
SkinMixer: Blending 3D Animated Models

STEFANO NUVOLI, ISTI-CNR, Italy, University of Technology Sydney, Australia, and University of Cagliari, Italy
NICO PIETRONI, University of Technology Sydney, Australia
PAOLO CIGNONI, ISTI-CNR, Italy
RICCARDO SCATENI, University of Cagliari, Italy
MARCO TARINI, University of Milan, Italy

Fig. 1. Our technique in action to mix-and-match animated skinned models. Two production-ready videogame models, comprising of a semi-regular quad-
dominant mesh𝑀0,1, a set of skinning weights𝑊0,1, a skeleton 𝑆0,1, and a set of keyframe animations 𝐴0,1, are automatically blended into a fully equipped
model comprised of a semi-regular unified meshing𝑀𝑅 , a skeleton 𝑆𝑅 , skinning weights𝑊𝑅 , and a new set of compatible animations 𝐴𝑅 . A user intuitively
specifies this process by simply selecting the portions of the skeleton to be merged (the subtrees in the gray areas rooted at the red dot).

We propose a novel technique to compose new 3D animated models, such as
videogame characters, by combining pieces from existing ones. Our method
works on production-ready rigged, skinned, and animated 3D models to
reassemble new ones. We exploitmix-and-match operations on the skeletons
to trigger the automatic creation of a new mesh, linked to the new skeleton

Authors’ addresses: Stefano Nuvoli, ISTI-CNR, Pisa, Italy , University of Technology
Sydney, Sydney, Australia , Dept. of Mathematics and Computer Science, University of
Cagliari, Cagliari, Italy, stefano.nuvoli@isti.cnr.it; Nico Pietroni, University of Tech-
nology Sydney, Sydney, Australia, nico.pietroni@uts.edu.au; Paolo Cignoni, ISTI-CNR,
Pisa, Italy, paolo.cignoni@isti.cnr.it; Riccardo Scateni, Dept. of Mathematics and Com-
puter Science, University of Cagliari, Cagliari, Italy, riccardo@unica.it; Marco Tarini,
University of Milan, Milan, Italy, marco.tarini@unimi.it.

© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3550454.3555503.

by a set of skinning weights and complete with a set of animations. The
resulting model preserves the quality of the input meshings (which can be
quad-dominant and semi-regular), skinning weights (inducing believable
deformation), and animations, featuring coherent movements of the new
skeleton.

Our method enables content creators to reuse valuable, carefully designed
assets by assembling new ready-to-use characters while preserving most of
the hand-crafted subtleties of models authored by digital artists. As shown
in the accompanying video, it allows for drastically cutting the time needed
to obtain the final result.

CCS Concepts: •Computingmethodologies→Animation;Meshmod-
els.

Additional Key Words and Phrases: model composition, skinning weights

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

https://doi.org/10.1145/3550454.3555503

250:2 • S. Nuvoli, N. Pietroni, P. Cignoni, R. Scateni, and M. Tarini

ACM Reference Format:
Stefano Nuvoli, Nico Pietroni, Paolo Cignoni, Riccardo Scateni, and Marco
Tarini. 2022. SkinMixer: Blending 3D Animated Models. ACM Trans. Graph.
41, 6, Article 250 (November 2022), 15 pages. https://doi.org/10.1145/3550454.
3555503

1 INTRODUCTION
Applications such as 3D Videogames or Virtual Reality require using
a variety of 3D assets to recreate vibrant, realistic, reactive 3D virtual
worlds. Producing these 3D assets beforehand is one of the main
challenges for the developers, absorbing a considerable effort by
highly specialized digital artists. One particularly work-intensive as-
set class is 3D animated models, used for digital characters. They typ-
ically consist of skinned, animated, and textured polygonal meshes.
A 3D animated model efficiently encodes not only the 3D shape and
visual aspect of the digital character but also their behavior, that is,
the animations they are capable of and the specific deformations
their body will undergo.

Traditionally, authoring this kind of asset requires a cascade of in-
terrelated complex tasks, often performed by different artists, such
as shape modeling, texturing, remeshing, rigging, skinning, and
animation. The details vary from one production pipeline to an-
other. Still, many techniques are invariably leveraged throughout
the phases, including digital sculpting, direct low poly modeling, au-
tomatic meshing tools, texture baking, automatic skinning, motion
capture, manual keyframe editing, and others. An array of State of
the Art tools exist that strive to assist (rarely, even replace) the work
required by digital artists in each phase. Despite the advancements
in many fields, including the recent adoption of Machine Learn-
ing techniques, creating 3D animated models remains a complex,
expensive, and time-consuming task requiring specialized artistic
skills.

An alternative strategy for content creation consists of mix-and-
matching existing ready-made assets to produce new ones, lever-
aging partial reuse rather than costly authoring from scratch. This
strategy is highly appealing whenever the context allows for it.
For example, it has been successfully explored with other classes
of difficult-to-produce assets, such as low-poly semiregular quad-
meshes. Unfortunately, this is not currently possible for animated
3D models due to their nature.
In this work, we propose the first mix-and-match method to

produce new 3D animated models from existing ones. Starting from
existing animated models, the artist selects portions of ready-made
3D animatedmodels and freely recombines them into a new one. The
resulting asset is ready-to-use and inherits, as much as possible, the
original pieces’ characteristics and qualities, both in terms of shape
(geometry and meshing) and behavior (animations, articulation, and
deformations).

Examples of intended usages include: assembling chimeras, such
as a centaur obtained by joining a human torso with an elephant
body, or a mermaid obtained by assembling a woman torso with a
fishtail; modifying a body plan by adding extra appendages, such as
constructing a four-armed creature stacking different (or multiple
replicas of the same) torsos, or adding pairs of wings, or a tail,
to a human figure; replacing an existing appendage with a new
one, fulfilling the same purpose, from a different character, such as

swapping humans legs with dinosaur legs, tucano wings grafted on
a cat body, or even a set of human legs with another. See Section 9
for a gallery of actual results.
The generated result is a complete and independent new asset,

ready to be used in the downstream application (or further recom-
bined in mixing operations).

1.1 Problem definition and challenges
In our context, an animated model consists of a tuple (𝑀,𝑊 , 𝑆,𝐴):

• a polygonal mesh 𝑀 , describing the geometry of the rest
shape of the object;

• a skinning𝑊 , i.e., a set of weighted links between vertices of
𝑀 and bones of 𝑆 ;

• a skeleton 𝑆 , composed of a certain number of bones (or joints)
interconnected in a hierarchical tree structure;

• a set of animations 𝐴 = {𝑎1, ..., 𝑎𝑛}, each consisting of a
temporal sequence of time-stamped keyframes for 𝑆 .

Ourmixing strategy takes as input two tuples (𝑀0,𝑊0, 𝑆0, 𝐴0) and
(𝑀1,𝑊1, 𝑆1, 𝐴1) and recombines selected pieces of them to create a
new one (𝑀𝑅,𝑊𝑅, 𝑆𝑅, 𝐴𝑅).
A key insight is that none of the components of the tuple can

be manipulated in isolation, and each makes sense only as a part
of the whole. For example, constructing𝑀𝑅 from𝑀0 and𝑀1 alone
(e.g., via [Nuvoli et al. 2019]) would only result in a static pose
that would need to be rigged, skinned, and animated anew, defying
our purpose; neither sets of animations 𝐴0, 𝐴1 nor sets of weights
𝑊0 or𝑊1, could be trivially transferred to 𝑀𝑅 because they are
defined only for the respective original skeleton 𝑆0 and 𝑆1. Instead,
we design a unified strategy that uses every item of the input tuples
to inform the process of constructing the output tuple.
To do this, we must fulfill several requirements and face corre-

sponding challenges.

(1) Global consistency: clearly, we need the output tuple to
be consistent; for example,𝑊𝑅 must link vertices of 𝑀𝑅 to
bones of 𝑆𝑅 (despite being assembled from pieces referring
to a different skeleton and a different mesh);

(2) Blended shape: we want𝑀𝑅 to represent a plausible shape
that blends the𝑀0 and𝑀1 in a natural way;

(3) Meshing quality:𝑀𝑅 must feature a meshing that, far from
the merging zone, matches the original one of 𝑀0 and 𝑀1;
while, near the new conjunctions, it must roughly match the
tessellation density, regularity, and other characteristics (see
input assumptions below);

(4) Deformation quality: in a skinned model, skin deforma-
tions are determined by the set of weights𝑊 , which are very
carefully designed by “skinning” artists. Therefore, these char-
acteristics must be preserved in the output;

(5) Animation completions: we cast the problem of construct-
ing the output set of animations 𝐴𝑅 as the task of automati-
cally completing individual animations originally defined in
one or the other input tuple in some appropriate way. The
context determines which animations from the original sets
must be completed (by default, we complete them all). For
example, a newly assembled “centaur” must inherit the gait

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

https://doi.org/10.1145/3550454.3555503
https://doi.org/10.1145/3550454.3555503

SkinMixer: Blending 3D Animated Models • 250:3

animations from the input animated horse model, accompa-
nying each with some appropriate default movement of the
human spine and shoulder; or, the added dog tail to a hu-
man model must feature some movement during each of the
movements of the human. Observe that the animations of
the resulting set 𝐴𝑅 , once defined over the common skeleton
𝑆𝑅 , can be blended or “overlayed” in real-time, as commonly
done by the downstream application (e.g., the game engine).

Assumptions on the input. We assume input meshes𝑀0 and𝑀1
to feature characteristics typical of the current videogame context:
reasonably low resolution (with finer details handled by textures);
triangle or quad-dominant structure (but usually not pure quad);
notably, we do not assume meshes to be single connected watertight
models: open mesh boundaries are common, for example for rep-
resenting clothes and hair. Similarly, we do not assume meshes to
consist of only one single connected component: character models
often feature topologically disconnected parts for props like pieces
of armors, weapons, decorations, etc. We want our output meshes
to preserve all these characteristics whenever they are in the input.
Skinning 𝑆0 and 𝑆1 and animations 𝐴0 and 𝐴1 are assumed to be
applied with either plain Linear Blend Skinning or Dual Quaternion
Skinning [Kavan et al. 2007], which are still the de-facto standards
of the industry. A texture and a UV-map typically enrich meshes.
While we strive to preserve these components too, to some extent
(Sec. 7.2), that is not the focus of our work.

