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Abstract— Many online services allow users to participate1

in various group activities such as online meeting or group2

buying, and thus need to provide user groups with services that3

they are interested. The group recommender systems (GRSs)4

emerge as required and provide personalized services for various5

online user groups. Data sparsity is an important issue in6

GRSs, since even fewer group–item interactions are observed.7

Moreover, the group and the group members have complex8

and mutual relationships with each other, which exacerbates the9

difficulty in modeling the preferences of both a group and its10

members for recommendation. The cross-domain recommender11

system (CDRS) is a solution to alleviate data sparsity and assist12

preference modeling by transferring knowledge from a source13

domain which has relatively dense data to another. The existing14

CDRSs are usually developed for individual users and cannot be15

directly applied for group recommendation. To alleviate the data16

sparsity issue in GRSs, we first study the cross-domain group17

recommendation problem and propose a hierarchical attention18

network-based cross-domain group recommendation method,19

called HAN-CDGR. HAN-CDGR takes the advantage of data20

from a source domain to benefit recommendation generation for21

both the individual users and groups in the target domain which22

has data sparsity and cannot generate accurate recommendation.23

In HAN-CDGR, a hierarchical attention network is constructed24

to learn and model individual and group preferences, with25

consideration of both group members’ interactions and dynamic26

weights and the complex relationships between individuals and27

groups. Adversarial learning is used to effectively transfer knowl-28

edge from a source domain to the target domain. Extensive29

experiments, which demonstrate the effectiveness and superiority30

of our proposal, providing accurate recommendation for both31

individual users and groups, are conducted on three tasks.32

Index Terms— Cross-domain recommender systems (CDRSs),33

group recommender systems (GRSs), hierarchical attention net-34

work, recommender systems.35
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NOMENCLATURE 36

T = {G,U t ,V, G, Rt } Target domain.
S = {U s,V s, Rs} Source domain.
Kl Set of user IDs in group gl .
Hi Set of group IDs that user ui has

joined.
ui , v j Embedding vectors of target user

ui ∈ U t and item v j ∈ V .
us

i � ,υ
s
j � Embedding vectors of source user

us
i � ∈ U s and item vs

j � ∈ V s .
ql Embedding vector of group

gl ∈ G.
d Dimension of embedding vectors.
Q, K , V Vectors of queries, keys, and

values of all members in a group.
dk Dimension of query and key

vector.
P i , P j , W i Weight matrices of neural

networks.
ho, hτ , b Weigh and bias vectors for neural

networks.
ûl,i User ui ’s group-specific

embedding in group gl .
a( j, i) ui ’s contribution score in group

decision on item v j .
αl,i ui ’s group-specific attention on

group gl .
Os , Ot , and Og Sets of training examples in

source and target domains.
ϕpooling(·) Pooling function.
es , et Pooling results in source and

target domains.
λ, β, and γ Parameters in gradient reversal

layer and total user loss function.
D Domain discriminator.
{θ s

p, θ
u
p, θ

g
p , θc} Parameter sets of HAN-CDGR.

ŷs
i � j � ,ŷ

t
i j ,ŷ

g
l j Predicted preference scores in

both domains.
37

I. INTRODUCTION 38

RECOMMENDER systems are developed to alleviate the 39

information overload problem to help users retrieve valu- 40

able information and find the most suitable services. They 41

are widely applied in many web applications such as video 42

platforms, online stores, or social media [1]. With the rapid 43

growth of digital social networking, many web applications 44
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now allow people to participate in various activities in groups,45

e.g., joining a video channel on YouTube, team buying for46

discount price, and hiking or traveling with families or friends.47

Under these circumstances, the products/services that con-48

sumers adopted are targeted for a group of users rather than for49

individuals. The demand of personalized items or services for50

groups has prompted the development of group recommender51

systems (GRSs) and its applications in various fields such as52

tourism [2], entertainment [3], and catering services [4].53

Modeling preferences of group members and how they54

contribute to the group preference act as an essential role in55

GRSs. Data sparsity, however, is severe in GRSs due to the56

limited observations of user and group interactions compared57

with the large number of items [5], [6], which severely impairs58

the accuracy of user/group preference modeling and recom-59

mendation performance. To alleviate the data sparsity issue,60

some methods are developed to model groups’ preferences61

with various side information of users or groups such as social62

relations [7], [8], [9], [10]. However, such side information is63

often unavailable for user/group preference modeling. Another64

solution is to use transfer learning to borrow data from a65

related source domain to assist the recommendation tasks in66

a sparse target domain, which is also known as cross-domain67

recommender systems (CDRSs) [11]. The core assumption of68

CDRSs is that similar users in different domains also have69

similar preferences. When the users change from individuals70

to groups, however, it is more difficult to extract shared knowl-71

edge between two domains due to the complex relationship72

between members in a group. Hence, CDRSs for individual73

users cannot be directly applied to provide recommendations74

for groups.75

To deal with the complex member–group relationship and76

develop cross-domain GRSs, there are three challenges.77

1) Group decisions are structured collaboratively so that78

group members are mutually dependent on each other79

yet personally impact differently on different items.80

Thus, a comprehensive strategy to model group pref-81

erence is very challenging.82

2) One user may take part in more than one group and the83

user preference will adaptively change inside different84

groups [12], [13]. The different relationships each user85

has across the different groups to which they belong86

can be named as containment relationships which is87

hard to capture and seldom considered in group member88

preference modeling.89

3) Different from the CDRSs for individual users, the90

knowledge transferred from the source domain in91

cross-domain group recommendation needs to benefit92

preference modeling and recommendation for both indi-93

vidual users and groups. Whether the knowledge transfer94

is effective and how to balance the effectiveness on both95

sides remains an unsolved problem.96

To address the above three challenges, we propose a97

hierarchical attention network-based cross-domain group98

recommendation method, named HAN-CDGR, to boost group99

recommendation performance. First, we construct a hierar-100

chical attention neural network to model the preferences of101

both individual users and groups in a common feature space102

to allow them to reinforce each other. The first level of 103

attention is used to consider the inner relationships between 104

group members; the other level of attention handles complex 105

interdependencies between the users and groups. This hierar- 106

chical attention neural network solves challenges 1) and 2). 107

Second, to solve challenge 3), we apply adversarial learning 108

and domain adaptation methods to learn transferable latent 109

representations of a user–item pair from both the source 110

and target domains and use the inner product module to 111

generate user–/group–item predictions. In summary, the main 112

contributions of this article are as follows. 113

1) Group Preference Module to Represent Group Pref- 114

erences With Knowledge of Both Individual– and 115

Group–Item Interactions: It enables more precisely 116

group preference modeling by comprehensively consid- 117

ering the influence between group members and adaptive 118

weights of each member in this group. 119

2) Individual User Preference Module That Is Able to Deal 120

With a User’s Containment Relationship in Multiple 121

Groups: This module relaxes the constraints that a user 122

has fixed preferences and represents one user with dif- 123

ferent preferences when he/she participates in different 124

groups, namely, group-specific user embedding, which 125

is more suitable and flexible for real-world situations. 126

3) Adversarial Learning-Based Knowledge Transfer 127

Method for Cross-Domain Group Recommendation: 128

This method can alleviate the data sparsity issue in 129

GRSs and improve the recommendation for both groups 130

and individual users by extracting knowledge from a 131

source domain. To the best of our knowledge, it is 132

the first work that considers cross-domain knowledge 133

transfer for group recommendation tasks. 134

4) Novel Hierarchical Attention Network-based Cross- 135

Domain Group Recommendation Called HAN-CDGR: 136

Extensive experiments are performed on three tasks with 137

six real-world datasets to verify the effectiveness of 138

HAN-CDGR, which significantly improves the recom- 139

mendation performance of both individual users and 140

groups and alleviates the data sparsity issue. 141

In the rest of this article, Section II provides a review of 142

related work. In Section III, we formally define the research 143

problem and describe our proposed method HAN-CDGR. 144

In Section IV, we conduct extensive experiments and provide 145

analysis on the experimental results. Finally, we summarize 146

this article with conclusions and future research directions in 147

Section V. 148

II. RELATED WORK 149

This study has three highly related research topics: group 150

recommendation, hierarchical neural networks in recom- 151

mender systems, and CDRSs. This section will review these 152

three areas of research, respectively. 153

A. Group Recommender System 154

GRSs aim to generate satisfactory recommendations for 155

groups from various items or services, where group preference 156

modeling plays a vital role in recommendation performance. 157
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Different GRSs have different group preference modeling158

