interactions and dynamic
weights and the complex relationships between individuals and
groups. Adversarial learning is used to effectively transfer knowl-
edge from a source domain to the target domain. Extensive
experiments, which demonstrate the effectiveness and superiority
of our proposal, providing accurate recommendation for both
individual users and groups, are conducted on three tasks.

Index Terms— Cross-domain recommender systems (CDRSs),
group recommender systems (GRSs), hierarchical attention net-
work, recommender systems.
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NOMENCLATURE

T={G,U,V,G,R,} Target domain.

S ={U,V°, Ry} Source domain.

K Set of user IDs in group g;.

H,; Set of group IDs that user u; has
joined.

Ui, vj Embedding vectors of target user
u; €U and item v; € V.

ui, vl Embedding vectors of source user
uj € U and item v}, € V'.

q, Embedding vector of group
g1 €g.

d Dimension of embedding vectors.

0, K,V Vectors of queries, keys, and
values of all members in a group.

dy Dimension of query and key
vector.

P, P; W, Weight matrices of neural
networks.

h,, h;, b Weigh and bias vectors for neural
networks.

u User u;’s group-specific
embedding in group g;.

a(j,i) u;’s contribution score in group
decision on item v;.

o u;’s group-specific attention on
group gi.

0%, 0!, and 0% Sets of training examples in
source and target domains.

Ppooling (+) Pooling function.

e, e Pooling results in source and
target domains.

A, f, and y Parameters in gradient reversal

layer and total user loss function.
D Domain discriminator.
{05,04,65,0.) Parameter sets of HAN-CDGR.
i 9 j,)?,gj Predicted preference scores in
both domains.

I. INTRODUCTION

ECOMMENDER systems are developed to alleviate the
information overload problem to help users retrieve valu-
able information and find the most suitable services. They
are widely applied in many web applications such as video
platforms, online stores, or social media [1]. With the rapid
growth of digital social networking, many web applications
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now allow people to participate in various activities in groups,
e.g., joining a video channel on YouTube, team buying for
discount price, and hiking or traveling with families or friends.
Under these circumstances, the products/services that con-
sumers adopted are targeted for a group of users rather than for
individuals. The demand of personalized items or services for
groups has prompted the development of group recommender
systems (GRSs) and its applications in various fields such as
tourism [2], entertainment [3], and catering services [4].

Modeling preferences of group members and how they
contribute to the group preference act as an essential role in
GRSs. Data sparsity, however, is severe in GRSs due to the
limited observations of user and group interactions compared
with the large number of items [5], [6], which severely impairs
the accuracy of user/group preference modeling and recom-
mendation performance. To alleviate the data sparsity issue,
some methods are developed to model groups’ preferences
with various side information of users or groups such as social
relations [7], [8], [9], [10]. However, such side information is
often unavailable for user/group preference modeling. Another
solution is to use transfer learning to borrow data from a
related source domain to assist the recommendation tasks in
a sparse target domain, which is also known as cross-domain
recommender systems (CDRSs) [11]. The core assumption of
CDRSs is that similar users in different domains also have
similar preferences. When the users change from individuals
to groups, however, it is more difficult to extract shared knowl-
edge between two domains due to the complex relationship
between members in a group. Hence, CDRSs for individual
users cannot be directly applied to provide recommendations
for groups.

To deal with the complex member—group relationship and
develop cross-domain GRSs, there are three challenges.

1) Group decisions are structured collaboratively so that
group members are mutually dependent on each other
yet personally impact differently on different items.
Thus, a comprehensive strategy to model group pref-
erence is very challenging.

2) One user may take part in more than one group and the
user preference will adaptively change inside different
groups [12], [13]. The different relationships each user
has across the different groups to which they belong
can be named as containment relationships which is
hard to capture and seldom considered in group member
preference modeling.

3) Different from the CDRSs for individual users, the
knowledge transferred from the source domain in
cross-domain group recommendation needs to benefit
preference modeling and recommendation for both indi-
vidual users and groups. Whether the knowledge transfer
is effective and how to balance the effectiveness on both
sides remains an unsolved problem.

To address the above three challenges, we propose a
hierarchical attention network-based cross-domain group
recommendation method, named HAN-CDGR, to boost group
recommendation performance. First, we construct a hierar-
chical attention neural network to model the preferences of
both individual users and groups in a common feature space
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to allow them to reinforce each other. The first level of
attention is used to consider the inner relationships between
group members; the other level of attention handles complex
interdependencies between the users and groups. This hierar-
chical attention neural network solves challenges 1) and 2).
Second, to solve challenge 3), we apply adversarial learning
and domain adaptation methods to learn transferable latent
representations of a user—item pair from both the source
and target domains and use the inner product module to
generate user—/group—item predictions. In summary, the main
contributions of this article are as follows.

1) Group Preference Module to Represent Group Pref-
erences With Knowledge of Both Individual- and
Group—Item Interactions: It enables more precisely
group preference modeling by comprehensively consid-
ering the influence between group members and adaptive
weights of each member in this group.

2) Individual User Preference Module That Is Able to Deal
With a User’s Containment Relationship in Multiple
Groups: This module relaxes the constraints that a user
has fixed preferences and represents one user with dif-
ferent preferences when he/she participates in different
groups, namely, group-specific user embedding, which
is more suitable and flexible for real-world situations.

3) Adversarial Learning-Based Knowledge Transfer
Method for Cross-Domain Group Recommendation:
This method can alleviate the data sparsity issue in
GRSs and improve the recommendation for both groups
and individual users by extracting knowledge from a
source domain. To the best of our knowledge, it is
the first work that considers cross-domain knowledge
transfer for group recommendation tasks.

4) Novel Hierarchical Attention Network-based Cross-
Domain Group Recommendation Called HAN-CDGR:
Extensive experiments are performed on three tasks with
six real-world datasets to verify the effectiveness of
HAN-CDGR, which significantly improves the recom-
mendation performance of both individual users and
groups and alleviates the data sparsity issue.

In the rest of this article, Section II provides a review of
related work. In Section III, we formally define the research
problem and describe our proposed method HAN-CDGR.
In Section IV, we conduct extensive experiments and provide
analysis on the experimental results. Finally, we summarize
this article with conclusions and future research directions in
Section V.

II. RELATED WORK

This study has three highly related research topics: group
recommendation, hierarchical neural networks in recom-
mender systems, and CDRSs. This section will review these
three areas of research, respectively.

A. Group Recommender System

GRSs aim to generate satisfactory recommendations for
groups from various items or services, where group preference
modeling plays a vital role in recommendation performance.
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Different GRSs have different group preference modeling
components, which is developed according to the natural
characteristics of groups. According to the group member
mobility, groups are divided into two types: persistent groups
and occasional groups. GRSs for different group types are
heavily sensitive to data [14], and thus they are often verified
on different datasets to meet their specific group characteris-
tics. Usually, a persistent group has existed for a long period,
so that group members become closely correlated and have
some interactions with items within this group. In contrast,
occasional groups are usually passively formed where the
members do not know each other before and cannot negotiate
a consensus preference for group decision-making. Therefore,
there exist extremely weaker inner relationships among group
members and even fewer group—item interactions in occasional
groups than the persistent ones [2], [15].

Two categories of GRSs have been developed: the
memory-based and the model-based group recommendation
methods. Fixed aggregation strategies, such as AVeraGe
(AVG) [16], [17], least misery (LM) [18], and maximum sat-
isfaction (MS) [19], or some improved weighted aggregation
strategies [2], [20], are widely used for fusing group member
preferences in previous memory-based group recommendation
methods that lack flexibility and rationality. Compared with
these, the proposed HAN-CDGR models both user and group
preferences from data by designing a deep neural network with
a better flexibility.

Compared with the memory-based types, the model-based
group recommendation methods have received more attention,
including shallow methods [4], [21], [22] and deep learn-
ing methods [7], [14], [23], [24], [25]. The singular-value-
decomposition-based group recommendation (SVD-based GR)
methods [4] were applied to generate group recommendations
by integrating diverse fixed aggregation strategies. Some prob-
abilistic models, such as personal impact topic (PIT) [21]
and consensus model (COM) [26], were proposed to model
group profiles with consideration of group members’ personal
impacts and related topics.

