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Abstract—Classification is based on machine learning, in 

which each element in a set of data is classified into one of a 

predetermined set of groups. In data mining, an artificial neural 

network (ANN) is the most significant methodology because of 

the exact results obtained through this algorithm and applied in 

solving many classification problems. ANN consists of a group of 

types of feed-forward networks, feed-back network, RFB 

networks, and the probabilistic neural networks (PNN). For 

classification issues, the PNN is frequently utilized. The primary 

goals of this research are to fine-tune the weights of neural 

networks to enhance the classification accuracy. To accomplish 

this goal, the Material Generation Algorithm (MGA) was 

investigated with PNN in a hybrid model. Newly, the 

hybridization of algorithms is ubiquitous and it has led to the 

development of unique procedures that outperform those that 

use a single algorithm. Several distinct classification tasks are 

used to test the efficiency of the suggested (MGA-PNN) 

approach. The MGA algorithm's efficiency is evaluated using the 

PNN training outcomes generated, and its outcomes are 

compared to that of other optimization strategies. By 11 

benchmark datasets, the suggested algorithm's performance in 

terms of classification accuracy is evaluated. The outcomes 

display that the MGA outperforms the biogeography based 

optimization, firefly method in terms of classification accuracy. 

Keywords—Artificial neural network (ANN); material 

generation algorithm (MGA); classification; probabilistic neural 

networks (PNN) 

I. INTRODUCTION 

Recently, our ability to collect data has greatly improved 
[1]. Millions of databases have been utilized in a variety of 
applications, including marketing campaigns, company 
management, scientific endeavors, and several others [2]. The 
availability of sophisticated and affordable database systems 
has resulted in a growing growth in the number of such 
databases [2, 3]. There is a great need to resort to intelligent 
approaches to get knowledge from processed data. As a result, 
data mining has become a popular research field [4, 5]. 
Classification is a supervised machine learning problem in 
which a collection of training data is used to map input data 
into one of several predetermined categories [5, 6]. Any 
classification algorithm's purpose is to create a technique 

which can reliably predict the category of unobserved 
examples [7]. Classification has numerous uses in a range of 
areas, including document organization, medical diagnosis, and 
many more. Many classification techniques and models have 
been devised and used as a result of this, including radial basis 
function (RBF) network [8], naive Bayes (NB) classifier [9], 
support vector machines (SVMs) [10], and K-nearest 
neighbours (KNN) algorithm [11] and several others. 

To solve classification difficulties, ANNs have been 
frequently used [12]. There are several different kinds of 
ANNs [13] as modular neural networks, RBF networks, feed-
forward neural networks, learning vector quantization neural 
networks, and several others. Not only do the aforementioned 
ANNs differ in terms of how they apply to learning, but also in 
terms of their control method and topology [14]. 

The PNN is considered a feed-forward neural network that 
can be used to predict challenges and solve classification. The 
gradient steepest descent approach, a common optimization 
technique, is used in the PNN technique to minimize errors 
between the predicted and actual output functions by allowing 
the network to modify the weights of the network [15]. 

The goal of merging metaheuristic algorithms and NN to 
build classification tools like the PNN is to improve 
effectiveness and efficiency while also allowing for more 
accurate and faster solutions of complex problems. 

The problem statement was specified by one basic research 
question: Can the searchability of the Material Generation 
Algorithm have the ability to choose the best weights so we 
can get the best accuracy? 

Metaheuristics are split into two kinds: population-based 
and single-based. Genetic algorithm (GA) [16], particle swarm 
optimization (PSO) [17], water evaporation optimization 
(WEO) [18], differential evolution (DE) [19], firefly algorithm 
(FA) [20], artificial bee colony (ABC) [21] and several others 
are population-based metaheuristics. Local search (LS) [22], 
tabu search [23] and simulated annealing (SA) [24] are 
examples of single-based metaheuristics. 
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The Material Generation Algorithm (MGA) was 
investigated and utilized in this research to enhance the 
efficiency of the PNN in solving the classification problem 
[25]. The PNN was utilized to generate some preliminary 
solutions that were generated at random and the MGA was 
utilized to tune the weights of the PNN. 

The study is divided as follows. Section II is showed a 
background and literature review for the MGA. In Section III, 
the background on big data and its issues is presented. The 
PNN approach is described in detail in Section IV, while the 
MGA is described in detail in Section V. The proposed 
methodology is then detailed in Section VI. In Section VII, the 
outcomes are presented. Finally, in Section VIII, the 
conclusion is offered. 