components, which is developed according to the natural159

characteristics of groups. According to the group member160

mobility, groups are divided into two types: persistent groups161

and occasional groups. GRSs for different group types are162

heavily sensitive to data [14], and thus they are often verified163

on different datasets to meet their specific group characteris-164

tics. Usually, a persistent group has existed for a long period,165

so that group members become closely correlated and have166

some interactions with items within this group. In contrast,167

occasional groups are usually passively formed where the168

members do not know each other before and cannot negotiate169

a consensus preference for group decision-making. Therefore,170

there exist extremely weaker inner relationships among group171

members and even fewer group–item interactions in occasional172

groups than the persistent ones [2], [15].173

Two categories of GRSs have been developed: the174

memory-based and the model-based group recommendation175

methods. Fixed aggregation strategies, such as AVeraGe176

(AVG) [16], [17], least misery (LM) [18], and maximum sat-177

isfaction (MS) [19], or some improved weighted aggregation178

strategies [2], [20], are widely used for fusing group member179

preferences in previous memory-based group recommendation180

methods that lack flexibility and rationality. Compared with181

these, the proposed HAN-CDGR models both user and group182

preferences from data by designing a deep neural network with183

a better flexibility.184

Compared with the memory-based types, the model-based185

group recommendation methods have received more attention,186

including shallow methods [4], [21], [22] and deep learn-187

ing methods [7], [14], [23], [24], [25]. The singular-value-188

decomposition-based group recommendation (SVD-based GR)189

methods [4] were applied to generate group recommendations190

by integrating diverse fixed aggregation strategies. Some prob-191

abilistic models, such as personal impact topic (PIT) [21]192

and consensus model (COM) [26], were proposed to model193

group profiles with consideration of group members’ personal194

impacts and related topics.195

The existing deep leaning group recommendation methods196

are mainly divided into persistent group recommendations [7],197

[14], [25], [27] and occasional group recommendations [5],198

[6], [8], [10], [28], [29], [30]. For the first persistent group199

recommendation type, deep learning group recommender200

(DLGR) was the first deep architecture model to learn groups’201

high-level features [14]. Attentive group recommendation202

(AGREE) and social-enhanced AGREE (SoAGREE) used203

attention mechanisms to learn groups’ preferences adaptively204

with respect to the specific items under consideration [7],205

[25]. However, they overlooked the complex inner relation-206

ships among persistent group members and modeled group207

preferences by fusing fixed group members’ preferences.208

To tackle this issue, Vinh Tran et al. [27] represented each209

group member using a single subattention network to model210

the interactions between the group member and all the other211

members in the group. HAN-CDGR is for persistent group212

recommendation. It is different from the existing persistent213

group recommendation methods by designing a hierarchical214

neural network to learn both user and group adaptive prefer- 215

ences. 216

The occasional group recommendation methods focus on 217

alleviating the data sparsity issue through better modeling 218

user–/group–item interactions [5], [6] or borrowing knowledge 219

from auxiliary information, such as social network [8], [10], 220

[28], [30]. Graphical and attentive multiview embeddings 221

(GAME) and group recommendation using attentive dual 222

influences (GRADI) represented user–/group–item interactions 223

as various graph data and learned the latent representations 224

of the groups, users, and items from multiple independent 225

views [5], [6]. Social-influence-based group recommender 226

(SIGR), centrality-aware group recommender (CAGR), and 227

group self-attention (GroupSA) leveraged the user social 228

networks to enhance user/group preferences [8], [10], [28]. 229

Furthermore, hierarchical hyperedge embedding-based group 230

recommender (HyperGroup) improved group preference mod- 231

eling by exploiting the group similarity [30]. The group 232

preference modeling component of GroupSA is most similar 233

to our proposed method HAN-CDGR, which both used a 234

self-attention network to capture inner relationships among 235

group members. Since GroupSA tackled occasional group 236

recommendation, it only considered inner relationships among 237

group members that have direct social connections. Differ- 238

ent from these, HAN-CDGR caters to persistent groups and 239

assumes all the group members have inner relationships. 240

Moreover, it assumes that no auxiliary information is available 241

and tries to alleviate the data sparsity issue by incorporating 242

information from other domain knowledge. Table I summa- 243

rizes the key characteristics of the aforementioned group 244

recommendation methods. 245

B. Hierarchical Neural Networks in Recommender Systems 246

Hierarchical classification and hierarchical clustering are the 247

two main paradigms in machine learning [32], [33], which 248

have been used in the field of recommender systems [7], 249

[34]. Park and Kim [33] proposed an adaptive resonance 250

theory-supervised predictive mapping for the hierarchical clas- 251

sification network and applied it to a multimedia recom- 252

mendation systems for digital storytelling. Zhong et al. [35] 253

proposed a novel hierarchical and interactive gate network for 254

rating prediction, which modeled local word informativeness 255

and global review semantics in the reviews of users/items in 256

a hierarchical manner. 257

For group recommendation, SoAGREE [7] used users’ 258

social connections to construct a hierarchical attention network 259

for group recommendation. In [34], a Facebook application 260

HappyMovie was developed to recommend movies to groups. 261

Furthermore, Quijano-Sánchez et al. [13] exploited the hier- 262

archical relationships within a group based on the influence 263

of social relationships between individuals. When groups 264

contain thousands of group members, Qin et al. [36] divided 265

big groups into many common-interest user subgroups using 266

member clustering and generated big group recommendations 267

by aggregating subgroup recommendation lists. When the 268

groups have not been built in advance, the Leuven algorithm 269

was applied to GRSs to identify user groups automatically 270
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TABLE I

