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Abstract: 

Background and Objective: Breast cancer is the most commonly occurring cancer among 

women, which contributes to the global death rate. The key to increasing the survival rate of 

affected patients is early diagnosis along with appropriate treatments. Manual methods for breast 

cancer diagnosis fail due to human errors, inaccurate diagnoses, and are time-consuming when 

demands are high. Intelligent systems based on Artificial Neural Network (ANN) for automated 

breast cancer diagnosis are powerful due to their strong decision-making capabilities in 

complicated cases. Artificial Bee Colony, Artificial Immune System, and Bacterial Foraging 

Optimization are swarm intelligence algorithms that solve combinatorial optimization problems. 

This paper proposes two novel hybrid Artificial Bee Colony (ABC) optimization algorithms that 

overcome the demerits of standard ABC algorithms. First, this paper proposes a hybrid ABC 

approach called HABC, in which the standard ABC optimization is hybridized with a modified 

clonal selection algorithm of the Artificial Immune System that eliminates the poor exploration 

capabilities of standard ABC optimization. Further, this paper proposes a novel hybrid Artificial 

Bee Colony (Hybrid ABC) optimization where the strong explorative capabilities of the 

chemotaxis phase of the bacterial foraging optimization are integrated with a spiral model-based 

exploitative phase of the ABC by which the proposed Hybrid ABC overcomes the demerits of 

poor exploration and exploitation of the standard ABC algorithm. 

Methods: In this work, the two proposed hybrid approaches were used in concurrent feature 

selection and parameter optimization of an ANN model. The proposed algorithm is implemented 

using various back-propagation algorithms, including resilient back-propagation (HABC-RP and 

Hybrid ABC-RP), Levenberg Marquart (HABC-LM and Hybrid ABC-LM), and momentum-

based gradient descent (HABC-MGD and Hybrid ABC-GD) for parameter tuning of ANN. The 

Wisconsin breast cancer dataset was used to evaluate the performance of the proposed algorithms 

in terms of accuracy, complexity, and computational time. 



 

 

Results: The mean accuracy of the proposed HABC-RP was 99.14% and 99.54% for Hybrid 

ABC which is better than the results found in the existing literature. HABC-RP attained a 

sensitivity of 98.32%, a specificity of 99.63%, and a precision of 99.38% whereas Hybrid ABC 

attained sensitivity of 99.08% and Specificity of 99.81%. 

Conclusions: HABC-RP and Hybrid ABC-RP yielded high accuracy with a low complexity ANN 

structure compared to other variants. After evaluation, interestingly it is found that the Hybrid 

ABC-RP has achieved the highest mean accuracy of 99.54% with low complexity of 10.25 mean 

connections when compared to other variants proposed in this paper. It can be concluded that the 

concurrent selection of input features and tuning of parameters of ANN plays a vital role in 

increasing the accuracy of a breast cancer diagnosis. The proposed HABC-RP and Hybrid ABC-

RP showed better results when compared to the existing breast cancer diagnosis systems taken for 

comparison. In the future, the proposed two-hybrid approaches can be used to generate optimal 

thresholds for the segmentation of tumors in abnormal images. HABC and Hybrid ABC can be 

used for tuning the parameters of various classifiers.   

Keywords: Neural networks, Bacterial Foraging Optimization, Artificial Bee Colony, Artificial 

Immune Systems, Levenberg Marquardt backpropagation, Resilient backpropagation. 

1. Introduction 

Breast Cancer at its early stages has to be diagnosed to have control over the increased 

mortality rate of women. Annually, millions of invasive breast cancers cases are occurring every 

year in which 400,000 women expire because of breast cancers according to the World Health 

Organization (WHO) [1]. According to 2019 statistics, 12.4% of women population were affected 

in the USbecause of breast cancers. In 2020, 276,480invasive breast cancer patients are expected 

and 48,530 new non-invasive cases are expected [2]. India registers 28 to 35 % of affected women 

cities like Chennai, Bhopal, Mumbai, Delhi, Bangalore Ahmadabad [3].  

Early detection plays a major impact on the prognosis of breast cancer [4]. Screening 

methods for breast cancer diagnosis are Magnetic Resonance Imaging (MRI), clinical check-

ups,self-checks, ultrasound scanning, mammography and biopsies for suspected cases [5]. 

Traditional methods for breast cancer detection fails because of the factors such as high time 

consumption and inaccuracy in diagnosing complicated cases. Hence, automated methods 

eliminate the unwanted biopsies, unwanted treatments and reduce the cost incurred [6]. ANN-

based intelligent systems are used for effective and automatic breast cancer diagnosis [7]. Its 



 

 

powerful decision-making capabilities increase the prediction rate so that it is used for diagnosing 

various diseases [8]. ANN has predominantly outperformed statistical techniques in classifying 

patterns for real-time applications [9]. 

The algorithms that are inspired by the natural evolution process is the Evolutionary 

Algorithms (EA). The commonly used EA that works under the principle of survival to fittest is 

the Genetic algorithm (GA) [10], Differential Evolution (DE) [11], Evolution Strategy (ES) [12]. 

Enhancements have been made to the standard EA by many researchers. An integrated algorithm 

called ES-DE where DE is coupled with eagle strategy is proposed to have an improved search 

process for constrained problems [13]. A biography-based EA is proposed by Simon, that can be 

used for recombination and crossover of GA [14]. Another modified variant of GA is proposed for 

called an Adaptive Network-based Fuzzy Inference Systems [15].   

Swarm intelligence is a sub class of metaheuristics that can be used in solving various 

optimization problems of real-time applications as demonstrated in [16, 17]. The common swarm 

intelligence approaches are the Ant colony Optimization (ACO) inspired by the foraging nature of 

ants [18], Particle Swarm Optimization (PSO) inspired by the social behaviour of birds or fishes 

[19] and can be used to solve various optimization problems as demonstrated in [20]. Another 

technique that is proposed based on the micro bat’s echolocation capability is the Bat Algorithm 

(BA) [21].  A metaheuristic approach inspired by the foraging behaviour of honey bees is 

introduced called the ABC optimization[22]. A swarm approach based on the behaviour of 

dragonflies called Dragonfly Algorithm (DA) is proposed [23]. Krill Herd (KH) algorithm 

inspired by the herding of a krill is proposed [24]. A swarm optimization called Monarch 

Butterfly Optimization (MBO) inspired by the migration behaviour of monarch butterflies is 

proposed [25]. A bio-inspired technique called Bacterial Foraging Optimization (BFO) inspired 

by the foraging process of E. coli bacteria is proposed by [ 26]. An Artificial Immune System 

(AIS) for solving various engineering optimization problems is proposed [27]. Another 

optimization algorithm called Salp Swarm Algorithm (SSA) inspired by the swarming behaviour 

of salps in the ocean is proposed [28]. A Marine Predictor Algorithm (MPA) is inspired by the 

movements that happen in the foraging process of predators [29]. A metaheuristic hybrid 

approach for cancer diagnosis is proposed by integrating ABC with MBO and is used for cancer 

diagnosis [30]. This paper has focussed on improving the exploration and exploitation of the 

standard ABC by hybridizing ABC with BFO. The proposed algorithm is called the Hybrid ABC 

algorithm. This proposed Hybrid ABC has been used for optimal feature subset selection and 



 

 

parameter optimization of an ANN and the resulting optimized ANN classifier is utilized for 

improved breast cancer diagnosis. 

ANN performance mainly depends on generating an optimal ANN topology [31]. ANN 

topology design has been focussed on by many pieces of research in the existing literature. 

Choosing optimal hidden layer and nodes directly influence the predictive capability of the ANN 

classifier. Too many hidden nodes increase ANN complexity which causes problems of 

overfitting where the classifier is over-trained producing accurate results in the training phase but 

showing decreased generalization in the testing phase. Fewer nodes in the hidden layer results in 

inadequate ANN learning of input and output patterns which will affect the generalization power 

of the ANN classifier. One of the commonly used traditional methods is called the constructive 

method in which the ANN is constructed using minimum neurons and gradually increased till 

maximum accuracy is achieved. Further, destructive or pruning methods starts with maximum 

neuron size and are then eliminated gradually till accuracy starts decreasing or till it has gained its 

maximum accuracy. These methods failed to generate optimal hidden nodes for large datasets 

decreasing the accuracy because of which it cannot be applied for medical diagnosis purposes. 

Further, manual selection of hidden nodes failed to generate optimal hidden nodes size making the 

ANN classifier either undertrained or overtrained. Considering the demerits of the traditional 

methods, our motivation is to optimize the ANN design process with the help of Evolutionary 

Algorithms (EA) where EA will be used to generate the optimal hidden node sizes for an ANN 

model. Due to the strong diversification and intensification characteristic of ABC optimization, 

our work has utilized ABC to search for the optimal hidden nodes for ANN and the generalization 

capability of the resulting optimized ANN model is tested using WBCD. 

Successful learning increases the generalization capability of an ANN. Backpropagation is 

the widely used ANN learning method in which the weights are optimized by calculating error 

function gradient and propagating back in the ANN [32]. The merits of backpropagation are its 

simplicity, fast execution and implementation ease. Learning with the help of backpropagation is 

dependent on the appropriate initialization of weights [33]. Improper initial weights make the 

training process struck in the local optimum resulting in inadequate learning. Generation of 

Random weights is the traditional way of the weight initialization process. The trial and error 

method has been used by researchers for weights initialization. These methods generate improper 

weights making them too low or high resulting in a longer learning process. Further, the zero-

initialization method does not break the symmetry of the ANN classifier. Considering the 

demerits of the traditional initialization methods, our motivation is to hybridize the ANN design 



 

 

with an efficient meta-heuristic approach such as ABC optimization and we have used it for 

searching the optimal initial weights of a backpropagation training method and the resulting ANN 

classifier has been tested using WBCD.  

Further, ANN performance is dependent on the appropriate selection of features that acts 

as input of an ANN classifier [34,35]. ANN neurons size is dependent on a number of input 

features and hence, this paper has coupled the feature selection process with the ANN design 

process. Too many input features make ANN complex requiring more computational time with a 

large set of input neurons and connections. Inappropriate input features also make ANN deal with 

the problems of overfitting and underfitting. Further, Feature selection can also eliminate the curse 

of dimensionality in which memory storage and other requirements increase when full feature 

subsets are used. Traditional methods like filter methods work by calculating the correlation 

between input features and output variables that are tested using scores generated by a statistical 

test. In the case of the wrapper method, the usefulness of a feature subset is evaluated by training 

classifier using that particular set. Researches have proved that filter methods are faster 

consuming less time but fail to produce optimal features when tested on different classifiers 

whereas the wrapper method has produced the best feature subsets. Based on this, our paper has 

used a wrapper-based approach without the use of any primary statistical filtering. 

