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Abstract: This paper presents an effective hybrid optimization technique based on a chaotic sine co-
sine algorithm (CSCA) and pattern search (PS) for the coordinated design of power system stabilizers
(PSSs) and static VAR compensator (SVC)-based controllers. For this purpose, the design problem
is considered as an optimization problem whose decision variables are the controllers’ parameters.
Due to the nonlinearities of large, interconnected power systems, methods capable of handling
any nonlinearity of power networks are preferable. In this regard, a nonlinear time domain-based
objective function was used. Then, the proposed hybrid chaotic sine cosine pattern search (hCSC-PS)
algorithm was employed for solving this optimization problem. The proposed method employed the
global search ability of SCA and the local search ability of PS. The performance of the new hCSC-PS
was investigated using a set of benchmark functions, and then the results were compared with those
of the standard SCA and some other methods from the literature. In addition, a case study from the
literature is considered to evaluate the efficiency of the proposed hCSC-PS for the coordinated design
of controllers in the power system. PSSs and additional SVC controllers are being considered to
demonstrate the feasibility of the new technique. In order to ensure the robustness and performance
of the proposed controller, the objective function is evaluated for various extreme loading conditions
and system configurations. The numerical investigations show that the new approach may provide
better optimal damping and outperforms previous methods. Nonlinear time-domain simulation
shows the superiority of the proposed controller and its ability in providing efficient damping of
electromechanical oscillations.

Keywords: sine cosine algorithm; pattern search; PSS; SVC; optimization; oscillation

1. Introduction

The stability of power systems has become a key study area as a result of the
integration of power systems. As a result, the power system has been upgraded with
more complex control technology and stronger protective mechanisms to improve
stability. Electromechanical oscillations, which can be categorized into inter-area and
local modes, are detected in the power system as a result of mechanical and electrical
torque imbalances at the synchronous generator, which are induced by changes in the
power system topology or loads [1]. The generator rotor shaft and power transfers
are severely damaged when these low frequency oscillations (LFOs) are insufficiently
damped. These oscillations have a significant impact on the dependability and security
of a power supply. Power system stabilizers (PSSs) have long been used to increase
power system stability and boost system damping of oscillation modes in order to
combat these negative phenomena. These stabilizers are used to add damping torque
to the generator rotor oscillations that are caused by the generator’s speed, frequency,
or power. However, power networks are nonlinear and complex, making the use
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of nonlinear models instead of linear approximations more advisable to treat any
nonlinearity in the tuning problem. Moreover, recent research has revealed that if
only one PSS is tuned, the required damping level cannot be reached. Thus, it is
advised to ensure coordination between the design processes of all PSSs. From the
literature review, such as in [1], it is shown that PSSs regulators may fail sometimes to
provide adequate damping torque for inter-area modes. Unfortunately, some weakness
is encountered in the damping of inter-area oscillations, and other solutions need to
be involved.

In recent years, power electronic-based flexible AC transmission systems (FACTS)
controllers, which are based on power electronics, have been considered as efficient
alternative solutions [2]. Generally, FACTS devices have been employed for handling
different power system control problems [3]. In other words, they can increase power
transfer capability, and improve power system stability and controllability. Thus, power
flow will be better controlled, and the voltages will be better maintained within their
rated limits, which will make it possible to increase the stability margins and to tend
towards the thermal limits of the lines. However, the combination of PSSs and FACTS
devices in the same network has raised a new problem in terms of coordination between
these regulators. Indeed, it is essential to ensure that there is a good coordination
between these devices in a way that their actions are not negative in view of the security
of the network.

One of the well-known shunt FACTS devices, named static VAR compensator (SVC), is
considered a competent device to provide adequate damping of the LFOs in modern power
systems after the apparition of disturbances [4]. It also has the capability of regulating bus
voltage at its terminals by injecting controllable reactive power into the power network
through the bus where it is connected. In the last few years, many studies have proposed
design techniques for SVC devices to enhance power system stability. Furthermore, other
proprieties of the power system can be improved, such as the dynamic control of power
flow, steady-state stability limits, and damping of electromechanical oscillations [5]. Most
of these studies have been focused on the coordinated design of SVC and PSS controllers.
Uncoordinated design between SVC and PSS causes the system to become unstable. There-
fore, stability and damping modes are essential for optimal coordinated design between
PSS and SVC-based controllers. A comprehensive study of the PSS and SVC controllers
when applied in a coordinated manner and also separately has been investigated in [6].
The problem of designing the power system controller’s parameters is formulated as a non-
differentiable, large-scale nonlinear problem. This optimization problem is hard to solve by
employing traditional optimization techniques such as sequential quadratic programming
(5QP) techniques due to their high sensitivity to the initial point [7]. Furthermore, these
methods require a long convergence process. To overcome the drawbacks mentioned,
intelligent techniques are involved in real-life engineering problems, including power
system stability [8-14].