Opportunities. Compared to the case of mixing-and-matching
static shapes, our task presents not only unique challenges but also
profitable opportunities, which we readily exploit. For example, the
skeleton 𝑆 doubles as an ideal high-level, semantically meaningful
abstraction of the shape, which is convenient to let a user define the
intended mix-and-match operation (Section 4); we use the skinning
𝑊0,1 to drive the segmentation of the meshes into pieces to be assem-
bled (Section 6); we exploit topological and geometrical similarities
in 𝑆0,1 (Section 5) to retarget𝑊0,1, producing𝑊𝑅 (Section 7); we
take advantage of𝑊0,1 to apply to𝑀0,1 a preliminary morphing to
ease their fusion into𝑀𝑅 (Sec. 4.1).

2 RELATED WORK
To our knowledge, SkinMixer is the first method to produce new
high-quality animated assets by compositing existing ones, while
extensive literature focused on automatizing or assisting the gener-
ation of this kind of asset, specifically: the meshing, the skinning
weights, or the animations. The following discussion focuses on
the aspects of this literature that are more closely relevant to our
proposed solution.

2.1 Mix-and-match of Geometries
Compositing multiple static shapes into a new shape is a well-
studied topic. Various interactive tools have been designed to enable
an artist to mix different meshed surfaces in real-time [Funkhouser
et al. 2004; Kreavoy et al. 2007; Schmidt and Singh 2010; Sharf et al.
2006; Yin et al. 2020; Zhang et al. 2010]. The fundamental step of
these approaches is computing the fusion of input surfaces and then

performing a local re-meshing in correspondence with the intersec-
tion area [Bischoff and Kobbelt 2005; Pavic et al. 2010]. The new
geometry can be obtained by fusing automatically-derived implicit
representations [Singh and Parent 2001], or by merging the volumes
enclosed by the triangular surfaces through exact Boolean opera-
tions [Campen and Kobbelt 2010; Cherchi et al. 2020; Jacobson et al.
2013], or other, more expressive volumetric operations [Angles et al.
2017]. Additionally, many algorithms allow transporting attributes
between different surfaces [Melzi et al. 2020], including skinning
weights, but only assuming that a common skeleton is shared.

2.2 Mix-and-match of Semi-regular Meshes
Our objective partially overlaps with the recent works that strive to
perform a blend of input semi-regular meshings while preserving
their regularity. QuadMixer [Nuvoli et al. 2019] combines semi-
regular quadrangulated meshes to preserve the initial tessellation
and smoothly blend the edge flow in the intersection regions. In
a similar spirit, among commercial software packages, the Modo
suite [Visionmongers 2018] provides a tool, called MeshFusion, able
to combine quad-based mesh representations with boolean opera-
tions while partially preserving their original meshing. The main
difference is, of course, that we target animated models (which, as
discussed, allows us to exploit more information but pose additional
challenges). In addition, we improve over [Nuvoli et al. 2019] by
allowing for a broader range of input, which is a necessity in our con-
text: differently from QuadMixer, our method can be applied over
non-pure-quad, non-watertight, or even locally non-manifold sur-
faces, and models consisting of different connected components. We
are motivated by these characteristics’ prevalence in video games’
animated assets. Construction of semi-regular meshes from a single
input model is a highly well-studied topic, and a few recent works
focus on the case of meshes that will be animated as blend-shapes
[Marcias et al. 2013; Zhou et al. 2018].

2.3 Data-Driven Mesh Synthesis
Data-driven synthesis is a different class of approaches that cre-
ates new content from pre-existing assets like ours. These methods
first extract the information from a predefined shape database, then
translate it into a compact representation that allows recombination
and synthesis from recombination and local modifications. Proce-
dural methods generate shapes by applying basic rules or using
predefined grammar. The space of possible shapes is spanned by
applying different sequences of derivation rules and variating their
parameters. These methods offer high-quality and editable results
and allow for composition and partial re-utilization of the portion
of meshes. There is a long tradition of procedural model genera-
tion in computer graphics. Usually, those methods are specialized
and contextualized to specific application domains such as urban
environments [Müller et al. 2006; Parish and Müller 2001]. Other
approaches rely on more sophisticated inverse procedural modeling
[Jones et al. 2020; Martinovic and Van Gool 2013; Ritchie et al. 2018].
However, those methods tend to be very specialized in the class of
shapes they can generate. Methods based on deep learning offer
a more general expressive power [Chaudhuri et al. 2019]. Those
methods might use 3D occupancy grids [Wu et al. 2016] or work on

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

250:4 • S. Nuvoli, N. Pietroni, P. Cignoni, R. Scateni, and M. Tarini

implicit surface representation [Chen and Zhang 2019; Park et al.
2019]. Other works follow the philosophy of mix-and-match using
deep learning [Zhu et al. 2018].

2.4 Automatic and Assisted Creation of Skinning Weights
There is a substantial interest in the industry in defining methods for
the automatic derivation of skinning weights. Most of the existing
3Dmodeling tools like Blender orMaya [Autodesk 2019; Community
2018] offer automatic or semi-automatic rigging tools. Mixamo of-
fers semi-automated tools to derive skinning weights for humanoid
characters. In academia, the first method to derive automatic rigging
of input 3D models using a combination of discrete and continuous
optimization is “Pinocchio” [Baran and Popović 2007]. Skinning
weights have been automatically derived, among other ways, as
minimizers of higher-order surface smoothness functionals [Jacob-
son et al. 2011] or elastic energy functionals [Kavan and Sorkine
2012], by proximity-based methods [Dionne and de Lasa 2013], or
by maximizing the physical plausibility of resulting deformations
(as predicted with position based dynamics) [Pan et al. 2018]. A
recent trend [Liu et al. 2019; Xu et al. 2020, 2019] uses deep-learning
to derive associated skinning weights, often in conjunction with the
skeleton.
Despite multiple attempts, deriving proper skinning weights is

still perceived as an art. Artists often prefer to customize weights to
recreate the desired deformations, traditionally, by direct painting;
innovative methods have been designed to assist and ease this task
[Bang and Lee 2018; Borosán et al. 2012].

In contrast to all these methods, which do not allow for the preser-
vation of some previously modeled and skinned assets, our work
stems from the idea of preserving the original artist’s work as much
as possible.

2.5 Animation Synthesis
There is a vast literature on methods to support the artist in produc-
ing plausible animations. Some recent approaches use deep learning
methods to synthesize natural motion or interpolate different ani-
mations in real time. These methods are usually specialized in some
subcategory of movements such as speech animation [Taylor et al.
2017] or martial arts [Starke et al. 2021]. Other methods based on
neural networks are more targeted to generate complex humanoid
motions, real-time control, and adaptation to different boundary
constraints [Holden et al. 2016]. Older data-driven approaches are
based on Gaussian processes [Grochow et al. 2004]. Despite the
realism of the produced animations, each method targets a specific
skeleton class and its relative motions set. Moreover, as opposed to
the presented method, most cited approaches are designed to mix
two movements temporally rather than combining different sets of
bones with their relative animations.

2.6 Animation Retargeting
Animation retargeting attracted significant attention in Computer
Graphics, starting from the proliferation in the 90s of systems for
transfer movements from live actors to rigged characters [Gleicher
1998]. In the beginning, these techniques have been employed to
transfer the motion between skeletons or interpolate between sparse

poses, solving the kinematic constraints to optimize the continuity
of the resultingmotion [Choi and Ko 2000]. Advanced tools usemore
sophisticated representations to avoid self-intersections [Molla et al.
2018]. The approach presented in [Hecker et al. 2008], used in the
videogame Spore, is fascinating but inherently different from our
solution. It uses predefined building blocks like limbs, heads, and
torsos to assemble new creatures, while our method can take any
part of existing characters and mix them to generate new ones.
However, techniques based solely on the skeleton might fail to

transfer surface features effectively. A class of methods tries to
bypass this problem by transferring poses directly between surfaces.
Usually, these techniques rely on a compact representation of the
deformation to be transferred betweenmeshes [Sumner and Popović
2004]. An alternative approach consists in applying forces on the
target characters and letting a physics simulation derive the correct
deformation on the target shape [Borno et al. 2018].
Data-driven approaches have become more popular with the

widespread diffusion of pre-made assets. They learn the seman-
tic correspondences between different shapes to transfer motions
plausibly [Boukhayma et al. 2017] or to automatically combine mo-
tions from different animations into new ones [Jang et al. 2008].
Data-driven methods are often used to transfer facial expressions
[Bouaziz et al. 2013] or to transfer animation in a more general
setup [Aberman et al. 2020; Gao et al. 2018]. Recently, deep learning
methods for retargeting have produced impressive results [Villegas
et al. 2018; Won and Lee 2019]. A recent method also allows us to
retarget motions extracted from video to a 3D model [Aberman
et al. 2020]. However, they require significant datasets for the initial
training phase.
In general, while animation transfer can be a powerful aid to

content creators, it cannot be expected towork reliably on drastically
different skeletons.

3 METHOD OVERVIEW
As observed, the skeleton serves as an abstract description of the 3D
model, which is ideal for this task. Our method starts with a given
mix-and-match operation, issued by the user by manipulating the
input skeletons 𝑆0 and 𝑆1, with actions such as the substitution or
the addition of subtrees (Section 4). The operation defined by the
user on the two input skeletons already produces the final output
skeleton 𝑆𝑅 (see Fig. 2). The subsequent steps blend with the other
elements to construct the output tuple.
The first step consists in constructing two weighted mappings

B0 and B1 from the original bones in 𝑆0 and 𝑆1 to the bones in
𝑆𝑅 (Section 5). These mappings are generally neither injective nor
surjective. Conceptually, each bone of the input skeletons is mapped
to the “semantically equivalent” bone in the output skeleton, even if
this equivalence can be only loosely defined and uncertain for many
bones, especially far away from the junction bones. The construc-
tion of this mapping is informed by the geometric and topological
similarity between the input and the output skeletons.

Then, a new mesh𝑀𝑅 is constructed (Section 6 and Fig. 9). This
task fuses appropriately selected sub-parts of𝑀0 and𝑀1 with a new
surface, which smoothly interconnects the two without interrupt-
ing their edge-flows. This is done by exploiting the information in

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

SkinMixer: Blending 3D Animated Models • 250:5

𝑊0,1. The interconnecting shape is created using voxelized implicit
representations.
Then, a new set of skinning weights𝑊𝑅 is constructed, to link

the vertices of 𝑀𝑅 to the bones of 𝑆𝑅 (Section 7). Thanks to the
mappings B0, this task can be cast as a transfer of vertex attributes
of𝑀0 and𝑀1, i.e. B0 (𝑊0) and B1 (𝑊1) (see Fig. 11).