The existing deep leaning group recommendation methods
are mainly divided into persistent group recommendations [7],
[14], [25], [27] and occasional group recommendations [5],
[6], [8], [10], [28], [29], [30]. For the first persistent group
recommendation type, deep learning group recommender
(DLGR) was the first deep architecture model to learn groups’
high-level features [14]. Attentive group recommendation
(AGREE) and social-enhanced AGREE (SoAGREE) used
attention mechanisms to learn groups’ preferences adaptively
with respect to the specific items under consideration [7],
[25]. However, they overlooked the complex inner relation-
ships among persistent group members and modeled group
preferences by fusing fixed group members’ preferences.
To tackle this issue, Vinh Tran et al. [27] represented each
group member using a single subattention network to model
the interactions between the group member and all the other
members in the group. HAN-CDGR is for persistent group
recommendation. It is different from the existing persistent
group recommendation methods by designing a hierarchical

neural network to learn both user and group adaptive prefer-
ences.

The occasional group recommendation methods focus on
alleviating the data sparsity issue through better modeling
user—/group—item interactions [5], [6] or borrowing knowledge
from auxiliary information, such as social network [8], [10],
[28], [30]. Graphical and attentive multiview embeddings
(GAME) and group recommendation using attentive dual
influences (GRADI) represented user—/group—item interactions
as various graph data and learned the latent representations
of the groups, users, and items from multiple independent
views [5], [6]. Social-influence-based group recommender
(SIGR), centrality-aware group recommender (CAGR), and
group self-attention (GroupSA) leveraged the user social
networks to enhance user/group preferences [8], [10], [28].
Furthermore, hierarchical hyperedge embedding-based group
recommender (HyperGroup) improved group preference mod-
eling by exploiting the group similarity [30]. The group
preference modeling component of GroupSA is most similar
to our proposed method HAN-CDGR, which both used a
self-attention network to capture inner relationships among
group members. Since GroupSA tackled occasional group
recommendation, it only considered inner relationships among
group members that have direct social connections. Differ-
ent from these, HAN-CDGR caters to persistent groups and
assumes all the group members have inner relationships.
Moreover, it assumes that no auxiliary information is available
and tries to alleviate the data sparsity issue by incorporating
information from other domain knowledge. Table I summa-
rizes the key characteristics of the aforementioned group
recommendation methods.

B. Hierarchical Neural Networks in Recommender Systems

Hierarchical classification and hierarchical clustering are the
two main paradigms in machine learning [32], [33], which
have been used in the field of recommender systems [7],
[34]. Park and Kim [33] proposed an adaptive resonance
theory-supervised predictive mapping for the hierarchical clas-
sification network and applied it to a multimedia recom-
mendation systems for digital storytelling. Zhong et al. [35]
proposed a novel hierarchical and interactive gate network for
rating prediction, which modeled local word informativeness
and global review semantics in the reviews of users/items in
a hierarchical manner.

For group recommendation, SOAGREE [7] used users’
social connections to construct a hierarchical attention network
for group recommendation. In [34], a Facebook application
HappyMovie was developed to recommend movies to groups.
Furthermore, Quijano-Sanchez et al. [13] exploited the hier-
archical relationships within a group based on the influence
of social relationships between individuals. When groups
contain thousands of group members, Qin et al. [36] divided
big groups into many common-interest user subgroups using
member clustering and generated big group recommendations
by aggregating subgroup recommendation lists. When the
groups have not been built in advance, the Leuven algorithm
was applied to GRSs to identify user groups automatically
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TABLE I
SUMMARY OF EXISTING GROUP RECOMMENDATION METHODS
Method Input User/Item feature Aggre strategy Group type
explicit  implicit  other infor fixed dynamic fixed dynamic persistent  occasional
MC-GR [2] X X X X
Groupality [20] X X X X
TruGRC [31] X X X X X
SVD-based GR [4] X X X X
PIT [21] X X X X X
COM [26] X X X X X
CVTM, GERF [3], [22] X X X X X
DLGR [14] X X X X X
AGREE [25] X X X X
MoSAN [27] X X X X
GAME, GRADI [5], [6] X X X X
SIGR, CAGR, GroupSA, and
HyperGroup [8], [10], [28], [30] X X X X X
HAN-CDGR X X X X

in [37]. Previous hierarchical neural-network-based group rec-
ommenders usually relied on users’ auxiliary information,
while our method focuses on alleviating data sparsity issue
with no auxiliary information available.

C. Cross-Domain Recommender Systems

Data sparsity is acute for recommender systems, especially
when the recommender system is newly launched. CDRS
is one effective method to alleviate the data sparsity issue,
where deep learning methods have been the mainstream in
the existing CDRSs research. One category of CDRSs inves-
tigates how to apply additional information, such as reviews,
user/item profiles, and tags, to improve the recommendation
effectiveness on either the target domain or both the source
and target domains. Discriminative adversarial networks for
cross-domain recommendation (RecSys-DAN) [38] transfers
the latent representations from a source domain to a target
domain in an adversarial way. The dual-target CDR [39] and
deep dual-transfer cross-domain recommendation [40] are two
dual-target CDRs that adapt rating and multisource content
information to generate user/item latent features. Another
category tackles the data sparsity issue through the transfer
of knowledge from one or more relevant source domains,
which have relatively rich user—item interaction data, to a
target domain [41], [42], [43]. The collaborative cross net-
works [41] introduced cross connections between two net-
works to allow dual knowledge transfer across domains with
implicit feedback. This method assumed user fully overlap-
ping across domains. Neural attentive transfer recommenda-
tion (NATR) [42] transfers item embeddings across domains
through attention networks. Taking the merits of adversar-
ial learning, the deep domain adaptation recommendation
model [44] extracts and transfers rating patterns from rating
matrices from the user or item side. On this basis, a deep
dual adversarial network is proposed to transfer both the user
side and item side domain shared information [43]. However,
none of these cross-domain recommendation methods has been
applied to group recommendation. Aiming at the group recom-
mendation challenge issue, this study proposes a cross-domain
group recommendation method that applies representation

learning, adversarial learning, and domain adaptation methods
to learn transferable latent representations for users, items, and
their interactions across domains to contribute to both user and
group recommendations.

III. HIERARCHICAL ATTENTION NETWORK-BASED
CROSS-DOMAIN GROUP RECOMMENDATION METHOD

This section first introduces the notations and problem
formulation, then introduces the motivations for developing
the HAN-CDGR method through a concrete example for
cross-domain group recommendation, gives an overview of
the entire method, and finally explains in detail each module
of the method.

A. Notations and Problem Definition

In this work, we aim to tackle a cross-domain group
recommendation problem which involves two domains: a
target domain and a source user domain. The target domain
involves two interaction matrices with implicit feedback: the
group—item interaction matrix and the user—item interaction
matrix. Suppose we have S groups G = {gi, g2, ..., gs} and
N' items V = {vy, v2, ..., vyt }; the groups’ implicit feedback
on items is represented as G € RS*N'" (bold uppercase letter
represents a matrix), where an element of G is 1 if the
corresponding group—item interaction is observed (i.e., a group
purchases an item) and empty otherwise. Since each group in
the group set G is formulated by individual users, the user—item
interaction matrix containing M" users U" = {uy, us, ..., upy}
can be denoted as R, € RM*N'_ Considering user—/group—
item interactions in the target domain are usually sparse,
an auxiliary source domain, denoted as Rj, is introduced to
help group (or the user u; € U') recommendation in the
target domain. Suppose the source domain R has M* users
U ={uj,u3, ..., u).} and N* items V° = {o}, 03, ..., 0%},
the source user—item implicit interaction matrix is denoted as
R, € RM>N" Particularly, the user—item interaction matrices
R, and R, are from the same or similar product domains.
For example, people who like romance novels may also enjoy
watching romantic movies. Therefore, a book dataset with
relatively rich data can be regarded as a source domain of
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Fig. 1. Concrete example for cross-domain group recommendation. There is
no group label in the source domain data, while there are both user-/group—
item interactions and member—group relationship information in the target
domain. The member—group relationships reflect both the inner relationships
among group members and containment relationship between users and vari-
ous groups. Lines between users in each group indicate the inner relationships
among group members, while the lines between users and groups represent
containment relationships between them. In a group, the circles with different
colors represent different users, and the circle size of each group member
means its decision power. The bigger the circle, the bigger the decision power
the user has within this group. The knowledge from the source user domain
is first transferred to the target user domain and then contributes to group
recommendation in the target domain.

a movie dataset which is sparser than the domain of books.
We aim to learn some shareable and transferable information
on users, items, and their interactions across the source user
and target user domains in an adversarial way and boost the
recommendation performance on both individual users and
groups in the target domain. Then, our cross-domain group
recommendation task is defined as recommending a list of
items that group g, € G (or target user u; € U') may be
interested in through using information from both the source
and target domains.