Many researchers have utilized swarm-based approaches such as ABC optimization for 

generating an optimized ANN by selecting optimal initial weights, optimal learning rate, optimal 

hidden layer and optimal hidden node size [36]. Several studies have not concentrated on the 

selection of the best training method to be integrated with ANN classification. Our work has 

concentrated on choosing the best training algorithm which can be induced with ANN 

classification for successful training of WBCD datasets.  

The standard ABC used in existing works for feature selection and ANN parameter 

optimization lacks local search capability due to inefficient exploitation. Loss of diversified 

solutions in the initialization phase weakens the explorative capability of ABC optimization. The 

standard ABC suffers from problems of unbalanced exploration and exploitation making the 

search process prematurely converge at the local solutions. Because of the above-mentioned 

reasons, the standard ABC fails to bring the global optimum input subsets and ANN design 

parameters and it brings only localized solutions. Hence, the motivation is to hybridize the 

standard ABC optimization algorithm to enhance the exploration and exploitation processes such 

that the developed hybrid ABC optimization is capable of generating the optimal input features 



 

 

and design parameters for an ANN classifier and optimized ANN model performance is evaluated 

for its prediction accuracy using WBCD. 

1.1 Artificial Bee Colony (ABC) Optimization 

ABC is a population-based metaheuristic search technique. It lies on swarm intelligence 

based on the foraging process of the honey bees. This algorithm is introduced by Karaboga in 

2005 and it is capable of solving multidimensional problems. This intelligent algorithm has 

stochastic process and they are flexible and simple. Algorithm (1) shows the ABC optimization 

process. 

Algorithm 1: ABC Optimization 

 

Initialization: Random generation of food sources using Equation (1) 

 𝐵𝑚
𝑙 = 𝐵𝑚

𝑙 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) ∗ (𝐵𝑚𝑎𝑥
𝑙 − 𝐵𝑚𝑖𝑛

𝑙 )   (1) 

 𝐵𝑚
𝑙  represents mth food source with lth parameter and m=1, 2.........Xand X represents 

food sources size. Where l=1, 2......Y and ‘Y’ is the dimension of the considered 

optimization problem. 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) is step size based on a random number generated in 

between 0 and 1. 𝐵𝑚𝑎𝑥
𝑙  and 𝐵𝑚𝑖𝑛

𝑙  is maximum and minimum bound of the lth parameter of 

the considered optimization problem. 

Evaluating food source quality: Fitness is identified for an individual food source 𝐵𝑚. 

Employed bee Phase: Each 𝐵𝑚
𝑙 is given to employee bees and they look for 𝐹𝑚

𝑙  which is 

the neighbourhood of 𝐵𝑚
𝑙 using Equation (2).  

𝐹𝑚
𝑙 = 𝐵𝑚

𝑙 + 𝑟𝑎𝑛𝑑𝑜𝑚[−1,1](𝐵𝑚
𝑙 − 𝐵𝑛

𝑙 )    (2) 

𝐵𝑛
𝑙 is a random food source where n ∈ {1, 2..., X}, X represents food sources size. ‘l’ is 

random and l = {1, 2..., Y} and ‘n’ not be equal to ‘m’ for exploitation. If fitness of 𝐹𝑚
𝑙 is 

more than𝐵𝑚
𝑙 , employee bee rejects 𝐵𝑚

𝑙 and saves 𝐹𝑚
𝑙 . 

Onlooker Bee Phase: Information of selected food source are shared to onlookers where a 

probability 𝑋𝑖is evaluated using𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑚) by Equation (3). 

𝑋𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑚)

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑚)𝑋
𝑚=1

       (3) 

The value 𝑋𝑖 each food source is compared with a random number between 0 and 1. 

Food sources that have greater 𝑋𝑖 than the random number are assigned to onlooker bees 

and they exploit those food sources using Equation (2). 

Food source selection: Good quality food source selected and saved. 



 

 

 Scout Bee Phase: New food sources are derived by scouts using Equation (1).      

Unimproved food sources for certain iterations are identified using counter checks are 

identified, eliminated and replaced by scouts. 

1.2 Artificial Immune System (AIS) 

AIS is an intelligent system inspired by Biological Immune System (BIS). Intelligent 

theories of AIS are negative selection, danger theory, immune network model, clonal selection, 

and population compression [74]. Negative selection, positive selection, and population 

compression techniques are used in our proposed work due to their strong diversification process. 

Negative selection is based on the way BIS filters out T-cells population. Each T-cell is evaluated 

for its tolerance level to self-cells; T-cells that respond to self-cells are eliminated. Thus, T-cells 

that do not recognise self-cells are maintained. Clonal selection is inspired by the way BIS 

eliminates antigens from the body via cloning and maturation. [75, 76] used clonal selection to 

identify optimum solutions. Positive selection selects T-cells that only recognise non-self-cells 

and the rest of the T-cells are eliminated.  

1.3 Investigation of ABC and AIS for exploration and exploitation  

. During exploration, population compression, positive selection, and negative selection 

force the AIS to search for new promising regions, which ensures strong exploration and 

avoidance of premature convergence and interference between individuals. In contrast, ABC uses 

scout bees for exploration only with a random search process. This forces the algorithm to 

generate solutions that are concentrated in a local area, thereby losing its exploration capability at 

initialization. As a result, the algorithm prematurely converges and returns sub-optimal solutions. 

Hence AIS is better at exploration than the ABC algorithm. 

In the context of exploitation, the clonal selection of AIS is weak since it performs local 

search only by producing clones of the best antibodies. The amount of maturation depends on the 

affinity of antibodies and hence some of the antibodies may not be properly exploited. Thus, the 

AIS always lacks in the local search process. Comparatively, ABC has good exploitation, since 

exploitation is carried by both employee and onlooker bees. Hence, ABC has better exploitation 

as compared to AIS.  

1.4Bacterial Foraging Optimization 

BFO is swarm-based which is inspired by the intelligent foraging process of Escherichia 

Coli bacteria [37]. E. coli searches for nutrient regions for their survival. Bacterium represents 

possible solutions to the optimization process. It randomly moves to find nutrient regions in 

presence of attractants and repellents called chemotaxis of the bacteria. Four phases are in the 



 

 

bacterial search process. They are (i) chemotaxis phase, (ii) swarming phase, (iii) reproduction 

phase, (iv) elimination and dispersal phase. The chemotaxis is considered an important phase of 

the forging process. The bacterium tumbles randomly in the direction specified by Equation (4) 

then swims in the direction of the tumble represented by Equation (5). 

∅(𝑘) =
∆(𝑘)

√∆𝑇(𝑘)∆(𝑘)
       (4) 

∅(𝑘)is a unit vector representing the tumble direction which is based on vector ∆(𝑘) 

between [-1, 1].  

𝜃𝑘(𝑘 + 1, 𝑙, 𝑛) = 𝜃𝑘(𝑘, 𝑙, 𝑛) + 𝑋(𝑘)∅(𝑘)    (5) 

𝜃𝑘(𝑘 + 1, 𝑙, 𝑛) is new bacterial position of kth bacterium in kth chemotaxis, lth reproduction 

and nth elimination dispersal step.𝜃𝑘(𝑘, 𝑙, 𝑛) is old position of bacterium.𝑋(𝑘)is the step size for 

kth bacterium taken in problem space. If 𝜃𝑘(𝑘 + 1, 𝑙, 𝑛)is better than 𝜃𝑘(𝑘, 𝑙, 𝑛), it swims in the 

same direction as that of tumble otherwise tumbles in a different direction. This continues till 

maximum swim step size  𝑀𝑠.The algorithm for the chemotaxis phase of BFO is in Algorithm (2). 

Algorithm 2: Chemotaxis phase of BFO 

Initialize B, 𝐶𝑐𝑙, 𝑀𝑠 and place bacteria randomly 

Elimination dispersal loop: n=n+1 

      Reproduction loop: l= l + 1 

Chemotaxis loop: k = k+1 

           WHILE 𝑘 < 𝐶𝑐𝑙 

                For k=1 to B, perform Chemotaxis for kth bacterium 

                Compute fitness (𝜃𝑘(𝑘, 𝑙, 𝑛)) 

Save 𝜃𝑏𝑒𝑠𝑡 = 𝜃𝑘(𝑘, 𝑙, 𝑛) 

                Tumble using Equation (4) 

Swim using equation (5) 

                 Compute fitness (𝜃𝑘(𝑘 + 1, 𝑙, 𝑛)) 

                Initialize counter 𝑦 = 0 

                WHILE 𝑦 < 𝑀𝑠 

                      𝑦 = 𝑘 + 1 



 

 

                   IF 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝜃𝑘(𝑘 + 1, 𝑙, 𝑛)) > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝜃𝑏𝑒𝑠𝑡) 

                         Save𝜃𝑏𝑒𝑠𝑡 = 𝜃𝑘(𝑘 + 1, 𝑙, 𝑛) 

Swim using equation (5)  

       ELSE  

𝑦 = 𝑀𝑠 

                   ENDIF 

                 ENDWHILE 

            Proceed with next bacterium if 𝑘 ≠ 𝐵 

             ENDWHILE 

1.5   Comparative Investigation of the exploitation and exploration of ABC and BFO 

The performance of BFO depends on step size 𝑋(𝑘)taken during the foraging process. 

Fixed step sizes create an imbalance between exploration and exploitation. Larger 𝑋(𝑘) makes 

BFO converge faster making few movements reaching global optimum point finding out 

promising areas [38]. Proper step sizes should be used to create balance in exploration and 

exploitation. A larger step size introduces oscillation making back and forth movement around the 

optimum locations. Larger step sizes may not make bacterium search space completely without 

reaching remotely located global optimum points. For BFO, Proper exploration is guaranteed in 

the tumble direction when step sizes are large whereas ABCuses scout bees for exploration only 

by random search. Hence, Loss of diversified solutions exists in initialization making solutions 

concentrated only around a local area returning suboptimal solutions. Hence, BFO is better in 

exploration than standard ABC.  

