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Abstract

Cost and safety are critical factors in the oil and gas industry for optimizing wellbore trajec-

tory, which is a constrained and nonlinear optimization problem. In this work, the wellbore

trajectory is optimized using the true measured depth, well profile energy, and torque.

Numerous metaheuristic algorithms were employed to optimize these objectives by tuning

17 constrained variables, with notable drawbacks including decreased exploitation/explora-

tion capability, local optima trapping, non-uniform distribution of non-dominated solutions,

and inability to track isolated minima. The purpose of this work is to propose a modified

multi-objective cellular spotted hyena algorithm (MOCSHOPSO) for optimizing true mea-

sured depth, well profile energy, and torque. To overcome the aforementioned difficulties,

the modification incorporates cellular automata (CA) and particle swarm optimization

(PSO). By adding CA, the SHO’s exploration phase is enhanced, and the SHO’s hunting

mechanisms are modified with PSO’s velocity update property. Several geophysical and

operational constraints have been utilized during trajectory optimization and data has been

collected from the Gulf of Suez oil field. The proposed algorithm was compared with the

standard methods (MOCPSO, MOSHO, MOCGWO) and observed significant improve-

ments in terms of better distribution of non-dominated solutions, better-searching capability,

a minimum number of isolated minima, and better Pareto optimal front. These significant

improvements were validated by analysing the algorithms in terms of some statistical analy-

sis, such as IGD, MS, SP, and ER. The proposed algorithm has obtained the lowest values

in IGD, SP and ER, on the other side highest values in MS. Finally, an adaptive neighbour-

hood mechanism has been proposed which showed better performance than the fixed

neighbourhood topology such as L5, L9, C9, C13, C21, and C25. Hopefully, this newly pro-

posed modified algorithm will pave the way for better wellbore trajectory optimization.
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Introduction

The increasing demand for energy consumption around the world has promoted the depletion

of conventional energy sources. Hence, the high energy demand has drawn attention to pro-

ducing energy from unconventional sources. However, producing oil/gas from unconven-

tional sources is not easier with conventional production methods. Now, with the

advancement of technologies, such as directional/horizontal drilling, the production from

unconventional sources has become possible with some unwanted challenges [1]. One of the

major challenges in directional / horizontal drilling is wellbore trajectory design, which is asso-

ciated with cost and safety [2]. Sometimes, directional/horizontal drilling needs high expendi-

ture, which tends to increase the oil and gas price at the consumer level. Therefore, to

minimize the oil/gas price, it is crucial to minimize the operational expenditure. In direc-

tional/horizontal drilling, one of the key ways to reducing operational expenditure is optimiz-

ing the wellbore trajectory [3].

Wellbore trajectory is the direction in which the wellbore is drilled. To reach a sub-surface

target, there can be thousands of probable well paths. However, the success of directional dril-

ling depends on choosing the best path, which can be only done by the optimization of well-

bore trajectory. A wellbore trajectory can be optimized considering several parameters; among

them, length, torque, energy, rate of penetration, separation factor is the most influential [4–

9]. Some pieces of research optimized the wellbore trajectory by considering one parameter

[7]. However, this single objective optimization could not be able to provide enough cost effi-

ciency and safety to the wellbore. Therefore, to increase cost efficiency and safety, multi-objec-

tive optimization was introduced by several researchers [5, 10–13]. In multi-objective

optimization, two or more parameters were considered for wellbore trajectory optimization.

Each of these parameters is optimized considering several tuning variables such as azimuth

angle, dogleg severity, inclination angle, and kick-off point.

To optimize the above-mentioned parameters several algorithms were utilized with some

drawbacks such as less exploitation capability, local optima trapping, nonuniformed distribu-

tion of non-dominated solutions, and disability of tracking isolated minima [11]. The

researchers focused on metaheuristic algorithms due to the weakness of the traditional algo-

rithms in the large search region [14, 15]. Among the metaheuristic algorithms, genetic algo-

rithms (GA), particle swarm optimization (PSO), ant colony optimization (ACO), artificial

bee colony optimization (ABC), harmony search (HS) were utilized for well trajectory optimi-

zation [2, 4, 16]. To improve the issues faced by the metaheuristic algorithms and to improve

the efficiency, some hybrid algorithms, for example, hybrid cuckoo search optimization

(HCSO), hybrid bat flight optimization (HBFO) were introduced [17–19]. Due to the hybrid-

ization, these algorithms showed some significant improvements in the exploration capabili-

ties [11]. However, these improvements enabled the algorithms to provide better solutions but

on the other side, those make the convergence speed slower. Therefore, still, improvement is

indispensable for increasing the exploitation capabilities of these algorithms.

In recent times, multi-objective genetic algorithm (MOGA), multi-objective cellular parti-

cle swarm optimization (MOCPSO), multi-objective cellular grey wolf optimization and parti-

cle swarm optimization (MOCGWOPSO) have been used for length, torque, and well-profile

energy optimization [5, 10, 11]. However, MOGA and MOCPSO have faced exploitation

related problems. On the other side, MOCGWOPSO provided excellent non-dominated solu-

tions for length and torque, but it showed weakness in the case of well-profile energy optimiza-

tion during multi-objective optimization. From the above discussion, it can be concluded that

hybridization of any standard algorithms makes the algorithms more effective and efficient for
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wellbore trajectory optimization. Hence, this research focuses on the hybridization of the spot-

ted hyena optimization (SHO) algorithm for wellbore trajectory optimization.

SHO is a newly designed metaheuristic algorithm that is inspired by the hunting mecha-

nism of the spotted hyenas [20, 21]. This algorithm has a very high convergence rate. There-

fore, this algorithm faced local optima trapping issue during non-linear optimization. To

overcome this issue herein cellular automata (CA) has been incorporated with SHO in this

work [22]. CA is incorporated due to its slow diffusion mechanism and information exchang-

ing capability among the neighbours. The slow diffusion mechanism helps to avoid the local

optima trapping issue and the information exchanging capabilities enhance the local search

capability of SHO. Besides, the velocity update mechanism of PSO has been incorporated to

enhance the hunting capability of SHO. Moreover, an adaptive neighbourhood mechanism

has been proposed and compared with the fixed neighbourhood topology structure such as L5,

L9, C9, C13, C21, and C25 in this work. The performance analysis of the proposed algorithms

for wellbore trajectory optimization has been done by comparing with the previously used

MOCPSO and other states of the art algorithms such as MOSHO, MOCGWO [21, 23]. This

comparative analysis has been conducted based on some statistical analysis. The proposed

algorithm has achieved the lowest value of IGD, SP, ER. This indicates that the obtained Pareto

front by the proposed algorithm is nearer to the true Pareto front, the non-dominated solu-

tions are nearly spaced, and it has a very less number of isolated minima. The Spearman corre-

lation coefficient test has also been performed to analyze the sensitivity of each decision

variable on the three objectives [24]. This proposed algorithm will pave the way to design a less

complex and cost-effective wellbore trajectory.