II. BACKGROUND AND LITERATURE: MATERIAL 

GENERATION ALGORITHM (MGA) 

The author in [25] suggested that MGA be used to solve 
engineering challenges in the best possible design. The MGA 
has identified some of the advanced and fundamental parts of 
materials chemistry as inspirational concepts, notably the 
formation of chemical molecules and chemical reactions in the 
production of new materials. This research demonstrates that 
the MGA is able to produce highly competitive, if not 
exceptional, outcomes that outperform other metaheuristics. 

The author in [26] presented the optimal design of truss 
structures using the MGA. For statistical purposes, many 
optimization runs are carried out. The results showed that the 
MGA may produce extremely acceptable, resulting in the 
smallest potential weight compared with the outcomes of a 
number of metaheuristic methods. 

The author in [27] optimized the moulding parameters of 
resin reinforced sand mould cores using a hybrid Taguchi-
WASPAS- MGA to get the optimum outcomes. 

The author in [28] used sunflower optimization algorithm 
and MGA for efficient generation and analysis of materials and 
equipment of mechanical reducer for the material handling 
industry. The results showed that the technique is precise in 
providing better output. 

III. BIG DATA: OPPORTUNITIES AND CHALLENGES 

The existence of trillions of records that have been 
produced by millions of people and kept in a variety of online 
sites suggests the concept of big data [28]. Scientists can use 
the big data to address issues with small data samples by giving 
adequate test data to evaluate models, better handling noisy 
train data, avoiding overfitting models to train data and 
loosening theoretical model assumptions. In Big Data, there are 
challenges, like capturing, transferring, storing, cleaning, 
analyzing, filtering, searching, sharing, securing, and 
visualizing data [29]. Different research communities have 
been battling to produce a dynamic, fast, new, and user-
friendly Big Data technology [28], which contribute to solving 
many problems related to data and how to retrieve it. 

IV. PROBABILISTIC NEURAL NETWORK (PNN) 

The PNN was proposed for the first time in[30]. The 
training of a PNN does not entail using heuristic searches to 

find the best smoothing factor, as this is an optimization 
problem [31]. A four-layered feed-forward network is formed: 
(a) input layer, (b) hidden layer, (c) summation layer, (d) 
output layer, using a statistical algorithm. Fig. 1 illustrates the 
architecture of a typical PNN. Each input neuron acts as a 
unique characteristic from the train and test datasets [32]. The 
PNN network's four levels are detailed below: 

 Input layer: Each indicator variable is represented by a 
neuron. The categorical factors are made up of N−1 
neurons, with N being the number of categories. By 
subtracting the middle value, the input neuron is 
expected to normalize the value range. It then divides it 
into quartile range values. 

 Hidden layer: Each occurrence in the training dataset is 
represented by a single neuron. Each training sample 
has one unit which creates a product of the input vector 
x and the weight vector wi, zi = x.wti, and then runs the 
nonlinear procedure: 

 exp *(
(wi –x)

 
  (- wi – x)

(    )
)+                (1) 

 Pattern/summation layer: A single pattern neuron is 
available for each class of objective criteria. The weight 
value that emerges from the hidden neurons is given to 
the pattern neurons that match with the hidden neurons. 
Each training group's objective class is stored alongside 
each hidden neuron. which combines the contributions 
for each type of input and provides the output of a 
network as a probabilistic vector: 

 ∑ *(
(– w  – x) (w  –x)

 

(    )
)+  i              (2) 

 Output / Decision layer: creates binary classes that 
correspond to the decision classes Ωs and Ωr, s≠r, s, r = 
1,   , … ,q relies on the following criteria of 
classification. 

 ∑ *(
(wi –x)

 
  (– wi – x)

(    )
)+  ∑ *(

(wj –x)
 
  (– wi – x)

(    )
)+ji           (3) 

There is just one weight for these nodes, C, the number of 
training samples in each class and the prior membership 
probabilities, C, given by the cost parameter: 

   
    

    
 
  

  
              (4) 

 

Fig. 1. Probabilistic Neural Network Structure. 
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V. MATERIAL GENERATION ALGORITHM (MGA) 