Smaller 𝑋(𝑘)makes bacterium take small steps which makes it reach various locations in 

the fitness landscape. However, the algorithm converges slower requiring high computational time 

to search complete search space. Comparatively, ABC has good exploitation since the 

intensification process is done by both employee and scout bee phases. Hence, ABC has better 

exploitation when compared to BFO.  

1.6 Issues with standard ABC Optimization addressed by the proposed Hybrid algorithms 

Even still the standard ABC is widely used by the researchers in the feature selection 

process and fine-tuning of parameters of an ANN classifier for different medical diagnoses, they 

suffer from the below-listed issues which the proposed Hybrid ABC resolves. 



 

 

(i) The new food source is generated by modifying a single parameter of the current 

food source, which leads to the same food sources converging at similar optimum 

locations. 

(ii) Local search is carried out with the help of worker bees and the onlooker bees, the 

local search process is conducted only by the scout bees, leading to an imbalance in 

local and global search capabilities. 

(iii) The exploitative selection based on greedy selection by employee bees generates 

uphill movements and downhill movements are neglected completely which rejects 

the worst solutions producing suboptimal solutions. 

(iv) Local search of ABC has the tendency of revisiting solutions that causes looping that 

leads to premature converge. 

(v) Loss of diversification at initialization due to the inefficient random search process. 

 

Based on the comparative investigation and to overcome the aforementioned problems, 

this paper focuses on the following research objectives: 

(i) Development of a Hybrid ABC Optimization (HABC) that combines the strong 

explorative capabilities of AIS with a Tabu-based employee bee phase of ABC to 

enhance the local and global search capabilities of the standard ABC optimization. 

(ii) To develop a Hybrid ABC Optimization by integrating the explorative phase of BFO 

using an adaptive step size with ABC Optimization such that the ABC overcomes 

the problem of poor diversification at the initialisation phase. Further, the 

exploitation of ABC gets improved by using the spiral model-based employee bee 

phase.  

(iii) To evaluate the proposed hybrid algorithms in optimal input feature selection and 

tuning of ANN parameters such as the initial weights and hidden node size using the 

Wisconsin breast cancer dataset. The derived optimized ANN is evaluated with 

respect to accuracy, complexity and computational time. 

2.  Related works 

ABC and ACO are hybridized and proposed for finding out optimal feature subsets [39]. 

The time-consuming global search of ABC is improved by using generated features produced by 

ACO that are given to the employee phase of ABC. The best ants are generated by the bee colony 

exploitation phase which eliminates ant’s stagnation behaviour. The proposed system has 

focussed on feature selection and there is no tuning of parameters of the classifier used. The 



 

 

exploitative greed selection of ABC has been used which may allow only a better solution leading 

to premature convergence. Another Hybrid algorithm based on DE and ABC is proposed for 

medical diagnosis where the exploration of the DE algorithm is integrated with the ABC onlooker 

bee phase which is improved using the DE operators and this system has tried to achieve the 

exploration and exploitative balance[40]. The proposed algorithm is tested for using UCI datasets 

where the proposed achieved F-measure of 97.6, 92.2, 96.4, for RBF networks, decision tree and 

Naive Bayes classifier respectively using WBCD. The proposed system has focussed on feature 

selection and there is no tuning of parameters of the classifier used.  

A breast cancer diagnosis system with the help of ANN and ABC is proposed [41]. The 

ABC finds out optimal hidden layers and hidden nodes of ANN trained using Levenberg–

Marquardt under WBCD. The accuracy is 95.9% using the testing set. The system uses standard 

ABC and hence lacks in the exploration at initialization and proposed does not optimize 

parameters of ANN.ABC based system is proposed using FFNN [42] for medical diagnosis. The 

ABCisutilized to produce optimal initial weights which are adjusted using backpropagation for 

certain iterations. The proposed system uses a breast cancer dataset and achieved an accuracy of 

97.94%.No feature selection is used and standard ABC used may produce early convergence due 

to lack of diversification. A hybrid approach using Dragon Fly Optimization with ABC is 

introduced for optimizing weights and bias of ANN [43]. The proposed algorithm integrates levy 

flight operations of Dragon Fly Optimizationwiththe local search of ABC. Scout bee phase is 

modified using an improved search equation. The proposed achieves balanced exploration and 

exploitation and avoids the local minima with good convergence speed. The proposed is tested 

using a breast cancer dataset and gained an accuracy of 96%. The system does not concentrate on 

feature selection and optimal selection of hidden nodes which may affect convergence. 

A system is proposed for medical diagnosis using ABC and decision tree-based gradient 

boosting [44]. WBCD and Haberman’s survival dataset is used. ABC selects feature sets from the 

two datasets. A regression tree is used as a classifier and Gradient descent is used to find the 

direction of the gradient. The proposed has not been evaluated for complexity. Two-hybrid 

approaches using ABC and PSO is proposed [45]. The employee bee phase is integrated with PSO 

finding new velocity with updating position. Another approach where onlooker bee, scout bee is 

enhanced using mutation of genetic algorithm. The UCI repository is used where WBCD is 

utilized for testing where two algorithms achieved 99.14%. It hasn’t focussed on tuning 

parameters of the classifier.  



 

 

An efficient ABCby integrating ABC with Broyden–Fletcher–Goldfarb–Shannon (BFGS) 

using limited memory is proposed [46]. This proposed is used to tune parameters of DNN with 

cascaded auto encoder forming softmax classification. The candidate solution is produced using a 

neighbourhood process executed using BFGS with limited memory. The proposed algorithm is 

tested under 15 datasets. The classification accuracy of WBCD is 73.03%. The step size of the 

neighbourhood search is not made adaptive and does not focus on feature selection. An optimized 

approach utilizing standard ABC is proposed for classifying DNA microarrays [47]. ABC is used 

for the feature selection process. The approach is simple but hasn’t focussed on tuning parameters 

of the classifier.ABC coupled feature selection is proposed for medical diagnosis [48]. It identifies 

feature subsets using employee and onlooker phases from total feature sets. The proposed system 

selected 2 features from a set of 9 in WBCD and achieved an accuracy of 96.69%. The proposed 

system is simple but feature selection may strike at local optimum due to imbalanced exploration 

and exploitation of ABC.  

A system using standard ABC evaluated using the UCI repository is proposed [49]. The 

proposed achieves good permutation when compared to the standard employee bee phase. The 

proposed has an accuracy of 75.87% and it focussed on improving the exploitation capability of 

artificial bee colony but did not focus on parameter optimization of the classifier used. A wrapper 

approach is proposed for feature selection [50]. Two sets of features are used where the first set 

contains similar features and the second set contains dissimilar features. A three-layered 

architecture chooses a feature from each set and undergoes training. This is done till certain 

iterations until the error increases. During the evaluation, WBCD had a mean accuracy of 98.76% 

with a number of connections of14.36. The computational time was 17 minutes 24 seconds for 30 

runs. The proposed has not focused on parameter tuning of ANN. 

A hybrid algorithm using branch &bound and ABC is proposed for feature selection [51]. 

The algorithm applies branch and bound on total features. Then, the proposed system applies 

ABC on the total subset to gather a second set of features. A union operation was then performed 

on two sets. The system is checked using various medical datasets based on relevance feedback 

and precision/recall values. The proposed is tested for classification.ABC based feature selection 

is proposed [52]. Optimal features for classification are selected by ABC where the J48 decision 

tree is used as a classification model. This predictive model is utilized for discriminating features 

of datasets from the University of California in which the accuracy of the proposed model using 

WBCD is 96.99% where 4 were selected from nine features. Totally 699 instances are utilized for 

checking performance using ‘k’ fold cross-validation method. 



 

 

The proposed approach in [78] which is presented for breast cancer diagnosis is based on 

integrating the employee bee phase with simulated annealing improved local search process. First, 

the construction of feasible and random solutions was done and the estimation of the probabilities 

of the best solution using roulette selection was implemented.  AIS techniques such as negative 

selection and population compression were incorporated in the ABC framework. The proposed 

algorithm was evaluated using the WBCD dataset. The approach proposed in [79] for breast 

cancer diagnosis is based on integrating the employee bee phase of the ABC algorithm with the 

bubble net attacking phase of the whale algorithm. The employee bees in the exploitation phase of 

the proposed algorithm in [79] follow the local search process of the humpback whales and find 

better food sources. The exploration process of finding the optimal regions is accomplished using 

various mutation strategies. The proposed algorithm was evaluated using various breast cancer 

datasets available in the UCI repository and a few breast cancer databases. Compared to the 

approaches presented in  [78 & 79], the hybrid approaches in this paper proposed for breast cancer 

diagnosis integrates standard ABC algorithm with modified clonal selection algorithm of the 

Artificial Immune System and the chemotaxis phase of the bacterial foraging optimization with a 

spiral model-based exploitative phase of the ABC. Both the algorithms are evaluated using the 

WBCD dataset. 

3. Materials and Proposed Methodology 

The proposed algorithm is implemented using a wrapper-based approach which does not 

use any statistical processing methods. The wrapper method is used to simultaneously select the 

feature subsets and other parameters of an ANN for effective breast cancer diagnosis. The 

proposed Hybrid ABC that hybridizes the spiral model-based exploitation phase of standard ABC 

with BFO is novel when compared to previous similar works. The Wisconsin breast cancer dataset 

is taken as the input and divided into three subsets called training, testing and validation set.  The 

feature subsets that are optimally generated by our Hybrid ABCare selected from training, testing 

and validation subsets where the other features are eliminated. These features are used to train 

ANN. The initial weights and hidden node size are optimally generated by Hybrid ABC. The 

ANN error using the validation set is checked continuously for six iterations and if the ANN error 

increases continuously then the training process is stopped. The fitness of the resulting ANN is 

evaluated using Equations (7 and 8). High fitness ANN is selected and tested by testing set and 

accuracy and complexity of final network are calculated using Equation (6) 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑅 ∗ 𝑆 + 𝑆 ∗ 𝑇 + 𝑆 + 𝑇    (6) 



 

 

′𝑅′is the number of input features, ′𝑆′ is hidden node size and ′𝑇′ is a number of output 

nodes. The network with the least connections confirms that the ANN is less complex. The fitness 

is calculated using Equation (6). Higher ANN error resembles the ANN with low fitness.  