SUMMARY OF EXISTING GROUP RECOMMENDATION METHODS

in [37]. Previous hierarchical neural-network-based group rec-271

ommenders usually relied on users’ auxiliary information,272

while our method focuses on alleviating data sparsity issue273

with no auxiliary information available.274

C. Cross-Domain Recommender Systems275

Data sparsity is acute for recommender systems, especially276

when the recommender system is newly launched. CDRS277

is one effective method to alleviate the data sparsity issue,278

where deep learning methods have been the mainstream in279

the existing CDRSs research. One category of CDRSs inves-280

tigates how to apply additional information, such as reviews,281

user/item profiles, and tags, to improve the recommendation282

effectiveness on either the target domain or both the source283

and target domains. Discriminative adversarial networks for284

cross-domain recommendation (RecSys-DAN) [38] transfers285

the latent representations from a source domain to a target286

domain in an adversarial way. The dual-target CDR [39] and287

deep dual-transfer cross-domain recommendation [40] are two288

dual-target CDRs that adapt rating and multisource content289

information to generate user/item latent features. Another290

category tackles the data sparsity issue through the transfer291

of knowledge from one or more relevant source domains,292

which have relatively rich user–item interaction data, to a293

target domain [41], [42], [43]. The collaborative cross net-294

works [41] introduced cross connections between two net-295

works to allow dual knowledge transfer across domains with296

implicit feedback. This method assumed user fully overlap-297

ping across domains. Neural attentive transfer recommenda-298

tion (NATR) [42] transfers item embeddings across domains299

through attention networks. Taking the merits of adversar-300

ial learning, the deep domain adaptation recommendation301

model [44] extracts and transfers rating patterns from rating302

matrices from the user or item side. On this basis, a deep303

dual adversarial network is proposed to transfer both the user304

side and item side domain shared information [43]. However,305

none of these cross-domain recommendation methods has been306

applied to group recommendation. Aiming at the group recom-307

mendation challenge issue, this study proposes a cross-domain308

group recommendation method that applies representation309

learning, adversarial learning, and domain adaptation methods 310

to learn transferable latent representations for users, items, and 311

their interactions across domains to contribute to both user and 312

group recommendations. 313

III. HIERARCHICAL ATTENTION NETWORK-BASED 314

CROSS-DOMAIN GROUP RECOMMENDATION METHOD 315

This section first introduces the notations and problem 316

formulation, then introduces the motivations for developing 317

the HAN-CDGR method through a concrete example for 318

cross-domain group recommendation, gives an overview of 319

the entire method, and finally explains in detail each module 320

of the method. 321

A. Notations and Problem Definition 322

In this work, we aim to tackle a cross-domain group 323

recommendation problem which involves two domains: a 324

target domain and a source user domain. The target domain 325

involves two interaction matrices with implicit feedback: the 326

group–item interaction matrix and the user–item interaction 327

matrix. Suppose we have S groups G = {g1, g2, . . . , gS} and 328

Nt items V = {v1, v2, . . . , vN t }; the groups’ implicit feedback 329

on items is represented as G ∈ R
S×N t

(bold uppercase letter 330

represents a matrix), where an element of G is 1 if the 331

corresponding group–item interaction is observed (i.e., a group 332

purchases an item) and empty otherwise. Since each group in 333

the group set G is formulated by individual users, the user–item 334

interaction matrix containing Mt users U t = {u1, u2, . . . , uMt } 335

can be denoted as Rt ∈ R
Mt×N t

. Considering user–/group– 336

item interactions in the target domain are usually sparse, 337

an auxiliary source domain, denoted as Rs , is introduced to 338

help group (or the user ui ∈ U t ) recommendation in the 339

target domain. Suppose the source domain Rs has Ms users 340

U s = {us
1, us

2, . . . , us
Ms } and Ns items V s = {vs

1, v
s
2, . . . , v

s
N s }, 341

the source user–item implicit interaction matrix is denoted as 342

Rs ∈ R
Ms×N s

. Particularly, the user–item interaction matrices 343

Rs and Rt are from the same or similar product domains. 344

For example, people who like romance novels may also enjoy 345

watching romantic movies. Therefore, a book dataset with 346

relatively rich data can be regarded as a source domain of 347
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Fig. 1. Concrete example for cross-domain group recommendation. There is
no group label in the source domain data, while there are both user-/group–
item interactions and member–group relationship information in the target
domain. The member–group relationships reflect both the inner relationships
among group members and containment relationship between users and vari-
ous groups. Lines between users in each group indicate the inner relationships
among group members, while the lines between users and groups represent
containment relationships between them. In a group, the circles with different
colors represent different users, and the circle size of each group member
means its decision power. The bigger the circle, the bigger the decision power
the user has within this group. The knowledge from the source user domain
is first transferred to the target user domain and then contributes to group
recommendation in the target domain.

a movie dataset which is sparser than the domain of books.348

We aim to learn some shareable and transferable information349

on users, items, and their interactions across the source user350

and target user domains in an adversarial way and boost the351

recommendation performance on both individual users and352

groups in the target domain. Then, our cross-domain group353

recommendation task is defined as recommending a list of354

items that group gl ∈ G (or target user ui ∈ U t ) may be355

interested in through using information from both the source356

and target domains.357

B. Example for Cross-Domain Group Recommendation358

We intend to propose a cross-domain group recommenda-359

tion method that can be applied to generate recommendations360

for small group activities, such as student group study, family361

TV program watching, and friends’ travel decisions. Fig. 1362

illustrates three challenging scenarios.363

1) Group Preference Modeling: In each social group, there364

exist complex inner relationships among group mem-365

bers due to the social nature of human tourists intend.366

Moreover, when the group is faced with different types367

of items, the group’s decision power distribution is368

dynamic due to the differences in group members’ roles369

and expertise. For example, when a group of tourists370

intends to engage in activities such as rock climbing or371

hiking, the more experienced hikers in the group may372

contribute more than those inexperienced ones to the373

group decision. However, when the tour group chooses374

to visit cultural sites, the group members who are more375

familiar with various cultural sites often play a bigger376

role in the group decision. As shown in Fig. 1 (right),377

the decision power of group member u1 and u2 varies378

when the group is faced with items v1 and v2.379

2) Group Member Preference Modeling: Due to the social380

nature of humans, each user is likely to be influenced381

by other group members within diverse groups. For382

example, a user who likes reading books inherently may 383

prefer hiking and rock climbing when he becomes a 384

member of a group for sports, whereas he is more likely 385

to watch movies and play games when he attends an 386

entertainment group. As shown in Fig. 1 (left), user 387

u2 has taken part in groups g1 and g2 simultaneously, 388

and u2’s group-specific preference toward g1 and g2 can 389

be denoted as û1,2 and û2,2, respectively. 390

3) Cross-Domain Group Recommendation: As shown in 391

Fig. 1 (above), there is a source domain containing 392

similar users with those in the target user domain. Users 393

in the target domain can act as a bridge between the 394

source user and the target group. The source domain 395

data first contribute to the user preference modeling 396

in the target domain in an adversarial manner. Then, 397

to efficiently transfer knowledge from the source domain 398

to the target group domain, we need to properly model 399

complex relationships between users and groups in the 400

target domain. In this way, knowledge from the source 401

domain can be transferred to the group preference mod- 402

eling module by aggregating group member preferences. 403

The existing GRSs fail to model complex inner relationships 404

among group members and the containment relationships 405

between users and various groups. CDGRs for individual users 406

are unable to deal with the data sparsity issue in GRSs. The 407

HAN-CDGR method, described in Section III-C, helps solve 408

these challenges. 409

C. HAN-CDGR Method Overview 410

As shown in Fig. 2(a), the HAN-CDGR method consists 411

of four main modules: Module 1) group preference modeling 412

(M1); Module 2) user preference modeling (M2); Module 413

3) adversarial-learning-based knowledge transfer (M3); and 414

Module 4) top-N item recommendation (M4). The first two 415

modules aim to learn latent representations of users and groups 416

through a hierarchical attention neural network. It should be 417

noted that both user and group preferences can be augmented 418

with multimodule features, such as images and texts, via cus- 419

tomized encoders [45]. The adversarial-learning-based knowl- 420

edge transfer module aims to learn transferable user–item 421

latent features between the source and target domains to alle- 422

viate the data sparsity issue of target domain. Finally, both the 423

user– and group–item prediction scores are generated through 424

an inner product module. We list some important notations 425

associated with HAN-CDGR in Nomenclature section. Next, 426

we explain each module of the HAN-CDGR method in detail. 427

D. M1: Group Preference Modeling 428

Let gl ∈ G be the target group containing a set of users. The 429

set of user IDs in group gl is represented as Kl . Let v j be the 430

embedding vector of item v j . The target group gl’s overall 431

embedding on item v j is formulated as 432

gl( j) =
�
i∈Kl

a( j, i)ûl,i + ql (1) 433

where ûl,i is the group-specific embedding vector of member 434

ui in group gl . a( j, i) means the weight of ui in the group 435
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Fig. 2. (a) Overall framework of our proposed HAN-CDGR method. It contains four modules: group preference modeling, user preference modeling,
adversarial-learning-based knowledge transfer, and top-N recommendation. (b) Details about the self-attention module.