B. Example for Cross-Domain Group Recommendation

We intend to propose a cross-domain group recommenda-
tion method that can be applied to generate recommendations
for small group activities, such as student group study, family
TV program watching, and friends’ travel decisions. Fig. 1
illustrates three challenging scenarios.

1) Group Preference Modeling: In each social group, there
exist complex inner relationships among group mem-
bers due to the social nature of human tourists intend.
Moreover, when the group is faced with different types
of items, the group’s decision power distribution is
dynamic due to the differences in group members’ roles
and expertise. For example, when a group of tourists
intends to engage in activities such as rock climbing or
hiking, the more experienced hikers in the group may
contribute more than those inexperienced ones to the
group decision. However, when the tour group chooses
to visit cultural sites, the group members who are more
familiar with various cultural sites often play a bigger
role in the group decision. As shown in Fig. 1 (right),
the decision power of group member u; and u, varies
when the group is faced with items v; and v;.

2) Group Member Preference Modeling: Due to the social
nature of humans, each user is likely to be influenced
by other group members within diverse groups. For
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example, a user who likes reading books inherently may
prefer hiking and rock climbing when he becomes a
member of a group for sports, whereas he is more likely
to watch movies and play games when he attends an
entertainment group. As shown in Fig. 1 (left), user
uy has taken part in groups g; and g, simultaneously,
and u,’s group-specific preference toward g; and g, can
be denoted as @, and #,, respectively.

3) Cross-Domain Group Recommendation: As shown in
Fig. 1 (above), there is a source domain containing
similar users with those in the target user domain. Users
in the target domain can act as a bridge between the
source user and the target group. The source domain
data first contribute to the user preference modeling
in the target domain in an adversarial manner. Then,
to efficiently transfer knowledge from the source domain
to the target group domain, we need to properly model
complex relationships between users and groups in the
target domain. In this way, knowledge from the source
domain can be transferred to the group preference mod-
eling module by aggregating group member preferences.

The existing GRSs fail to model complex inner relationships

among group members and the containment relationships
between users and various groups. CDGRs for individual users
are unable to deal with the data sparsity issue in GRSs. The
HAN-CDGR method, described in Section III-C, helps solve
these challenges.

C. HAN-CDGR Method Overview

As shown in Fig. 2(a), the HAN-CDGR method consists
of four main modules: Module 1) group preference modeling
(M1); Module 2) user preference modeling (M2); Module
3) adversarial-learning-based knowledge transfer (M3); and
Module 4) top-N item recommendation (M4). The first two
modules aim to learn latent representations of users and groups
through a hierarchical attention neural network. It should be
noted that both user and group preferences can be augmented
with multimodule features, such as images and texts, via cus-
tomized encoders [45]. The adversarial-learning-based knowl-
edge transfer module aims to learn transferable user—item
latent features between the source and target domains to alle-
viate the data sparsity issue of target domain. Finally, both the
user— and group—item prediction scores are generated through
an inner product module. We list some important notations
associated with HAN-CDGR in Nomenclature section. Next,
we explain each module of the HAN-CDGR method in detail.

D. M1: Group Preference Modeling

Let g; € G be the target group containing a set of users. The
set of user IDs in group g; is represented as K;. Let v; be the
embedding vector of item v;. The target group g;’s overall
embedding on item v; is formulated as

&) =D a(j, i +q, (1)

iE’C]
where @;; is the group-specific embedding vector of member
u; in group g;. a(j,i) means the weight of u; in the group
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Fig. 2. (a) Overall fi k of proposed HAN-CDGR method. It t f dules: group pref deling preft deling.

adversarial-learning-based knowledge transfer, and top-N recommendation. (b) Details about the self-attention module.

decision on item v;, and ¢; denotes the target group g’s
inherent embedding of dimension d. The two components
of (1) are denoted as Ml-a and MI-b, respectively. We
elaborate on these two components in the following.

1) M1-a: Group Member Embedding Aggregation: A group
can be regarded as a global input that is composed of several
interacting parts. In (1), we first use a self-attention neural
network to improve the group members’ representations with
consideration of the group members’ inner relationships to
get @;;; next use a vanilla attention network to learn group
members’ dynamic weights on different items and aggregate
the group members’ improved representations as a whole.

a) Self-attention neural network: The self-attention net-
work aims to model user u;’s group-specific embedding #; ;.
It is intuited that one group member’s preference for an item
could be affected by other members, such that the attention
for some members could be distracted and others could be
strengthened. Along this view, the member user-improved
embedding #;; can be partly determined as a weighted com-
bination of features from all the members in the group

O = Attention(Q, K, V)
T
= softmax vV (2)
k
a; =m" O+u (3)

5

where .7 indicates the transposition operation, matrices Q €
RIKixd g e RIKiIxd and V e RI&I¥4 are packed by the
queries, keys, and values of all the members in a group, and
the query, key, and value vectors of each member in this

group are obtained by multiplying the member embedding
of dimension d with three corresponding trainable embedding
matrices. Since K; represents the set of user IDs in group g,
the cardinality |K;| means the group size of g;. As shown
in Fig. 2(b), three mapping functions f(-), g(-), and h(-)
represent three multilayer perceptron (MLP) neural networks
which map the group embedding matrix G, into matrices Q,
K, and V, respectively. Specifically, G; € R*? is the input
embedding layer of the target group g;, and each row of G;
represents the embedding of each member within this group.
(QKT //dy) is calculated as an input of a softmax layer to
determine a normalized weight (or attention) matrix of size
IKCi| x |K;|, where (1/+/dy) is a scaling factor to alleviate the
effect of extremely small gradients when the value of d is
too large [46]. Each element of the weight matrix indicates
the extent to which the group attends to one member when
synthesizing another member in this group. Then, the output
matrix O € RX1%? of the self-attention layer can be obtained
by multiplying the normalized weight matrix with V. Each row
of the output matrix O represents the hidden representation of
each member in g;, by attending over other group members in
the group. In addition, m is a group member indicator vector,
m; € {0,1} and i = {1,2,...,|K|}. m; = 1 indicates the
group member u;; otherwise, m; = 0. To obtain u;’s hidden
representation in O, we multiply the group member indicator
vector with the output matrix O. We further associate a
member user u;’s hidden representation with its own dedicated
embedding u; to determine u;’s group-specific embedding #; ;.

b) Vanilla attention neural network: The vanilla attention
neural network aims to learn the group members’ adaptive
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weights for different unrated items, which are used to compute
a linear combination of group members’ improved embedding
vectors corresponding to them, to serve as the output prefer-
ence for group member embedding aggregation

0(j,i) = hIReLU(P jv;+ P;it;; + b) (4)
- expo(Jj, i)

a(j,i) o xpolin 1) (%)
where P; and P; represent the weight matrices of the vanilla
attention network that project the item embedding v; and
member user improved embedding #;,; into a shared latent
feature space, respectively, and b is the bias vector of the
hidden layer. Then the rectified linear unit (ReLU) function
is used as the activation function of the hidden layer, and
the attention score o(j, i) is obtained by multiplying a weight
vector h, with the output of hidden layer. Specifically, the
output of the hidden layer is transformed by a fully connected
layer and normalized by a softmax function to produce the
attention weight a(j, i) of member user «; on item v in group
g;. The member weight represents the overall contribution
score of the member user in a group’s overall decision on
an item after negotiating with other group members.