Mathematical formulation

Up to the date, several methods (radius of curvature method (RCM), tangential method, angle

averaging method, minimum curvature method) were utilized for characterizing the direc-

tional well design parameters [25, 26]. In this work, the RCM method is used to formulate the

three-objective functions [25, 27].

To compute the trajectory length, radius curvature method was utilized considering several

parameters such as azimuth angle, hold angle, vertical inclination, lateral length, true vertical

depth, and dogleg severity. The following formulas are used to compute the constant of curva-

ture and radius of curvature between two points in RCM.

a ¼
1

DM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy2 � y1Þ
2sin4

ð;2 þ ;1Þ

2

� �

þ ð;2 þ ;1Þ
2

s

ð1Þ

r ¼
1

a
¼

180 � 100

p � T
ð2Þ

DM ¼ r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy1 � y2Þ
2sin4

ð;1 � ;2Þ

2

� �

þ ð;1 � ;2Þ
2

� �s

ð3Þ

Herein, a and r represents the constant of curvature and radius of curvature, respectively.

The dogleg severity, inclination angle, and azimuth angle are denoted by T, ;i, and θi, respec-

tively. ΔM is the 3D well path between two points. The general vertical plane for a wellbore tra-

jectory with various straight and curved sections is depicted in Fig 1.
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According to Fig 1, the TMD’s fundamental equation is composed of seven segments which

are represented by Eq (4).

TMD ¼ Dkop þ D1 þ D2 þ D3 þ D4 þ D5 þHD ð4Þ

Where Dkop represents the estimated length of kick-of section, build and drop segments are

represented by (D1, D3 and D5), tangent segment, hold segment and horizontal section are rep-

resented by (D2), (D4) and HD respectively. The torque and well-profile energy can be charac-

terized by the following equations.

Torque ¼ Tvertical þ T1 þ T2 þ T3 þ T4 þ T5 þ T6 þ T7 ð5Þ

Fig 1. An overview of the wellbore trajectory.

https://doi.org/10.1371/journal.pone.0261427.g001
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E ¼ D1;
2

1
þ D3ð;2 � ;1Þ

2
þ D5ð;3 � ;2Þ

2
ð6Þ

In this work buoyancy factor B = 0.7, weight of unit pipe length w = 0.3KN/ft,friction factor

u = 0.2 and pipe diameter D = 0.2ft have been used for the calculation. The detail description

of mathematical formulation was demonstrated in our previous work [11].

Constraints

The optimization of the wellbore trajectory is constrained in two ways: by operational con-

straints and by the upper and lower limits of 17 tuning variables. The tuning variables’ upper

and lower limits are listed in Table 1. However, in this work the operational constraints are the

true vertical depth (TVD), and the casing setting depth, C1, C2, C3. During the trajectory opti-

mization, the following equation should also be satisfied.

TVD ¼ Y1 þ Y2 þ Y3 þ Y4 þ Y5 þ Y6 ð7Þ

Herein, the vertical depth of each subsection at each drop off point is denoted by the symbol

Yi2(1,6). There are also some non-negative constraints [10].

Fig 2 illustrates the trajectory’s deviated direction to the east, north, and vertical sides. The

offset distance in these three directions is derived following the radius of curvature method.

DNorth ¼
DMðcosð;1Þ � cosð;2ÞÞ:ðsinðy2Þ � sinðy1ÞÞ

ð;2 � ;1Þ:ðy2 � y1Þ
ð8Þ

DEast ¼
DMðcosð;1Þ � cosð;2ÞÞ:ðcosðy1Þ � cosðy2ÞÞ

ð;2 � ;1Þ:ðy2 � y1Þ
ð9Þ

DVertical ¼
DMðsinðy2Þ � sinðy1ÞÞ

ð;2 � ;1Þ
ð10Þ

The above mentioned three Eqs (8–10), calculates the distance of east-west, north-south,

and TVD. Another important constraint is the casing setting depth which has a direct impact

Table 1. Operational and variable’s constraints for wellbore trajectory design.

Variables Variable constraints imposed on Wellbore design

Target True Vertical Depth (TVD) Min. = 10850ft. and Max. = 10950ft.

Lateral Section length (LSL) HD. 2500ft.

Dogleg Severity T1 �
50

100 ft: ; T2 �
50

100 ft: ; T3 �
50

100 ft: ; T4 �
50

100 ft: ; T5 �
50

100 ft:

Minimum value of inclination angles ;1 = 100; ;2 = 400; ;3 = 900

Maximum value of inclination angles ;1 = 200; ;2 = 700; ;3 = 950

Minimum value of azimuth angles θ1 = 2700; θ2 = 2700; θ3 = 2700; θ4 = 3300; θ5 = 3300; θ6 = 3550

Maximum value of azimuth angles θ1 = 2800; θ2 = 2800; θ3 = 2800; θ4 = 3400; θ5 = 3400; θ6 = 3600

Kick off point depth (TVD) Min. Dkop = 600ft.; Max. Dkop = 1000ft.
Second build point depth (TVD) Min. DD = 6000ft.; Max. DD = 7000ft.
Third build point depth (TVD) Min. DB = 10000ft.; Max. DB = 10200ft.
Casing setting depth after first build Min. C1 = 1800ft.; Max. C1 = 2200ft.
Casing setting depth after second build Min. C2 = 200ft.; Max. C2 = 8700ft.
Casing setting depth after third build Min. C3 = 10300ft.; Max. C3 = 11000ft.

https://doi.org/10.1371/journal.pone.0261427.t001
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on cost. Therefore, it is necessary to consider the following constraints during trajectory opti-

mization.