In the year 2021, MGA is a bioinspired algorithm inspired 
by material chemistry[25]. To construct and formulate a well-
defined mathematical model for the new method, the basic 
principles of chemical compounds, reactions, and stability are 
used. MGA determines a number of materials (Mat) made of 
several periodic table elements (PTEs), based on the fact that 
much natural evolution technique create a preset population of 
solution candidates that are evolved by random changes and 
selection. A materials numbers are examined as solution 
candidates (Matn) in this algorithm, each of which is made up 
of some constituents that are represented as decision variables 
(PTEj

i
). The following is the mathematical representation of 

these two components: 

Mat 

[
 
 
 
 
 
 
 
 
 
Mat1
Mat 
 

 

 

Mati
 

 

 

Matn]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
     1

1    1
 

    
1     
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j
…    1

d

    

j

 
…     

d
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1    i
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1
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   i

j
…    i

d

   

   n
j …    n

d]
 
 
 
 
 
 
 

 ,  

{
i 1, ,… ,n 

j 1, ,,… ,d 
               (5) 

There are two variables in the mathematical equations 
where d denotes the number of items (decision variables) in 
each subject (the candidate solutions) and n denotes the total 
number of items considered. 

 PTEj
i
 is determined at random in the first step of the 

optimization procedure, whereas the decision variable 
boundaries are defined based on the problem under 
consideration. The initial placements of PTEs in the search 
space are set at random: 

   i

j( )  nif( ,1) (   i,max

j
   i,min

i )    i,min

j
 , {

i 1, ,… ,n 

j 1, ,… ,d 
 (6) 

Where PTEj
i
 (0) is the beginning value of the jth element in 

the ith material;         
 and         

 
are the minimum and 

maximum permissible values for the jth decision variable of 
the ith solution candidate, respectively; and Uni f(0, 1) is a 
random number in the [0, 1] range. 

To mathematically simulate chemical compounds, all PTEs 
are considered to be in the ground state, which can be 
externally activated by magnetic areas, photon or light 
absorption, and interactions with other colliding entities or 
particles in the case of ions or other individual electrons. 
Elements have a tendency to gain, lose, or even share electrons 
with other PTEs due to their varied stabilities, resulting in ionic 
or covalent compounds. Using the initial Mat in equation (5), d 
random PTEs are chosen to model the ionic and covalent 
compounds. The probability theory is used to model the 
operations of sharing electrons, gaining, and losing for the 
selected PTEs. To achieve this goal, for each PTE, a 
continuous probability distribution is used to configure a 

chemical molecule, which is then regarded a new PTE, as 
follows: 

   new
k     r1

r  e-, k 1, ,… ,d            (7) 

R2 and r1 are random integers uniformly distributed in the 
intervals [1, d] and [1, n], respectively;      

   is from the Mat 
that was chosen at random; e- is the probabilistic component 
for simulating electron loss, gain, and sharing in the 
mathematical model represented with a normal Gaussian 
distribution; and PTE

k
new new is the new material. PTEs are 

used to construct a new material (Matnew1), which is being 
added as a new solution filter to the list of the raw material 
(Mat(: 

Matnew1
  [   new

1     new
     new

k     new
d ] , k 1, ,…,d      (8) 

The candidates for the overall solution are then integrated 
and displayed as follows: 
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Fig. 2 depicts the structure of the mentioned method for 
configuring new materials based on chemical components 
(covalent and ionic). 

 

Fig. 2. The Random Periodic Table Elements (PTE) Selection and Creation 

of New Materials are Depicted Schematically. 

The following is the probability of selecting a new element 

(      
 ) in relation to the randomly picked first element 

(     
  ): 

f(   
new

k | ,  ) 
1

√    
 e

- x-  
 

   , k 1, ,   d         (10) 

The symbol for the standard deviation in the previous 
equation is  ; the symbol for the variance is   ; µ is the 
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median, expectation of the distribution or mean, which 
corresponds to the randomly chosen PTE (     

  ); and e is the 
natural logarithm's Naperian base or natural base. 

Chemical reactions are a type of manufacturing method in 
which various chemical changes are decided for producing 
products with altered characteristics that are even distinct from 
the initial reaction mixture. To simulate the procedure of 
manufacturing new materials mathematically using the reaction 
mixture idea, an integer random number (l) is determined 
depend on the materials in the first Mat that are examined for 
participation in a reaction mixture. After that, to decide the 
placements of the picked materials in the initial Mat, l integer 
random numbers (mj) are created. As a result, new solutions 
are created that are linear combinations of the previous ones. 
Fig. 3 depicts a schematic illustration of the given procedure, 
with the following mathematical representation: 

 Matnew 
 
∑ (pm  Matmj)
l
m 1

∑ (pmj)
l
m 1

, j 1, ,   ,l         (11) 

 The Matm is the mth randomly chosen material from the 
first Mat, Matnew2 is the new material created by the chemical 
reaction idea and pm is the normal Gaussian distribution for the 
mth material participation factor. 