decision on item v j , and ql denotes the target group gl’s436

inherent embedding of dimension d . The two components437

of (1) are denoted as M1-a and M1-b, respectively. We438

elaborate on these two components in the following.439

1) M1-a: Group Member Embedding Aggregation: A group440

can be regarded as a global input that is composed of several441

interacting parts. In (1), we first use a self-attention neural442

network to improve the group members’ representations with443

consideration of the group members’ inner relationships to444

get ûl,i ; next use a vanilla attention network to learn group445

members’ dynamic weights on different items and aggregate446

the group members’ improved representations as a whole.447

a) Self-attention neural network: The self-attention net-448

work aims to model user ui ’s group-specific embedding ûl,i .449

It is intuited that one group member’s preference for an item450

could be affected by other members, such that the attention451

for some members could be distracted and others could be452

strengthened. Along this view, the member user-improved453

embedding ûl,i can be partly determined as a weighted com-454

bination of features from all the members in the group455

O = Attention( Q, K , V )456

= softmax

�
Q K T

√
dk

�
V (2)457

ûl,i = mT O + ui (3)458

where .T indicates the transposition operation, matrices Q ∈459

R
|Kl |×dk , K ∈ R

|Kl |×dk , and V ∈ R
|Kl |×d are packed by the460

queries, keys, and values of all the members in a group, and461

the query, key, and value vectors of each member in this462

group are obtained by multiplying the member embedding 463

of dimension d with three corresponding trainable embedding 464

matrices. Since Kl represents the set of user IDs in group gl , 465

the cardinality |Kl | means the group size of gl . As shown 466

in Fig. 2(b), three mapping functions f (·), g(·), and h(·) 467

represent three multilayer perceptron (MLP) neural networks 468

which map the group embedding matrix Gl into matrices Q, 469

K , and V , respectively. Specifically, Gl ∈ R
|Kl |×d is the input 470

embedding layer of the target group gl , and each row of Gl 471

represents the embedding of each member within this group. 472

( Q K T /
√

dk) is calculated as an input of a so f tmax layer to 473

determine a normalized weight (or attention) matrix of size 474

|Kl | × |Kl |, where (1/
√

dk) is a scaling factor to alleviate the 475

effect of extremely small gradients when the value of dk is 476

too large [46]. Each element of the weight matrix indicates 477

the extent to which the group attends to one member when 478

synthesizing another member in this group. Then, the output 479

matrix O ∈ R
|Kl |×d of the self-attention layer can be obtained 480

by multiplying the normalized weight matrix with V . Each row 481

of the output matrix O represents the hidden representation of 482

each member in gl , by attending over other group members in 483

the group. In addition, m is a group member indicator vector, 484

mi ∈ {0, 1} and i = {1, 2, . . . , |Kl |}. mi = 1 indicates the 485

group member ui ; otherwise, mi = 0. To obtain ui ’s hidden 486

representation in O, we multiply the group member indicator 487

vector with the output matrix O. We further associate a 488

member user ui ’s hidden representation with its own dedicated 489

embedding ui to determine ui ’s group-specific embedding ûl,i . 490

b) Vanilla attention neural network: The vanilla attention 491

neural network aims to learn the group members’ adaptive 492
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weights for different unrated items, which are used to compute493