TVDmin < TVD < TVDmax

C1;min < C1 < C1;max

C2;min < C2 < C2;max

C3;min < C3 < C3;max

Framework for wellbore trajectory optimization

In this multi-objective optimization, the proposed hybrid algorithm needs to optimize length,

torque, and well profile energy from Eqs (4–6). The algorithm needs to fine-tune all the 17 tun-

ing variables for optimizing these three objectives parallelly. Table A1 in S1 Appendix tabu-

lated the bounds and explanation of these variables. The overall multi-objective optimization

process can be mathematically expressed as follows.

arg min
i2ð1;2;3Þ

fiðXÞ; X 2 fxjg where j ¼ 1; 2; . . . 17 ð11Þ

In the proposed algorithm diffusion mechanism of CA will be used to increase the explora-

tion capability of SHO, later velocity update equation of PSO will be used. This will improve

the hunting mechanism of SHO.

Fig 2. Offset distance of a typical directional wellbore trajectory.

https://doi.org/10.1371/journal.pone.0261427.g002
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Spotted hyena optimizer

The mechanism of SHO will be discussed in this section. It is a recently proposed metaheuris-

tic algorithm that was inspired by the hyena’s prey hunting mechanism [20, 21]. Usually, the

SHO algorithm imitates the behaviours of a consistent hyena cluster. It consists of four main

steps such as searching, encircling, hunting and attacking. The group of fellow peers is direct-

ing the hunting behaviour toward the best solution, and preserve the best results. The follow-

ing equations are used to replicate the encircling interactions of spotted hyenas.

Mh
�!
¼ jA
!
:Qp
�!
ðxÞ � Q

!
ðxÞj ð12Þ

Q
!
ðxþ 1Þ ¼ Qp

�!
ðxÞ � F!:Mh

�!
ð13Þ

Where Mh
�!

define the distance to the prey from the spotted hyena, x represents the present

iteration, A
!

and F! are the coefficient vectors, Qp
�!

specifies the prey’s position vector, Q
!

indi-

cates the hyena’s position vector. Besides || and “.” respectively represent the absolute value

and vector multiplication. The following formulas are used to calculate the vector A
!

and F!.

A
!
¼ 2:rd1

!
ð14Þ

F!¼ 2 h
!
:rd2

!
� h
!

ð15Þ

h
!
¼ 5 � ðIteration � ð

5

MaxIteration
Þ ð16Þ

Where, Iteration = 1,2, 3,..MaxIteration, In [0,1], vectors rd1

!
and rd2

!
are random. The search

agent can explore different parts of the search space by adjusting the values of vectors A
!

and

F!. On the other hand a hyena can adjust its position around its prey by applying Eqs (14–16).

This algorithm stores the best solutions and compels others to upgrade their positions. When

the value becomes jFj
!
< 1 then the algorithm enables the hyenas to attack the target. The fol-

lowing equations are defined to replicate the hunting behaviour of hyenas and to identify the

feasible search space regions.

Mh
�!
¼ jA
!
:Qh
�!
� Qk
�!
j ð17Þ

Qk
�!
¼ Qh
�!
� F!:Mh

�!
ð18Þ

Dh
�!
¼ Qk
�!
þ Qkþ1

��!
þ . . .QkþN

��!
ð19Þ

Where Qh
�!

denotes the first best-spotted hyena’s position, Qk
�!

defines the specific location

of other search agents. The number of spotted hyenas is represented by N which is calculated

as follows:

N ¼ countnosðQh
�!

;Qhþ1

��!
;Qhþ2

��!
; . . . . . . ::ðQh

�!
þ G
!
Þ ð20Þ
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Where G
!

is a random vector in [0.5,1], nos denotes the number of solutions after G
!

is

added However in a certain search space these solutions are almost the same as the best opti-

mum solutions. Moreover Dh
�!

is a group of N number of optimal solutions.

Exploitation. Like every algorithm SHO also has to perform exploration and exploitation.

During exploitation, the value of h
!

gradually decreases from 5 to 0. The variations in F! also

contribute to exploitation. The algorithm allows the hyenas to attack the prey when it becomes

jFj
!
< 1. The formulation can be expressed as follows:

Q
!
xþ 1ð Þ ¼

Dh
�!

N
ð21Þ

Where Q
!
ðxþ 1Þ registers the best position and helps the search agent to update their posi-

tion according to the best search agent. It permits all of its search agents to attack the prey.

Exploration. The hyenas of vector Dh
�!

mostly guide the exploration process. During

exploration, the value of F! become jFj
!
> 1 or jFj

!
< � 1. It generally controls the hyenas for

global search. The value of F! forces agents to deviate from optimal solutions, hence expanding

the scope of exploration and local optima avoidance. Another important contributor is the

vector A
!

which provides random values to the prey in the range of [0.5,1]. Search agents use

Eqs (19–21) during optimization to create a cluster towards the best search agent to upgrade

their positions. Meanwhile, during iterations, parameters h and F! reduce linearly. Finally,

when the termination condition is matched, the positions of search agents which create a clus-

ter are considered as the optimal solutions.

Archive. In multi-objective optimization, the stock of all Pareto optimal solutions (those

that have been obtained so far) is defined as an archive. It is comprised of two major compo-

nents: an archive controller and a grid system.

Archive controller. The primary responsibility of this controller is to determine whether

or not to include the solution in the archive. The following are some of the most important

points to note about the updating mechanism:

• If any single member of the archive dominates it, the solution cannot be included.

• If a new solution is superior to one or more solutions in the archive, it can be incorporated.

• If the new solution and archive solutions do not have any dominance over each other, the

new member should be incorporated in the archive.

• The grid method should be used so that one of the crowded solution sections can remove.

This will allow to include a new solution that will enhance Pareto’s optimal diversity.

Grid mechanism. Grid is a space in which each particle obtains a unique solution to its

objective function. An adaptive grid can be considered of as a hypercubic space with a uniform

distribution of elements. If the inserted individual is outside the grid’s current bounds, the

grid must be reconfigured. The grid mechanism divides the search space into multiple sub-

search zones.

Group selection mechanism. The challenge of comparing the solutions with archive

members in a multi-objective search area is very complex. This process has been performed in

this study through the use of a group selection mechanism. The mechanism determines the

least populated area inside the solution region. Later in the chapter, it suggests one of the non-
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dominated solutions from the least populated region to the closest neighbour region. The rou-

lette-wheel method was employed to assist in determining the least-populated area [28]. This

method can be defined as

Uk ¼
e
Sn

ð22Þ

where e stands for a constant number (e>1), the total number of Pareto optimal solutions

achieved from the nth segment till now is represented by S, n is the number of segments This is

a proportionate selection strategy. According to this method, every individual’s fitness value is

almost correlated to the range offered by the roulette wheel proportion. G
!

is the deciding vec-

tor in MOSHO, and it is directly proportional to the number of optimal solution selections.