 

Fig. 3. A Diagram of the Random Material Selection Method for 

Developing New Materials. 

VI. METHODOLOGY PROPOSED: MGA WITH PNN 

The MGA was utilized in this research to determine the 
best weights to employ with the PNN algorithm. To address the 
classification issues, it suggested the MGA–PNN, a new hybrid 
method. As shown in Fig. 4, the method begins with the PNN 
producing the initial weights randomly. Following that, the 
input values are multiplied by the matching weights wij, which 
are based on the PNN model's values. 

The proposed MGA–PNN structure is shown in Fig. 5. It is 
divided into two sections: the first is the PNN, which makes 
utilize the training data. The data that has been tested is then 
classified. The accuracy is calculated using equation (12). The 
MGA is then used to fine-tune the PNN weights. The new data 
will then be tested for accuracy. This method is continued until 
the end criteria have been fulfilled. 

 ccuracy 
    N

    N     N
           (12) 

The object is categorized as TN if both the expected and 
actual labels are negative. The class is categorized as TP if both 
the expected and actual labels of the object are positive. 
Further, the class is categorized as FP, when the anticipated 
class is positive, but the actual label is negative. The 

anticipated class is negative, but the actual label is positive, 
therefore it's categorized as FN. See Table I [33]. 

For evaluating the proposed MGA-PNN performance, three 
additional performance measurements were calculated: The 
rate of error was found (equation (13)), specificity (equation 
(14)), sensitivity (equation (15)) and G-mean (equation (16)). 

 rror  ate 1- 
    N

    N     N 
           (13) 

  pecificity  
 N

     N 
           (14) 

  ensitivity  
  

 N    
           (15) 

  -mean √  ensitivity   pecificity           (16) 

 

Fig. 4. Representation of Initial Weights. 

 

Fig. 5. Flowchart of MGA-PNN Technique. 

TABLE I. CROSS-MATRIX CLASSIFICATION 

 Positive Negative 

Positive TP FN 

Negative FP TN 
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VII. EXPERIMENTS AND RESULTS 

The efficiency of the MGA-PNN approach is measured in 
this research using 11 benchmark UCI datasets. We will 
compare the outcomes of proposed method (MGA-PNN) with 
PNN, biogeography-based optimization (BBO) and firefly 
algorithm (FA). 

A. Description of the Dataset 

These studies are based on a set of a datasets, which may be 
found at [7] . The previous link provides the size of the testing 
and training sets. The split was made using a basic train/test 
split algorithm with a training size is equal to 0.7 and a testing 
size is equal to 0.3. 

B. The Categorization Quality Evaluation Results 

Experiments are run on a Windows 10 professional PC 
with MATLAB R2015b and 16 GB RAM with an Intel ® 

Xeon ®CPU ES-1630 v3 @3.70 GHz computer. Table II 
displays the settings for the input parameters. 

The recommended method's rating quality is determined by 
their ability to improve the desired solution. Table III compares 
the performance of the proposed MGA technique with PNN, 
FA [34] and BBO in terms of ratio G-mean, error rate (%), 
specificity, accuracy and sensitivity. 

TABLE II. INPUT PARAMETER SETTING 

NCompan (Maximum number of initial Companent) 100 

Globalbest  0 

Max_iteration 200 

Population_size  50 

TABLE III. CLASSIFICATION SPECIFICITY, ACCURACY, ERROR RATE, RATIO G-MEAN AND SENSITIVITY FOR PNN, FA, BBO AND MGA 

Ratio g-mean Error rate Specificity Sensitivity Accuracy FN TN FP TP Technique Dataset 