The final assets are not ready for the downstream application until
they are completed with behavioral information: we construct a set
of animations 𝐴𝑅 defined for the new skeleton 𝑆𝑅 , by completing
individual animations from the either input animations sets 𝐴0 and
𝐴1 (see Fig. 12 and Section 8).

4 DEFINING THE OPERATION
Amix-and-match operation can be intuitively performed by directly
working on the skeletons 𝑆0 and 𝑆1 (Fig. 2). In our system, an opera-
tion is just a sequence of various attach/detach actions, where we
can take a node 𝑏𝑖 and all its subtree from a skeleton and graft it
onto a node 𝑏 𝑗 ∈ 𝑆1 (or vice-versa), either adding or replacing the
current subtree of 𝑏 𝑗 . Multiple such actions can be issued in one
operation (e.g., when “transplanting” both arms from one charac-
ter to another). One operation directly defines the final skeleton
𝑆𝑅 and automatically triggers the steps to generate the rest of the
(𝑀𝑅,𝑊𝑅, 𝑆𝑅, 𝐴𝑅) tuple: the meshing, the skinning weights, and the
new set of animations.

4.1 Preliminary positioning and deformation
Any blending operation of 3D shapes expects a user-defined rotation,
translation, and scaling of the two models to reposition and resize
them appropriately with respect to each other, before their fusion.
In our framework, we consider this as just a particular case of a

more general preliminary operation, where𝑀0 or𝑀1 can be posed
freely as a convenient way to customize the resulting blended shape
by allowing the user to deform either shape before merging (see
for example Fig. 3). However, unless otherwise specified, all our
examples use only the default per bone translation, which we auto-
matically set as follows.
As standard, a pose consists of a rotation defined by each joint

in 𝑆0,1, optionally accompanied by an additional translation (thus
stretching or shrinking the bones), redefining the ones defined on
the rest pose. The default pose for a given operation consists solely
of an additional per-bone translation over 𝑆0. When an operation
merges a node 𝑛𝑖 ∈ 𝑆0 with 𝑛 𝑗 ∈ 𝑆1, we define a new translation,
at node 𝑛𝑖 , that brings its spatial position into the position of 𝑛 𝑗 , in
the respective rest poses. Different translations are defined in each
node when multiple operations are issued, matching multiple nodes
of 𝑆0 into multiple nodes of 𝑆1, such as a “transplant” of numerous
limbs.
Then, we smoothly propagate the defined translations over all

other nodes of 𝑆0. We do this by applying a sequence of Laplacian
smoothing operations over 𝑆0 (considering it a graph) while keeping
all the assigned nodes fixed until convergence. When a single node
is merged, the smoothing trivially results in the translation assigned
initially to that node being propagated unaltered over the entire 𝑆0,
and thus in themesh𝑀0 being rigidly translated into the appropriate
position of𝑀1; whenmultiple nodes are matched, the smoothing has

Fig. 2. Examples of the types of operations that can be easily defined on
the input skeletons 𝑆0 and 𝑆1, obtaining the output skeleton 𝑆𝑅 . Joint nodes
are pictured in red. Top: an example of composition, where a portion of 𝑆1
is added to a portion of 𝑆0 (e.g., to construct a “centaur” figure assembling
a human torso on a quadruped, like in the result visible in Fig. 1). Middle:
an addition where a portion of 𝑆1 is grafted on 𝑆0 (e.g., to get a winged
animal by grafting wings from a bird into the spine of a quadruped, like in
Fig. 12). Bottom: a multiple composition where more than one portion of 𝑆1
is assembled with a portion of 𝑆0 (e.g., to substitute several limbs from a
humanoid character to another, like in Fig. 4).

the effect of deforming𝑀0, such as the case shown in Fig. 4, where
the hip region of 𝑀0 is widened, and its torso region shortened,
improving the subsequent geometric fusion with𝑀1. We then apply
a Laplacian smoothing of the translations.

5 DETERMINING A BONE-TO-BONE MAPPING
A central phase of our method consists in identifying for each bone
𝑏𝑖 ∈ 𝑆0 the corresponding bone in the output skeleton B0 (𝑏𝑖) ∈ 𝑆𝑅 ,
associated with some scalar confidence value (between 0 and 1),
and likewise for 𝑆1. We construct mappings B0 and B1 as follows
(Fig. 5), and use them in subsequent phases. Fig. 6 shows an example
of the resulting mapping.

Initialization. B0,1 (𝑏𝑖) are initialized, for all trivial cases, with
confidence one (Fig. 5, left). Specifically: for an operation prescribing
to fuse node𝑏𝑖 ∈ 𝑆0 with𝑏 𝑗 ∈ 𝑆1, we pick the node𝑏𝑘 ∈ 𝑆𝑅 resulting
from their fusion and prescribe B0 (𝑏𝑖) = B1 (𝑏 𝑗) = 𝑏𝑘 ; for any bone
𝑏 𝑗 in 𝑆𝑅 that was created as a copy of a bone 𝑏𝑖 , if 𝑏𝑖 ∈ 𝑆0, we set
B0 (𝑏𝑖) = 𝑏 𝑗 , and if 𝑏𝑘 ∈ 𝑆1 we set B1 (𝑏𝑖) = 𝑏 𝑗 .

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

250:6 • S. Nuvoli, N. Pietroni, P. Cignoni, R. Scateni, and M. Tarini

Propagation. We then extend the incomplete B0,1 over all other
bones of 𝑆0,1, using an heuristic based on skeleton similarity, in
terms of both topology and geometry (Fig. 5, right). Specifically, in
each step, we process one edge in 𝑆0 or 𝑆1, connecting nodes 𝑏𝑖 and
𝑏 ′
𝑖
, such that 𝑏 ′

𝑖
is currently assigned to B(𝑏 ′

𝑖
) = 𝑏 ′

𝑗
∈ 𝑆𝑅 with some

confidence 𝑐 , and 𝑏𝑖 is not assigned yet. We assign it by evaluating
all bones in 𝑆𝑅 : for each candidate, we estimate its similarity score
with 𝑏𝑖 , between 0 and 1 (see below), and pick the node 𝑏 𝑗 with
the highest score 𝑠 . We then define B(𝑏𝑖) to be 𝑏 𝑗 , with confidence
𝑐 · 𝑠 , and proceed with the next edge, until all nodes in 𝑆0 and 𝑆1 are
assigned.
We are aware that the semantic of B is only lousily defined,

especially far from the junction node(s), where the confidence is

Fig. 3. An example of posing the models as a way to control the blend results.
Using the elephant model in rest pose (left) results in a bulged abdomen in
the final model, while posing the elephant with the head rotated up, and
its neck slightly stretched produces a preferable surface (right).

Fig. 4. An example of a composite operation, where both arms and legs are
transferred to from 𝑀0 (“Timmy” model, top left) to 𝑀1 (“Mouse” model,
top center). Bottom left:𝑀0, after a skinning deformation triggered by the
default per bone translations, which bring the four connected bones to
match the position of the respective receiving bone in 𝑆1; this induces some
unwanted deformations in the shoulder region. Bottom center: 𝑀0 after
smoothing the per-bone translations, which fixes the issue. Right:𝑀𝑅 .

B0 B1 B0 B1

Fig. 5. The constructions of bone-to-bone mappings B0 : 𝑆0 → 𝑆𝑅 and
B1 : 𝑆1 → 𝑆𝑅 . Left, after initialization. Right: after all propagation steps.
Observe that neither mapping is either injective or surjective, and they are
less accurately defined further away from the joining node (in red).

low. In many cases, no close semantical counterpart even exists for
a given node (for example, if a mermaid is obtained as a mix of a
maid and a dolphin, there is no “real” correspondent of the bone
relative to the left foot). Our method uses B accordingly.

5.1 Bone-to-bone similarity measure
We detail here the similarity measure between a node in 𝑆0 or 𝑆1 and
a node in 𝑆𝑅 that we use to heuristically build the rough mapping
B. We consider each skeleton as a 3D embedded tree, each joint 𝑏𝑖
having the 3D position in rest pose 𝑅(𝑏𝑖). Additionally, we define,
for each node, a parametric position 𝑃 (𝑏𝑖), as a scalar value between
0 (for roots) to 1 (for leaves), as follows: for each leaf in the tree, we
traverse the path from the root to that leaf, and assign to each node
along the path its parametric position in that path (defined as the
ratio between the traversed distance up that node, over the length
of the path). The parametric position of a node is then the average
of its parametric positions for all paths that include it.

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

SkinMixer: Blending 3D Animated Models • 250:7

S0

S1
SR

B1

B0

Fig. 6. An example of bone-to-bone mappings B0 : 𝑆0 → 𝑆𝑅 and B1 : 𝑆1 →
𝑆𝑅 . The red node represents the only joint node. In thin green lines are the
relationships defined in the initialization phase, in red lines are the ones
inferred by our heuristics (Section 5).

The similarity between nodes 𝑏 𝑗 ∈ 𝑆𝑅 and 𝑏𝑖 , which is directly
connected to a node 𝑏 ′

𝑖
, with 𝑏 ′

𝑗
= B(𝑏 ′

𝑖
) is given by a weighted

sum of four criteria. While not all criteria are valid in all cases, their
aggregation is sufficiently reliable for our purposes. Specifically, we
use the following criteria and weights (determined empirically, but
different choices lead to similar results):
a) geometrical similarity (weight 0.3), defined as the average be-

tween the local directional similarity:

𝑅(𝑏𝑖) − 𝑅(𝑏 ′
𝑖
)

∥𝑅(𝑏𝑖) − 𝑅(𝑏 ′
𝑖
)∥2

·
𝑅(𝑏 𝑗) − 𝑅(𝑏 ′

𝑗
)

∥𝑅(𝑏 𝑗) − 𝑅(𝑏 ′
𝑗
)∥2

and the global directional similarity:

𝑅(𝑏𝑖) − 𝑅(𝑟𝑖)
∥𝑅(𝑏𝑖) − 𝑅(𝑟𝑖)∥2

·
𝑅(𝑏 𝑗) − 𝑅(𝑟 𝑗)

∥𝑅(𝑏 𝑗) − 𝑅(𝑟 𝑗)∥2
where 𝑟𝑖 and 𝑟 𝑗 are the two roots of the respective tree, and ·
denotes the dot product;

b) topological similarity (weight 0.3), is defined as 1/𝑘 , with 𝑘 the
number of edges separating 𝑏 𝑗 from 𝑏 ′

𝑗
, or 2 if 𝑏 𝑗 = 𝑏 ′

𝑗
(it is

maximal when 𝑘 = 1, that is, when 𝑏 𝑗 is directly connected to
𝑏 ′
𝑗
, matching the fact that 𝑏𝑖 is directly connected to 𝑏 ′

𝑖
);

c) parametric similarity (weight 0.3): defined as |𝑃 (𝑏𝑖) − 𝑃 (𝑝 𝑗) |;
d) valence similarity (weight 0.1), is the similarity between the num-

ber of connections of𝑏𝑖 and𝑏 𝑗 , defined asmin(𝑏𝑖 , 𝑏 𝑗)/max(𝑏𝑖 , 𝑏 𝑗).