The archive protects the obtained non-dominated solutions against degradation. The conven-

tional algorithm, which is based on the archive, employs a variety of operators (mutation,

crossover), which compelled the algorithm to focus more on the archive member. As a result,

the variables in MOSHO exchange information with the various solutions in the search space.

This enhances the capability for exploration but reduces the capability for convergence. That is

why a group selection mechanism has been used to select a minimum of one member from the

solution space.

Cellular automata. The concept of cellular automata has been described in this section.

Von Neumann and Ulam first published the concept of CA [11, 22]. It can be characterized as

a distribution of cells excreted in a particular topological structure. They are the cell, the cell

state, the cell space, the neighbourhood, and the transition rule [29]. The next status of each

cell will be determined by considering the present state of all the neighbouring cells. CA is

composed of five components. They are cell, cell state, cell space, neighbourhood, and transi-

tion rule [30]. The cell state is a term that refers to the information about the present cell. It

assists in determining the next state. Cell space is a collection of cell sets. It has applications in

multiple dimensions (one, two, and three). However, because real-world processes are mostly

reproduced using finite grids, the cell space boundary must be defined during operation. The

limit is a ring grid. That is, the left border will remain connected to the right, and the top bor-

der will remain connected to the bottom border. The neighbourhood can be described as a

group of cells that surround a centre cell. It is primarily responsible for selecting the following

state. The transition rule determines the cell’s next state based on the status of neighbouring

cells. The formulation of CA can be characterized as follows.

Usually, an m-dimensional CA can be characterized as a grid of m-dimensional single cells.

Each cell has its own value. According to the transition rule, each cell can update its state.

Therefore, Q is a cellular automaton that can be formulated as Eq (23).

Q ¼ ðT;H;m; gÞ ½Where Q is a quadraple� ð23Þ

Where,

The finite set of state :T Dimension of Q :d 2 Z +

Neighborhood :H Transition rule :g

Let’s take i 2 Zm is the position of a cell wherem is the dimension of the latticegrid, then

the neighbourhood H can be formulated as

Hi ¼ ði; iþ r1; . . . . . . . . . ::iþ rnÞ ð24Þ

Where neighbourhood size is represented by n, a fixed vector from the search space ofm-
dimension is represented by rj.
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Neighbourhood. The term neighbourhood refers to a group of cells that surround a central

cell. Additionally, the neighbours can be defined as the other atoms connected by a single atom.

The following definitions are provided to illustrate the precise composition of various neighbours.

This work defines the grid’s neighbours based on their direction and radius. It is frequently

referred to by two structural labels. They are Ln and Cn. If there are n—1 nearest neighbour around

the centre cell which are specific in direction, then the structure can be denoted by Ln or Cn.
If the directions of neighbouring cells are at the top, bottom, left, and right then it will be

denoted by Ln. If on the other hand, the directions are at the top, bottom, left, right, and diago-

nal then it will be denoted by Cn. Six distinct forms of classical structure were analysed in this

study to determine the effect of neighbourhood structure. These structures are represented in

Fig 3 as (L5, L9, C9, C13, C21, and C25).

Transition rule. It is a set of rules that govern how each atom changes state. The next

state of the current atom is decided by evaluating the status of neighbouring atoms. Let us take

the best position of the neighborMi around an atom as PtiðMnÞ. The neighbour with the high-

est fitness value will be used to facilitate information diffusion and effectiveness. The transition

rule can be defined as

fitness
�

Ptþ1

i ðMiÞ

�

¼ minðfitness
�

PtiðMiÞ

�

. . . :fitness
�

Pti
�
Miþr1

�
�

Þ ð25Þ

Fig 3. Different types of neighbourhood structure.

https://doi.org/10.1371/journal.pone.0261427.g003
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where the present value ofMi is represented by fitness
�
PtiðMiÞ

�
. Therefore neighbour with the

best fitness value from the CA structure can be obtained by using Eq (25). Later it will be used

to update the state of the centre cell.

Particle swarm optimization

It is an evolutionary algorithm inspired by the behaviour of a bird’s flock [31]. It offers a num-

ber of advantages, including a low mathematical complexity, a high capability for optimization,

and easy implementation. PSO is comprised of two distinct processes. Birds carry out both

processes. Initially, the bird will conduct a random search for the food source that is the closest

to it. Later on, it will utilise its flying experience to determine the location of the meal. The

shift in position has been referred to as velocity, and it varies with the passage of time. During

the flight, particle speed increased stochastically towards its best point (personal best) and the

community’s best solution (global best) [32]. The candidate solution, which is represented by a

particle, is a bird. In addition, food acts as a representation of the best possible solution to the

problem. In this work ith particle is considered as Xi = Xi1, Xi2, Xi3. . ..Xid, and vi = vi1, vi2,

vi3. . ..vid represent the velocity of each particle. With their initial velocity each particle start

searching in the search space, where pi = pi1, pi2, pi3. . ..pid represent the personal best position

of each particle and pg = pg1, pg2, pg3. . ..pgd represent the global best position of each particle. In

PSO each particle updates its velocity and position by using the following equations

Vtþ1

i ¼ w� V
t
i þ c1:r1ðp

t
i � X

t
i Þ þ c2:r2ðp

t
g � X

t
i Þ ð26Þ

Xtþ1

i ¼ X
t
i þ V

tþ1

i ð27Þ

Here c1 and c2 are acceleration coefficient which mostly controls the exploration and exploi-

tation capability of the algorithm, inertia weight is represented by w, r1 and r2, both represent

the random numbers [0,1]. The fitness value is the determinant to analyse the quality of the

best particle. The particle which has the best fitness value is taken as the global best solution

[33].

Proposed hybrid algorithm

The framework of the proposed algorithm, as well as the improvement approach, have been

discussed in detail in this section.

Framework of the MOCSHOPSO algorithm. The purpose of this research is to improve

the performance of SHO by utilizing different techniques from CA and PSO for wellbore tra-

jectory optimization problems. One crucial strategy is CA which is utilized to improve the per-

formance of the SHO-PSO. The following three advantages have motivated to implement the

hybridization strategy.

• The local search capability can be enhanced with the assistance of CA, as it enhances exploi-

tation capability through interaction with its neighbours. However, the process of informa-

tion transmission aids in exploration.