60.06 

72.95 

66.79 

78.87 

34.89 

24.00 

28.56 

17.2 

76.27 

79.02 

79.84 

75.0 

47.30 

67.35 

55.88 

85.05 

65.104 

76.040 

71.350 

82.80 

39 

16 

30 
28 

90 

113 

99 
43 

28 

30 

25 
14 

35 

33 

38 
164 

PNN 

FA-PNN 

BBO –PNN 
MGA-PNN 

PID 

49.86 

83.20 
78.42 

95.15 

35.07 

16.88 
18.18 

4.62 

33.33 

83.33 
73.33 

96.91 

74.58 

83.08 
83.87 

93.42 

64.93 

83.12 
81.82 

95.38 

15 

11 
10 

5 

6 

10 
11 

94 

12 

2 
4 

3 

44 

54 
52 

71 

PNN 

FA-PNN  
BBO –PNN 

MGA-PNN 

HSS 

67.82 
96.08 

78.42 

96.36 

11.12 
7.41 

18.18 

6.12 

50.00 

100.00 

73.33 

100.00 

92.00 
92.31 

83.87 

92.86 

88.88 
92.59 

81.82 

93.88 

2 
2 

10 

3 

1 
1 

11 

7 

1 
0 

4 

0 

23 
24 

52 

93 

PNN 
FA-PNN  

BBO –PNN 

MGA-PNN 

AP 

64.44 

83.19 

76.71 

82.46 

30.60 
19.12 

20.83 

12.28 

80.00 

96.00 

81.48 

88.00 

51.9 
72.09 

72.22 

77.27 

69.44 
80.88 

79.17 

84.72 

13 
12 

5 

5 

36 
24 

44 

44 

9 
1 

10 

6 

14 
31 

13 

17 

PNN 
FA-PNN  

BBO–PNN 

MGA-PNN 

BC 

58.08 

83.19 

84.30 

85.09 

39.50 

20.93 

27.91 

 15.12 

69.40 

96.00 

100.0 

84.48 

48.60 

72.09 

71.11 

85.71 

60.46 

79.07 

72.09 

84.88 

19 

12 

13 
4 

34 

24 

23 
49 

15 

1 

0 
9 

18 

31 

32 
24 

PNN 

FA-PNN 

BBO–PNN 
MGA-PNN 

LD 

74.44 

83.19 

84.33 

86.27 

26.50 

19.12 

19.10 

16.18 

82.10 

96.00 

100.00 

100.00 

67.50 

72.09 

71.11 

74.42 

73.53 

80.88 

80.90 

83.82 

13 

12 

13 
11 

23 

24 

23 
25 

5 

1 

0 
0 

27 

31 

32 
32 

PNN 

FA-PNN  

BBO–PNN 
MGA-PNN 

Heart 

60.82 

74.79 
66.23 

79.87 

31.20 

21.60 
26.80 

17.20 

45.90 

69.77 
52.38 

75.00 

80.60 

80.19 
83.73 

85.05 

68.80 

78.40 
73.20 

82.80 

32 

41 
27 

29 

39 

30 
44 

42 

46 

13 
40 

14 

133 

166 
139 

165 

PNN 

FA-PNN  
BBO–PNN 

MGA-PNN 

GCD 

93.09 

88.06 

96.36 

96.36 

12.25 

10.2 

6.12 

6.12 

100.00 

85.71 

100.00 

100.00 

86.67 

90.48 

92.86 

92.86 

87.75 

89.80 

93.88 

93.88 

6 

4 
3 

3 

4 

6 
7 

7 

0 

1 
0 

0 

39 

38 
39 

93 

PNN 

FA-PNN 
BBO–PNN 

MGA-PNN 

Parkinson's 

68.51 

91.88 

56.92 

84.88 

19.40 

7.46 

13.43 

8.96 

55.56 

90.91 

35.71 

75.00 

84.48 
92.86 

90.74 

96.08 

80.59 

92.54 

86.57 

91.04 

9 
4 

5 

2 

5 
10 

5 

12 

4 
1 

9 

4 

49 
52 

49 

49 

PNN 
FA-PNN 

BBO–PNN 

MGA-PNN 

SPECTF 

82.80 

92.06 

88.09 
85.09 

16.8 

8.09 

11.47 
15.12 

85.70 

91.26 

90.72 
84.48 

80.00 

92.86 

85.53 
85.71 

83.24 

91.91 

88.53 
84.88 

15 

5 

11 
4 

84 

94 

88 
49 

14 

9 

9 
9 

60 

65 

65 
24 

PNN 

FA-PNN 

BBO –PNN 
MGA-PNN 

ACA 

85.63 

100.00 

100.00 

100.00 

13.89 

0.00 

0.00 

0.00 

86.99 

100.00 

100.00 

100.00 

84.29 

100.00 

100.00 

100.00 

86.11 

100.00 

100.00 

100.00 

11 

0 

0 
0 

127 

138 

138 
138 

19 

0 

0 
0 

59 

78 

78 
78 

PNN 

FA-PNN  

BBO–PNN 
MGA-PNN 

Fourclass 
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The outcomes showed that the proposed algorithm is 
superior in 9 out of 11 datasets over the rest of the algorithms 
in Table III. The original PNN achieved 65.1% accuracy in the 
PIMA Indian diabetes (PID) dataset, while the proposed MGA-
PNN attained 82.8 percent accuracy. All the best outcomes 
showed in bold. The suggested technique has strong 
exploitation capabilities and can come up with superior 
solutions because a large number of candidates are grouped 