𝐴𝑁𝑁 𝐸𝑟𝑟𝑜𝑟 = (
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝑚∗𝑛
) ∑ ∑ (𝐼𝑗

𝑖 − 𝐾𝑗
𝑖)

2𝑛
𝑗=1

𝑚
𝑖=1    (7) 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
1

𝐴𝑁𝑁 𝐸𝑟𝑟𝑜𝑟
       (8) 

Where ‘m’ is output nodes size, ‘n’ is the validation sample size, Imax, Imin is the maximum 

and minimum of actual output. 𝐾𝑗
𝑖 is target output and 𝐼𝑗

𝑖 is the actual output. The initial solution 

representation has X bits that give random initial weights where 2Xdifferent combinations can be 

explored. Y bits gives the size of the hidden node where 2Y sizes could be explored. Z bits 

represent feature bits which give the total feature size. If the feature is selected, ‘Z’ shows one 

otherwise it shows zero. 

3.1 Wisconsin Breast Cancer dataset (WBCD) 

The WBCD is a publicly available benchmark database that contains breast cancer 

datasets. It is a database from the UCI repository [77] for breast cancer diagnosis. It contains data 

of breast lumps taken from breast tissues with the help of fine needles. It contains data of sample 

size 699 and this contains 458 benign instances. Each sample has features listed inTable 1. Each 

feature takes a value between one to ten where one shows a benign lump and ten shows a 

malignant lump.  

 

Table 1: Features of WBCD 

Label Attributes 

Feature1 Clump thickness 

Feature 2 Uniformity of cell size 

Feature 3 Uniformity of cell shape 

Feature 4 Marginal adhesion 

Feature 5 Single epithelial cell size 

Feature 6 Bare nuclei 

Feature 7 Bland chromatin 

Feature 8 Normal nucleoli 

Feature 9 Mitoses 

 

3.2 Detailed Description of the proposed HABC algorithm 



 

 

The proposed HABC is framed in such a way that it performs proper exploration using the 

techniques of AIS, in addition to its random initialisation process.HABC uses modified clonal 

selection, positive selection, and population compression techniques. The initial positions of the 

food source of the employee bee phase are the solutions obtained from the first stage. The second 

stage uses a tabu-based employee bee phase.  HABC algorithm is shown in Figure (3). The 

proposed HABC algorithm is as follows: 

(i) Modified antibody detection is proposed to improve the search speed during 

initialization. 

(ii) Positive selection and cell suppression techniques of AIS are used in the 

initialization phase to ensure proper diversification in the exploration stage. 

(iii) Tabu-based employee bee phase is proposed to quit looping problems. 

(iv) During the employee bee phase, few solutions converge at the same local optimum. 

Such solutions share some similarities and are eliminated by negative selection. 

(v) The scout bee phase with population compression is used to maintain the food 

source size. 

3.2.1 Initialization and fitness calculation  

Each ith antibody 𝑋𝑖  represents a solution (antibody) for the optimization problem and it is 

a vector𝑋𝑗 = (𝑋1, 𝑋2 , 𝑋3 … … . 𝑋𝑑𝑖𝑚) in which the HABC algorithm generates ‘i’ number of 

solutions 𝑋𝑖 (i=1, 2.......n) and ‘i’ represents the antibody size. Affinity evaluation is performed 

and the antibodies are further ranked in the decreasing order of affinity values. Antibodies with 

the least amount of network error for ANN are considered to be better antibodies. The lower and 

upper bound of parameter ‘j’ is represented as 𝑋𝑚𝑖𝑛
𝑗

 and 𝑋𝑚𝑎𝑥
𝑗

, respectively. The initialization step 

is explained by Algorithm (3). 

Algorithm 3:  HABC Initialization 

Initial population 

For 𝑖 = 1 𝑡𝑜 𝑝 do 

   For 𝑗 = 1 𝑡𝑜 𝐷 do 

𝑋𝑖
𝑗

= 𝑋𝑚𝑖𝑛
𝑗

+ 𝑟𝑎𝑛𝑑(0,1)(𝑋𝑚𝑎𝑥
𝑗

− 𝑋𝑚𝑖𝑛
𝑗

) 

    End for 

  End for 

Evaluation and ranking  

For  𝑖 = 1 𝑡𝑜 𝑝 do 

fitness (𝑋𝑖) 



 

 

End for 

3.2.2 Modified antibody detection phase  

The modified antibody detection phase detects multiple antibodies based on the quality of 

each solution. The helper antibodies that are separated from the total antibody population are 

classified into three subsets based on the affinity distance between each antibody and the best 

antibody in the population, based on the threshold values such as ctrl1, ctrl2, and ctrl3. Helper 

antibodies with better affinity values are grouped as the 𝑋ℎ1 antibodies whose affinity values are 

close to the affinity value of the best antibody in the population. These antibodies are cloned, and 

the amount of cloning is directly proportional to antibody affinity. The 𝑋ℎ1 antibodies are better; 

hence, a large number of new copies of the 𝑋ℎ1 parent antibodies are generated. Equation (9) 

mutates using Gaussian mutation in order to facilitate a local search process around the better 

antibodies, 𝑋ℎ1 antibodies and their clones. 

𝑋ℎ1
′ = 𝑋ℎ1 + ∅𝑔. 𝐺(0,1)      (9) 

𝑋ℎ1
′ , the mutated antibody, is produced after Gaussian mutation; ∅𝑔indicates the strength 

of the added Gaussian noise; 𝑋ℎ1 is the immature antibody; and 𝐺(0,1) is the Gaussian 

distribution random number. Intermediate antibodies with intermediate affinity values are grouped 

as the 𝑋ℎ2 antibodies whose affinity values are at an intermediate distance from the affinity value 

of the best antibody in the population. Hence, 𝑋ℎ2 antibodies are worse than 𝑋ℎ1 and the number 

of clones of the parent 𝑋ℎ2 that are generated are less as compared to 𝑋ℎ1. In order to facilitate a 

uniform search process around the intermediate antibodies, Equation (10) is used to uniformly 

mutate the 𝑋ℎ2 antibodies.  

𝑋ℎ2
′ = 𝑋ℎ2        (10) 

𝑋ℎ2 
′ is the mutated antibody, 𝑋ℎ2 is the immature antibody and a random cell is selected 

and replaced by a uniform random value chosen between the user-defined upper bound (Ub) and 

lower bound (Lb) values of that cell. The worst antibodies with lower affinity values are grouped 

as the 𝑋ℎ3 antibodies whose affinity values are a larger distance from the affinity value of the best 

antibody in the population. The 𝑋ℎ3 antibodies are worse than 𝑋ℎ1and 𝑋ℎ2; hence, the number of 

clones of the parent 𝑋ℎ3 that are generated are less as compared to 𝑋ℎ1 and 𝑋ℎ2. Hence, in order to 

facilitate a global search process around the worst antibodies, 𝑋ℎ3 antibodies are mutated using 

Levy Mutations (LM) according to Equation (11). 



 

 

𝑋ℎ3
′ = 𝑋ℎ3 + ∅𝑐 . 𝑙𝑒𝑣𝑦(𝑋ℎ3)      (11) 

𝑋ℎ3
′  is the mutated antibody that is produced after Cauchy mutation and ∅𝑐 is the mutation rate. 

The amount of mutation depends on the antibody affinity value. The antibodies with higher 

affinity values are subjected to less mutation, and the antibodies with the worst affinity values are 

subjected to more mutation. Then, the mutated antibodies enter into the pool of antibodies along 

with the original antibodies. Next, the affinity of these antibodies is evaluated, and they are ranked 

in a descending pattern. The worst antibodies are eradicated from the total population, mutated 

antibodies are removed, and only the better antibodies are selected, which maintains the 

population size of the helper antibody. Algorithm (4) shows the Modified antibody detection 

phase. 

Algorithm 4: Modified antibody detection phase  

Replace the worst ′𝑛′ antibodies by randomly generated antibodies 𝑋𝑠 

 For each helper antibody (Xh ) 

     Select 𝑋ℎ1, 𝑋ℎ2, and 𝑋ℎ3 antibodies from parent antibodies and clone them. 

𝑋ℎ1 if {|Affinity ( Xh) – Affinity (Xbest) |} ≤ ctrl1 

𝑋ℎ2 if {|Affinity (Xh) – Affinity (Xbest) |} ≤ ctrl2 and if {| Affinity (Xh ) – Affinity(Xbest) |} ≥ ctrl1 

𝑋ℎ3 if {|Affinity (Xh ) – Affinity (Xbest) ) |} ≥ ctrl2 

     C = 0, 𝐶𝑙 the number of clones derived for parent antibody  

     While (C<𝐶𝑙) 

           If   𝑋ℎ1 clones 

                Mutate the clones using equation (7) 

                C = C +1 

            Else If   𝑋ℎ2clones 

                Mutate the clones using equation (8) 

                C = C +1 

                  Else 

                 Maturate the clones using equation (9) 

                 C = C +1 

       Set of mutated antibodies are generated 𝑋ℎ
̅̅̅̅  

       Calculate the fitness (𝑋ℎ , 𝑋ℎ
̅̅̅̅ ) 

       Rank according to fitness and best antibodies based on fitness are selected 

 End for 



 

 

Generate 𝑋𝑛𝑒𝑤 = 𝑋𝑛𝑒𝑤  ∪ 𝑋𝑠 

 

 

 

3.2.3 Tabu-based employee bee phase  

The positions of the initial food source in the employee bee phase are the solutions 

obtained from the modified antibody detection phase. Worker bees are assigned to a food source 

in which they search for neighbouring food sources around current food sources according to 

Equation (12): 

𝑌𝑚
𝑛 = 𝑋𝑚

𝑛 + 𝑟𝑎𝑛𝑑𝑜𝑚[−1,1](𝑋𝑚
𝑛 − 𝑋𝑘

𝑛)    (12) 

where 𝑋𝑘  is a randomly selected food source in which k ∈ {1, 2..., F} and F represents the number 

of food sources. ‘n’ is the random integer in which n = {1, 2…, d}, and ‘m’ should not be equal to 

‘k’ for proper exploitation. 𝑟𝑎𝑛𝑑𝑜𝑚[−1,1]is a random integer between -1 to 1 that represents the 

step size of the exploitation process. The employee bee phase accepts only the better food source 

and makes only uphill movements; downhill movements are neglected completely. Because of 

this, the local search process tends to cyclically revisit the same solutions repeatedly making an 

algorithm to return suboptimal solutions. 