Injectivity bonus. Additionally, we add a “injectivity bonus” to
the similarity score of a candidate 𝑝 𝑗 to favor the construction of
injective mappings (without enforcing it). Whenever a candidate 𝑝 𝑗
has not been selected yet, we add 0.5 to its score and 0.1 if the 𝑝 𝑗
was already picked, but with confidence < 1.

6 PRODUCING THE NEW SURFACE
The task of producing the unified mesh𝑀𝑅 is central to our pipeline.
Our objective is to build a new (rest) shape that plausibly blends
the two input shapes while preserving and extending the meshing
characteristics (in terms of resolution, regularity, and edge flows).

This task is broken into a sequence of operations:

Automatic vertex selection. First, for each of the two input meshes
𝑀0,1, vertices are labeled with a “presence” value in [0..1], indicating
whether the vertex should appear in the output or not. This labeling
is fuzzy, and it is easily initialized by exploiting the information on
the respective skeleton 𝑆0,1 and skinning𝑊0,1: the presence value
for a vertex is the sum of the weights linking it to bones of 𝑆0,1
that are directly used in 𝑆𝑅 . After the assignment, we smooth the
presence values over𝑀0,1 with an iteration of Laplacian smoothing,
but without affecting any value at 0 or 1 (within a small tolerance
of 0.02).

Automatic face selection. Then, we select a subset of the mesh
polygonal faces 𝑀 ′

0 ⊆ 𝑀0 and 𝑀 ′
1 ⊆ 𝑀1 that can be preserved

unmodified in the output mesh, defined as the faces with a uniform
presence value of 1. To regularize the region’s boundaries formed
by the selected faces, we apply a morphological opening-closing
operator [Roessl et al. 2000].

Removal of secondary components. Many input models in, for
example, videogames, feature secondary disconnected components
used to model feathers, fur “flaps”, armor pieces, and so on. For
increased robustness, we identify any disconnected components
with a roughly constant presence value (we used variance smaller
than 0.04 as a criterion) and ignore them in the subsequent geometric
fusion process (Fig. 7).

Fig. 7. Automatic selection of secondary connected components. An input
model features multiple connected components that are topologically sepa-
rated from the main component body (highlighted in the top image). The
per-face selection can be made aware of this, identifying and removing
them from the subsequent mesh fusion phase (bottom right).

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

250:8 • S. Nuvoli, N. Pietroni, P. Cignoni, R. Scateni, and M. Tarini

The rationale is that these elements should not be blended in the
results but either be fully preserved or entirely removed. We decide
based on the averaged presence value being smaller or larger than
0.5. This simple countermeasure allows us to increase automatism
with a more significant number of existing real-world assets (see
Fig. 8).

MRMRM0 MRM0

Fig. 8. Results of automatic handling of secondary connected components.
In this example, the shirt of the input elf model is a separate, connected
component (left), which is automatically identified as almost unaffected by
the geometrical fusion (as its “presence” value is almost uniformly 1). For
this reason, our method excludes it from the fusion operation and reinserts it
after the fusion. The final result obtained in this way (right) can be preferable
to the otherwise obtained (middle).

6.1 Definition of the interconnecting implicit surface
Next, we generate the shape of the connecting geometry that will be
used to smoothly join𝑀 ′

0 and𝑀
′
1. We identify the affected volume

region as the minimal Axis Aligned Bounding Box encapsulating
all vertices that are not either fully 1 or fully 0 (within a small
tolerance of 0.01) and sample each voxel inside this volume on a
regular lattice at a fixed resolution (the voxel size is defined as 0.8
times the minimum of the average edge lengths in𝑀0 and𝑀1).
At each voxel, we compute the Signed Distance Function (SDF)

[Curless and Levoy 1996] values 𝛿0 and 𝛿1 from𝑀0 and𝑀1 respec-
tively, and record the presence values 𝑝0 and 𝑝1 of the two closest
point on𝑀0 and𝑀1, found by interpolating the per-vertex values
inside triangular faces (splitting non triangular faces into triangles).
To compute the values 𝛿0,1, we use the Generalized Winding Num-
ber [Jacobson et al. 2013] over𝑀0 and𝑀1 respectively, using [Barill
et al. 2018], which extends the definition of the sign of the SDF to
open meshes.
We then produce a resulting SDF value 𝛿𝑅 for that voxel as a

function of 𝛿0,1 and 𝑝0,1. Many ways to do this are explored in liter-
ature [Angles et al. 2017; Bernhardt et al. 2013; Gourmel et al. 2013],
resulting in different transition shapes. In our case, we obtain good
results using just two different basic solutions chosen according to
the semantics of the skeleton operation.

𝛿𝑅 =

{
𝑝0 𝛿0+𝑝1 𝛿1

𝑝0+𝑝1 for replacement operations
min (𝛿0, 𝛿1) for addition operations

(1)

In words, we perform a simple implicit union operator for oper-
ations involving the addition of subtrees to a skeleton (see Fig. 2,
middle). We use a simple implicit blend operator for operations
involving the substitution of subtrees, i.e., addition and removal
of subtrees (see Fig. 2, top and bottom). While prone to some limi-
tations (discussed in Sec. 10.1), this simple solution works well in
practice.
The resulting voxelized field describes the shape of the piece of

the surface, which will be used to interconnect𝑀 ′
0 and𝑀

′
1.

Construction of the interconnecting meshing. We then produce a
meshing for the connecting geometry. We construct a new mesh-
ing 𝑀𝐽 that seamlessly fuses with the open boundaries of 𝑀 ′

0,1,
extending their edge flows. The final mesh 𝑀𝑅 is the defined as
𝑀 ′
0 ∪ 𝑀 ′

1 ∪ 𝑀𝐽 . This operation follows the spirit of [Nuvoli et al.
2019] but sets apart from it by dropping the requirement on the
closed mesh, two-manifold, and pure-quad to match our typical
scenario (videogame assets).

Using the presence field, we first determine the part of the original
meshes that need to be preserved. Then, we mesh the result of the
composition of the two distance fields in the region where the two
meshes are not maintained. At this point, we want to attach the two
preserved parts to the new implicit surface that blends them. We
first associate each border of the preserved mesh with the borders of
the blending surface. Then we use an approach similar to [Duncan
et al. 2016] to blend and merge between borders, and we perform
some simple local remeshing operations on the borders to elimi-
nate degenerate triangles. Finally, we tessellate the newly created
surfaces using the approach of [Pietroni et al. 2021], which merges
between the original flows and creates a high-quality quadrilateral
mesh. This process is overviewed in Fig. 9.
The method we defined for a single operation on two models

can be easily extended to composite operations on more than two
models (see Fig. 10 for an example). We define a single SDF for the
entire operation, and, in each voxel, we compute 𝜎𝑅 according to
the single sub-operation involving the two highest presence factors.

7 DETERMINING THE NEW SKINNING WEIGHTS AND
OTHER PER-VERTEX QUANTITIES

Our strategy to construct𝑀𝑅 allows us to transfer any per-vertex
attribute (e.g. colors) originally stored in the input meshes𝑀0,1.

For any vertex in𝑀 ′
0 or𝑀

′
1 , we simply copy the attribute from𝑀0

or𝑀1. For each vertex 𝑣 𝐽 in𝑀𝐽 , we take the two vertices 𝑣0 and 𝑣1 in
𝑀0 and𝑀1 respectively, that are closest to 𝑣 𝐽 , and interpolate their
attributes using, as interpolating factor, 𝛿𝑅 in equation (1) computed
in the volumetric structure at position 𝑣 𝐽 . Vertices 𝑣0 and 𝑣1 and
the delta values are quickly recovered leveraging on the volumetric
voxel-based structure used to construct𝑀𝐽 .

7.1 Skinning weights
The skinning weights𝑊0 and𝑊1 cannot be transferred directly from
vertices of𝑀0,1 to𝑀𝑅 , because they are defined over the respective
skeleton 𝑆0,1. In order to transfer them, we first retarget them, simply
as𝑊 ′

0 = B0 (𝑊0), and𝑊 ′
1 = B1 (𝑊1) (this operation denotes a re-

indexing of the bone weights, including when necessary the sum of
the weights associated to pairs of bones of 𝑆0,1 that are mapped by

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

SkinMixer: Blending 3D Animated Models • 250:9

M0

M1

M'

SDF

SDF

SDF

M'

MR

1

0























Fig. 9. The pipeline to produce a meshing𝑀𝑅 from the input meshes𝑀0,1 (transparency alpha values reflect the per-vertex presence value). The two meshes
are first sampled into two Signed Distance Fields (1), which are blended into one unified blending field (2), and extracted isosurface is cut (3) to match the two
sub-meshes𝑀′

0,1 selected from𝑀0,1 (4). The results are fused into one mesh (5), and the final results are re-meshed (5).

Fig. 10. We compose three different models to obtain the final result: the
head and the feet from one of them, the hands from another, and the torso
from the third. In the composite model, we highlight in red the junctions
produced by our method.

B0,1 into the same bone of 𝑆𝑅). This process gives good results in
spite of the mappings B0,1 being possibly inaccurate far from the
joining node.
Next, we transfer the two sets of retargeted skinning weights

𝑊 ′
0 and𝑊 ′

1 from 𝑀0 and 𝑀1 into 𝑀𝑅 , treating them as any other
attribute.
Finally, we do a pass over the obtained weights to re-enforce

sparsity, that is, to enforce that only up to 𝑁 weights are non-zero.
We do this simply by setting to zeros all but the 𝑁 = 4 largest
weights and re-normalizing the results so that it sums up to 1.