2) M1-b: Group Inherent Embedding: In (1), the group
inherent embedding of g;, defined as g,, represents the general
preference of the group, which is an indispensable part of the
group’s overall preference, especially when there is inconsis-
tency between these two parts. For example, several hiking
enthusiasts are still likely to sign up for a group tour of a
cultural landscape due to corporate team-building activities.
Therefore, the final output of group—item preference is given
by (1) which adds the group’s inherent embedding to the group
members’ aggregated embedding.

E. M2: User Preference Modeling

Let u; be the target user in U’ which has simultaneously
participated in a set of groups with index set H;. All the groups
that u; has joined come from the group set G. To model the
user preference with consideration of the complex containment
relationships between the user and diverse groups, the target
user u;’s overall embedding on item v; can be formulated as

Ai(j) =D aniu; +u; (6)
leH;

where the first component is obtained by aggregating u;’s
group-specific embedding &, ; from diverse groups that u; has
joined. a;; denotes u;’s group-specific attention on group g,
and it also reflects how much group g; contributes to u;’s
embedding. The second component is the user u;’s inherent

embedding. We will illustrate these two components below.
1) M2-c: Group-Specific User Embedding Aggregation:
To determine the aggregated embedding of target user u;,
we first use the self-attention mechanism to capture the inner
relationships among different members in one group and get
the self-attentive output. The same process is conducted on
each group that the user u; belongs to, and |H;| self-attentive
outputs are obtained, where cardinality |7;| means the total
number of groups that u; has joined. The calculation processes

are the same as (2) and (3), thus are omitted here. Then,
an appropriate aggregation strategy is required to fuse all these
group-specific embedding vectors #; ;(I € H;). To capture the
dynamic weights of one member in diverse groups, we use a
vanilla attention network to calculate the attention scores of
the target user belonging to different groups

7, = hIReLU(W;ii;; + b) (7
oy = — PG ®)
2 renm; €xp(ri)

where «;; means the normalized weight of target user u;
in group g, and W; and b are the learned weight matrix
and bias vector, respectively. h, is a global vector, and
ReLU function is our chosen activation function. Finally, the
softmax function is used to normalize the weights across all
the groups that u; has joined.

2) M2-d: User Inherent Embedding: In (6), the user
inherent embedding is denoted by u; which represents an
independent preference of the target user u; in R'. Finally,
we calculate the overall user—item preference by (6) with
consideration of both the user’s initial preference embedding
and group-specific embedding integration.

F. M3: Adversarial-Learning-Based Knowledge Transfer

In this section, we aim to transfer knowledge from a
source domain (R;) to the target domain (R, and G) through
adversarial training to assist the recommendation for individual
users in R/, and further contribute to the recommendation
for groups in G. As depicted in Fig. 2(a), the adversarial-
learning-based knowledge transfer module is composed of
two components: a pooling layer and adversarial learning.
Specifically, the pooling layer aims to get a comprehensive
representation of the user—item pair from both the source and
target domains, which are trained to be as similar as possible
so that a classifier cannot reliably decide which domain the
feature vector is from. Meanwhile, the domain discriminator
D in the adversarial learning layer aims to make accurate
discrimination between the source and target domains.

1) Pooling Layer: For the source domain, following [25],
the source user preference and item property are extracted as
embedding vectors under the representation learning frame-
work. The pooling layer first performs elementwise product
on the source user—item embedding vector pair (u? (j’), v,
and then concatenates it with the original embedding u; ()
and vj,. For the target domain, the inputs are user feature
vector A;(j) and item embedding v ; for each target user—item
pair (u;, v;). The user feature vector A;(j) is obtained by the
user preference modeling (for details, see Section III-E). The
pooling results of the source domain are

u,(j) © v,
u; (j') 9

vj,

e?/j/ = (ppo(,]ing(uf, (j/), U;,) =

where @pooling (-) means the pooling function, and © denotes
the elementwise product of two vectors. [-] represents the
concatenation of feature vectors. Similarly, the pooling result

of (user, item) pair in the target domain is denoted as e} G
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2) Domain Discriminator D: The domain discriminator D
with parameter set ¢, contains one domain classifier and one
gradient reverse layer (GRL), which aims to match the latent
features of the source user—item pair and the target user-=item
pair and facilitate positive knowledge transfer between both
the domains through adversarial training. Specifically, the
GRL is inserted between the pooling layer and the domain
classifier [47]. It behaves differently for the forward and back
propagation processes, which acts as an identity transform for
forward propagation, while it reverses the gradient direction by
multiplying the gradient by —4 in the backward propagation

G(x) = x (forward propagation)
dG(x)
dx

where I is an identity matrix, and 4 is a hyperparameter.

We use domain classifier to predict the domain label [; €
{0, 1} of the ith example, which comes from both the source
and target user domains, where 0 indicates the source domain
and 1 for the target domain, respectively. Binary cross-entropy
loss is used to measure the domain classifier loss

= —1 I (backward propagation) (10)

|O*|+|0"|
LO)=— > lilogh+(1—1I)log(l—1I)

i=1

(1)

where || means the number of training examples, and /; and

[; are the real and predicted domain labels of the ith training
example from both the domains.

G. M4: Top-N Item Recommendation

1) Prediction Layer: The interaction prediction for a given
pair of user u; (or source user uj and group g;) and item
vj(or source item v?,) is achieved by an inner product module
with parameter sets (9;, (9;, and Hﬁ, respectively. Take an
target user—item pair (#;,v;) as an example, the user feature
vector A;(j) obtained by (6) and item feature vector v; are
fed into this inner product module and output the interaction
probability 5)fj between the pair of (u;,v;). The estimated
value J;; is calculated by

;=0 (A () v)) (12)
where o represents the sigmoid function, and T means the
transposition operation. The prediction loss for the target user
domain is as below

Lo = > (= 9)

(i,j,m)e0"

= > @G-8 -1)

(i,j,n)e0!

13)

where O’ denotes the training set of the target user domain
R;. Each instance in O is a triplet (i, j, n), meaning that the
target user u; has interacted with item v;, but not with item
v,. Similarly, the other two prediction losses for the source
user—item and group—item interactions in both the domains
are defined as L3,(63) and L} (6y), respectively.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

2) Objective Function: The total loss function with parame-
ter set {9;, 9;, 0.} for the recommendation task for individual
users is obtained as

Luser(eza HZ, ea) = LZP(HZ) +ﬁ : L;(G;) -7 Lc(ec) (14)

where £ and y are two trade-off parameters to balance the con-
tributions of the source preference prediction loss and domain
loss. The optimization objective can be further expressed as
(9;,@;) = arg ;‘,Elig,} Luer (65,0}, 6,)
7P
(éc) = arg rrgilx Lyser ((9;, 9;, Hc). (15)
With the help of GRL, the parameter set can be optimized by
stochastic gradient descent or its variants. After training, some
domain-invariant and discriminate user—item feature vectors
can be found in both the source and target domains, and such
features in the source domain R, can further facilitate the
recommendations in R, and G.

After optimizing objection function (15) on both the source
user—item and target user—item interactions, we further opti-
mize the group—item interaction prediction function L% (653) on
the set of group—item interaction instances O#

LyO5) = 2.

(1j.j)eos

P>

(1j.j7)eos

(ylg}j' - yIgjj/)z

(55 — 95— 1)° (16)

where (I, j, j') indicates that group g; has interacted with item
v; but not with item v .. The group’s predicted score on item
v;(or vj) is calculated by feeding the group preference by (1)
and item embedding v; (or v;/) to the inner product module.
The pseudo-code for optimizing HAN-CDGR is summarized
as Algorithm 1.