To avoid these problems, the tabu-based selection mechanism accepts even the worst 

solutions. This phase uses a short-term memory called Tabu List (TL) in which the recent ‘n’ 

moves are stored, dynamically maintained, updated by the worker bees, and used in the 

exploitative selection. The ‘n’ represents the tabu tenure. According to HABC, 𝑌𝑖
𝑗
is accepted even 

if it is worse than 𝑋𝑖 
𝑗
 if 𝑌𝑖

𝑗
not in TL. If 𝑌𝑖

𝑗
is in TL, then it should be checked for an aspiration 

condition. According to the aspiration condition, if 𝑌𝑖
𝑗
is in TL but 𝑌𝑖

𝑗
 is better than the best 

solution that was found until the current iteration, then 𝑌𝑖
𝑗
is accepted, otherwise, it is rejected. 

𝑌𝑖
𝑗
is accepted directly if it is better than 𝑋𝑖 

𝑗
 and is not in the TL. Thus, Tabu based employee bee 

phase avoids the problems of looping by ensuring that every solution is visited only once by the 

worker bees. Algorithm(5) shows tabu based employee bee phase. 

Algorithm 5: Tabu based employee bee phase 

Assign employee bees to 𝑋𝑛𝑒𝑤 

𝑋𝑖
𝑗

= {𝑋1
1, 𝑋2

2, 𝑋3
3 … … … . . 𝑋𝑛

𝐷} 



 

 

For 𝑖 = 1 𝑡𝑜𝑝 do 

   For 𝑗 = 1 𝑡𝑜𝐷 do 

      For 𝑋 = 1 𝑡𝑜 𝑛 

𝑌𝑖
𝑗

= 𝑋𝑖
𝑗

+ 𝑟𝑎𝑛𝑑𝑜𝑚[−1,1](𝑋𝑖
𝑗

− 𝑋𝑘
𝑗
) 

        If 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑌𝑖
𝑗) ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖

𝑗
) 

          If 𝑌𝑖
𝑗
is not in TL 

              Accept 𝑌𝑖
𝑗
 and Reject 𝑋𝑖

𝑗
 

          Else If 

 𝑌𝑖
𝑗
holds aspiration condition   

              Accept 𝑌𝑖
𝑗
 reject 𝑋𝑖

𝑗
 

         Else  

              Accept 𝑋𝑖
𝑗
and Reject 𝑌𝑖

𝑗
 

              Update TL 

      End for 

    End for 

End for 

3.2.4 Negative Selection Phase  

To accelerate good convergence in the search process, similar food sources must be 

eliminated in order to maintain proper diversification. Euclidian distance is measured between 

food sources that is represented as 𝐷(𝑋𝑖
𝑗
, 𝑋𝑘

𝑗
). If 𝐷(𝑋𝑖

𝑗
, 𝑋𝑘

𝑗
) less than the threshold 𝑇ℎ then the 

food source with less fitness is eliminated, either 𝑋𝑖
𝑗
or 𝑋𝑘

𝑗
, and replaced by a newly created 

random food source; otherwise, the food source is retained as either 𝑋𝑖
𝑗
and 𝑋𝑘

𝑗
. The negative 

selection phase is explained by Algorithm (6). 

Algorithm 6: Negative selection phase 

For 𝑖 = 1 𝑡𝑜𝑝 do 

   For 𝑗 = 1 𝑡𝑜𝐷 do 

      For 𝑋 = 1 𝑡𝑜 𝑛 



 

 

          Calculate 𝐷(𝑋𝑖
𝑗
, 𝑋𝑘

𝑗
)  =  √∑ (𝑋𝑖

𝑗
−𝐷

𝑗=1 𝑋𝑘
𝑗
 

If 𝐷(𝑋𝑖
𝑗
, 𝑋𝑘

𝑗
) < 𝑇ℎ 

                If fitness (𝑋𝑘
𝑗
) > fitness (𝑋𝑖

𝑗
) 

                  Eliminate 𝑋𝑖
𝑗
 

                   Replace  𝑋𝑖
𝑗
 with new randomly generated food source 

                Else 

                   Retain 𝑋𝑖
𝑗
 and Eliminate 𝑋𝑘

𝑗
 

                   Replace  𝑋𝑘
𝑗
 with new randomly generated food source 

                Else  

                   Retain 𝑋𝑖
𝑗
 and Retain 𝑋𝑘

𝑗
 

           End for 

        End for 

    End for 

3.2.5 Onlooker Bee Phase  

 The fitness value is determined by Equation (13). The description of the onlooker 

bee process is shown in Algorithm (7). 

𝐸𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖)

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖)𝑛
𝑖=1

       (13) 

Algorithm 7: Onlooker Bee Phase 

For i = 1 to n do 

Calculate the probability using Equation (11) 

         If 𝑟𝑎𝑛𝑑(0,1) < 𝑋𝑖 

             Select 𝑋𝑖 

         Else 

             Reject 𝑋𝑖  

        End for 

Memorize the best food source 𝑋𝑏𝑒𝑠𝑡 

3.2.6 Scout Bee Phase with population compression 



 

 

New food sources are discovered by scout bees. If the fitness of the food source is not 

improved during certain iterations and if the counter associated with the food source crosses the 

counter value countmax, then those food sources are replaced by scout bees. ’s’ new random food 

sources are generated and the lower quality food sources are eliminated until the population size is 

maintained. The detailed description is shown in Algorithm (8). 

Algorithm 8: Scout Bee Phase with population compression 

While ( 𝑋𝑖 does not improve) 

count = count + 1 

        If count > countmax 

             Replace  𝑋𝑖 with a newly generated food source 

        Else  

              count = 0 

             Generate ‘s’ number of new random food sources 

  Compress low fitness food sources until population size         

  Iteration = Iteration +1 

3.3 ProposedHybrid ABCoptimization 

Proposed Hybrid ABC is a hybrid version of standard ABC that utilizes the optimal 

locations identified by the chemotaxis phase of BFO as the initial food source. The standard ABC 

is weak in exploration due to localized initial food sources and poor random search. Hence, the 

proposed hybrid ABC in its explorative phase adapts the chemotaxis phase with adaptive step 

sizes so that it can explore the entire search region with larger steps in proper tumble direction 

discovering highly nutrient and promising areas. Exploitation is done such that optimum solutions 

found in the exploration phase are used as the initial food sources in a spiral dynamic model [54]. 

In this phase, employee bees are assigned to the food sources where step sizes are varied during 

the search process so that the bees search all around the problem space efficiently and find out 

better food sources. To make the step sizes adaptive, they are calculated based on the fitness using 

the dynamic spiral radius and angular displacement of the food source which is inversely 

proportional to the fitness of the food source. At initial iterations in the spiral, where larger steps 

are taken the bees performs global search moving towards global optimum and as the iteration 

proceeds bees focus on the local search process taking smaller steps converging towards the 

global optimum. The centre of the spiral is updated using the best food source in that particular 

iteration. Using adaptive step sizes calculated based on the fitness of food source, employee bees 



 

 

on spiral path search the search space covering remote locations that are not visited in the 

exploration phase. Thus, proposed Hybrid ABCusing adaptive step size can also overcome 

problems of oscillations that happen with larger step sizes. The proposed Hybrid ABC is given in 

Figure (1). The methodology of the proposed Hybrid ABC is summarized as follows: 

(i) The chemotaxis process ofBFO with an adaptive step size is performed in the 

initialisation phase to ensure proper diversification in the initial stages. 

(ii) Employee bee phase is incorporated using spiral dynamics model in which search is 

guided by global optimum locations to ensure efficient exploitation. 

(iii) Step size is adaptively varied in which at initial stages where the fitness of food 

sources is less, rotation angles and radius on the spiral are kept high to enhance a 

global search process and as the fitness improves, they are reduced gradually to 

enhance the local search process. 

3.3.1 Initialization based on chemotaxis process 

A bacterium represents a solution of optimization considered. A pre-defined bacterium set′𝑥′ 

is generated randomly using a uniform distribution. Each bacterium is represented by    𝑍(𝑗) =

𝜃𝑗(𝑙, 𝑚, 𝑛) such that ∀𝑗= 1,2, … … . . 𝑥. 𝜃𝑖 represents ith bacterium. ‘l’ is chemotatic loop number, 

‘m’ gives reproduction loop number and ‘n’ gives elimination-dispersal loop number. The 

chemotaxis is executed till𝐶𝑐𝑙 times. The bacterium tumbles in a random direction and swims in 

the same direction of tumble using Equation (14). 

𝑍(𝑗 + 1) = 𝜃𝑗(𝑙 + 1, 𝑚, 𝑛) = 𝑍(𝑗) + 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 ∗ 𝑟𝑎𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛    (14) 

The new position of jth bacterium is given by𝑍(𝑗 + 1) = 𝜃𝑗(𝑙 + 1, 𝑚, 𝑛). Then if 𝑍(𝑗 + 1) is 

better than 𝑍(𝑗)then bacteria swim in the direction as tumble with a larger step size. This 

continues till maximum swim steps 𝑁𝑚𝑎𝑥 are attained. The algorithm steps of initialization are 

given in Algorithm (9). 
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Figure 1: Flowchart of the proposed Hybrid ABC Optimization 

Algorithm 9: Generation of Initial population  

Randomly place bacteria 𝑍(𝑗 + 1) 

FOR 𝑙 = 1 𝑡𝑜 𝐶𝑐𝑙 

         FOR  𝑥 = 1 𝑡𝑜 𝑥𝑚𝑎𝑥 

                Bacteria tumbles randomly  

𝑍(𝑗 + 1) = 𝑍(𝑗) + 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 ∗ 𝑟𝑎𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

          IF ( 𝑠𝑤𝑖𝑚𝑠𝑡𝑒𝑝 < 𝑁𝑚𝑎𝑥 ) 
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                IF𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑍(𝑗 + 1)) > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑍(𝑗)) 

                          Swim with larger step size in the same direction as tumble 

                          Swim 𝑍(𝑗 + 1) = 𝑍(𝑗) + 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 ∗ 𝑟𝑎𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

                         Compute 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑍(𝑗 + 1)) 

 𝑠𝑤𝑖𝑚𝑠𝑡𝑒𝑝 = 𝑠𝑤𝑖𝑚𝑠𝑡𝑒𝑝 + 1 

                  ELSE 

                            𝑙 = 𝑙 + 1 

                            𝑥 = 𝑥 + 1 

          ELSE 

                            𝑙 = 𝑙 + 1 

            END FOR 

END FOR 

The set of solutions discovered in the chemotaxis process is used as initial food sources of 

the spiral based employee bee phase. 