0

1

R

Fig. 11. An example of the set of skinning weights𝑊𝑅 resulting from blend-
ing the two input sets𝑊0 and𝑊1. The color coding shows the zone of
influence of one abdominal bone, which is the connecting bone of the oper-
ation, present in all three models). Weight isolines (white) reveal that the
influence matches the two models in the respective areas.

7.2 Colors and texture
In our work, we do not focus on texturing or UV-maps, which
are usually part of the inputs meshes in a videogame context. Ide-
ally, the newly produced𝑀𝑅 can be enriched with a novel texture,
obtained by resampling the input textures, with, possibly, using
texture-synthesis strategies [Akl et al. 2018] to produce an auto-
matic transition between these original textures. This would also
require, as a preliminary step, the production of a UV-map for𝑀𝑅 ,
either by creating a new one from scratch (which is a well studied,
but open, problem), or by adapting the combined UV-maps of𝑀0
and 𝑀1 (e.g. after [Maggiordomo et al. 2021]). We consider these
tasks as orthogonal to our objective, and leave them to future stud-
ies. As a cheaper fallback strategy (used in all the renderings in this
paper), we apply the original UV-maps and textures verbatim over

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

250:10 • S. Nuvoli, N. Pietroni, P. Cignoni, R. Scateni, and M. Tarini

𝑀 ′
0 and 𝑀 ′

1, and we color the junction piece 𝑀𝐽 using per-vertex
colors attributes instead. To do so, we first bake texture colors into
per-vertex color attributes in both 𝑀0 and 𝑀1, and then interpo-
late them into𝑀𝐽 , like any other standard attribute (resulting, as a
drawback, in blurred colors in𝑀𝐽).

8 DETERMINING THE NEW ANIMATIONS
Lastly, we need to produce a new set of animations𝐴 for the skinned
model. Automatically production of new animations, or re-targeting
of existing ones, are exceedingly complex tasks, deeply studied in
literature from a variety of angles (see Sections 2.5 and 2.6), and are
ultimately open problems. In our scenario, we can, instead, rely on
the existence of high-quality animations already designed for and
consistent with every sub-part of the final skeletons. We decide to
cast the problem as the task of completing existing animations from
either input model with data coming from the set of animations of
the other, without “inventing” any new animation data; this also
takes full advantage of the intrinsic mixability of skeletal animations.

We repeatedly take a given animation 𝑎 from either sets 𝐴0 or 𝐴1
and complete it by using the information extracted from the whole
other set by carefully selecting any frame in the latter for each
frame in 𝑎. This process can be applied to any animation in𝐴0 ∪𝐴1;
which one is useful depends on the context and the semantics. In
our prototype, we let the user choose or, by default, complete all
animations.

8.1 Completing an animation
One animation 𝑎 is a sequence of timed keyframes (𝑘0, 𝑘1, ...), each
keyframe defining a per-bone local rotation (occasionally, a trans-
lation, modifying the ones otherwise inherited by the rest pose)
concerning its parent node. As a preliminary step, we re-sample the
animations by interpolating keyframes at a regular time interval
(we used 30 frames per second) to ensure that the process is robust
to both sparse and dense input keyframe sequences.
Consider, for example, the generation of an output animation 𝑎

for skeleton 𝑆𝑅 from an input animation 𝑎′ ∈ 𝐴0, which is initially
defined for skeleton 𝑆0.
We produce a keyframe 𝑘 in 𝑎 for each keyframe 𝑘 ′ in 𝑎′. A

trivial idea would be to define mapping 𝑘 = B0 (𝑘 ′), i.e. to copy
the local rotations of each bone 𝑏𝑖 ∈ 𝑆0 into the local rotation of
the corresponding bone B0 (𝑏𝑖) ∈ 𝑆𝑅 . However, this gives terrible
results because, as noted, the mapping B0 can be very approximate
for many bones and is not even necessarily surjective (not all bones
in 𝑆𝑅 would receive a transformation).
Instead, our strategy is to only use B0,1 to identify a proper

keyframe 𝑘 ′′ (defined over skeleton 𝑆1) from any animations in
𝐴1 (a task for which 𝑀0,1 needs only to be minimally accurate on
average). Then, we assign all per-bone rotations of 𝑘 , picking them
from 𝑘 ′ or 𝑘 ′′ (see Figure 12).
The crucial part of this process is the selection of 𝑘 ′′ from a

given 𝑘 ′. We choose not to limit the choice to keyframes of a single
animation in 𝐴1, nor to pick consecutive keyframes from a given
animation. While this would be an easy route to enforce temporal
continuity in the final animation, we want to exploit the entire range
of behaviors captured by the whole input set of animations. Instead,

1

Walk ∊ A0

2

3

4

5

1

Walk ∊ A1

Walk ∊ A1

Run ∊ A1

5

1

6

3

2

2

Fig. 12. An example of the construction of one animation in the output set
𝐴𝑅 . Given a target animation 𝑎 ∈ 𝐴0, originally defined for skeleton 𝑆0, we
produce a corresponding animation𝑎′ ∈ 𝐴𝑅 , for skeleton 𝑆𝑅 , by electing, for
each keyframe of 𝑎 (left), one appropriate best matching keyframe (right),
choosing among all keyframes in any animations in𝐴1, according to several
criteria – see text. Then, the two keyframes are fused into a new keyframe
of 𝑎′ (center) via the bone-to-bone mapping B. See also attached videos for
this and other examples.

we pursue temporal continuity explicitly as just one criterion to be
balanced against others (as discussed later).
Our selection strategy relies upon the notion of keyframe-to-

keyframe distance. We evaluate all the candidate keyframes (i.e., all
keyframes of all animations in𝐴1), assign them to a score measuring
similarity and continuity, and select the highest scorer.

Keyframe-to-keyframe distance. To compare keyframe 𝑘 ′ (for 𝑆0)
and 𝑘 ′′ (for 𝑆1), we first apply our bone-to-bone mapping B to both
and then evaluate the similarity of B(𝑘 ′) with B1 (𝑘 ′′). To apply
a B to a keyframe 𝑘 means to inject all local rotations defined for
a bone 𝑏𝑖 ∈ 𝑆0 to the bone B(𝑏𝑖) ∈ 𝑆𝑅 . The bones in 𝑆𝑅 that are
not reached by any bone (as B is not surjective) are assigned to the
identity, and the bones in 𝑆𝑅 that are reached by multiple bones (as
B is not injective) cumulate the rotations.
Keyframes B0 (𝑘 ′) and B1 (𝑘 ′′) can then be compared bone to

bone by computing their global rotations (with direct kinematics,
as commonly done during the execution of a skinning animation)
and adding together the similarities between the resulting global
rotations. The similarity between two global rotations is defined as
the absolute value of the dot product of their quaternionic repre-
sentations (using the absolute value produces the correct similarity
measure, despite a rotation being potentially expressed by two op-
posite quaternions). Each contribution is weighted by a confidence
value derived from B, defined, for each node in 𝑆𝑅 , as the sum of
all confidence values mapped on that node by B.

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

SkinMixer: Blending 3D Animated Models • 250:11

Fig. 13. Input models are not required to be watertight and can contain
meshing artifacts such as non-manifold edges, as shown in the insets.

The rationale of this procedure is to favor the selection of a
frame where the parts that have been substituted have a behavioral
similarity with the parts that substituted them.

Temporal continuity. We favor the selection of keyframes result-
ing in temporal continuity by evaluating the keyframe-to-keyframe
distance between the currently processed frame 𝑘𝑖 and its candi-
date 𝑘 𝑗 , and between the few subsequent and precedent keyframes
from the respective animations. In our experiments, we add the
distances between the two keyframes at temporal distance 1 step
with a weight of 0.2 and the two keyframes at temporal distance
two steps with a weight of 0.1. We improve the temporal continu-
ity of the results by performing a light final temporal smoothing
in the keyframes of the resulting animations. Standard keyframe
interpolation in the downstream application mechanisms improves
temporal continuity in the final results.

9 RESULTS
We integrated our system into an interactive editor that allows the
artist to control the result of the mixing operations (see attached
videos). The editing system offers the artist an instrument to attach
new portions of existing skeletons on top of others or to replace a
part of an existing skeleton with the one taken from a second model.
The user can combine multiple such mixing operations; the system
quickly previews the final result. This preview does not include any
mixing steps, yet it is still a valuable tool to promptly grasp the
final result. After the preview, the system produces the final result,
consisting of a rigged, skinned, and animated high-quality mesh,
which can be inspected (using any newly produced animations).

Our interactive approach allows the user to easily navigate among
similar possibilities. For example, the accompanying video shows
a sequence where the user tries and discards a small succession
of attempts, resulting from slightly different edits (such as the se-
lection of nearby bones for the attaching point) before landing on
the preferred solution. All such operations generate models with
a comparable quality (e.g., in terms of meshing quality), so user
discretion is the deciding factor.

We performed our tests on a laptop computer with a Ryzen9, 3.3
GHz processor with 16GB of RAM. We used OpenVDB [Museth
et al. 2013] for the operations and Gurobi [Gurobi Optimization
2018] to solve the linear-integer problems involved in the phase of

remeshing (see [Nuvoli et al. 2019] for details). Our implementation
used also other external processing libraries including VCG Library
[CNR 2013], CG3Lib [Muntoni and Nuvoli 2021], libigl [Jacobson
et al. 2016] and Eigen [Guennebaud et al. 2014].

Fig. 14 shows the input models and their recombination, showing,
for each result, one final pose captured from one of the synthesized
animations. Fig. 15 shows an additional model in different poses.
Differently from [Nuvoli et al. 2019], our system does not make any
assumptions on the input mesh and can manage open, non-manifold
meshes, multiple components, and non-quadrilateral elements. In
the additional materials, we provide 35 animations showing the
animations of 9 models that have been obtained, combining 16
different starting characters, featuringmany different characteristics
from models that have non-manifold artifacts (see Fig. 13).
The generation of these results required, on average, about 12

seconds, with a minimum and maximum running time of respec-
tively 3 and 42 seconds. The running time mainly depends on the
number of operations performed, the voxel size, and the intersected
area’s size. The most expensive procedures concerning time and
memory footprints are extracting and blending the fields.