3) Recommendation Generation: After optimizing HAN-
CDGR, given a target group g; (or target user u;), we can
obtain the prediction score of the group g; (or the user u;) on
a certain item v;. Then, a recommendation list of items that
the group (or the user) might like can be generated.

H. Complexity Analysis

Generally, the complexity of the proposed HAN-CDGR is
affected by epoch E, the size of the data in the source domain
|O*| and the target domain |O'|, the user number M' and
group number S in the target domain, and the number of
hidden factors K. In our proposed HAN-CDGR, Module 1
contains the user preference modeling and group modeling,
which contains one-layer encoder, two-layer self-attention, and
two-layer vanilla attention. Thus, the complexity is O(M'
(2K?+K)). The complexity of Module 2, similar to Module 1
but with group size, is O(S*(2K? + K)). For the adversarial
part, it contains a GRL and one-layer classifier, and thus the
complexity is O ((|O*|+|0'|)*(K?)). Module 4 contains one-
layer prediction. As it involves negative samples so the size of
data in the target domain increases to 5/0'|, the complexity
is O(5|0'| * K). Overall, the complexity of HAN-CDGR is
ON*((M"+S+|0°|+]0")2K>+(M'+S+5|0")*K)).
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Algorithm 1 HAN-CDGR

Input: 7 = {G,U",V, G, R}, the target domain;

S = {U*, V*, Ry}, the source domain;
Member—group relationship information.

Output: The preference predictions §! ; and 5)2’} in target
domain.

Randomly initialization

While epoch < E do:

1: Randomly shuffle the training data

: foreach (u}, vji,) € O° do

3 Get uj (j'), v}, and €}, by (9)

& g, v03) < Deyy). 355 < o (@ ()" v3)
5: end

6: foreach (u;,v;) € O' do

7

8

(3]

Get A;(j), v; by (6), €;; by (9)
lA(”h vj) < D(ezj)’ 5):} <~ U(AIT(]) “0;)
end
9: Calculate L. by (11)
10: Calculate prediction losses L’p and L), by (13)
11: Calculate the loss function for individual users:
Luser:L;"Fﬁ' L;,—V ' »
12: Update the network parameters {0, 0, 6.} through back
propagation
13: foreach (g;,v;) € O¢ do
14 Get g,(j). v; by (1), 9§ < o (gl (j) - v))
end
15: Calculate the loss function L% for groups by (16)
16: Update the network parameters 65 through back propaga-
tion
End
Output: The final predictions: 5)i’j and ﬁlgj.

Considering that K is a much smaller number compared with
the size of the data or the number of users/groups and can
be treated as constant, the overall complexity of HAN-CDGR
is O(k’>n?). Considering that HAN-CDGR is trained on data
from both the source and target domains and it involves
two-level attention neural networks, it may take more time to
achieve convergence than the group recommendation methods
based on a single-attention neural network such as AGREE
[25], or individual recommendation methods such as Bayesian
personalized ranking (BPR) [48] and neural collaborative fil-
tering (NCF) [49]. Distributed computation may be a solution
to speed up our proposed method [50].

IV. EXPERIMENTS AND ANALYSIS

In this section, we conduct extensive experiments on several
public datasets to verify the effectiveness of our proposed
method. The source codes and datasets used in our experi-
ments have been provided online.! The datasets are introduced
first, followed by the evaluation protocols, baseline methods,
and experimental settings. Then, the experimental results and
related analysis are presented. Parameter analysis concludes
this section.

Uhttps://github.com/ccnu-mathits/ HAN-CDGR

TABLE 11
STATISTICAL INFORMATION ON THE S1X ORIGINAL DATASETS

User No.

Mafengwo 5275
CAMRa2011 610
Yelp 25667
MovieLensIM 6040
MovieLens25M 162541
MovieLens-latest-small 602

Data_source Item No.  Group No.

1513 995
7710 290
25815 -
3900
59047

9724

G-I/U-I sparsity

99.75%199.50%

93.51%/97.49%
-199.89%
-195.75%
-/99.73%
-/98.30%

A. Datasets

Our experiments are conducted on six real-world datasets:
Mafengwo,” Yelp,> CAMRa2011,* and MovieLens.’ Table II
lists the statistical information about these original datasets,
where the last column shows the sparsity information of
user—item (U-I) interactions or group—item (G-I) interac-
tions corresponding to different datasets. The Mafengwo
dataset [25] is crawled from a tourism website Mafengwo.
It contains a member—group relationship file and the traveling
venues of the group and each of the group members. The
member—group relationship file records the member infor-
mation for each group. CAMRa2011 is a dataset from the
second challenge on context-aware movie recommendation,
which contains movie rating records of both individual users
and households as well as group member information. These
two datasets have been tested for group recommendation
tasks [7], [14], [25]. Yelp and MovieLens are another two
popular datasets which have been widely tested for individ-
ual recommendations because they only contain individual
user—item interactions. However, all the above datasets have
rarely been tested for cross-domain group recommendation.
In this study, we preprocess the above datasets and construct
three cross-domain recommendation tasks for both individuals
and groups. For Mafengwo which is the target domain for task
1, we choose Yelp as a relative dense source domain to assist
the recommendation in Mafengwo because restaurant and
tourism are closely related in item level. Since our proposed
method does not need group labels for the source domain
data, we do not process the Yelp data to generate group
labels, but we filter it such that it is comparable with the
size of user data in Mafengwo. Similarly, for CAMRa2011
which is the target domain for task 2, we filter a compa-
rable source dataset from MovieLensIM to assist the rec-
ommendation in CAMRa2011. Besides, we extract another
target domain dataset for task 3, named MovieLens-Simi,
from the MovieLens-latest-small dataset. Since complex inner
relationships are more common in real groups with common
tastes, such as groups of friends, than in random groups,
the groups in MovieLens-Simi are formed with high inner
group similarity, which is measured by user-to-user similarity
and computed using Pearson correlation coefficient (PCC).
Then, similar to [16], [26], and [27], we generate synthetic
groups as follows: we first add each user in MovieLens-
latest-small as the first member in a group. Then, we choose

2https://github.com/caoda0721/SoOAGREE
3https://www.yelp.com/dataset
“https://recsys.acm.org/recsys 1 1/camra/
Shttp://grouplens.org/datasets/MovieLens/
Shttp://www.mafengwo.cn

Authorized licensed use limited to: University of Technology Sydney. Downloaded on March 17,2023 at 01:35:24 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE III
DESCRIPTION OF DATA SUBSETS FOR THREE TASKS

Task Data_name  Data_source Domain U/G No. Item No.  Sparsity
task1_sl Yelp source 4948 1500 99.37%
Task 1 taskl_tl MaFengwo target user 5275 1513 99.50%
task1_t2 MaFengwo target group 995 1513 99.76%
task2_s1 MovieLens1M source 602 8000 95.68%
Task 2 task2_tl CAMRa2011 target user 602 7710 97.49%
task2_t2 CAMRa2011 target group 290 7710 93.51%
task3_sl MovieLens25M source 610 9724 96.94%
Task 3 task3_tl MovieLens-Simi  target user 610 9724 98.30%
task3_t2 MovieLens-Simi  target group 610 9724 99.46%

five similar users with the highest PCC similarity with the
first member as the other group members. With the group
generated, we count the items rated by all the members
in each group to generate group—item interactions. Given a
group, if more than half of the group members like a movie,
we assume that the movie is adopted by the group. Finally,
the MovieLens-Simi dataset is constructed as a target domain
for task 3 for which we choose MovieLens25M as its source
domain. Following AGREE [25], we also filter out the users
in each target domain who do not participate in any group and
only retain the user—item interactions with group information.
After preprocessing, three cross-domain recommendation tasks
are designed for our experiments as shown in Table III.

1) Task 1: Yelp (restaurant) — Mafengwo (tourism).