• As a result of the candidates’ consequent solutions being attracted to the good SHO solu-

tions, the SHO’s convergence speed is quite fast, resulting in a local optima trap. The slow

diffusion mechanism of CA in conjunction with SHO will aid SHO in avoiding the local

optima trap.

• The velocity update mechanism of PSO will be utilized to improve the hunting mechanism

of SHO. The velocity component of PSO is frequently managed by multiplying the particle’s
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velocity by a factor. This regulation of velocity is intended to strike a balance between explo-

ration and exploitation.

This programme generates semi-random populations of spotted hyenas. They are distrib-

uted in an n-dimensional lattice grid. The operational constraints are managed during the ini-

tialization of the agent’s positions in the manner that has been proposed. The wellbore

trajectory tuning variables x j are then initialised at random, but in a constrained environment,

to get the desired results. If the initial positions satisfy the operational and non-negative con-

straints, they are accepted without further consideration. The values of the first tuning variable

will be less chaotic and semi-randomly created as a result of this method. Then, in terms of

wellbore trajectory optimization, the fitness value of each population is computed. Following

that, it begins its update loop. It utilises the CA principle to create a new neighbourhood. Dur-

ing the neighbourhood generation process, some neighbours overlap. It enables the algorithm

to incorporate an implicit migration mechanism. Additionally, it aids in the seamless diffusion

of the best solutions throughout the population. As a result, it can retain a greater degree of

diversity than the original SHO. Soft diffusion is critical in maintaining a balance between

exploration and exploitation. The entire search space is divided into several sub-search regions

by this approach. As a result, they can update the operation separately. However, if the neigh-

bours overlap in this situation, information is transferred on an ad hoc basis.

However, the hunting mechanism of SHO has been modified by using the velocity update

mechanism of PSO [34]. Therefore Eq (18) can be expressed as follows.

Qtþ1

k

��!
¼ w� Qtk

�!
þ c1:r1ðQh

�!
� Mh
�!
Þ þ c2:r2ðQh

�!
� Mh
�!
Þ ð28Þ

The updated hunting mechanism will be used by the proposed algorithm The pseudocode

of the proposed algorithm has been expressed as follows.
MOCSHOPSO
Input: Spotted hyena population,
Output: Best search agent
1: Initialize the population of spotted hyena
2: Initialize h,A,F,N parameters
3: Evaluate Spotted hyena population
4: Select Qh = best first search agent
5: Select Dh = Cluster of all obtained solution
6: while iteration number < maximum iteration number
7: for i 1 spotted hyena population
8: Create neighbors
9: Update the position of hyena
10: Update (h,A,F,N)
11: Evaluate spotted hyena’s new position
12: if new position outperforms
13: Replace the current hyena
14: end if
15: evaluation number ++
16: end for
17: end while
16: while iteration<iterationmax do
17: for each spotted hyena do
18: Position update by using Eq (28)
19: end for
20: Update (h,A,F,N)parameters
21: Calculate the fitness value of current spotted hyena
22: Update Qh and Dh
23: x = x+1
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24: end while
25: return Qh

Adaptive neighbourhood. In the proposed method every search agent will create a neigh-

bourhood according to the fitness value of the search agent. If the search agent has superior

quality, then it will create a large size neighbourhood. It will increase the probability of over-

lapping with the best one. Besides, it will also increase the diversity of the solutions which also

helps to avoid the local optima trap. This strategy is characterized as BL strategy [35]. On the

other hand, the worst search agent will create a large neighbourhood to increase the chances of

interacting with the best ones in the case of BS strategy [35]. It will increase the quality of the

bad solutions. That means two approaches will provide the advantage to the algorithm either

by avoiding the local optima trap or by improving the bad solutions. Besides both will main-

tain diversity. When the algorithm will try to create the neighbourhood for each search agent

it will do so according to the following algorithm.
Algorithm 1: Neighbourhood Construction
1. function Neighborhood_construction (hyena population)
2. Best available neighbours (List [])

BL (From small to large)
BS (From Large to small)

3. best_fitness_value (hyena);
4. worst_fitness_value (hyena);
5.Fitness of individual hyena population.
6.norm_fitness = (Fitness_indi_worst_fitness_value)/
(best_fitness_value-

worst_fitness_value);
7.return List [norm_fitness�List.size ()];
8. end Neighborhood_construction

Wellbore trajectory optimization by MOCSHOPSO

Since wellbore trajectory optimization is a non-linear optimization problem, the spotted hyena

populations have been initialized semi-randomly to make the approach less chaotic. After eval-

uating each search agent for the wellbore trajectory optimization problem, it selects the best

search agents and clusters of all obtained solutions. Then it will create a neighbourhood by

using an adaptive neighbourhood framework. It will also test the fixed structure like (L5, L9,

C9, C13, C21, C25) for this problem. After creating a neighbourhood according to the CA con-

cept, they are evaluated for optimization problems along with constraint violation checking.

Later they exchange information among them. If any neighbour provides a better solution

than the existing population (central cell) then it will update its position otherwise the central

cell will be the best solution. This process will continue until the end criterion is met. To begin,

a list of the six mentioned neighbourhoods is created. This list is sorted by neighbourhood

size. The concept of radius is employed in this work to quantify the size of the neighbourhood

[5]. The neighbourhoods in consideration are L5, C9, C9, C13, C21, and C25. Second, when-

ever the algorithm requests the neighbourhood of an individual, the adaptive approach selects

the neighbourhood based on the quality of the provided individual.

Results & discussion

In this section, several statistical analyses are discussed to investigate the performance of the

proposed algorithm qualitatively and quantitively for wellbore trajectory optimization. Addi-

tionally, the proposed hybrid method’s performance for trajectory optimization was compared

to that of the previously utilised metaheuristic algorithm MOCPSO [10]. To validate this work,

real field data (secondary) from the Gulf of Suez oil field was used [4].
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Comparative criterion

The evaluation of this work has been performed based on some statistical analysis. These

parameters are the inverted generational distance (IGD), the spacing metric (SP), the maxi-

mum spread (MS), and the error ratio (ER). The next sections will describe these characteris-

tics in detail.