a linear combination of group members’ improved embedding494

vectors corresponding to them, to serve as the output prefer-495

ence for group member embedding aggregation496

o( j, i) = hT
o ReLU(P jv j+ P i ûl,i+ b) (4)497

a( j, i) = exp o( j, i)�
t �∈Kl

exp o( j, t �)
(5)498

where P j and P i represent the weight matrices of the vanilla499

attention network that project the item embedding v j and500

member user improved embedding ûl,i into a shared latent501

feature space, respectively, and b is the bias vector of the502

hidden layer. Then the rectified linear unit (ReLU) function503

is used as the activation function of the hidden layer, and504

the attention score o( j, i) is obtained by multiplying a weight505

vector ho with the output of hidden layer. Specifically, the506

output of the hidden layer is transformed by a fully connected507

layer and normalized by a so f tmax function to produce the508

attention weight a( j, i) of member user ui on item v j in group509

gl . The member weight represents the overall contribution510

score of the member user in a group’s overall decision on511

an item after negotiating with other group members.512

2) M1-b: Group Inherent Embedding: In (1), the group513

inherent embedding of gl , defined as ql , represents the general514

preference of the group, which is an indispensable part of the515

group’s overall preference, especially when there is inconsis-516

tency between these two parts. For example, several hiking517

enthusiasts are still likely to sign up for a group tour of a518

cultural landscape due to corporate team-building activities.519

Therefore, the final output of group–item preference is given520

by (1) which adds the group’s inherent embedding to the group521

members’ aggregated embedding.522

E. M2: User Preference Modeling523

Let ui be the target user in U t which has simultaneously524

participated in a set of groups with index set Hi . All the groups525

that ui has joined come from the group set G. To model the526

user preference with consideration of the complex containment527

relationships between the user and diverse groups, the target528

user ui ’s overall embedding on item v j can be formulated as529

Ai( j) =
�
l∈Hi

αl,i ûl,i + ui (6)530

where the first component is obtained by aggregating ui ’s531

group-specific embedding ûl,i from diverse groups that ui has532

joined. αl,i denotes ui ’s group-specific attention on group gl ,533

and it also reflects how much group gl contributes to ui ’s534

embedding. The second component is the user ui ’s inherent535

embedding. We will illustrate these two components below.536

1) M2-c: Group-Specific User Embedding Aggregation:537

To determine the aggregated embedding of target user ui ,538

we first use the self-attention mechanism to capture the inner539

relationships among different members in one group and get540

the self-attentive output. The same process is conducted on541

each group that the user ui belongs to, and |Hi | self-attentive542

outputs are obtained, where cardinality |Hi | means the total543

number of groups that ui has joined. The calculation processes544

are the same as (2) and (3), thus are omitted here. Then, 545

an appropriate aggregation strategy is required to fuse all these 546

group-specific embedding vectors ûl,i (l ∈ Hi ). To capture the 547

dynamic weights of one member in diverse groups, we use a 548

vanilla attention network to calculate the attention scores of 549

the target user belonging to different groups 550

τl,i = hT
τ ReLU(W i ûl,i + b) (7) 551

αl,i = exp(τl,i )�
l�∈Hi

exp(τl�,i )
(8) 552

where αl,i means the normalized weight of target user ui 553

in group gl , and W i and b are the learned weight matrix 554

and bias vector, respectively. hτ is a global vector, and 555

ReLU function is our chosen activation function. Finally, the 556

so f tmax function is used to normalize the weights across all 557

the groups that ui has joined. 558

2) M2-d: User Inherent Embedding: In (6), the user 559

inherent embedding is denoted by ui which represents an 560

independent preference of the target user ui in Rt . Finally, 561

we calculate the overall user–item preference by (6) with 562

consideration of both the user’s initial preference embedding 563

and group-specific embedding integration. 564

F. M3: Adversarial-Learning-Based Knowledge Transfer 565

In this section, we aim to transfer knowledge from a 566

source domain (Rs) to the target domain (Rt and G) through 567

adversarial training to assist the recommendation for individual 568

users in Rt , and further contribute to the recommendation 569

for groups in G. As depicted in Fig. 2(a), the adversarial- 570

learning-based knowledge transfer module is composed of 571

two components: a pooling layer and adversarial learning. 572

Specifically, the pooling layer aims to get a comprehensive 573

representation of the user–item pair from both the source and 574

target domains, which are trained to be as similar as possible 575

so that a classifier cannot reliably decide which domain the 576

feature vector is from. Meanwhile, the domain discriminator 577

D in the adversarial learning layer aims to make accurate 578

discrimination between the source and target domains. 579

1) Pooling Layer: For the source domain, following [25], 580

the source user preference and item property are extracted as 581

embedding vectors under the representation learning frame- 582

work. The pooling layer first performs elementwise product 583

on the source user–item embedding vector pair (us
i �( j �),υs

j �), 584

and then concatenates it with the original embedding us
i �( j �) 585

and υs
j � . For the target domain, the inputs are user feature 586

vector Ai( j) and item embedding υ j for each target user–item 587

pair (ui , v j ). The user feature vector Ai( j) is obtained by the 588

user preference modeling (for details, see Section III-E). The 589

pooling results of the source domain are 590

es
i � j � = ϕpooling(us

i �( j �),υs
j �) =

⎡
⎣us

i �( j �)� υs
j �

us
i �( j �)
υs

j �

⎤
⎦ (9) 591

where ϕpooling(·) means the pooling function, and � denotes 592

the elementwise product of two vectors. [·] represents the 593

concatenation of feature vectors. Similarly, the pooling result 594

of (user, item) pair in the target domain is denoted as et
i j . 595
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2) Domain Discriminator D: The domain discriminator D596

with parameter set θc contains one domain classifier and one597

gradient reverse layer (GRL), which aims to match the latent598

features of the source user–item pair and the target user-=item599

pair and facilitate positive knowledge transfer between both600

the domains through adversarial training. Specifically, the601

GRL is inserted between the pooling layer and the domain602

classifier [47]. It behaves differently for the forward and back603

propagation processes, which acts as an identity transform for604

forward propagation, while it reverses the gradient direction by605

multiplying the gradient by −λ in the backward propagation606

G(x) = x (forward propagation)607

dG(x)

d x
= −λ I (backward propagation) (10)608

where I is an identity matrix, and λ is a hyperparameter.609

We use domain classifier to predict the domain label l̂i ∈610

{0, 1} of the i th example, which comes from both the source611

and target user domains, where 0 indicates the source domain612

and 1 for the target domain, respectively. Binary cross-entropy613

loss is used to measure the domain classifier loss614

Lc(θc) = −
|Os |+|Ot |�

i=1

li log l̂i + (1− li ) log (1− l̂i) (11)615

where | ∗ | means the number of training examples, and li and616

l̂i are the real and predicted domain labels of the i th training617

example from both the domains.618

G. M4: Top-N Item Recommendation619

1) Prediction Layer: The interaction prediction for a given620

pair of user ui (or source user us
i � and group gl) and item621

v j (or source item vs
j � ) is achieved by an inner product module622

with parameter sets θu
p , θ s

p, and θ
g
p , respectively. Take an623

target user–item pair (ui , v j ) as an example, the user feature624

vector Ai ( j) obtained by (6) and item feature vector v j are625

fed into this inner product module and output the interaction626

probability ŷt
i j between the pair of (ui , v j ). The estimated627

value ŷt
i j is calculated by628

ŷt
i j = σ(AT

i ( j) · v j ) (12)629

where σ represents the sigmoid function, and .T means the630

transposition operation. The prediction loss for the target user631

domain is as below632

Lt
p(θ

u
p) =

�
(i, j,n)∈Ot



yt

i jn − ŷt
i jn

�2
633

=
�

(i, j,n)∈Ot



ŷt

i j − ŷt
in − 1

�2
(13)634

where Ot denotes the training set of the target user domain635

Rt . Each instance in Ot is a triplet (i, j, n), meaning that the636

target user ui has interacted with item υ j , but not with item637

υn . Similarly, the other two prediction losses for the source638

user–item and group–item interactions in both the domains639

are defined as Ls
p(θ

s
p) and Lg

p(θ
g
p), respectively.640

2) Objective Function: The total loss function with parame- 641

ter set {θ s
p, θ

u
p , θc} for the recommendation task for individual 642

users is obtained as 643

Luser


θ s

p, θ
u
p , θc

� = Lt
p



θu

p

�+ β · Ls
p



θ s

p

�− γ · Lc(θc) (14) 644

where β and γ are two trade-off parameters to balance the con- 645

tributions of the source preference prediction loss and domain 646

loss. The optimization objective can be further expressed as 647

θ̂ s

p, θ̂
u
p

� = arg min
θ s

p,θ
u
p

Luser


θ s

p, θ
u
p, θc

�
648


θ̂c
� = arg max

θc

Luser


θ s

p, θ
u
p , θc

�
. (15) 649

With the help of GRL, the parameter set can be optimized by 650

stochastic gradient descent or its variants. After training, some 651

domain-invariant and discriminate user–item feature vectors 652

can be found in both the source and target domains, and such 653

features in the source domain Rs can further facilitate the 654

recommendations in Rt and G. 655

After optimizing objection function (15) on both the source 656

user–item and target user–item interactions, we further opti- 657

mize the group–item interaction prediction function Lg
p(θ

g
p) on 658

the set of group–item interaction instances Og
659

Lg
p



θ g

p

� = �



l, j, j �
�
∈Og



yg

l j j � − ŷg
l j j �

�2
660

=
�



l, j, j �

�
∈Og



ŷg

l j − ŷg
l j � − 1

�2
(16) 661

where (l, j, j �) indicates that group gl has interacted with item 662

v j but not with item v j � . The group’s predicted score on item 663

v j (or v j �) is calculated by feeding the group preference by (1) 664

and item embedding v j (or v j �) to the inner product module. 665

The pseudo-code for optimizing HAN-CDGR is summarized 666

as Algorithm 1. 667

3) Recommendation Generation: After optimizing HAN- 668

CDGR, given a target group gl (or target user ui ), we can 669

obtain the prediction score of the group gl (or the user ui ) on 670

a certain item v j . Then, a recommendation list of items that 671

the group (or the user) might like can be generated. 672

H. Complexity Analysis 673

Generally, the complexity of the proposed HAN-CDGR is 674

affected by epoch E , the size of the data in the source domain 675

|Os | and the target domain |Ot |, the user number Mt and 676

group number S in the target domain, and the number of 677

hidden factors K . In our proposed HAN-CDGR, Module 1 678

contains the user preference modeling and group modeling, 679

which contains one-layer encoder, two-layer self-attention, and 680

two-layer vanilla attention. Thus, the complexity is O(Mt ∗ 681

(2K 2+K )). The complexity of Module 2, similar to Module 1 682

but with group size, is O(S∗(2K 2 + K )). For the adversarial 683

part, it contains a GRL and one-layer classifier, and thus the 684

complexity is O((|Os |+|Ot |)∗(K 2)). Module 4 contains one- 685

layer prediction. As it involves negative samples so the size of 686

data in the target domain increases to 5|Ot |, the complexity 687

is O(5|Ot | ∗ K ). Overall, the complexity of HAN-CDGR is 688

O(N ∗((Mt +S+|Os |+|Ot |)∗2K 2+(Mt+S+5|Ot |)∗K )). 689
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Algorithm 1 HAN-CDGR

Input: T = {G,U t ,V, G, Rt}, the target domain;
S = {U s ,V s, Rs}, the source domain;
Member–group relationship information.
Output: The preference predictions ŷt

i j and ŷg
l j in target

domain.
Randomly initialization
While epoch < E do:
1: Randomly shuffle the training data
2: foreach (us

i � , v
s
j �) ∈ Os do

3: Get us
i �( j �),υs

j � , and es
i � j � by (9)

4: l̂(us
i � , υ

s
j �)← D(es

i � j �), ŷs
i � j � ← σ((us

i �( j �))T · υs
j �)

5: end
6: foreach (ui , v j ) ∈ Ot do
7: Get Ai ( j), υ j by (6), et

i j by (9)
8: l̂(ui , v j )← D(et

i j ), ŷt
i j ← σ(AT

i ( j) · v j)
end

9: Calculate Lc by (11)
10: Calculate prediction losses Lt

p and Ls
p by (13)

11: Calculate the loss function for individual users:
Luser = Lt

p + β · Ls
p − γ · Lc

12: Update the network parameters {θ s
p, θ

u
p , θc} through back

propagation
13: foreach (gl, v j ) ∈ Og do
14: Get gl( j), v j by (1), ŷg

l j ← σ(gT
l ( j) · υ j)

end
15: Calculate the loss function Lg

p for groups by (16)
16: Update the network parameters θ

g
p through back propaga-

tion
End
Output: The final predictions: ŷt

i j and ŷg
l j .