3.3.2 Spiral Dynamics Model-based Employee Bee Phase 

The spiral dynamics model is inspired by natural spiral models like shells, fingerprints, 

etc. It contains an efficient spiral path that enhances intensification and diversification. Initial 

phases allow search agents to intensify using small step sizes and the final phase allows to 

diversify using large step sizes while searching. Using the spiral dynamic model, the step size is 

varied dynamically the search process is guided by the global optimum location identified which 

is updated at each iteration. Thus, it improves the convergence of search operation with less 

computational time attaining more accuracy. This model uses two parameters called the spiral 

radius 𝐼𝑑 and spiral angular displacement 𝜃𝑑for an efficient search process. The optimal selection 

of 𝐼𝑑 and 𝜃𝑑plays a vital role in finding out the global optimum locations since fixed values 𝐼𝑑 and 

𝜃𝑑may lead to an imbalance of exploration and exploitation allowing suboptimal locations. 

Smaller values may make the search process converge fast but make the algorithm struck in its 

local optimum whereas larger values introduce oscillations in the search process. 

Based on the above discussion, the proposed Hybrid ABC utilizes the benefits of the spiral 

dynamic model by using it as its search path in the employee bee phase to search for better food 

sources. The optimum locations discovered during exploration is set as initial food source 



 

 

positions of improved employee bee phase-based on the spiral dynamics model. The best food 

source saved at every iteration is updated as the centre of the spiral trajectory path as indicated 

using Equation (15) 

𝑍∗ = 𝑍𝑔(0)        (15) 

𝑍∗represents the centre of the spiral path which will be equal to 𝑍𝑔(0) that indicates the 

best fitness food source found during any particular iteration. The objective of our work 

considered is to minimize ANN network error with maximum fitness value according to Equation 

(8) and hence we take𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑍𝑥(𝑗))) 𝑥 = 1,2, … … . . 𝑥𝑚𝑎𝑥 where ‘x’ represents a 

number of search points that is equal to the bacterium set. All employee bees are assigned to a 

food source on the spiral path and the bees searches over the spiral path to find a neighbouring 

food source that is better than the old food source given by Equation (16). 

𝑍(𝑗 + 1) = 𝑆(𝐼𝑑 , 𝜃𝑑)𝑍(𝑗) − (𝑆(𝐼𝑑 , 𝜃𝑑) − 𝑀𝑘)𝑍∗   (16) 

Where𝑍(𝑗 + 1) is the new food source,𝑍(𝑘) is the old food source,𝑆(𝐼𝑑, 𝜃𝑑)is adaptive 

spiral radius and angular displacement. 𝑀𝑘 is the identity matrix with k*k dimensions. Employee 

bee search process is made more efficient using (𝐼𝑑 , 𝜃𝑑) which is adaptively calculated using the 

quality of the food source. This dynamic(𝐼𝑑 , 𝜃𝑑) which is responsible for smooth convergence of 

the search process is represented by Equations (17&18) 

𝐼𝑑 =
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐿𝑠|𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑍(𝑗))|
       (17) 

𝜃𝑑 =
𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛

𝐿𝑠|𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑍(𝑗))|
       (18) 

Where 𝐼𝑑 and 𝜃𝑑represents adaptive radius and adaptive angular displacement that is 

inversely proportional to the fitness of the food source. 𝐿𝑠 is the positive constant. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑍(𝑗)) 

is the fitness of the food source considered. 𝐼𝑚𝑎𝑥 and 𝜃𝑚𝑎𝑥is considered as maximum radius and 

maximum angular displacement for the spiral path.𝐼𝑚𝑖𝑛 and 𝜃𝑚𝑖𝑛 is minimum radius and minimum 

angular displacement for the spiral path. The minimum and maximum radius are set in between 0 

to 1. The minimum and maximum angular displacement are set between0 and 2π. The adaptive 

radius and angular displacement are set minimum when the fitness of the food source is high to 

enhance the exploitative process around better food sources. The adaptive radius and angular 

displacement are set high when the fitness of the food source is low to enhance the exploration of 



 

 

new promising global optimal regions. Using 𝐼𝑑 and 𝜃𝑑, employee bees search any location placed 

remotely that was not explored during the exploration process with the search process guided by 

the best optimal food source and hence the centre of the spiral path used by employee bees has the 

best food source instead of a random food source in the spiral based employee bee phase. The 

detailed algorithmic steps of this phase are given in Algorithm (10) 

Algorithm 10: Spiral Dynamics Model-based Employee Bee Phase 

Set optimum locations discovered in chemotaxis as initial food sources of ABC on spiral 

𝑍𝑖(0) = 𝑍𝑏𝑒𝑠𝑡 

 Compute 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑍(𝑗)) 

 Set 𝑍∗ = 𝑍𝑔(0) center of spiral  

FOR 𝑗 = 1 𝑡𝑜 𝑚 

  FOR 𝑖 𝑡𝑜 𝑖𝑚𝑎𝑥 

         The bee moves spirally to find a neighbouring food source position 

          𝑍𝑖(𝑗 + 1) = 𝑆𝑖(𝐼𝑑, 𝜃𝑑)𝐹𝑖(𝑘) − (𝑆𝑖(𝐼𝑑 , 𝜃𝑑) − 𝑀𝑘)𝑍∗ 

         IF𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑍(𝑗 + 1)) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑍(𝑗)) 

                 Reject 𝑍(𝑗 + 1) 

         ELSE  

                 Reject 𝑍(𝑗) 

        END IF 

𝑖 = 𝑖 + 1 

END FOR 

 Set 𝑍∗ = 𝑍𝑔(𝑗 + 1) as center of spiral 

END FOR k 

END 

3.3.3 Onlooker Bee Phase  

The information about selected food sources in the spiral dynamic model-based employee 

bee phase is shared with the onlooker bees. Further, the onlooker bees calculate the probability 𝑋𝑖 

for the food source, it receives based on quality given by its fitness value as represented in 

Equation (19). The onlooker bee phase is given in algorithm (11) 



 

 

 

𝑋𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑍𝑖)

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑍𝑖)𝑚
𝑖=1

       (19) 

Algorithm 11: Onlooker Bee Phase 

For i= 1 to n do 

Calculate probability using equation (19) 

         If 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) < 𝑋𝑖 

             Select 𝑍𝑖 

         Else 

             Reject 𝑍𝑖 

        End for 

      Memorize the best food source 𝑍𝑏𝑒𝑠𝑡 

3.3.4 Scout Bee Phase  

When a food source  𝑍𝑖does not improve, the proposed algorithm uses the scout bee phase 

of the standard ABC process.Adetailed description of the scout bee phase is given in the algorithm 

(12). 

Algorithm 12: Scout Bee Phase  

While ( 𝑍𝑖 does not improve) 

        limit = limit + 1 

        If limit > limitmax 

             Replace  𝑍𝑖  with a newly generated food source 

       Else  

             limit = 0 

Iteration= Iteration +1 

4 Performance Evaluation of proposed Hybrid ABC using WBCD dataset 

The proposed hybrid algorithms are implemented using the proposed wrapper 

architecture. The section focuses on the following factors: (i) The WBCD dataset is used 

by the proposed algorithms for evaluating the performance in terms of accuracy, 

complexity and computational time. (ii) The proposed algorithms are evaluated using an 

ANN classifier where three different back propagation variations called the RP, LM and 

GD are used for training purposes. The proposed hybrid algorithms derive the optimal 



 

 

initial weights, hidden nodes and optimal feature subsets for an ANN classifier. (iii) The 

proposed algorithms find out the best backpropagation variant that performs with less 

network error, fewer connections and computational time. 

4.1 Parameter Settings and Experimental Setup 

The algorithm was implemented using MATLAB 8.5 software. The neural network 

toolbox was used to implement the backpropagation training algorithm. Default training 

parameters were used for backpropagation training during implementation. The winner take all 

approach was used in output nodes for classification and the output nodes represented classes such 

as benign/malignant. HABC uses [77] that consists of WBCD datasets. The values between 0 to 1 

were rescaled and missing attribute values were filled using mean values of non-missing 

attributes. The training dataset was formed using the first 349 samples, which was 50% of the 

total dataset, the second 175 samples that comprised 25% of the total dataset was used as the 

validation dataset, and the last 175 samples that comprised the remaining 25% was used as the 

testing dataset. The Input nodes size represents the size of the total feature set and hence it is 

considered as 9., The output node size represents the number of classifications and hence it is 

considered as 2 (benign, malignant). According to the initial solution representation, The size of L 

has been considered as 15 where 2L different bit combinations can be explored for initial weights. 

The value of M has been set as 2 where four different combinations of hidden node sizes can be 

explored. This can be set considering the size of the dataset and the number of input features. The 

activation functions at hidden and output nodes are hyperbolic tangent and pure linear, 

respectively. The parameter settings of the ANN classifier are shown in Table (2). The parameter 

settings of the HABC are given in Table (3). The values of thresholds (𝐿𝑖𝑚𝑖𝑡1 ) and (𝐿𝑖𝑚𝑖𝑡1 )are 

set using a trial and error method. The count limit is set as 10 to enhance global exploration. The 

employee bees size and the onlooker bees size are set according to the problem space and they are 

set equal which are again equal to antibodies size (s). The mutation rates ∅𝑔  𝑎𝑛𝑑 (∅𝑐 ) were set 

using the trial and error method to enhance the local and global search process.  