Inverted Generational Distance (IGD). A researcher will obtain two types of Pareto solu-

tions based on the solution obtained. The Pareto front solution is one type, whereas the

approximate Pareto front solution is another. The term IGD is used to indicate this distinction

between the two. However, a true Pareto front is necessary to calculate IGD. When the true

Pareto front is unavailable, non-dominated solutions serve as a baseline against which to com-

pare. The formulation of IGD can be derived as

IGD Q;Q�ð Þ ¼

PjQj
i¼1
dðQ;Q�Þ
jQj

ð29Þ

Here, the difference of Euclidean distance between the true Pareto front (Q) and approxi-

mate (Q�) Pareto front is represented by d(Q, Q�). It is a distance-based accuracy metric. If any

algorithm gives a minimum value of IGD among the comparable algorithms, then it means it

has obtained a Pareto front which is very near to the true Pareto front.

Spacing metric (SP). When the beginning and end of a Pareto front are unknown, it is

required to determine the distribution of solutions. As such, SP is a metric that quantifies the

distance variance between neighbouring vectors in the resulting non-dominated solutions.

The minimum value of SP means the distance of solutions is comparatively less It indicates

that solutions that are not dominated have a more balanced distribution. The formulation of

the metric is as follows.

SP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

jP � 1j

XjPj

i¼1

ðdi � �dÞ2

v
u
u
t ð30Þ

Where, di ¼ minjðjf i1ð x
!Þ � f j1ð x

!Þj þ jf i
2
ð x!Þ � f j2ð x

!ÞjÞ, i,j = 1,2,. . .n, the average value of

all di is represented by �d, and the total number of obtained Pareto solutions is represented by

P.

Maximum spread (MS). This metric is usually used to calculate the diversity of the

obtained solutions and the coverage area of the solution. It is usually expressed as a difference

between the two boundary solutions.

MS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

i¼1
maxðdðai; biÞÞ

q

ð31Þ

Here, the maximum values in ith the objective is represented by ai and minimum values are

represented by bi.
Error ratio (ER). This metric defines the number of solutions that are not secured a place

in the obtained Pareto optimal set. It can be mathematically expressed as follows.

ER ¼
Pn

i¼1
ei

n
ð32Þ

Where, the number of vectors in the currently available non dominated set is represented

by n, ei = 0 if i� Pareto optimal set otherwise ei = 1. But ER = 0 is an ideal case that does not

mean all solutions obtained by the proposed algorithm are within Pareto optimal set.
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Comparative analysis

The statistical and analytical performances of the proposed algorithm on wellbore trajectory

optimization are discussed in this section. In this analysis, the proposed algorithm is compared

with the previously used algorithm MOCPSO and several other state-of-the-art algorithms

such as MOSHO [21], MOCGWO [23]. Different algorithms utilized various parameters dur-

ing optimization which are tabulated in Table 2. These algorithms tuned 17 variables within

their constraint limit in order to produce the optimal trajectory.

Each of the algorithms under consideration obtained a Pareto front solution, as illustrated

in Fig 4. As illustrated in the figure, MOCSHOPSO’s Pareto front is more convergent and dis-

tributive than those of other algorithms. The blue circle depicts the evolved search agents,

while the diamond shape (red colour) reflects the archive’s non-dominated solutions. Because

CA is hybridised, each search agent can communicate with its neighbours. It enhances the

algorithm’s potential for local search, which ultimately enhances the algorithm’s convergence

capability. Additionally, as illustrated in Fig 4, the proposed algorithm’s Pareto front has a

more diverse distribution of solutions than MOSHO (Fig 4C).

This substantial improvement is attributable to the addition of CA. By employing the char-

acteristics of an adaptive neighbourhood, it raises the likelihood of better exploration, which

ultimately aids the algorithm in providing a solution that is superior to the original. Addition-

ally, CA’s adaptive behaviour enhanced the likelihood of improving the worst solution. How-

ever, the quality of all derived Pareto fronts is statistically assessed in this work. Each method

is run 30 times during this investigation, and all box plots are generated based on the collected

data. The box plot more precisely expresses the distribution of solutions than any other style of

plot. Additionally, it demonstrates the data sets’ dispersion and symmetry [36]. Fig 5 illustrates

the box plot for the IGD comparison metric. Whereas Table 3 contains the comparative data

from the IGD analysis. The proposed approach achieved a mean value of 0.01283, which is the

lowest value attained by any of the compared algorithms. Additionally, it outperformed the

previously utilized MOCPSO algorithm for wellbore trajectory optimization. Furthermore, the

data demonstrate that, althouth MOSHO has a larger mean value than MOCSHOPSO, but it’s

obtained best solution (0.00214) is better than MOCSHOPSO. The minimum IGD value also

underscored the fact that the algorithm’s Pareto front is closer to the true Pareto front than

others. Due to the diffusion process of CA, it enabled the algorithm in exploring more search

regions and gathering more isolated minima than was previously achievable. As a result, the

gap between the obtained and true Pareto fronts has narrowed.

Table 4 summarises the SP analysis’s findings. The proposed technique achieved the lowest

mean value among comparable algorithms (77.0527). This shows that the solutions generated

by this algorithm are very evenly spaced. Throughout the hunting process, the recommended

algorithm’s search agents used PSO’s velocity update feature to update their positions. This

aided the algorithm in producing this positive outcome. The decrease in the value of h
!

and F!

Table 2. Parameter settings of different algorithms.

Parameter MOCSHOPSO MOCPSO MOSHO MOCGWO

Population size 100 100 100 100

Archive size 40 40 40 40

Iterations 100 100 100 100

Neighbors 10 10 - 10

Grid size 10 10 10 10

Mutation - 0.5 - -

https://doi.org/10.1371/journal.pone.0261427.t002
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has also played a role in this problem. Fig 6 illustrates the box plot of the spacing metric

analysis.

The proposed technique is also analysed in terms of MS and ER metrics in this work. The

MS and ER experimental results are summarized in Tables 5 and 6, respectively. MS and ER

box plots are presented in Figs 7 and 8, respectively.

As indicated by the experimental findings, MOCSHOPSO has the highest spread and the

lowest error ratio among the comparison algorithms. The proposed algorithm achieves a mean

value of 86.5454 for the MS, which is much greater than the value obtained by existing algo-

rithms. This is due to the enhancement of MOSHO’s exploration capability. Additionally, it

was noted that the proposed algorithm more uniformly distributes non-dominated solutions

than others. The proposed method results in a mean of 0.1122 for ER. This suggests in certain

search regions, it has a lower proportion of significant non-dominated solutions than in

Fig 4. Pareto front of different algorithm. (a) MOCSHOPSO. (b) MOCPSO. (c) MOSHO. (d) MOCGWO.

https://doi.org/10.1371/journal.pone.0261427.g004
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others. Additionally, it has been demonstrated that MOCSHOPSO is capable of collecting

more isolated significant minima than other algorithms. This favourable finding also demon-

strates the critical nature of including the slow diffusion mechanism of CA. Because an algo-

rithm can achieve the lowest ER value only when the number of missing non-dominated

solutions is minimized.