Considering that K is a much smaller number compared with690

the size of the data or the number of users/groups and can691

be treated as constant, the overall complexity of HAN-CDGR692

is O(k2n2). Considering that HAN-CDGR is trained on data693

from both the source and target domains and it involves694

two-level attention neural networks, it may take more time to695

achieve convergence than the group recommendation methods696

based on a single-attention neural network such as AGREE697

[25], or individual recommendation methods such as Bayesian698

personalized ranking (BPR) [48] and neural collaborative fil-699

tering (NCF) [49]. Distributed computation may be a solution700

to speed up our proposed method [50].701

IV. EXPERIMENTS AND ANALYSIS702

In this section, we conduct extensive experiments on several703

public datasets to verify the effectiveness of our proposed704

method. The source codes and datasets used in our experi-705

ments have been provided online.1 The datasets are introduced706

first, followed by the evaluation protocols, baseline methods,707

and experimental settings. Then, the experimental results and708

related analysis are presented. Parameter analysis concludes709

this section.710

1https://github.com/ccnu-mathits/HAN-CDGR

TABLE II

STATISTICAL INFORMATION ON THE SIX ORIGINAL DATASETS

A. Datasets 711

Our experiments are conducted on six real-world datasets: 712

Mafengwo,2 Yelp,3 CAMRa2011,4 and MovieLens.5 Table II 713

lists the statistical information about these original datasets, 714

where the last column shows the sparsity information of 715

user–item (U-I) interactions or group–item (G-I) interac- 716

tions corresponding to different datasets. The Mafengwo 717

dataset [25] is crawled from a tourism website Mafengwo.6 718

It contains a member–group relationship file and the traveling 719

venues of the group and each of the group members. The 720

member–group relationship file records the member infor- 721

mation for each group. CAMRa2011 is a dataset from the 722

second challenge on context-aware movie recommendation, 723

which contains movie rating records of both individual users 724

and households as well as group member information. These 725

two datasets have been tested for group recommendation 726

tasks [7], [14], [25]. Yelp and MovieLens are another two 727

popular datasets which have been widely tested for individ- 728

ual recommendations because they only contain individual 729

user–item interactions. However, all the above datasets have 730

rarely been tested for cross-domain group recommendation. 731

In this study, we preprocess the above datasets and construct 732

three cross-domain recommendation tasks for both individuals 733

and groups. For Mafengwo which is the target domain for task 734

1, we choose Yelp as a relative dense source domain to assist 735

the recommendation in Mafengwo because restaurant and 736

tourism are closely related in item level. Since our proposed 737

method does not need group labels for the source domain 738

data, we do not process the Yelp data to generate group 739

labels, but we filter it such that it is comparable with the 740

size of user data in Mafengwo. Similarly, for CAMRa2011 741

which is the target domain for task 2, we filter a compa- 742

rable source dataset from MovieLens1M to assist the rec- 743

ommendation in CAMRa2011. Besides, we extract another 744

target domain dataset for task 3, named MovieLens-Simi, 745

from the MovieLens-latest-small dataset. Since complex inner 746

relationships are more common in real groups with common 747

tastes, such as groups of friends, than in random groups, 748

the groups in MovieLens-Simi are formed with high inner 749

group similarity, which is measured by user-to-user similarity 750

and computed using Pearson correlation coefficient (PCC). 751

Then, similar to [16], [26], and [27], we generate synthetic 752

groups as follows: we first add each user in MovieLens- 753

latest-small as the first member in a group. Then, we choose 754

2https://github.com/caoda0721/SoAGREE
3https://www.yelp.com/dataset
4https://recsys.acm.org/recsys11/camra/
5http://grouplens.org/datasets/MovieLens/
6http://www.mafengwo.cn

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Technology Sydney. Downloaded on March 17,2023 at 01:35:24 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE III