Table 2: Parameter settings of ANN classifier 

Parameter Value 

Training Back propagation 

Input nodes size 9 



 

 

Output nodes size 2 

Number of bits for initial weights  15 

Number of bits for hidden node size 2 

Number of bits for input features 9 

Activation function for hidden node Hyperbolic Tangent 

Activation function for output node Pure Linear 

Training set samples 349 (50%) 

Validation set samples 175 (25%) 

Testing set samples 175 (25%) 

 

Table 3: Parameter settings of HABC 

Parameter Value 

Employee Bees size 30 

Onlooker Bees size 30 

Scout bees size 1 

Total colony size 60 

Count limit (𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑥) 10 

Number of antibodies (s) 30 

Helper antibody selection (Ah ) 80% 

Suppressor antibody selection (As ) 20% 

Control Threshold (𝐿𝑖𝑚𝑖𝑡1 ) 0.0001 

Control Thershold (𝐿𝑖𝑚𝑖𝑡2 ) 0.5 

Mutation rate (∅𝑔 ) 0.4 

Mutation rate (∅𝑐 ) 0.6 

 



 

 

The parameter settings of the Hybrid ABC are given in Table (4). The number of 

employee bees and onlooker bees are equally set. The bacterial step size, maximum and minimum 

spiral radius and angular displacement are chosen based on the trial and error method. The Hybrid 

ABC is implemented for various generation sizes as given in Table (4) 

Table 3: Parameter settings of Hybrid ABC 

Parameter Value 

Number of Employee Bees 50 

Number of Onlooker Bees 50 

Number of scout bees  1 

Total colony size 100 

Bacteria population size 50 

Number of chemotaxis(𝑁s ) 30 

Bacterial step size (𝐶) 0.04 

Maximum Spiral Radius(𝑅𝑚𝑎𝑥) 1 

Minimum Spiral Radius(𝑅𝑚𝑖𝑛) 0.65 

Maximum Spiral Angular displacement(𝜃𝑚𝑎𝑥) 1.8 

Maximum Spiral Angular displacement(𝜃𝑚𝑖𝑛) 1.03 

Generation sizes 10,20,30 

 

4.2 Proposed HABC in terms of accuracy, complexity and computational time 

The proposed HABC was evaluated for the number of connections and classification 

accuracy using ten runs for different generation sizes, as shown in Table (5). HABC-RP achieved 

an average accuracy of 99.14% at a generation size of 20. The average number of connections of 

HABC-RP was 12.40, which was less as compared to HABC-LM and HABC-MGD. HABC 

produced a less complex ANN when trained using RP. The convergence of the validation error of 

the proposed HABC over different generations is shown in Figure (2).  

Table 5: Performance evaluation of the proposed HABC algorithm 

Max 

Generation 

Size 

Proposed 

HABC-RP 

Proposed 

HABC-LM 

Proposed 

HABC-MGD 

Classification 

accuracy (%) 

Number of 

connections 

Classification 

accuracy (%) 

Number of 

connections 

Classification 

accuracy (%) 

Number of 

connections 



 

 

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean 

10 98.42 97.81 12 13.56 97.12 96.53 12 17.42 97.23 96.51 12 15.65 

20 99.42 99.14 10 12.40 97.82 96.71 13 16.34 98.12 97.28 12 15.82 

30 99.02 98.58 11 13.23 98.35 98.05 14 15.46 98.71 98.34 13 15.21 

 

Followed by HABC-RP, HABC-MGD was accurate, which was 98.34%, with mean 

connections of 15.21 at a generation size of 30. Next to HABC-MGD, HABC-LM had the highest 

average accuracy, which was 98.05% at a generation size of 30 with mean connections of 15.46. 

The classification accuracy for different generation sizes of the HABC algorithm is shown in 

Figure (3). The accuracy of HABC-RP was 1.11% higher than HABC-LM and 0.81% higher than 

HABC-MGD.  

The confusion matrix with classification performance of HABC is shown in Table (6). 

Figure (4) shows the number of connections for different generation sizes of the HABC algorithm. 

HABC-RP utilized a lower number of connections, followed by HABC-MGD and HABC-LM. 

The average hidden node count of HABC-RP was 32% lower than HABS-AIS-LM and 27.78% 

lower than HABC-MGD. HABC-RP utilized 19.79% fewer connections than HABC-LM and 

18.47% fewer connections than HABC-MGD. 

 

 



 

 

Figure 2: Convergence of validation error for HABC  

 

Figure 3: Performance of HABC with respect to classification accuracy 

 

Figure 4: Performance of HABC with respect to number of connections 



 

 

 

Table 6: Confusion Matrix of HABC algorithm across ten runs 

Methods of 

comparison 
Actual 

Number of 

cases 

Test outcome-Predicted 

Malignant Benign 

HABC-RP 
Malignant 650 646(TP) 11 (FN) 

Benign 1100 4 (FP) 1089(TN) 

HABC-LM Malignant 650 640(TP) 24FN) 

Benign 1100 10 (FP) 1076(TN) 

HABC-MGD Malignant 650 642(TP) 21 (FN) 

Benign 1100 10 (FP) 1079(TN) 
 

The performance metrics of the proposed HABC for different back propagation variants 

are listed in Table (7). HABC-RP showed sensitivity and specificity, followed by HABC-MGD 

and HABC-LM. Figure (5) shows the hidden node count for HABC-RP, HABC-LM, and HABC-

MGD for different generation sizes. 

Table 7: Performance of HABC algorithm based on different metrics 

Metrics 
Proposed 

HABC-RP 

Proposed 

HABC-LM 

Proposed 

HABC-MGD 

Sensitivity (%) 98.32 96.38 96.83 

Specificity (%) 99.63 99.07 99.08 

Accuracy (%) 99.14 96.38 97.32 

Precision (%) 99.38 98.46 98.76 

Negative predictive Value 

(NPV) (%) 
99 97.81 98.09 

F-measure 0.98 0.97 0.97 

 

In Figure 5, the performance of HABC with respect to classification accuracy for 

individual generations until 30 has been shown. According to figure 5, the classification accuracy 

of the HABC-ANN is increasing as the generation size increases. The lowest performance of the 

proposed ANN is obtained at the initial generation sizes where the search space has not been 

explored and as the iteration proceeds towards the global optimal regions optimal parameters has 



 

 

been chosen and hence the accuracy has been increased gradually. According to table 4, the 

lowest mean classification accuracy of 96.51% is attained for HABC-MGD for a generation size 

of 10. 

Based on Table (8), the HABC-ANN with the feature selection process enhanced 

classification accuracy with less complexity as compared to without the feature selection process. 

Table 8: Influence of feature selection on HABC-RP 

Max 

Generation 

Size 

Feature 

Selection  

Hidden 

Node Count 

(Avg) 

No of 

Selected Features 

(Avg) 

No of connections 

(Avg) 

Accuracy 

(Avg) 

(%) 

10 

With Feature 

Selection 
1.5 5.8 13.6 97.81 

Without Feature 

Selection 
2.1 9 27.2 89.34 

20 

With Feature 

Selection 
1.3 5 12.4 99.14 

Without Feature 

Selection 
1.8 9 23.6 91.42 

30 

With Feature 

Selection 
1.4 5.1 13.2 98.58 

Without Feature 

Selection 
1.9 9 24.8 90.05 

 

Table (9) depicts the best network of HABC-RP, with selected features shown as F2, F3, 

F5, F6 respectively. The details of the feature set are shown in Table (1). 

Table 9: Confusion Matrix of HABC-RP for the best network with selected features 

Feature 

Selection(FS) 
Cases(actual) 

Cases(Predicted) 

Selected Feature(SF) 

Benign Malignant 

With Feature 
Selection 

Benign 110 110 1 F2, F3, F5, F6 

Malignant 65 0 64 



 

 

Without Feature 
Selection 

Benign 110 102 7  

F1, F2, F3, F4, F5, F6, F7, F8, F9 Malignant 65 8 58 

 

Figure 5:  Hidden node count for HABC  

The performance of the HABC optimized ANN classifier with respect to the average 

computational time is shown in Table (9). The average computational time for ten independent 

runs was calculated for generation sizes of 10, 20, and 30. The computational time of HABC-LM 

was less than the computational time for HABC-RP and HABC-MGD. 

Table 9: computational time for HABC-RP  

Max Generation  

Average CPU Time(s) 

Proposed 

HABC-RP 

Proposed 

HABC-LM 

Proposed 

HABC-MGD 

10 327.5 201.5 402.8 

20 720.2 689.6 745.9 

30 1005.9 936.5 1154.1 

 

Figure (6) compares HABC with Particle Swarm Optimization (PSO) Differential 

Evolution (DE), Artificial Bee Colony Optimization (ABC), Bat Algorithm (BA), Ant Colony 

Optimization (ACO), Bacterial Foraging Optimization (BFO), Dragonfly Algorithm (DA), 



 

 

Genetic Algorithm (GA), Artificial Immune System (AIS), Monarch Butterfly Optimization 

(MBO), Krill Heard (KH) Algorithm, and Salp Swarm Algorithm (SSA) using the WBCD dataset. 

HABC achieved the highest accuracy. 

 

Figure 6: Performance comparison of HABC and evolutionary methods  

Figure (7) shows a comparison between HABC and existing ABC-based hybrid algorithms 

using WBCD, including the ABC-ACO [45], ABC-DE [46], ABC-DA [43], and ABC-Gradient 

Decision Tree [66].  

 

Figure 7: Comparison of ABC-based hybrid algorithms  

4.3 Performance of the proposed Hybrid ABC in terms of accuracy, complexity and 

computational time 

The proposed algorithm is implemented for different generation sizes 10, 20 and 30 where 

the average number of connections and classification accuracy for ten independent runs is 
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calculated. The different back propagation approaches give significant variations in the accuracy 

and complexity of an ANN even when evaluated using the same dataset. Hence, the proposed 

algorithm is evaluated using different back propagations such as resilient back propagation, 

Levenberg Marquardt and momentum-based gradient descent represented as Hybrid ABC-RP, 

Hybrid ABC-LM and Hybrid ABC-GD respectively as given in Table (10). The objective is to 

produce an ANN network with optimal input features, initial weights and hidden node size with 

the least network error, complexity and computational time. The convergence of validation error 

for the proposed HybridABCfor different generations is shown in Figure (8). The figure shows 

that the proposed Hybrid ABC has produced the least network errors during validation when 

compared to the other two variants namely Hybrid ABC-LM and Hybrid ABC-GD. 