Evaluation of produced skinning weights. Fig. 16 shows a compar-
ison of the skinning weights obtained with our blending method
and the skinning weights generated by the automatic tool provided
in Maya [Autodesk 2019]. In each figure, we used Dual Quaternion
Skinning [Kavan et al. 2007] to compute the mesh pose. As expected,
our method preserves as much as possible the original skinning
weights provided by the artist and smoothly blends in between,
generating no artifacts. We believe that the advantages provided
by our method will be even more evident in the cases where the
skinning weights are not directly related to the distance between
the surface and the closest point on the skeleton, which is a common
scenario for video game assets. Currently, no method is capable of
a context-aware mix between weights and mesh, so the complete
re-assignment of skinning weights is the only available option.

9.1 Comparison with traditional asset production pipelines
To get a first indication of the potential impact of our integrated
semiautomatic technique, we hired a professional digital artist to
obtain a comparable result with standard techniques. The example
chosen for this experiment is the one visible in Fig. 1 and Fig. 3.
The artist (credited at the end) has been provided the same initial
assets and tasked to obtain the result visible in the images described
verbally. The entire session has been recorded, and a time-lapse is
provided in additional material. Using a standard digital produc-
tion suite [Autodesk 2019], the artist proceeded to manually fuse
and retopologize the mesh, combine the two skeletons, refine the
skinning weights, and finally, key-frame edit one single walking
animation. The process took 5.5 hours of high-paced work, includ-
ing 2.5 hours of interaction with the editing system. In comparison,
with our system, around 2 minutes of user interaction, plus less
than 15 minutes of automatic computation, produced a comparable
result, endowed with an entire set of animations (the union of the
complete sets of animations from both original models). The pro-
cessing time was mostly spent on producing the set of animations,
with the re-meshed and skinned model available for inspection after

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

250:12 • S. Nuvoli, N. Pietroni, P. Cignoni, R. Scateni, and M. Tarini

Fig. 14. Models obtained by mixing different inputs in different ways. For each model, we show the inputs in rest pose and the result in one animated pose.

about 10 seconds. The interaction time included a few attempted,
previewed, and rejected mixing operations in the search for the
desired effect. A preliminary assessment by the artist indicates that
our result is directly usable.

10 CONCLUSIONS
Given the high quality of the generated results, we believe our
methods could significantly impact the entertainment industry. In-
tegrated into current software for 3D modeling, it would provide
a powerful tool for artists to reuse parts of their well-designed
characters automatically.

Our method takes as input a typical asset used in the videogames
or animation industry, with no assumption on the structure of the
input meshes, their animation, or the details of their creation (see
Fig. 13). We defined a new operation that considers both rigged mod-
els and their animation as compact tuples that can be recombined
to create new ones. The result is a new complete asset, including
geometry, rigging, and a new animation set, ready to be integrated
into games or other immersive applications.

Despite current limitations, our system can lead to a new direction
for creating models in the industry, significantly reducing the entire
process’s cost.
We believe that modeling-by-composition will soon consolidate

as a new strategy for content creation as it is the perfect application
domain for deep learning techniques.

10.1 Limitations and future work
Our method suffers from various limitations.

Loss of meshing symmetry. Our approach is not guaranteed to
reproduce input symmetries (e.g., bilateral symmetries) in the output
meshing, as visible, for example, in the closeup in Fig. 1. Loss of
symmetry is a recurring limitation in many automatic remeshing
algorithms [Bommes et al. 2013], even if countermeasures have been
proposed and could be employed [Panozzo et al. 2012].

Geometric problems. Our geometric fusion and skinning transfer
strategy work best when blending surfaces with similar orientations.
When the orientation differs drastically, the computation of the SDF

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

SkinMixer: Blending 3D Animated Models • 250:13

Fig. 15. We can create a new hybrid animated model – a mermaid – using
the upper part and upper limbs of a female humanoid and the tail and fins
of a dolphin. The final result, available in the supplementary material video,
is a mermaid with smooth animations ready to be used.

might produce unexpected geometry and the associated skinning
weights (see Fig. 17). While a user can easily circumvent this by
controlling the shape of the fused figure using the preliminary
posing (Sec. 4.1 and Fig. 3), this observation can be exploited to
attempt to automatize this phase. Another countermeasure could be
to adopt more sophisticated gradient-based operators to composite
SDFs [Angles et al. 2017].

Limitations of animations. One strength of our unified approach
is that it produces ready assets, which include animations for the
new rig. Specifically, the new animations are obtained by completing
existing animations, initially designed for either rig, with accom-
panying motions extracted from an animation initially designed
for the other rig; in other words, instead of attempting to synthe-
size any new motion, we only recombine the input hand designed,

Ours Automatic generation

Fig. 16. The figure shows a comparison between the rig recombined with
our method (left) with the automatic skinning made by commercial soft-
ware (right). Recomputing skinning weights from scratch can reveal visible
artifacts (we highlighted them with arrows). These artifacts might be even
more extreme in the case of non-humanoid characters.

high-quality animations. This approach has both obvious benefits
and limitations. In many cases, the produced animations are usable

Fig. 17. Blending between two parts having significantly different orien-
tations may produce artifacts in the interconnecting surface (top) and the
model deformation (bottom).

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

250:14 • S. Nuvoli, N. Pietroni, P. Cignoni, R. Scateni, and M. Tarini

Fig. 18. A few frames of a swimming animation produced by our method
for a creature that we obtained by attaching the upper torso of a model to
another one. The method fails to produce a viable swim animation for the
resulting six-limbed creature, despite one of the input assets (but not the
other) coming with its swim animation.

either directly or as a starting point for further editing (see attached
video); it cannot, however, be expected to divine new complex be-
havior of the new creature when they cannot be extracted from
either set of motions. We depict one example of such failure in Fig-
ure 18, where the system fails to believably complete a swimming
animation of the output creature (as the second model had no swim-
ming animation, and a six-limbed creature would probably swim in
a completely different way).

Self-intersections during animations. Even if
the initial animation does not self-intersect, we
cannot guarantee that the final result will be
free of self-intersection (see the inset). Indeed
we do not perform any check nor attempt to
solve that issue. A possible solution to this issue
could be choosing only the frames that do not

generate self-intersecting models.

Processing speed. The implementation is currently not real-time.
Making our method interactive by improving our algorithms’ effi-
ciency or engineering the implementation would ease the integra-
tion on real industrial pipelines. The current implementation offers
considerable space for distance field representation and manipula-
tion optimization.

ACKNOWLEDGMENTS
We thank Alexandra Neville for the professional expertise and the
help in performing the experiment outlined in Section 9.1. Stefano
Nuvoli gratefully acknowledges Sardinia Regional Government for
the financial support of his Ph.D. scholarship (P.O.R. Sardegna F.S.E.1
Operational Programme of the Autonomous Region of Sardinia, Eu-
ropean Social Fund 2007-2013 - Axis IV Human Resources, Objective
l.3, Line of Activity l.3.1.).

REFERENCES
Kfir Aberman, Yijia Weng, Dani Lischinski, Daniel Cohen-Or, and Baoquan Chen. 2020.

Unpaired Motion Style Transfer from Video to Animation. ACM Trans. Graph. 39, 4,
Article 64 (2020), 12 pages. https://doi.org/10.1145/3386569.3392469

Adib Akl, Charles Yaacoub, Marc Donias, Jean-Pierre Da Costa, and Christian Germain.
2018. A survey of exemplar-based texture synthesis methods. Computer Vision and
Image Understanding 172 (2018), 12–24. https://doi.org/10.1016/j.cviu.2018.04.001

Baptiste Angles, Marco Tarini, Brian Wyvill, Loïc Barthe, and Andrea Tagliasacchi.
2017. Sketch-Based Implicit Blending. ACM Trans. Graph. 36, 6, Article 181 (2017),
13 pages. https://doi.org/10.1145/3130800.3130825

Autodesk. 2019. Maya.

Seungbae Bang and Sung-Hee Lee. 2018. Spline Interface for Intuitive Skinning Weight
Editing. ACM Trans. Graph. 37, 5, Article 174 (2018), 14 pages. https://doi.org/10.
1145/3186565

Ilya Baran and Jovan Popović. 2007. Automatic Rigging and Animation of 3D Characters.
ACM Trans. Graph. 26, 3 (2007), 72—-es. https://doi.org/10.1145/1276377.1276467

Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. W. Levin, and Alec Jacobson. 2018.
Fast Winding Numbers for Soups and Clouds. ACM Trans. Graph. 37, 4, Article 43
(2018), 12 pages. https://doi.org/10.1145/3197517.3201337

Adrien Bernhardt, Loïc Barthe, Marie-Paule Cani, and Brian Wyvill. 2013. Implicit
Blending Revisited. Comput. Graph. Forum 29, 2 (2013), 367–376. https://doi.org/10.
1111/j.1467-8659.2009.01606.x

Stephan Bischoff and Leif Kobbelt. 2005. Structure Preserving CAD Model Repair.
Comput. Graph. Forum 24, 3 (2005), 527–536. https://doi.org/10.1111/j.1467-8659.
2005.00878.x

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Cláudio T. Silva, Marco Tarini,
and Denis Zorin. 2013. Quad-Mesh Generation and Processing: A Survey. Comput.
Graph. Forum 32, 6 (2013), 51–76. https://doi.org/10.1111/cgf.12014

Mazen Borno, Ludovic Righetti, Michael Black, Scott Delp, Eugene Fiume, and Javier
Romero. 2018. Robust Physics-based Motion Retargeting with Realistic Body Shapes.
Comput. Graph. Forum 37, 8 (2018), 81–92. https://doi.org/10.1111/cgf.13514

Péter Borosán, Ming Jin, Doug DeCarlo, Yotam Gingold, and Andrew Nealen. 2012.
RigMesh: Automatic Rigging for Part-Based Shape Modeling and Deformation. ACM
Trans. Graph. 31, 6, Article 198 (2012), 9 pages. https://doi.org/10.1145/2366145.
2366217

Sofien Bouaziz, Yangang Wang, and Mark Pauly. 2013. Online Modeling for Realtime
Facial Animation. ACM Trans. Graph. 32, 4, Article 40 (2013), 10 pages. https:
//doi.org/10.1145/2461912.2461976

Adnane Boukhayma, Jean-Sébastien Franco, and Edmond Boyer. 2017. Surface
Motion Capture Transfer with Gaussian Process Regression. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3558–3566.
https://doi.org/10.1109/CVPR.2017.379

Marcel Campen and Leif Kobbelt. 2010. Exact and Robust (Self-)Intersections for
Polygonal Meshes. Comput. Graph. Forum 29, 2 (2010), 397–406. https://doi.org/10.
1111/j.1467-8659.2009.01609.x

Siddhartha Chaudhuri, Daniel Ritchie, Kai Xu, and Hao (Richard) Zhang. 2019. Learning
Generative Models of 3D Structures. In Eurographics 2019 - Tutorials, Wenzel Jakob
and Enrico Puppo (Eds.). The Eurographics Association. https://doi.org/10.2312/
egt.20191038

Zhiqin Chen and Hao Zhang. 2019. Learning Implicit Fields for Generative Shape Mod-
eling. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 5939–5948. https://doi.org/10.1109/CVPR.2019.00609

Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene. 2020. Fast and
Robust Mesh Arrangements Using Floating-Point Arithmetic. ACM Trans. Graph.
39, 6, Article 250 (2020), 16 pages. https://doi.org/10.1145/3414685.3417818

Kwang-Jin Choi and Hyeong-Seok Ko. 2000. Online motion retargetting. The Journal
of Visualization and Computer Animation 11, 5 (2000), 223–235.