DESCRIPTION OF DATA SUBSETS FOR THREE TASKS

five similar users with the highest PCC similarity with the755

first member as the other group members. With the group756

generated, we count the items rated by all the members757

in each group to generate group–item interactions. Given a758

group, if more than half of the group members like a movie,759

we assume that the movie is adopted by the group. Finally,760

the MovieLens-Simi dataset is constructed as a target domain761

for task 3 for which we choose MovieLens25M as its source762

domain. Following AGREE [25], we also filter out the users763

in each target domain who do not participate in any group and764

only retain the user–item interactions with group information.765

After preprocessing, three cross-domain recommendation tasks766

are designed for our experiments as shown in Table III.767

1) Task 1: Yelp (restaurant)→ Mafengwo (tourism).768

2) Task 2: MovieLens1M (movie)→ CAMRa2011 (movie).769

3) Task 3: MovieLens25M (movie) → MovieLens-Simi770

(movie).771

B. Baselines and Experimental Settings772

1) Different Types of Baselines: To verify the effectiveness773

and superiority of HAN-CDGR, we used the following base-774

lines.775

1) BPR [48] uses pairwise ranking to optimize implicit776

matrix factorization. This method is used on individual777

recommendation and group recommendation where one778

group is treated as one virtual user in the target domain.779

2) NCF [49] is a matrix factorization method that uses780

MLP to model the nonlinear relationship between users781

and items. Similar to BPR, it is used for recommenda-782

tions for both individual users and groups.783

3) LightGCN [51] is a simplified graph-convolution-784

network-based individual recommendation method.785

It learns user and item factors through neighborhood786

aggregation. Similar to both the BPR and NCF methods,787

the LightGCN method also generates group recommen-788

dations by treating groups as virtual users.789

4) BPR-AVG, NCF-AVG, and LightGCN-AVG (short790

for “Light-AVG”) are three individual recommendation791

methods that combine BPR/NCF/LightGCN with the792

predefined average strategy. They consider the average793

embedding of all the members in the group and opti-794

mize the BPR/NCF/LightGCN objective to make group795

recommendations.796

5) AGREE [25] is a popular group recommendation797

method which uses a single-attention neural network798

to learn feature vectors for groups and uses the NCF799

framework to jointly model user–/group–item interac- 800

tions. Since AGREE has confirmed its superiority than 801

the COM [26] method, which also experimentally out- 802

performed the PIT [21] method, we did not compare our 803

proposal with these two methods again. 804

6) GRADI [5] is a single-attention neural-network-based 805

group recommendation method. This method explores 806

dual influence between groups and group members when 807

modeling groups’ preferences. 808

7) GAME [6]: is a graph representation learning-based 809

group recommendation method. It models the inherent 810

representations of groups, users, or items from multiple 811

independent views. Recommendation results for both 812

individual users and groups are generated based on the 813

NCF framework. 814

8) NATR [42] is a cross-domain recommendation method 815

with item overlapping that transfers the overlapped item 816

embeddings across domains. In our group recommen- 817

dation task, the user–item and group–item interactions 818

can be regarded as the source and target domains with 819

shared item sets under the same scenario with NATR 820

where the groups are treated as virtual users. 821

To verify the effectiveness of the hierarchical neural 822

network, we design a variant of HAN-CDGR, named 823

HAN-GR which removes the adversarial learning module in 824

HAN-CDGR but retains the hierarchical attention mechanism 825

for user/group preference modeling. 826

2) Parameter Settings: We implemented our proposed 827

method and all the comparative methods using PyTorch. For 828

all the baselines, we used the original code if available or 829

implement them by PyTorch to get experimental results. The 830

results were fine-tuned according to the parameter settings in 831

the original article. For the network structure of our methods 832

HAN-GR and HAN-CDGR, we set the negative sampling 833

ratio as 4. We searched the results for the embedding size, 834

dropout ratio, batch size, and learning rate in [16, 32, 64, 128, 835

256], [0.0, 0.2, 0.4, 0.6, 0.8], [128, 256, 512], and [2e−3, 836

2e−4, 2e−5, 5e−6], respectively. As HAN-CDGR involves 837

additional parameters β and γ to balance user prediction and 838

domain losses. We searched parameters β and γ in the range 839

of [0.05, 0.1, 0.2, 0.5, 1] and [0, 5e−4, 2e−4, 3e−1], respec- 840

tively. Moreover, we empirically set the activation function 841

as ReLU and used the adaptive moment estimation (Adam) 842

optimizer for network learning. Early stop technique was used 843

to stop the training processes. We repeated the experiments on 844

each setting five times and reported the best average results. 845

We chose leave-one-out as our evaluation protocol, which 846

has been widely used in top-N recommendation [7], [25], 847

[48]. Specifically, for each user (or group) that had more than 848

three histories, we removed the latest entry for testing and 849

took the remaining entries for training. Hit ratio (HR) and 850

normalized discounted cumulative gain (NDCG) were used as 851

evaluation metrics for implicit feedback. During evaluation, 852

we randomly sampled 100 items that have not been interacted 853

by the test user (or group) and ranked the test item among 854

100 negative items, which is a common strategy to balance 855

prediction accuracy and computation cost [49], [52], [53]. 856
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C. Experimental Results857

The experimental results on three tasks are given in858

Tables IV–VI, and the training time of each method for an859

epoch on the MaFengWo dataset is shown in Table VII. The860

performances on HR and NDCG are provided for both the861

users and groups. Furthermore, we conducted the Friedman862

test based on the results. We can see that most of the p-values863

of the t-tests on HR@5 and HR@10 for both the user and864

group recommendation results are less than 0.05, which con-865

firms the significance of the improvement of our HAN-CDGR866

method over all other comparative methods. In addition,867

we show the best performance results in bold. Overall, the868

HAN-CDGR method delivers the best performance of most869

baselines in all the three tasks. This verifies the conclusion that870

modeling user/group preferences with a hierarchical attention871

neural network is more effective than a single-attention or a872

fixed-aggregation strategy. Meanwhile, transferring knowledge873

from a source domain to the target domain can significantly874

improve the recommendation performance of both individual875

users and groups. We can make the following observations.876

1) Overall Performance Comparison on Individual Recom-877

mendation: BPR, NCF, and LightGCN are initially designed878

to generate recommendations for individual users. Therefore,879

the user– and group–item interactions are trained separately880

and cannot reinforce each other when training. Our pro-881

posed HAN-CDGR and its variant HAN-GR significantly882

outperformed these three baselines which indicates that the883

preference of each member is closely related and can be884

mutually influenced by group preference. Specifically, in the885

MaFengWo dataset, HAN-CDGR achieves a 0.99%–8.76%886

improvements in individual user recommendation tasks and887

gains a 15.07%–31.20% improvement in group recommenda-888

tion tasks over NCF on HR or NDCG metrics.889

2) Overall Performance Comparison on Group Recommen-890

dation: The BPR-AVG, NCF-AVG, and Light-AVG methods891

are three single-domain learning methods used for group892

recommendation that consider the average embedding of all893

the users in the group as the group representation. Light-894

AVG has a more superior performance than BPR-AVG and895

NCF-AVG on group recommendation because it modeled both896

group and item latent factors from graph data. The AGREE,897

GRADI, and GAME methods show improved performances898

compared with BPR-AVG, NCF-AVG, and Light-AVG, since899

they used attention mechanisms to learn group members’900

dynamic weights and trained models from both user– and901

group–item interaction data. HAN-CDGR outperforms these902

aforementioned methods for two reasons: 1) group preference903

modeling considering the complex inner relationships among904

group members and 2) user preference modeling with con-905

tainment relationship between the users and diverse groups.906

HAN-CDGR outperforms the single-attention-based baselines,907

which indicates that the above two kinds of relationships are908

important and should be considered in group/user preference909

modeling. Concretely, in the Mafengwo dataset, each user has910

participated in at least one group and up to 190 groups, and911

each user in MovieLens-Simi has participated in at least one912

group and up to 17 groups, while each user in CAMRa2011913

has only participated in one group. The largest improvement of914

Fig. 3. Visualization on the positive and negative user latent feature
distributions before and after adversarial learning (best viewed in color). The
figures show the difference in (a) and (b) positive user and (c) and (d) negative
user latent features. Source domain data are shown in blue and target domain
is in red.

the three datasets is in the Mafengwo dataset, which indicates 915

that our proposed method has superior performance when one 916

user has participated in many groups. 917

3) Effectiveness of Knowledge Transfer: NATR is an 918

individual cross-domain recommendation method with item 919

overlapping. It transfers knowledge from item-side information 920

to assist group recommendation. It improves around 30% 921

on group recommendation than the other nontransfer group 922

recommendation methods involving BPR-AVG, NCF-AVG, 923

and Light-AVG, which proves the effectiveness of knowledge 924

transfer across group– and group member–item interactions. 925

Moreover, our proposed method HAN-CDGR achieves around 926

5% improvement than HAN-GR and NATR, which means 927

that the knowledge transfer from another user domain is 928

also effective and improves the recommendation in the target 929

domain, especially for the group recommendation task. 930

To ensure that the trained latent user features from the 931

source and target domains are similar and properly aligned 932

by adversarial learning, we use stochastic neighbor embedding 933

(t-SNE) [54] to visualize both the positive and negative user 934

latent features. Fig. 3(a) shows the positive user latent features 935

of the source domain (blue) and target domain (red) that are 936

trained separately, i.e., the source domain is trained by the 937

NCF method and the target domain is trained by the HAN-GR 938

method. Fig. 3(b) shows the positive user latent features after 939

training 200 epochs in the proposed HAN-CDGR. Similarly, 940

Fig. 3(c) and (d) shows the negative user feature distributions 941

before and after alignment. Fig. 3 suggests that the user 942

latent features are aligned after adversarial learning, and the 943

divergence of the distributions is decreased after alignment. 944

Therefore, we can come to the conclusion that our proposed 945

HAN-CDGR is able to effectively match the latent features of 946

users between the source and target domains. 947

D. Ablation Analysis 948

In this section, we present an ablation study to validate the 949

functions of each module in HAN-CDGR. 950

We first examine the hierarchical attention network and 951

adversarial module and construct four variants of HAN- 952

CDGR: 1) H-AVG-GR; 2) H-LM-GR; 3) H-MS-GR; and 953

4) H-EXP-GR are the four simplified versions of our HAN- 954

CDGR method. They do not transfer data from the source 955

domain to the target domain and change the second-level atten- 956

tion (vanilla attention) to a fixed aggregation strategy, includ- 957

ing average, LM, MS, and expertise strategies, respectively. 958

As depicted in Table VIII, we conducted studies on three 959

datasets and only report group recommendation performances 960
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TABLE IV