However, the proposed method has been compared qualitatively. Fig 9 depicts the data

from each repository in terms of three objective functions. Before plotting, the values in the

repository are sorted. MOCSHOPSO surpassed all other algorithms in terms of TMD, as

shown in Fig 9(A). Though MOCPSO began with a lower value, MOCSHOPSO eventually

reached the optimal minima faster.

From a similar analysis of torque, it is clear that the torque generated by MOCSHPSO is sig-

nificantly less than that calculated by other methods. MOSHO performs similarly to the previ-

ously used algorithm MOCPSO in this case, while it performs better in repositories 10 and 20.

Additionally, the suggested approach outperforms the comparative algorithm in terms of well

profile energy. This suggests that the design parameter obtained will result in a less complex

and cost-effective trajectory design.

Fig 5. Box plot driven from the IGD comparison.

https://doi.org/10.1371/journal.pone.0261427.g005

Table 3. Comparative analysis of different algorithms based on the IGD.

MOCSHOPSO MOCPSO MOSHO MOGWO

Mean 0.01283 0.03907 0.01754 0.06667

Variance 0.00009 0.00015 0.00018 0.00098

Std 0.00948 0.01224 0.01341 0.03130

Best 0.00501 0.02109 0.00214 0.03001

Worst 0.02502 0.05903 0.05103 0.10680

https://doi.org/10.1371/journal.pone.0261427.t003
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Throughout the optimization process, the algorithms have taken into account the geological

and operational constraints associated with wellbore trajectory optimization, as shown in

Table 1. The algorithmic management of constraints and their required boundaries is depicted

in Fig 10. It is shown that MOCSHPSO managed constraints effectively and with very little

fluctuation. This is because the initialization is semi-random rather than random. It has

resulted in less chaotic handling of constraints.

The performance of MOCSHOPSO with different neighbourhood structures. Six dis-

tinct variations of MOCSHOPSO are described in this section, each based on a different neigh-

bourhood topology in addition to the adaptive one. These versions were evaluated against one

another in terms of performance and statistical analysis. However, for wellbore trajectory opti-

mization, MOCSHOPSO with C21 performed marginally better than its other versions in the

case of fixed topology. As a result, C21 is recognized as a suitable neighbourhood structure for

forming the optimal MOCSHOPSO. However, when adaptable neighbourhoods are used, they

slightly outperform all fixed neighbourhood topologies. Table 7 summarizes the IGD metric

analysis for each neighbourhood topology, and Fig 11 illustrates the box plot. According to

Table 4. Comparative analysis of different algorithms based on the spacing metric.

MOCSHOPSO Method MOCPSO MOSHO MOGWO

Mean 77.0527 89.7273 82.0903 141.8186

Variance 1798.3758 3158.4003 679.1762 4286.2398

Std 42.4072 56.1996 26.0610 65.4693

Best 30.1735 51.7924 50.3976 77.1458

Worst 186.7689 215.4687 190.7658 390.3698

https://doi.org/10.1371/journal.pone.0261427.t004

Fig 6. Box plot, driven from the spacing metric comparison.

https://doi.org/10.1371/journal.pone.0261427.g006
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Table 7, the mean value for adaptive neighbourhoods is 0.3251 which is much less than the

mean value for fixed neighbourhoods. C21 has a mean value of 0.5975 among the fixed topolo-

gies. As illustrated in Fig 11, adaptive neighbourhood (AN) has better distribution than others.

Additionally, the Friedman test was used to determine the optimal neighbourhood topology

among the neighbourhood topologies. It is a frequently used statistical test for multiple com-

parisons that is inherently non-parametric [37]. Table 8 has tabulated the data for the Fried-

man test analysis.

According to the Friedman test data, it can be concluded that AN performed better than

other topologies. This is the optimal neighbourhood topology for optimizing the wellbore

trajectory.

Radius also plays an important role during neighbourhood construction. If the radius

becomes too small then it may fall into the local optima trap and may miss some significant

minima. On the other hand, if it becomes too large it gives more attention to global search

which may lead to slow convergence.

In this paper, various radius values are evaluated to determine the optimal radius for the

neighbourhood topology. Table 9 contains the experimental data for IGD analysis, and Fig 12

depicts the box plot. According to the experimental results, the optimal radius for neighbour-

hood formation is R = 1.5. It has a mean of 0.2166, which is the smallest number among the

compared radii.

Sensitivity analysis. It is a qualitative analytical technique used to ascertain the signifi-

cance of tuning parameters utilized throughout the optimization process. Different tuning

parameters contributed identically to attaining the minimal value for three optimization objec-

tives throughout the optimization. There are seventeen tuning variables in this work, each

with its constraints. This study will determine which parameter contributed the most and

which one contributed the least. Among the two types of sensitivity analysis, local sensitivity

analysis expresses the relevance of each variable but does not reveal any correlation informa-

tion in the case of multi-objective optimization. However, with the global sensitivity analysis,

adjustment of any variable, a correlation between all the objectives is recognized. Due to the

nonlinear nature of wellbore trajectory optimization, global sensitivity analysis was performed

in this case. In this paper, the Spearman correlation coefficient analysis was used to determine

the global sensitivity [24]. Table 10 summarizes all experimental data. If a variable achieves the

Table 5. Comparative analysis of different algorithms based on the maximum spread.

MOCSHOPSO MOCPSO MOSHO MOGWO

Mean 86.5454 81.2554 85.0909 80.3636

Variance 25.7542 38.0192 28.3702 39.4327

Std 5.0748 6.1659 5.3263 6.2795

Best 65.0012 70.0001 78.1003 55.0312

Worst 99.0104 103.3004 95.1754 91.3245

https://doi.org/10.1371/journal.pone.0261427.t005

Table 6. Comparative analysis of different algorithms based on the error ratio.