around the best solution. On almost all datasets, the suggested 
MGA outperforms the original PNN approach in terms of error 
rate, sensitivity, specificity and accuracy. 

The MGA's performance was further validated by 
examining whether it differed statistically from the FA. For 
classification accuracy, a t-test with a significance interval of 
95 percent         5  was used   able IV displays the 
suggested approach's standard deviations and accuracy means. 
The performance of the MGA is clearly superior to that of the 
FA, as all of the P-values are less than 0.01. 

TABLE IV. THE P-VALUES FOR MGA ACCURACY WITH FA AND T-TEST 

ACCURACY 

P-

Value 

Std.Error 

Mean 
Std.Deviation Mean Dataset 

  0.00000 0.00000 82.8000 MGA 
PID 

0.23472 1.28560 73.4895 FA 

 0.13788 0.75519 94.5087 MGA 
HSS 

0.18681 1.02322 81.8179 FA 

 0.31450 1.72282 92.5170 MGA 
AP 

0.00002 0.00012 92.5926 FA 

 0.29141 1.59613 82.9167 MGA 
BC 

0.31831 1.74347 77.3935 FA 

 0.40720 2.23006 83.3333 MGA 
LD 

0.27310 1.49604 75.5810 FA 

 0.33022 1.80867 82.2549 MGA 
Heart 

0.40857 2.23781 78.6819 FA 

 0.00000 0.00000 82.8000 MGA 
GCD 

0.28854 1.58040 75.1600 FA 

 0.31450 1.72282 92.5170 MGA 
Parkinson's 

0.00000 0.00000 89.7950 FA 

 0.25035 1.37125 88.2668 MGA 
SPECTF 

0.33372 1.82787 88.8057 FA 

 0.40720 2.23006 83.3333 MGA 
ACA 

0.19350 1.05983 89.8840 FA 

 
0.00000 0.00000 100.000 MGA 

Fourclass 
0.00000 0.00000 100.000 FA 

VIII. CONCLUSION 

The major goal of this study was to propose a new strategy 
for determining high-quality answers to categorization 
problems. The Material Generation Algorithm is a population-
based metaheuristic that MGA is a bioinspired algorithm 
inspired by material chemistry. Therefore, the weight values of 

the PNN can be optimized by MGA. When a huge search space 
is being examined, the MGA's superior exploitation and 
exploration capabilities allow it to achieve better results than 
FA and BBO. The MGA was utilized to tune the weight of the 
PNN in this study. To attain the research's targets, the results of 
this strategy rely on PNN and MGA was used to compare with 
the results original PNN's classification accuracy, FA-PNN and 
BBO-PNN. The MGA, which optimized the PNN weights, was 
used to improve the initial solutions, which were created 
randomly using the PNN. According to experimental results 
utilizing 11 benchmark datasets, the suggested MGA with 
PNN outperformed the original PNN, FA-PNN and BBO-PNN 
on 9 out of 11 benchmark datasets. This leads us to the fact that 
MGA can be implemented in additional real and high 
dimensional datasets to investigate their behavior under 
different situations in terms of trait numbers. As a result, we'll 
be focusing our efforts on this topic in the future. 

IX. DISCUSSION 

This study is considered one of the most important studies 
in the world of Data Mining. As our use of the method of 
merging with the metaphysical algorithms, especially with the 
MGA, and comparing its results with the results of 3 other 
studies (PNN, FA and BBO) that gives clear evidence of its 
importance in terms of increasing classification accuracy. As 
this study only used one algorithm to combine it with PNN, I 
believe that merging more than one of the high-specification 
meta-historical algorithms with PNN leads to an improvement 
and a significant increase in accuracy, and this is our 
destination in the work of these studies in the future. 
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