OVERALL COMPARISON RESULTS ON THE MAFENGWO DATASET

TABLE V

OVERALL COMPARISON RESULTS ON THE CAMRA2011 DATASET

TABLE VI

OVERALL COMPARISON RESULTS ON THE MOVIELENS-SIMI DATASET

TABLE VII

TRAINING TIME ON THE MAFENGWO DATASET

on both HR and NDCG in Table VIII. Our proposed method961

HAN-CDGR shows a better performance in group recommen-962

dation than most fixed-aggregation-strategy-based variants.963

This validates the effectiveness of the hierarchical attention964

neural network and adversarial learning module in modeling965

group preferences. Since each user in the CAMRa2011 dataset966

has taken part in only one group, the user preference modeling967

reduced to a fixed aggregation-based strategy which may968

degrade the performance on group recommendation. Besides,969

there is no one fixed strategy among the four types that is970

absolutely dominant in all the datasets. This also confirms 971

that a dynamic weight learning strategy is more suitable 972

than predefined, static aggregation strategies. To illustrate 973

hierarchical attention, we randomly select ten groups and 974

visualize the self-attention weights within one group and 975

vanilla attention weights for ten groups in Fig. 4(a) and (b), 976

respectively. 977

As described in M1 and M2 of HAN-CDGR, both the 978

group preference and user preference are modeled by com- 979

bining two components, where the group preference modeling 980

is composed of M1-a) group member embedding aggrega- 981

tion and M1-b) group inherent embedding, and user pref- 982

erence modeling is composed of M2-c) group-specific user 983

embedding aggregation and M2-d) user inherent embedding. 984

To further investigate the effectiveness of each module in 985

HAN-CDGR, we compare HAN-CDGR with its five other 986

variants as follows. 987

1) HAN-CDGR (M1-a and M2-c) only uses M1-a for 988

group preference modeling and M2-c for user preference 989
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TABLE VIII

HAN-CDGR ABLATION STUDY ON THE SECOND-LEVEL ATTENTION

TABLE IX

HAN-CDGR ABLATION STUDY ON EACH COMPONENT OF
USER/GROUP PREFERENCE MODELING

modeling, which are both learned using the hierarchical990

attention network in HAN-CDGR.991

2) HAN-CDGR (M1-a and M2-d) uses M1-a for group992

preference modeling and only considers the user inher-993

ent embedding (M2-d) as the users’ latent feature.994

3) HAN-CDGR (M1-b and M2-c) regards the group’s995

inherent preference as its overall preference and uses996

M2-c for user preference modeling.997

4) HAN-CDGR (M1-b and M2-d) does not use the hierar-998

chical neural network to model either group preference999

or user preference. It only considers the inherent pref-1000

erences of users or groups as their final latent feature.1001

It can be regarded as an NCF-based cross-domain group1002

recommendation framework.1003

5) HAN-CDGR (without M2) deletes the user preference1004

modeling module in HAN-CDGR and only generates1005

recommendations for groups using a hierarchical neutral1006

network.1007

We conducted ablation studies on component analysis1008

of user/group preference modeling to report HR@5 and1009

NDCG@5 on both the users and groups on the MaFengWo1010

dataset in Table IX. We can observe that HAN-CDGR1011

(M1-a and M2-c) performs better than other four variants,1012

indicating M1-a and M2-c play essential roles in group/user1013

preference modeling. HAN-CDGR (without M2) is stronger1014

than HAN-CDGR (M1-a and M2-d) and HAN-CDGR (M1-1015

b and M2-d), but inferior to the other variants highlighting1016

the benefits of user preference modeling. In addition, the1017

ignorance of training data from both user–item and group-item1018

interactions in HAN-CDGR (without M2) may also impair1019

model accuracy. Overall, HAN-CDGR outperforms most of1020

its variants, validating the benefits of our hierarchical neural1021

network and M3 in modeling both user and group preferences1022

and facilitating recommendations for both individual users and1023

groups in the target domain. Moreover, modeling user–item1024

and group–item interactions simultaneously can reinforce rec-1025

ommendation tasks for both the users and groups.1026

E. Parameter Analysis1027

There are two important parameters in our proposed1028

method: the dropout ratio p and embedding size d . We analyze1029

Fig. 4. Visualization of (a) self-attention weights within one group and
(b) vanilla attention weights for ten sampled groups. Both the x-axis and y-
axis in (a) represent the member-ID in a group, while the x-axis represents
the member-ID and y-axis represents the group-ID in (b). Note that all the
original user-IDs and group-IDs have been reidentified, and a darker color
indicates a larger weight.

Fig. 5. Parameter analysis on drop ratio and embedding size on the Mafengwo
dataset.

the parameters p and d in the range of [0.0, 0.2, 0.4, 0.6, 1030

0.8] and [16, 32, 64, 128, 256], respectively. Fig. 5 shows 1031

the parameter analysis results on HR@5 and NDCG@5 on 1032

the Mafengwo dataset. The results show that using a dropout 1033

ratio p ≈ 0.2 achieves an optimal recommendation accuracy 1034

on HR@5 for both individual users and groups, while group 1035

recommendation performance on NDCG@5 achieves best on 1036

p ≈ 0. For the performance analysis on d , the influence of d 1037

on the accuracy of HAN-CDGR shows an upward and then 1038

downward trend. 1039
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V. CONCLUSION AND FUTURE STUDY1040

In this article, we propose a novel hierarchical attention1041

neural-network-based cross-domain group recommendation1042

method, HAN-CDGR. Extensive experiments on real-world1043

datasets show that HAN-CDGR and its variant HAN-GR out-1044

perform the state-of-the-art baselines. This shows that HAN-1045

CDGR is able to model user and group adaptive preferences1046

from data and significantly improve both user and group1047

recommendation performance in the target domain through1048

transferring knowledge from a source domain. The experiment1049

results also suggest that the inner relationships of group mem-1050

bers and containment relationships between users and groups1051

are important in both user and group preference modeling.1052

The advantages of this work are twofold. First, our proposed1053

method constructs a hierarchical attention neural network1054

to model both user and group’s latent preferences. On the1055

user side, we leverage the hierarchical structure of users,1056

groups, and items to capture the containment relationship1057

between users and groups, revealing additional insights into1058

user preferences. On the group side, we aggregate group1059

members’ preferences as a part of group representation with1060

consideration of both the dynamic weights of different group1061

members and the inner relationships among them. Second,1062

our proposed method is able to effectively transfer knowledge1063

from a similar source domain to facilitate recommendation1064

for both individual users and groups in the target domain1065

through adversarial learning. However, the main drawback of1066

this work is its computational complexity. Our method may1067

be potentially sped up by distributed learning and a big data1068

framework such as the consensus learning algorithm.1069

For future work, we aim to improve our proposed method in1070

two aspects. First, we aim to propose novel hierarchical graph1071

attention networks to improve user/group preference and item1072

property modeling by incorporating multimodule features such1073

as images and texts. In addition, the relationships between1074

users and groups are sometimes uncertain, so we will also1075

investigate how to deal with the uncertainties in the group1076

recommendation [55]. Second, modeling static (long-term) and1077

dynamic (short-term) behaviors and trends of users/groups and1078

items to enhance group recommendation performance provides1079

a very significant future research direction for us, and hence,1080

we can explore how to improve our HAN-CDGR method to1081

enable it to learn temporal latent features.1082
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