Table 10: Performance evaluation of the proposed Hybrid ABC algorithm 

 

Max 

Generati

on 

Size 

Proposed 

Hybrid ABC-RP 

Proposed 

Hybrid ABC -LM 

Proposed 

Hybrid ABC-GD 

Classification 

Acc (%) 

No of 

connections 

Classification 

Acc (%) 

No of 

connections 

Classification 

Acc (%) 

No of 

connections 

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean 

10 98.35 98.25 8 11.65 98.21 97.22 10 13.56 98.95 98.32 9 12.65 

20 100.00 99.54 7 10.25 98.33 98.58 9 12.34 98.60 98.65  7 11.03 

30 99.11 98.92 7 11.26 99.03 98.97 8 11.21 99.12  99.08   7  11.03  

 

Hybrid ABC-RPachieved the highest mean ANN accuracy for ten runs which is 99.54% 

under the generation size of twenty. Followed by Hybrid ABC-RP, the Hybrid ABC-GD achieved 

the highest average accuracy which is 99.08% under generation size of thirty. Next to Hybrid 

ABC-GD, Hybrid ABC-LM achieved 98.97% under generation size of thirty. The accuracy of 

Hybrid ABC-RP is 0.46% more than Hybrid ABC-GD and 0.58% more than Hybrid ABC-LM.  



 

 

 

Figure 8: Convergence of Validation error for Hybrid ABC 

The average number of connections for Hybrid ABC-RPis 10.25 under a generation size of 

20. Followed by Hybrid ABC-RP, Hybrid ABC-GD produced 11.03 average connections under 

generation size of thirty. Next to Hybrid ABC-GD, the Hybrid ABC-LM produced 11.21 average 

numbers of connections under generation size of thirty. Hence it is concluded that the Hybrid 

ABC-RP produced the least complex ANN when compared to the other two variants. Hybrid 

ABC-RP achieved low complexity of 7.07% less than Hybrid ABC-GD and 8.56% less 

complexity than Hybrid ABC-LM. Figure (9) shows the evolution of classification accuracy for 

different generation sizes for a single independent run of the Hybrid ABC algorithm. Hybrid 

ABC-RP achieved the best accuracy of 0.58% more than Hybrid ABC-LM and 0.48% more than 

Hybrid ABC-GD.  



 

 

 

Figure 9: Performance of Hybrid ABC in terms of classification accuracy 

Figure (10) shows the evolution of a number of connections for different generation sizes. 

According to Figure (10), Hybrid ABC-RP has used the least connections producing low 

complexity network followed by Hybrid ABC-GD and Hybrid ABC-LM. The least number of 

connections is by Hybrid ABC-RP and Hybrid ABC-GD which is 7 connections thatare12.5% less 

than Hybrid ABC-LM. Figure (11) shows the evolution of the hidden node count over different 

generation sizes.  



 

 

 

Figure 10: Evolution of number of connections of Hybrid ABC for different generations 

 

Figure 11: Hidden node count forHybrid ABC 



 

 

The confusion matrix showing the classification performance of Hybrid ABC is presented 

in Table (11). A total number of 650 malignant cases and 1100 benign cases are investigated and 

True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) are 

calculated. 

Table 11: Confusion Matrix of the proposed Hybrid ABC algorithm for ten runs 

 Comparative methods Actual No of cases 
Test outcome-Predicted 

Malignant Benign 

Hybrid ABC-RP 
Malignant 650 648(TP) 6(FN) 

Benign 1100 2(FP) 1094(TN) 

Hybrid ABC-LM 
Malignant 650 645 (TP) 13(FN) 

Benign 1100 5(FP) 1087 (TN) 

Hybrid ABC-GD 
Malignant 650 646(TP) 12(FN) 

Benign 1100 4(FP) 1088(TN) 

 

Table 12: Hybrid ABC algorithm based on different metrics 

Metrics 
Proposed 

Hybrid ABC-RP 

Proposed 

Hybrid ABC-LM 

Proposed 

Hybrid ABC-GD 

Sensitivity (%) 99.08 98.02 98.17 

Specificity (%) 99.81 99.54 99.63 

Accuracy (%) 99.54 98.97 99.08 

Precision (%) 99.69 99.23 99.38 

Negative predictive Value 

 (%) 
99.45 98.81 98.90 

F-measure 0.9938 0.9243 0.9877 

 

Table 13: Performance of Hybrid ABC-RP based on feature selection 

Max 

Generation 

Size 

Feature 

Selection (FS) 

Average 

Hidden 

Node Count 

Average 

Number of 

Selected Features 

Average Number of 

connections 

Average 

Accuracy 

10 With FS 1.4 4.8 11.7 98.25 

Without FS 2.0 9 26.0 92.39 

20 With FS 1.1 4.1 10.3 99.54 

Without FS 1.6 9 21.2 93.71 

30 With FS 1.3 4.6 11.3 98.92 

Without FS 1.8 9 23.6 92.12 
 

The performance metrics such as the sensitivity, specificity and other measures of the 

proposed Hybrid ABC are listed in Table (12). The sensitivity and specificity are high for Hybrid 



 

 

ABC-RP followed by Hybrid ABC-GD and Hybrid ABC-LM. Table (13) shows the performance 

of the Hybrid ABC-RP optimized ANN classifier in terms of the feature selection process since it 

has achieved the highest accuracy and less complexity network. The Hybrid ABC-RP optimized 

ANN classifier with feature selection enhances the classification accuracy with less complexity 

when compared without feature selection. Table (14) shows the confusion matrix consists of 

actual and predicted cases that contain two types of classification called the benign and malignant 

for best network obtained using RP with optimally selected feature subsets. 

Table 14: Confusion Matrix of Hybrid ABC-RP for the best network with selected features 

Feature Selection Actual Cases 
Predicted Cases 

Selected Feature Set 
Benign Malignant 

With Feature 

Selection 

Benign 110 110 0 uniformity of cell shape, 

uniformity of cell size, Bare 

nuclei 
Malignant 65 0 65 

WithoutFeature 

Selection 

Benign 110 104 5 
Total dataset from Table 1 

Malignant 65 6 60 

 

The proposed Hybrid ABCoptimized ANN classifier performance in terms of the average 

computational time is shown in Table (15). The average computational time is calculated for ten 

independent runs for different generation sizes such as 10, 20 and 30. The Hybrid ABC-LM 

requires less computational time followed by Hybrid ABC-RP and Hybrid ABC-GD.  

Table 15: Performance-based on computational time 

Maximum Generation 

Size 

Average CPU Time(s) 

Proposed 

Hybrid ABC-RP 

Proposed 

Hybrid ABC-LM 

Proposed 

Hybrid ABC-GD 

10 240.2 132.5 355.3 

20 605.9 520.6 689 .6 

30 876.1 754.8 1100.6 

 

Figure (12) shows a comparison between Hybrid ABC with other evolutionary algorithms 

like particle Swarm Optimization (PSO) Differential Evolution (DE), Artificial Bee Colony 

Optimization (ABC), Bat Algorithm (BA), Ant Colony Optimization (ACO), Bacterial Foraging 

Optimization (BFO), Dragonfly Algorithm (DA), Genetic Algorithm (GA), Artificial Immune 

System (AIS), Monarch Butterfly Optimization (MBO), Krill Herd (KH) Algorithm, and Salp 



 

 

Swarm Algorithm (SSA) using the WBCD dataset. The aforementioned algorithms are executed 

using ANN with RP for classifying the datasets of WBCD. Each is executed for 10 runs for 10, 20 

and 30 generations and the best are taken and compared with the proposed Hybrid ABC 

algorithm.  

 

Figure 12: Comparison with evolutionary methods  

Figure (13) shows a comparison of existing ABC based hybrid approaches that used the 

WBCDdataset namely ABC-ACO [39], ABC-DE [40], ABC-DA [43], and ABC-Gradient [44].  

 

Figure 13: Comparison with ABC based Hybrid algorithms  

Table (16) shows the comparison of the existing breast cancer diagnosis schemes tested 

under with proposed Hybrid ABC using WBCD. From table (10), it can be concluded that Hybrid 

ABC outperforms other existing schemes.  

Table 16: Existing breast cancer diagnosis schemes comparision 

First author, Year Method Accuracy (%) 

Quinlan,1996 [56] C4.5  94.74  
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Hamilton,1996 [57] RAIC  95.00 

Nauck,1999 [58] NEFCLASS  95.06 

Pena-Reyes,1999 [59] FUZZY-GA  97.36  

Setino, 2000 [60] Neuro-rule  98.10  

Albrecht, 2002 [61] LSA Machine  98.80  

Fogel, 1995 [62] ENN  98.05  

Abonyi, 2003 [63] SFC  95.57  

Polat, 2007 [64] LS-SVM  98.54  

Gujaro-Berdinas, 2007 [65] LIS  96.00 

Karabatak, 2009 [66] AR+NN  97.40  

Stoean, 2013 [67] SVM+EA  97.07 

Fadzil Ahmad, 2014 [68] GANN-MLP  98.29  

Shunmugapriya, 2017 [3R9] ABC-ACO-J48 99.07 

H. Rao, 2018 [44] ABC+ GD 97.18 

Ghanem, 2018 [43] ABC-DA+MLP  96.85 

Karthik, 2018 [69] DNN 98.62 

Reyhaneh,2020[70] GO-FS 97.85 

Nayak ,2020[71] EHO-NN 98.37 

Dalwinder,2020[72] Ant Lion-MLP 98.61 

Srinivasa,2021[73] BCRO-Naïve Bayes 98.82 

Proposed Work HABC-RP 99.14 

Proposed Work Hybrid ABC-RP 99.54 

 

5 Conclusion 

The paper introduced two hybrid ABC versions for concurrent feature selection and 

parameter tuning of ANN for diagnosing breast cancer. The strength of the proposed algorithms 

lies in deriving an optimal ANN classifier using an automatic and optimal selection of parameters. 

It uses a simple and wrapper-based approach. The proposed algorithms were investigated with the 

help of various backpropagation algorithms such as RP, LM and GD. It has been concluded that 

RP achieved higher accuracy and low complexity ANN network. The result shows that it is vital 

to do feature selection along with an optimal selection of hidden node size and initial weights. 

During comparison with existing works, the proposed HABC-RP and Hybrid ABC-RP showed 

promising results. The comparison of the proposed HABC-RP and Hybrid ABC-RP with existing 

evolutionary approaches proved better results. 
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