CNR. 2013. The Visualization and Computer Graphics Library. http://vcg.isti.cnr.it/
vcglib/

Blender Online Community. 2018. Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam.

Brian Curless and Marc Levoy. 1996. A Volumetric Method for Building Complex
Models from Range Images. In Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’96). Association for Computing
Machinery, New York, NY, USA, 303–312. https://doi.org/10.1145/237170.237269

Olivier Dionne and Martin de Lasa. 2013. Geodesic Voxel Binding for Production Char-
acter Meshes. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (Anaheim, California) (SCA ’13). Association for Computing
Machinery, New York, NY, USA, 173–180. https://doi.org/10.1145/2485895.2485919

Noah Duncan, Lap-Fai Yu, and Sai-Kit Yeung. 2016. Interchangeable Components for
Hands-on Assembly Based Modelling. ACM Trans. Graph. 35, 6, Article 234 (2016),
14 pages. https://doi.org/10.1145/2980179.2982402

Thomas A. Funkhouser, Michael M. Kazhdan, Philip Shilane, Patrick Min, William
Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David P. Dobkin. 2004. Modeling by
example. ACM Trans. Graph. 23, 3 (2004), 652–663.

Lin Gao, Jie Yang, Yi-Ling Qiao, Yu-Kun Lai, Paul L. Rosin, Weiwei Xu, and Shihong
Xia. 2018. Automatic Unpaired Shape Deformation Transfer. ACM Trans. Graph. 37,
6, Article 237 (2018), 15 pages. https://doi.org/10.1145/3272127.3275028

Michael Gleicher. 1998. Retargetting Motion to New Characters. In Proceedings of the
25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’98). Association for Computing Machinery, New York, NY, USA, 33–42. https:
//doi.org/10.1145/280814.280820

Olivier Gourmel, Loic Barthe, Marie-Paule Cani, Brian Wyvill, Adrien Bernhardt, Math-
ias Paulin, and Herbert Grasberger. 2013. A Gradient-Based Implicit Blend. ACM
Trans. Graph. 32, 2, Article 12 (2013), 12 pages. https://doi.org/10.1145/2451236.
2451238

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

https://doi.org/10.1145/3386569.3392469
https://doi.org/10.1016/j.cviu.2018.04.001
https://doi.org/10.1145/3130800.3130825
https://doi.org/10.1145/3186565
https://doi.org/10.1145/3186565
https://doi.org/10.1145/1276377.1276467
https://doi.org/10.1145/3197517.3201337
https://doi.org/10.1111/j.1467-8659.2009.01606.x
https://doi.org/10.1111/j.1467-8659.2009.01606.x
https://doi.org/10.1111/j.1467-8659.2005.00878.x
https://doi.org/10.1111/j.1467-8659.2005.00878.x
https://doi.org/10.1111/cgf.12014
https://doi.org/10.1111/cgf.13514
https://doi.org/10.1145/2366145.2366217
https://doi.org/10.1145/2366145.2366217
https://doi.org/10.1145/2461912.2461976
https://doi.org/10.1145/2461912.2461976
https://doi.org/10.1109/CVPR.2017.379
https://doi.org/10.1111/j.1467-8659.2009.01609.x
https://doi.org/10.1111/j.1467-8659.2009.01609.x
https://doi.org/10.2312/egt.20191038
https://doi.org/10.2312/egt.20191038
https://doi.org/10.1109/CVPR.2019.00609
https://doi.org/10.1145/3414685.3417818
http://vcg.isti.cnr.it/vcglib/
http://vcg.isti.cnr.it/vcglib/
https://doi.org/10.1145/237170.237269
https://doi.org/10.1145/2485895.2485919
https://doi.org/10.1145/2980179.2982402
https://doi.org/10.1145/3272127.3275028
https://doi.org/10.1145/280814.280820
https://doi.org/10.1145/280814.280820
https://doi.org/10.1145/2451236.2451238
https://doi.org/10.1145/2451236.2451238

SkinMixer: Blending 3D Animated Models • 250:15

Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran Popović. 2004. Style-
Based Inverse Kinematics. ACM Trans. Graph. 23, 3 (2004), 522—-531. https:
//doi.org/10.1145/1015706.1015755

Gael Guennebaud, Benoit Jacob, et al. 2014. Eigen: a C++ linear algebra library. http:
//eigen.tuxfamily.org

LLC Gurobi Optimization. 2018. Gurobi Optimizer Reference Manual.
Chris Hecker, Bernd Raabe, Ryan W. Enslow, John DeWeese, Jordan Maynard, and Kees

van Prooijen. 2008. Real-Time Motion Retargeting to Highly Varied User-Created
Morphologies. In ACM SIGGRAPH 2008 Papers (Los Angeles, California) (SIGGRAPH
’08). Association for Computing Machinery, New York, NY, USA, Article 27, 11 pages.
https://doi.org/10.1145/1399504.1360626

Daniel Holden, Jun Saito, and Taku Komura. 2016. A Deep Learning Framework for
Character Motion Synthesis and Editing. ACM Trans. Graph. 35, 4, Article 138 (2016),
11 pages. https://doi.org/10.1145/2897824.2925975

Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic
Weights for Real-Time Deformation. ACM Trans. Graph. 30, 4, Article 78 (2011),
8 pages. https://doi.org/10.1145/2010324.1964973

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust inside-outside
segmentation using generalized winding numbers. ACM Trans. Graph. 32, 4, Article
33 (2013), 12 pages. https://doi.org/10.1145/2461912.2461916

Alec Jacobson, Daniele Panozzo, et al. 2016. libigl: A simple C++ geometry processing
library. https://libigl.github.io

Won-Seob Jang, Won-Kyu Lee, In-Kwon Lee, and J. Lee. 2008. Enriching a motion
database by analogous combination of partial human motions . Vis. Comput. 24
(2008), 271–280. https://doi.org/10.1007/s00371-007-0200-1

R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero,
Niloy J. Mitra, and Daniel Ritchie. 2020. ShapeAssembly: Learning to Generate
Programs for 3D Shape Structure Synthesis . ACM Trans. Graph. 39, 6, Article 234
(2020), 20 pages. https://doi.org/10.1145/3414685.3417812

Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. 2007. Skinning with
Dual Quaternions. In Proceedings of the 2007 Symposium on Interactive 3D Graphics
and Games (Seattle, Washington) (I3D ’07). Association for Computing Machinery,
New York, NY, USA, 39–46. https://doi.org/10.1145/1230100.1230107

Ladislav Kavan and Olga Sorkine. 2012. Elasticity-Inspired Deformers for Character
Articulation. ACM Trans. Graph. 31, 6, Article 196 (2012), 8 pages. https://doi.org/
10.1145/2366145.2366215

Vladislav Kreavoy, Dan Julius, and Alla Sheffer. 2007. Model Composition from In-
terchangeable Components. In 15th Pacific Conference on Computer Graphics and
Applications (PG’07). 129–138. https://doi.org/10.1109/PG.2007.40

Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan, and Kun Zhou. 2019.
NeuroSkinning: Automatic Skin Binding for Production Characters with Deep
Graph Networks . ACM Trans. Graph. 38, 4, Article 114 (2019), 12 pages. https:
//doi.org/10.1145/3306346.3322969

AndreaMaggiordomo, Paolo Cignoni, andMarco Tarini. 2021. Texture Defragmentation
for Photo-Reconstructed 3D Models. Comput. Graph. Forum 40, 2 (2021), 65–78.
https://doi.org/10.1111/cgf.142615

Giorgio Marcias, Nico Pietroni, Daniele Panozzo, Enrico Puppo, and Olga Sorkine-
Hornung. 2013. Animation-Aware Quadrangulation. Comput. Graph. Forum 32, 5
(2013), 167–175. https://doi.org/10.1111/cgf.12183

Andelo Martinovic and Luc Van Gool. 2013. Bayesian Grammar Learning for Inverse
Procedural Modeling. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 201–208. https://doi.org/10.1109/CVPR.2013.33

Simone Melzi, Riccardo Marin, Pietro Musoni, Filippo Bardon, Marco Tarini, and Um-
berto Castellani. 2020. Intrinsic/extrinsic embedding for functional remeshing of 3D
shapes. Computers & Graphics 88 (2020), 1–12. https://doi.org/10.1016/j.cag.2020.02.
002

Eray Molla, Henrique Galvan Debarba, and Ronan Boulic. 2018. Egocentric Mapping of
Body Surface Constraints. IEEE Transactions on Visualization and Computer Graphics
24, 7 (2018), 2089–2102. https://doi.org/10.1109/TVCG.2017.2708083

Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. 2006.
Procedural Modeling of Buildings. ACM Trans. Graph. 25, 3 (2006), 614—-623.
https://doi.org/10.1145/1141911.1141931

Alessandro Muntoni and Stefano Nuvoli. 2021. CG3Lib: A C++ geometry processing
library. https://doi.org/10.5281/zenodo.4431777

Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson, Mihai Alden, Peter
Cucka, David Hill, and Andrew Pearce. 2013. OpenVDB: An Open-Source Data
Structure and Toolkit for High-Resolution Volumes . InACM SIGGRAPH 2013 Courses
(Anaheim, California) (SIGGRAPH ’13). Association for Computing Machinery, New
York, NY, USA, Article 19, 1 pages. https://doi.org/10.1145/2504435.2504454