MOCSHOPSO MOCPSO MOSHO MOGWO

Mean 0.1122 0.1921 0.1575 0.2454

Variance 0.0012 0.0021 0.0101 0.0235

Std 0.0346 0.0458 0.1004 0.1532

Best 0.0191 0.0213 0.0091 0.0901

Worst 0.2201 0.3912 0.3410 0.3912

https://doi.org/10.1371/journal.pone.0261427.t006
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Fig 7. Box plot, driven from the maximum spread comparison.

https://doi.org/10.1371/journal.pone.0261427.g007

Fig 8. Box plot, driven from the error ratio comparison.

https://doi.org/10.1371/journal.pone.0261427.g008
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highest value among the 17 variables, it contributes the most during optimization. Addition-

ally, this indicates that the optimization is more dependent on the variable than on the others.

The three highest values have been highlighted in Table 10 to indicate the three most signifi-

cant variables for each objective.

Conclusion

In this work, a noble hybrid algorithm named, MOCSHOPSO has been proposed and demon-

strated for wellbore trajectory optimization considering the TMD, well profile energy and tor-

que. The hybridization is done with the incorporation of cellular automata (CA) and particle

swarm optimization (PSO). The incorporation of CA has significantly improved the explora-

tion capability of the algorithm. Besides the velocity update mechanism of PSO significantly

contributed to the hunting mechanism of MOCSHOPSO. The performance of the proposed

Fig 9. Repository solutions for the studied three objectives. (a) TMD. (b) Torque. (c) Well profile energy.

https://doi.org/10.1371/journal.pone.0261427.g009
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algorithm in wellbore trajectory optimization is compared with the MOCPSO, MOSHO, and

MOCGWO. This algorithm showed superior performances than all the three established algo-

rithms. The significant improvements of the original algorithm have been validated through

different statistical analyses. It has achieved the lowest IGD, SP and ER value on the other

hand it has also given maximum value for MS. The hybridization has also significantly

improved the capability of tracing the isolated minima which are validated by the lower value

of ER. Moreover, an adaptive neighbourhood mechanism has proposed which has shown bet-

ter performance than the fixed neighbourhood topologies. Additionally, the proposed algo-

rithm has shown significant improvements during geophysical and operational constraints

Fig 10. Comparison plot for operational constraints. (a) TVD. (b) Casing 1. (c) Casing 2. (d) Casing 3.

https://doi.org/10.1371/journal.pone.0261427.g010

Table 7. IGD experimental result for different neighbourhood.

L5 L9 C9 C13 C21 C25 AN

Mean 0.5921 0.5689 0.5521 0.6155 0.5431 0.5484 0.3251

Variance 0.0265 0.0321 0.0301 0.0421 0.0264 0.0386 0.0103

https://doi.org/10.1371/journal.pone.0261427.t007
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handling of the wellbore trajectory optimization. Semi-random initialization of the search

agents has helped the algorithm to achieve this less chaotic constraint handling. Moreover, this

algorithm has provided optimum parameters for trajectory design which will help the industry

to design a cost-effective and less complex trajectory design.

Fig 11. Box plot of IGD metric for different neighbourhood.

https://doi.org/10.1371/journal.pone.0261427.g011

Table 8. Friedman test result for individual ranking and P-value.

Neighbourhood Functions Rank P value

L5 3.6012 0.0512

L9 2.9145

C9 3.4365

C13 3.6191

C21 2.8906

C25 3.3654

AN (Adaptive Neighborhood) 2.4512

https://doi.org/10.1371/journal.pone.0261427.t008

Table 9. Experimental data of IGD metric for comparative radius.

R = 0.5 R = 1 R = 1.5 R = 2 R = 2.5 R = 3

Mean 0.3698 0.2951 0.2166 0.4231 0.5081 0.4051

Variance 0.0177 0.0201 0.0164 0.0241 0.0512 0.0401

https://doi.org/10.1371/journal.pone.0261427.t009
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Fig 12. IGD analysis with different values of radius.

https://doi.org/10.1371/journal.pone.0261427.g012

Table 10. Spearman correlation coefficient analysis for the decision parameters.

Symbol MOCSHOPSO MOCPSO MOSHO MOCGWO

TMD Torque Energy TMD Torque Energy TMD Torque Energy TMD Torque Energy

;1 0.942 0.796 0.014 0.813 0.972 -0.917 0.632 0.739 -0.894 0.307 0.976 0.071

;2 0.842 0.189 0.798 -0.214 -0.442 0.623 -0.058 -0.278 0.379 0.809 0.493 0.111

;3 -0.346 -0.215 0.762 0.3079 -0.1818 0.3338 0.354 -0.243 0.287 0.401 -0.801 0.226

θ1 -0.023 -0.257 0.036 -0.049 -0.041 0.076 0.213 0.254 -0.025 -0.637 0.098 -0.068

θ2 0.054 -0.201 -0.054 -0.066 0.060 -0.176 -0.315 -0.504 0.521 -0.378 -0.065 -0.435

θ3 0.543 0.041 -0.394 -0.149 -0.280 0.207 0.057 0.013 0.186 -0.301 -0.051 -0.073

θ4 -0.365 -0.325 -0.114 -0.123 -0.103 -0.052 -0.269 -0.166 0.257 -0.003 -0.047 -0.732

θ5 -0.054 0.029 0.023 -0.030 0.266 -0.403 -0.369 0.265 -0.301 0.376 0.317 -0.953

θ6 0.052 0.075 0.029 -0.019 -0.039 0.106 -0.205 -0.096 0.326 -0.356 -0.193 -0.054

Dkop -0.135 0.0265 -0.154 -0.012 0.081 -0.244 -0.165 -0.436 0.396 -0.341 -0.019 -0.079

DD -0.156 -0.092 -0.198 -0.599 -0.480 0.324 -0.526 -0.069 0.136 0.146 -0.009 0.298

DB -0.057 0.016 -0.079 -0.269 -0.002 -0.148 -0.458 0.245 -0.186 -0.175 0.058 -0.345

T1 0.456 0.684 -0.186 0.587 0.800 -0.864 0.547 0.867 -0.753 0.245 0.634 0.178

T2 -0.079 -0.096 -0.045 -0.241 -0.343 0.463 -0.368 -0.125 0.006 0.186 -0.089 0.076

T3 -0.403 -0.301 0.301 -0.003 0.063 -0.459 0.076 0.005 0.069 0.247 -0.086 -0.345

T4 0.126 0.138 0.187 0.171 0.041 0.113 0.056 0.338 -0.856 -0.365 -0.326 -0.289

T5 -0.886 -0.160 -0.768 -0.246 0.094 -0.267 -0.075 0.097 -0.325 -0.086 -0.396 -0.875

https://doi.org/10.1371/journal.pone.0261427.t010
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