2) Task 2: MovieLens1M (movie)— CAMRa2011 (movie).

3) Task 3: MovieLens25M (movie) — MovieLens-Simi

(movie).

B. Baselines and Experimental Settings

1) Different Types of Baselines: To verify the effectiveness
and superiority of HAN-CDGR, we used the following base-
lines.

1) BPR [48] uses pairwise ranking to optimize implicit
matrix factorization. This method is used on individual
recommendation and group recommendation where one
group is treated as one virtual user in the target domain.

2) NCF [49] is a matrix factorization method that uses
MLP to model the nonlinear relationship between users
and items. Similar to BPR, it is used for recommenda-
tions for both individual users and groups.

3) LightGCN [51] is a simplified graph-convolution-
network-based individual recommendation method.
It learns user and item factors through neighborhood
aggregation. Similar to both the BPR and NCF methods,
the LightGCN method also generates group recommen-
dations by treating groups as virtual users.

4) BPR-AVG, NCF-AVG, and LightGCN-AVG (short
for “Light-AVG”) are three individual recommendation
methods that combine BPR/NCF/LightGCN with the
predefined average strategy. They consider the average
embedding of all the members in the group and opti-
mize the BPR/NCF/LightGCN objective to make group
recommendations.

5) AGREE [25] is a popular group recommendation
method which uses a single-attention neural network
to learn feature vectors for groups and uses the NCF

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

framework to jointly model user—/group—item interac-
tions. Since AGREE has confirmed its superiority than
the COM [26] method, which also experimentally out-
performed the PIT [21] method, we did not compare our
proposal with these two methods again.

6) GRADI [5] is a single-attention neural-network-based
group recommendation method. This method explores
dual influence between groups and group members when
modeling groups’ preferences.

7) GAME [6]: is a graph representation learning-based
group recommendation method. It models the inherent
representations of groups, users, or items from multiple
independent views. Recommendation results for both
individual users and groups are generated based on the
NCF framework.

8) NATR [42] is a cross-domain recommendation method
with item overlapping that transfers the overlapped item
embeddings across domains. In our group recommen-
dation task, the user—item and group—item interactions
can be regarded as the source and target domains with
shared item sets under the same scenario with NATR
where the groups are treated as virtual users.

To verify the effectiveness of the hierarchical neural
network, we design a variant of HAN-CDGR, named
HAN-GR which removes the adversarial learning module in
HAN-CDGR but retains the hierarchical attention mechanism
for user/group preference modeling.

2) Parameter Settings: We implemented our proposed
method and all the comparative methods using PyTorch. For
all the baselines, we used the original code if available or
implement them by PyTorch to get experimental results. The
results were fine-tuned according to the parameter settings in
the original article. For the network structure of our methods
HAN-GR and HAN-CDGR, we set the negative sampling
ratio as 4. We searched the results for the embedding size,
dropout ratio, batch size, and learning rate in [16, 32, 64, 128,
256], [0.0, 0.2, 0.4, 0.6, 0.8], [128, 256, 512], and [2e—3,
2e—4, 2e—5, 5e—6], respectively. As HAN-CDGR involves
additional parameters £ and y to balance user prediction and
domain losses. We searched parameters £ and y in the range
of [0.05, 0.1, 0.2, 0.5, 1] and [0, 5e—4, 2e—4, 3¢ — 1], respec-
tively. Moreover, we empirically set the activation function
as ReLU and used the adaptive moment estimation (Adam)
optimizer for network learning. Early stop technique was used
to stop the training processes. We repeated the experiments on
each setting five times and reported the best average results.

We chose leave-one-out as our evaluation protocol, which
has been widely used in top-N recommendation [7], [25],
[48]. Specifically, for each user (or group) that had more than
three histories, we removed the latest entry for testing and
took the remaining entries for training. Hit ratio (HR) and
normalized discounted cumulative gain (NDCG) were used as
evaluation metrics for implicit feedback. During evaluation,
we randomly sampled 100 items that have not been interacted
by the test user (or group) and ranked the test item among
100 negative items, which is a common strategy to balance
prediction accuracy and computation cost [49], [52], [53].
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C. Experimental Results

The experimental results on three tasks are given in
Tables IV-VI, and the training time of each method for an
epoch on the MaFengWo dataset is shown in Table VII. The
performances on HR and NDCG are provided for both the
users and groups. Furthermore, we conducted the Friedman
test based on the results. We can see that most of the p-values
of the t-tests on HR@5 and HR@10 for both the user and
group recommendation results are less than 0.05, which con-
firms the significance of the improvement of our HAN-CDGR
method over all other comparative methods. In addition,
we show the best performance results in bold. Overall, the
HAN-CDGR method delivers the best performance of most
baselines in all the three tasks. This verifies the conclusion that
modeling user/group preferences with a hierarchical attention
neural network is more effective than a single-attention or a
fixed-aggregation strategy. Meanwhile, transferring knowledge
from a source domain to the target domain can significantly
improve the recommendation performance of both individual
users and groups. We can make the following observations.

1) Overall Performance Comparison on Individual Recom-
mendation: BPR, NCF, and LightGCN are initially designed
to generate recommendations for individual users. Therefore,
the user— and group—item interactions are trained separately
and cannot reinforce each other when training. Our pro-
posed HAN-CDGR and its variant HAN-GR significantly
outperformed these three baselines which indicates that the
preference of each member is closely related and can be
mutually influenced by group preference. Specifically, in the
MaFengWo dataset, HAN-CDGR achieves a 0.99%-8.76%
improvements in individual user recommendation tasks and
gains a 15.07%-31.20% improvement in group recommenda-
tion tasks over NCF on HR or NDCG metrics.

2) Overall Performance Comparison on Group Recommen-
dation: The BPR-AVG, NCF-AVG, and Light-AVG methods
are three single-domain learning methods used for group
recommendation that consider the average embedding of all
the users in the group as the group representation. Light-
AVG has a more superior performance than BPR-AVG and
NCF-AVG on group recommendation because it modeled both
group and item latent factors from graph data. The AGREE,
GRADI, and GAME methods show improved performances
compared with BPR-AVG, NCF-AVG, and Light-AVG, since
they used attention mechanisms to learn group members’
dynamic weights and trained models from both user— and
group—item interaction data. HAN-CDGR outperforms these
aforementioned methods for two reasons: 1) group preference
modeling considering the complex inner relationships among
group members and 2) user preference modeling with con-
tainment relationship between the users and diverse groups.
HAN-CDGR outperforms the single-attention-based baselines,
which indicates that the above two kinds of relationships are
important and should be considered in group/user preference
modeling. Concretely, in the Mafengwo dataset, each user has
participated in at least one group and up to 190 groups, and
each user in MovieLens-Simi has participated in at least one
group and up to 17 groups, while each user in CAMRa2011
has only participated in one group. The largest improvement of

Fig. 3. Visualization on the positive and negative user latent feature
distributions before and after adversarial learning (best viewed in color). The
figures show the difference in (a) and (b) positive user and (c) and (d) negative
user latent features. Source domain data are shown in blue and target domain
is in red.

the three datasets is in the Mafengwo dataset, which indicates
that our proposed method has superior performance when one
user has participated in many groups.

3) Effectiveness of Knowledge Transfer: NATR is an
individual cross-domain recommendation method with item
overlapping. It transfers knowledge from item-side information
to assist group recommendation. It improves around 30%
on group recommendation than the other nontransfer group
recommendation methods involving BPR-AVG, NCF-AVG,
and Light-AVG, which proves the effectiveness of knowledge
transfer across group— and group member—item interactions.
Moreover, our proposed method HAN-CDGR achieves around
5% improvement than HAN-GR and NATR, which means
that the knowledge transfer from another user domain is
also effective and improves the recommendation in the target
domain, especially for the group recommendation task.