Stefano Nuvoli, Alex Hernandez, Claudio Esperança, Riccardo Scateni, Paolo Cignoni,
and Nico Pietroni. 2019. QuadMixer: Layout Preserving Blending of Quadrilateral
Meshes. ACM Trans. Graph. 38, 6, Article 180 (2019), 13 pages. https://doi.org/10.
1145/3355089.3356542

Junjun Pan, Lijuan Chen, Yuhan Yang, and Hong Qin. 2018. Automatic Skinning
and Weight Retargeting of Articulated Characters Using Extended Position-Based
Dynamics . Vis. Comput. 34, 10 (2018), 1285—-1297. https://doi.org/10.1007/s00371-

017-1413-6
Daniele Panozzo, Yaron Lipman, Enrico Puppo, and Denis Zorin. 2012. Fields on

Symmetric Surfaces. ACM Trans. Graph. 31, 4, Article 111 (2012), 12 pages. https:
//doi.org/10.1145/2185520.2185607

Yoav I. H. Parish and Pascal Müller. 2001. Procedural Modeling of Cities. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH ’01). Association for Computing Machinery, New York, NY, USA, 301–308.
https://doi.org/10.1145/383259.383292

Jeong Joon Park, Peter R. Florence, Julian Straub, Richard A. Newcombe, and S. Love-
grove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation . In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 165–174. https://doi.org/10.1109/CVPR.2019.00025

Darko Pavic, Marcel Campen, and Leif Kobbelt. 2010. Hybrid Booleans. Comput. Graph.
Forum 29, 1 (2010), 75–87. https://doi.org/10.1111/j.1467-8659.2009.01545.x

Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini.
2021. Reliable Feature-Line Driven Quad-Remeshing. ACM Trans. Graph. 40, 4,
Article 155 (2021), 17 pages. https://doi.org/10.1145/3450626.3459941

Daniel Ritchie, Sarah Jobalia, and Anna Thomas. 2018. Example-based Authoring of
Procedural Modeling Programs with Structural and Continuous Variability . Comput.
Graph. Forum 37, 2 (2018), 401–413. https://doi.org/10.1111/cgf.13371

Christian Roessl, Leif Kobbelt, and Hans-Peter Seidel. 2000. Extraction of feature lines
on triangulated surfaces using morphological operators . In Papers from 2000 AAAI
Spring Symposium: Smart Graphics. AAAI, 71–75.

Ryan Schmidt and Karan Singh. 2010. Meshmixer: An Interface for Rapid Mesh Com-
position. In ACM SIGGRAPH 2010 Talks (Los Angeles, California) (SIGGRAPH ’10).
ACM, New York, NY, USA, Article 6, 1 pages.

Andrei Sharf, Marina Blumenkrants, Ariel Shamir, and Daniel Cohen-Or. 2006. Snap-
Paste: an interactive technique for easy mesh composition. Vis. Comput. 22, 9-11
(2006), 835–844.

Karan Singh and Richard E. Parent. 2001. Joining polyhedral objects using implicitly
defined surfaces. Vis. Comput. 17, 7 (2001), 415–428. https://doi.org/10.1007/
s003710100115416

Sebastian Starke, Yiwei Zhao, Fabio Zinno, and Taku Komura. 2021. Neural Animation
Layering for Synthesizing Martial Arts Movements. ACM Trans. Graph. 40, 4, Article
92 (2021), 16 pages. https://doi.org/10.1145/3450626.3459881

Robert W. Sumner and Jovan Popović. 2004. Deformation Transfer for Triangle Meshes.
ACM Trans. Graph. 23, 3 (2004), 399—-405. https://doi.org/10.1145/1015706.1015736

Sarah Taylor, Taehwan Kim, Yisong Yue, Moshe Mahler, James Krahe, Anastasio Garcia
Rodriguez, Jessica Hodgins, and Iain Matthews. 2017. A Deep Learning Approach
for Generalized Speech Animation. ACM Trans. Graph. 36, 4, Article 93 (2017),
11 pages. https://doi.org/10.1145/3072959.3073699

Ruben Villegas, Jimei Yang, Duygu Ceylan, and Honglak Lee. 2018. Neural Kinematic
Networks for Unsupervised Motion Retargetting. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 8639–8648. https://doi.org/10.
1109/CVPR.2018.00901

The Foundry Visionmongers. 2018. Modo 12.1.
Jungdam Won and Jehee Lee. 2019. Learning Body Shape Variation in Physics-Based

Characters. ACM Trans. Graph. 38, 6, Article 207 (2019), 12 pages. https://doi.org/
10.1145/3355089.3356499

Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B. Tenen-
baum. 2016. Learning a Probabilistic Latent Space of Object Shapes via 3D
Generative-Adversarial Modeling. In Proceedings of the 30th International Conference
on Neural Information Processing Systems (NIPS’16). Curran Associates Inc., Red
Hook, NY, USA, 82–90.

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh. 2020.
RigNet: Neural Rigging for Articulated Characters. ACM Trans. Graph. 39, 4, Article
58 (2020), 14 pages. https://doi.org/10.1145/3386569.3392379

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, and Karan Singh. 2019. Predicting Anima-
tion Skeletons for 3D Articulated Models via Volumetric Nets . In 2019 International
Conference on 3D Vision (3DV). 298–307. https://doi.org/10.1109/3DV.2019.00041

Kangxue Yin, Zhiqin Chen, Siddhartha Chaudhuri, Matthew Fisher, Vladimir G. Kim,
and Hao Zhang. 2020. COALESCE: Component Assembly by Learning to Synthesize
Connections. In 2020 International Conference on 3D Vision (3DV). 61–70. https:
//doi.org/10.1109/3DV50981.2020.00016

Juyong Zhang, Chunlin Wu, Jianfei Cai, Jianmin Zheng, and Xue-Cheng Tai. 2010.
Mesh Snapping: Robust Interactive Mesh Cutting Using Fast Geodesic Curvature
Flow . Comput. Graph. Forum 29, 2 (2010), 517–526. https://doi.org/10.1111/j.1467-
8659.2009.01621.x

Jiaran Zhou, Marcel Campen, Denis Zorin, Changhe Tu, and Cláudio T. Silva. 2018.
Quadrangulation of non-rigid objects using deformation metrics. Computer Aided
Geometric Design 62 (2018), 3–15. https://doi.org/10.1016/j.cagd.2018.03.003

Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Renjiao Yi, and Hao Zhang. 2018.
SCORES: Shape Composition with Recursive Substructure Priors. ACM Trans.
Graph. 37, 6, Article 211 (2018), 14 pages. https://doi.org/10.1145/3272127.3275008

ACM Trans. Graph., Vol. 41, No. 6, Article 250. Publication date: November 2022.

https://doi.org/10.1145/1015706.1015755
https://doi.org/10.1145/1015706.1015755
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.1145/1399504.1360626
https://doi.org/10.1145/2897824.2925975
https://doi.org/10.1145/2010324.1964973
https://doi.org/10.1145/2461912.2461916
https://libigl.github.io
https://doi.org/10.1007/s00371-007-0200-1
https://doi.org/10.1145/3414685.3417812
https://doi.org/10.1145/1230100.1230107
https://doi.org/10.1145/2366145.2366215
https://doi.org/10.1145/2366145.2366215
https://doi.org/10.1109/PG.2007.40
https://doi.org/10.1145/3306346.3322969
https://doi.org/10.1145/3306346.3322969
https://doi.org/10.1111/cgf.142615
https://doi.org/10.1111/cgf.12183
https://doi.org/10.1109/CVPR.2013.33
https://doi.org/10.1016/j.cag.2020.02.002
https://doi.org/10.1016/j.cag.2020.02.002
https://doi.org/10.1109/TVCG.2017.2708083
https://doi.org/10.1145/1141911.1141931
https://doi.org/10.5281/zenodo.4431777
https://doi.org/10.1145/2504435.2504454
https://doi.org/10.1145/3355089.3356542
https://doi.org/10.1145/3355089.3356542
https://doi.org/10.1007/s00371-017-1413-6
https://doi.org/10.1007/s00371-017-1413-6
https://doi.org/10.1145/2185520.2185607
https://doi.org/10.1145/2185520.2185607
https://doi.org/10.1145/383259.383292
https://doi.org/10.1109/CVPR.2019.00025
https://doi.org/10.1111/j.1467-8659.2009.01545.x
https://doi.org/10.1145/3450626.3459941
https://doi.org/10.1111/cgf.13371
https://doi.org/10.1007/s003710100115416
https://doi.org/10.1007/s003710100115416
https://doi.org/10.1145/3450626.3459881
https://doi.org/10.1145/1015706.1015736
https://doi.org/10.1145/3072959.3073699
https://doi.org/10.1109/CVPR.2018.00901
https://doi.org/10.1109/CVPR.2018.00901
https://doi.org/10.1145/3355089.3356499
https://doi.org/10.1145/3355089.3356499
https://doi.org/10.1145/3386569.3392379
https://doi.org/10.1109/3DV.2019.00041
https://doi.org/10.1109/3DV50981.2020.00016
https://doi.org/10.1109/3DV50981.2020.00016
https://doi.org/10.1111/j.1467-8659.2009.01621.x
https://doi.org/10.1111/j.1467-8659.2009.01621.x
https://doi.org/10.1016/j.cagd.2018.03.003
https://doi.org/10.1145/3272127.3275008

	Abstract
	1 Introduction
	1.1 Problem definition and challenges

	2 Related Work
	2.1 Mix-and-match of Geometries
	2.2 Mix-and-match of Semi-regular Meshes
	2.3 Data-Driven Mesh Synthesis
	2.4 Automatic and Assisted Creation of Skinning Weights
	2.5 Animation Synthesis
	2.6 Animation Retargeting

	3 Method overview
	4 Defining the operation
	4.1 Preliminary positioning and deformation

	5 Determining a bone-to-bone mapping
	5.1 Bone-to-bone similarity measure

	6 Producing the new surface
	6.1 Definition of the interconnecting implicit surface

	7 Determining the new skinning weights and other per-vertex quantities
	7.1 Skinning weights
	7.2 Colors and texture

	8 Determining the new animations
	8.1 Completing an animation

	9 Results
	9.1 Comparison with traditional asset production pipelines

	10 Conclusions
	10.1 Limitations and future work

	Acknowledgments
	References