To ensure that the trained latent user features from the
source and target domains are similar and properly aligned
by adversarial learning, we use stochastic neighbor embedding
(t-SNE) [54] to visualize both the positive and negative user
latent features. Fig. 3(a) shows the positive user latent features
of the source domain (blue) and target domain (red) that are
trained separately, i.e., the source domain is trained by the
NCF method and the target domain is trained by the HAN-GR
method. Fig. 3(b) shows the positive user latent features after
training 200 epochs in the proposed HAN-CDGR. Similarly,
Fig. 3(c) and (d) shows the negative user feature distributions
before and after alignment. Fig. 3 suggests that the user
latent features are aligned after adversarial learning, and the
divergence of the distributions is decreased after alignment.
Therefore, we can come to the conclusion that our proposed
HAN-CDGR is able to effectively match the latent features of
users between the source and target domains.

D. Ablation Analysis

In this section, we present an ablation study to validate the
functions of each module in HAN-CDGR.

We first examine the hierarchical attention network and
adversarial module and construct four variants of HAN-
CDGR: 1) H-AVG-GR; 2) H-LM-GR; 3) H-MS-GR; and
4) H-EXP-GR are the four simplified versions of our HAN-
CDGR method. They do not transfer data from the source
domain to the target domain and change the second-level atten-
tion (vanilla attention) to a fixed aggregation strategy, includ-
ing average, LM, MS, and expertise strategies, respectively.

As depicted in Table VIII, we conducted studies on three
datasets and only report group recommendation performances
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TABLE IV
OVERALL COMPARISON RESULTS ON THE MAFENGWO DATASET

User Group
Method HR@5 NDCG@5 T-test HR@I10 NDCG@T0 T-test HR@5 NDCG@5 T-test HR@I0 NDCG@T0 T-test
BPR 0.8203 0.5410 0.0061 0.9199  0.5741 0.0198 0.4647 0.3064 1.82e-5  0.6219 0.4574 1.62e-5
NCF 0.8851 0.6424 0.0003 0.9501  0.6639 0.0352 0.6567 0.5210 0.0122 0.7525  0.5522 0.0314
LightGCN 0.8159 0.6350 4.1e-7 0.8864  0.6580 0.0014 0.6247 0.4515 4.45e-6  0.7577  0.4952 7.3e-6
BPR-AVG - - - - - - 0.4460 0.3174 1.22¢-8  0.5612 0.3544 5.59-7
NCF-AVG - - - - - - 0.6090 0.4479 0.0114 0.7248  0.4858 0.0180
Light-AVG - - - - - - 0.6965 0.5039 6.42e-6  0.8096 0.5406 0.0001
NATR - - - - - - 0.7688 0.6670 0.048 0.7954  0.6758 0.2190
AGREE 0.8981 0.6416 0.0037 0.9427  0.6563 0.0093 0.7445 0.6287 0.0004 0.7941  0.6450 0.0077
GRADI 0.8974 0.6418 0.0260 0.9464  0.6581 0.0680 0.7261 0.5880 8.84e-5  0.7789  0.6053 0.0030
GAME 0.8855 0.5975 0.0003 0.9443  0.6169 4.31e-5 0.7317 0.6064 0.0009 0.8070  0.6310 1.65e-5
HAN-GR 0.9115 0.6884 - 0.9558  0.7133 - 0.8034 0.6295 - 0.8690  0.6510 -
HAN-CDGR  0.9207 0.6987 - 0.9596 0.7173 - 0.8137 0.6836 - 0.8659  0.7007 -

TABLE V
OVERALL COMPARISON RESULTS ON THE CAMRA2011 DATASET

User Group
Method HR@5 NDCG@5 T-test HR@I10 NDCG@T0 T-test HR@5 NDCG@5 T-test HR@I0 NDCG®@10 T-test
BPR 0.6258 0.4235 9.75e-5  0.7912  0.4773 0.0007 0.5859 0.3993 0.0003 0.7772  0.4616 0.0045
NCF 0.6252 0.4222 5.62e-5  0.7922  0.4765 6.65¢-5 0.5840 0.3975 0.0003 0.7783  0.4607 0.0017
LightGCN 0.6242 0.4217 2.53¢-5  0.7885 0.4756 0.0002 0.5862 0.4016 0.0005 0.7759  0.4637 0.0082
BPR-AVG - - - - - - 0.5853 0.3981 0.0005 0.7789  0.4610 0.0026
NCF-AVG - - - - - 0.5839 0.3972 0.0004 0.7769  0.4601 0.0215
Light-AVG - - - - - 0.5882 0.4037 0.0005 0.7771  0.4650 0.0270
NATR 0.6175 0.4078 0.0491 0.8017 0.4676 0.4776
AGREE 0.6262 0.4216 3.0le-5  0.7993  0.4777 0.0006 0.5878 0.4013 0.0009 0.7818  0.4641 0.0105
GRADI 0.6270 0.4214 3.76e-5  0.8011  0.4779 0.0002 0.5865 0.3992 0.0006 0.7829  0.4628 0.0040
GAME 0.6272 0.4110 3.63e-5  0.7934 0.4753 6.85¢-5 0.5855 0.3987 0.0004 0.7724  0.4596 0.0021
HAN-GR 0.6916 0.4326 - 0.8534  0.4985 - 0.6236 0.4026 - 0.8121  0.4755 -
HAN-CDGR  0.6829 0.4471 - 0.8567  0.5069 - 0.6468 0.4113 - 0.8068  0.4729 -

TABLE VI
OVERALL COMPARISON RESULTS ON THE MOVIELENS-SIMI DATASET

User Group
Method HR@5 NDCG@5 T-test HR@I10 NDCG@T0 T-test HR@5 NDCG@5 T-test HR@I0 NDCG@10 T-test
BPR 0.5403 0.3850 0.0055 0.7036  0.4378 0.0040 0.8447 0.5739 0.0023 0.9641  0.6130 0.0007
NCF 0.6236 0.4121 0.0201 0.7823  0.4638 0.0111 0.9395 0.7380 0.0018 0.9831 0.7525 0.0098
LightGCN 0.5216 0.3779 2.42e-5  0.6803  0.4280 1.70e-5 0.8658 0.6837 3.8le-8  0.9549 0.7115 1.28e-6
BPR-AVG - - - - - - 0.8965 0.6763 0.0221 0.9697  0.7005 0.0120
NCF-AVG - - - - - - 0.9570 0.7682 7.29¢e-5  0.9859  0.7778 0.0561
Light-AVG - - - - - - 0.8690 0.6837 2.97e-7 09602 0.7137 2.13e-6
NATR 0.9186 0.7423 5.77e-6  0.9750 0.7602 0.0003
AGREE 0.6168 0.4179 0.0141 0.7655  0.4659 0.0239 0.9723 0.7465 0.0022 0.9977 0.7551 0.0004
GRADI 0.6196 0.4192 0.0269 0.7787  0.4705 0.0235 0.9672 0.7715 0.0241 0.9933  0.7802 0.0783
GAME 0.5485 0.3933 5.32-6  0.6728 0.4335 1.51e-5 0.9599 0.8069 7.59e-6  0.9876 0.8161 6.59%-6
HAN-GR 0.6456 0.4489 - 0.7875 0.4973 - 0.9648 0.7717 - 0.9951 0.7819 -
HAN-CDGR  0.6544 0.4746 - 0.8013  0.5124 - 0.9817 0.8173 - 0.9974  0.8234 -

TABLE VII

TRAINING TIME ON THE MAFENGWO DATASET

Time Time

Method user group Method user group
BPR 2.8431 0.1890 NATR - 1.3716
NCF 2.9357  0.1991 AGREE 23536  0.8216
LightGCN 3.2673  0.2167 GRADI 1.8526  0.4452
BPR-AVG - 0.5068 GAME 39.09 1.3737
NCF-AVG - 0.5196 HAN-GR 78.45 1.2657
Light-AVG - 0.6218 HAN-CDGR 86.20 1.889

on both HR and NDCG in Table VIII. Our proposed method
HAN-CDGR shows a better performance in group recommen-
dation than most fixed-aggregation-strategy-based variants.
This validates the effectiveness of the hierarchical attention
neural network and adversarial learning module in modeling
group preferences. Since each user in the CAMRa2011 dataset
has taken part in only one group, the user preference modeling
reduced to a fixed aggregation-based strategy which may
degrade the performance on group recommendation. Besides,
there is no one fixed strategy among the four types that is

absolutely dominant in all the datasets. This also confirms
that a dynamic weight learning strategy is more suitable
than predefined, static aggregation strategies. To illustrate
hierarchical attention, we randomly select ten groups and
visualize the self-attention weights within one group and
vanilla attention weights for ten groups in Fig. 4(a) and (b),
respectively.

As described in M1 and M2 of HAN-CDGR, both the
group preference and user preference are modeled by com-
bining two components, where the group preference modeling
is composed of Ml1-a) group member embedding aggrega-
tion and M1-b) group inherent embedding, and user pref-
erence modeling is composed of M2-c) group-specific user
embedding aggregation and M2-d) user inherent embedding.
To further investigate the effectiveness of each module in
HAN-CDGR, we compare HAN-CDGR with its five other
variants as follows.

1) HAN-CDGR (Ml-a and M2-c) only uses Ml-a for

group preference modeling and M2-c for user preference
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TABLE VIII
HAN-CDGR ABLATION STUDY ON THE SECOND-LEVEL ATTENTION

13

Mafengwo CAMRa2011 MovieLens-simi
Method HR@5 _NDCG@35 HR@I0 NDCG@10 ~HR@5 _NDCG@35 HR@I0 NDCG@10 ~HR@5 _ NDCG@35 HR@I0 NDCG@10
H-AVG-GR 0.7787 06059  0.8360  0.6366 0.6326 04060 08190  0.4702 09528 06921 09873  0.7237
H-LM-GR 07779  0.6700 08239  0.6828 05970 03844 07752 04565 09503 07160  0.9845  0.7386
H-MS-GR 07863  0.6829 08323  0.6976 06309 04038 08130 04768 09520 06715 09859  0.7094
H-EXP-GR 07790  0.6838  0.8239  0.6739 06269 03931 08199  0.4699 09490  0.6868  0.9855  0.7223
HAN-CDGR __ 0.8137  0.6836  0.8659  0.7007 0.6468 04113 08068 04729 09817 08173 09974  0.8234
TABLE IX =7
0.176
HAN-CDGR ABLATION STUDY ON EACH COMPONENT OF ]
USER/GROUP PREFERENCE MODELING 0172
User Group 2™
Method HR@5 NDCG@5HR@5 NDCG@5 é o168
HAN-CDGR(MI-a & M2-c) _ 09142 0.6882  0.8068 _ 0.6984 2
HAN-CDGR(Ml-a & M2-d) 09130  0.6796 07210  0.5578 | o26a
HAN-CDGR(M1-b & M2-c) ~ 0.9127  0.6779  0.8020  0.6391 -
HAN-CDGR(M1-b & M2-d) 09115  0.6731  0.6858  0.5052
HAN-CDGR(Without M2) - - 0.7819__ 0.6717 - . N [oase
HAN-CDGR 09207 0.6987 0.8137 0.6836 1 2 4
modeling, which are both learned using the hierarchical @
attention network in HAN-CDGR. o
2) HAN-CDGR (Ml1-a and M2-d) uses Ml-a for group o
preference modeling and only considers the user inher- -]
ent embedding (M2-d) as the users’ latent feature. i
3) HAN-CDGR (M1-b and M2-c) regards the group’s ®
inherent preference as its overall preference and uses o
M2-c for user preference modeling. w -
4) HAN-CDGR (M1-b and M2-d) does not use the hierar- S 1 3 3 . S
. . Member-ID
chical neural network to model either group preference ®)
or user preference. It only considers the inherent pref-
erences of users or groups as their final latent feature Fig. 4. Visualization of (a) self-attention weights within one group and

It can be regarded as an NCF-based cross-domain group
recommendation framework.

5) HAN-CDGR (without M2) deletes the user preference
modeling module in HAN-CDGR and only generates
recommendations for groups using a hierarchical neutral
network.

We conducted ablation studies on component analysis
of user/group preference modeling to report HR@5 and
NDCG@5 on both the users and groups on the MaFengWo
dataset in Table IX. We can observe that HAN-CDGR
(M1-a and M2-c) performs better than other four variants,
indicating M1-a and M2-c play essential roles in group/user
preference modeling. HAN-CDGR (without M2) is stronger
than HAN-CDGR (M1-a and M2-d) and HAN-CDGR (M1-
b and M2-d), but inferior to the other variants highlighting
the benefits of user preference modeling. In addition, the
ignorance of training data from both user—item and group-item
interactions in HAN-CDGR (without M2) may also impair
model accuracy. Overall, HAN-CDGR outperforms most of
its variants, validating the benefits of our hierarchical neural
network and M3 in modeling both user and group preferences
and facilitating recommendations for both individual users and
groups in the target domain. Moreover, modeling user—item
and group—item interactions simultaneously can reinforce rec-
ommendation tasks for both the users and groups.

E. Parameter Analysis

There are two important parameters in our proposed
method: the dropout ratio p and embedding size d. We analyze

(b) vanilla attention weights for ten sampled groups. Both the x-axis and y-
axis in (a) represent the member-ID in a group, while the x-axis represents
the member-ID and y-axis represents the group-ID in (b). Note that all the
original user-IDs and group-IDs have been reidentified, and a darker color
indicates a larger weight.
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Fig. 5. Parameter analysis on drop ratio and embedding size on the Mafengwo
dataset.

the parameters p and d in the range of [0.0, 0.2, 0.4, 0.6,
0.8] and [16, 32, 64, 128, 256], respectively. Fig. 5 shows
the parameter analysis results on HR@5 and NDCG@5 on
the Mafengwo dataset. The results show that using a dropout
ratio p ~ 0.2 achieves an optimal recommendation accuracy
on HR@5 for both individual users and groups, while group
recommendation performance on NDCG@5 achieves best on
p ~ 0. For the performance analysis on d, the influence of d
on the accuracy of HAN-CDGR shows an upward and then
downward trend.
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V. CONCLUSION AND FUTURE STUDY

In this article, we propose a novel hierarchical attention
neural-network-based cross-domain group recommendation
method, HAN-CDGR. Extensive experiments on real-world
datasets show that HAN-CDGR and its variant HAN-GR out-
perform the state-of-the-art baselines. This shows that HAN-
CDGR is able to model user and group adaptive preferences
from data and significantly improve both user and group
recommendation performance in the target domain through
transferring knowledge from a source domain. The experiment
results also suggest that the inner relationships of group mem-
bers and containment relationships between users and groups
are important in both user and group preference modeling.

The advantages of this work are twofold. First, our proposed
method constructs a hierarchical attention neural network
to model both user and group’s latent preferences. On the
user side, we leverage the hierarchical structure of users,
groups, and items to capture the containment relationship
between users and groups, revealing additional insights into
user preferences. On the group side, we aggregate group
members’ preferences as a part of group representation with
consideration of both the dynamic weights of different group
members and the inner relationships among them. Second,
our proposed method is able to effectively transfer knowledge
from a similar source domain to facilitate recommendation
for both individual users and groups in the target domain
through adversarial learning. However, the main drawback of
this work is its computational complexity. Our method may
be potentially sped up by distributed learning and a big data
framework such as the consensus learning algorithm.

For future work, we aim to improve our proposed method in
two aspects. First, we aim to propose novel hierarchical graph
attention networks to improve user/group preference and item
property modeling by incorporating multimodule features such
as images and texts. In addition, the relationships between
users and groups are sometimes uncertain, so we will also
investigate how to deal with the uncertainties in the group
recommendation [55]. Second, modeling static (long-term) and
dynamic (short-term) behaviors and trends of users/groups and
items to enhance group recommendation performance provides
a very significant future research direction for us, and hence,
we can explore how to improve our HAN-CDGR method to
enable it to learn temporal latent features.
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