Most of this research has been focused on the coordinated design of SVC and PSS
controllers. For the coordinated design of power system controllers, a large number
of such algorithms have recently been offered, including: Teaching-Learning Algo-
rithm (TLA) [15], Bacterial Foraging Optimization (BFO) [16], Brainstorm optimization
algorithm (BOA) [17], Coyote Optimization Algorithm (COA) [18], ant colony opti-
mization (ACO) [19], bat algorithm (BAT) [20], bee colony algorithm (BCA) [7], Genetic
Algorithm (GA) [21], particle swarm optimization (PSO) [22], flower pollination algo-
rithm (FPA) [23], gravitational search algorithm (GSA) [24,25], sine-cosine algorithm
(SCA) [26], grey wolf optimizer (GWO) [27], firefly algorithm (FA) [28], Differential
Evolution (DE) [29], Biogeography-Based Optimization (BBO) [30], Cuckoo Search (CS)
algorithm [31], Harmony Search (HS) [32], Seeker Optimization Algorithm (SOA) [33],
Imperialist Competitive Algorithm (ICA) [34], Harris Hawk Optimization (HHO) [35],
Sperm Swarm Optimization (SSO) [36], Tabu Search (TS) [37], Simulated Annealing [38],
Multi-Verse Optimizer (MVO) [39], Moth-flame Optimization (MFO) [40], Tunicate
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Swarm Algorithm (TSA) [41] and collective decision optimization (CDO) [42]. Although
metaheuristics algorithms could provide relatively satisfactory results, no algorithm
could provide superior performance than others in solving all optimizing problems.
Therefore, several studies have been carried out to improve the performance and ef-
ficiency of the original metaheuristic algorithms in some ways and apply them for a
specific purpose [43-48].

The SCA is a relatively new meta-heuristic optimization approach introduced by
Mirjalili in 2016 [49]. Compared with other meta-heuristic, the SCA has a simple concept
and structure and does not have complicated mathematical functions. In the SCA, the
formulas for updating the population rely solely on sine and cosine functions. SCA is
better than other competitive methods at finding optimal solutions and is suitable for
tackling real-world optimization problems [50]. However, SCA tends to become trapped
in local optima and, in some complex cases, is unable to successfully converge [51]. In ad-
dition, according to the No-Free-Lunch theorem [52], even though various optimization
algorithms are introduced in the literature, there is no guarantee that an optimization al-
gorithm could solve every kind of optimization problem. In other words, one algorithm
or method cannot outperform others in all optimization problems. An optimization
method may have satisfied results for some problems, but not for others. As a result,
opportunities to introduce new methods will always exist. Therefore, in the current
study an effective hybrid algorithm is developed based on the chaotic version of the SCA
and pattern search (PS) method called hCSC-PS. The proposed hybrid algorithm utilizes
the exploration ability of SCA and exploitation ability of PS, which can significantly
improve the finding results. SCA and pattern search offer complementary benefits and
the combination these two techniques can result in a faster and more reliable algorithm.
To validate the efficacy of the new hybrid approach, a set of benchmark functions as well
as controller design problems of a multi-machine power system are studied. Simulation
results validate the superiority of the new method in design controllers under several
loading situations.

The rest of this paper is organized as follows: Section 2 explains the proposed hybrid
optimization algorithm. The problem is formulated as an optimization problem in Section 3.
Section 4 discusses model verification. Section 5 contains a description of the simulation
results. Finally, in Section 6, the study’s findings are summarized.

2. Proposed Hybrid Algorithm
2.1. CSCA

SCA is a population-based metaheuristic technique based on the mathematical
properties of sine and cosine functions [49]. This algorithm begins the search process
with a collection of randomly generated solutions in the search space, as shown in the
following equation.

x; = 1bj+rand x (ub; —1b;); i=1,2,..., N 1)

where x; is the placement of ith solution in the search space. Furthermore, ub; and Ib;
represent the solution’s lower and upper bounds, respectively. The parameters are defined
in Appendix B. Following the generation of the random starting solutions, each solution
dynamically modifies the positions using the equations below:

{ 2t = xt 4+ A xsin(r1) x |ry X xpest — xt| if r3 <05 @

X = xt 4 A x cos(r1) % |r2 X Xpest — xt|  otherwise

where, xf is the position of ith solution at iteration ¢, xp,s; represents the best solution in the
population, rq is a random numbers in the range of [0, 27], 7, is a random weight of the
best solution among —2 and 2, r3 is a random number among 0 and 1, and the symbol | . |
signifies absolute value. If the parameter r3 is lesser than 0.5, the applicant solution selects
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the sine function to update its position. The parameter A is a function that may be defined
as follows to help balance the exploration and exploitation of a search space:

A:Z—Z(tt ) 3)

where, t;;y is the maximum number of iterations. The aim of the current research is to
implement the global search ability of the SCA. Therefore, to increase the exploration
ability of the algorithm and to avoid premature convergence in early iterations, the chaotic
sequence is applied in the updating position equation (Equation (2)). Chaotic systems are
deterministic systems that present randomness, irregularity and the stochastic property,
depending on the initial conditions. Chaotic variables can oscillate through certain ranges
based on their own irregularity without repetition. A chaotic map is a map that presents
some kind of chaotic behavior, capable of generating chaotic motion. In the current study, a
well-known logistic map is applied based on the following equation:

AR+ =axAt) x (1 —=A(@1) 4)

In this equation, A (¢) is the chaotic map and ¢ denotes the iteration number. A (0) is in
the range of (0, 1) and should not be equal to 0, 0.25, 0.5, 0.75 and 1. a is a constant equal to
4. In the CSCA, to increase the stochastic behavior of the algorithm and avoid premature
convergence, the random parameters r; and r, in Equation (2) are changed with the chaotic
map of Equation (4). Therefore, the updated position of the tunicate with respect to the
position of the food source is evaluated using the Equation (5). The steps of the proposed
CSCA are presented in Algorithm 1.

t+1 )

Xt =t 4+ A x sin(A1) x |Az X xpest — x| if r3 <05
xith = xb 4 A x cos(A1) X |Ap X xpest — x!|  otherwise

Algorithm 1. CSCA.

Initialization algorithm parameters: population size (N), maximum iteration number (t;4x).
Initialize random population X
Fori=1toN
Calculate the fitness of each random solution
Record the optimal individual as Xp,g;
End
While (t < tyax)
Update A using Equation (3)
Update A using Equation (4)
Fori=1to N
Forj=1todim
Update 73
Ifr; <05
Update X by the sine part of Equation (5)
Else
Update X by the cosine part of Equation (5)
End if
End for
Calculate the fitness of the updated X
Update X,
End for
t=t+1
End
Return the best solution
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2.2. Pattern Search (PS)

PS is a derivative-free algorithm that can be simply implemented to fine-tune local
search. The PS algorithm generates a set of points that may or may not be close to the
optimum [53]. To begin, a mesh (a collection of points) is created around an existing
point. If a new point in the mesh has a lower value of objective function, it becomes the
current point in the following iteration. The PS starts the search with an initial point
Xp defined by the user. At the first iteration, the mesh size is considered equal to 1
and the pattern vectors (or direction vectors) are constructed as [0 1] + X, [1 0] + X,
[—10] + Xg and [0 —1] + X, and new mesh points are added as presented in Figure 1.
Then, the objective function is calculated for produced trial points until a value smaller
than X is found. If there is such a point (f (X;1) < f (Xp)), the poll is successful, and the
algorithm sets this point as a source point. The method multiplies the current mesh
size by 2 (called the expansion factor) after a successful poll and moves on to iteration
2 with the following new points: 2 X [0 1] + X3, 2 X [1 0] + X3, 2 x [-1 0] + X and
2 x [0 —1] + X;. If a value lesser than for X; is created, X, is defined, the mesh size
is improved by two, and iterations continue. The current point is not modified if the
poll is unsuccessful at any stage (i.e., no point has an objective function lesser than the
greatest latest rate) and the mesh size is reduced by multiplying by a reduction factor.
This process is repeated until the minimum is found or a terminating conditions is met.
The steps of the PS method are presented in Algorithm 2.

Xo+ [0 1]
o

Xo+ [1 0] Xo Xo+[-1 0]
o —— o)

o
X0 + [0 -1]

Figure 1. Pattern search mesh points with pattern.

Algorithm 2. Pattern search method.

Initialization:

Initialize the starting point X and step size factor SF

Sett=0
Iteration:
1. Search step: evaluate f at a finite number of points with the goal of decreasing the objective
function value at Xy. If Xy, is found satisfying f (Xy.1) <f (Xx), go to step 4.
Otherwise, go to step 2.
2. Poll step: If f (Xy ) < f (X) for every X in the mesh neighborhood, go to step 3.

Otherwise, choose a point Xy 1 such that f (Xy;1) <f (Xk), go to step 4.

3. Mesh reduction: let SFi ;1 =1/2 x SFy. Set k <— k + 1 and return to step 1 for a new iteration.
4. Mesh expansion: let SF ;1 =2 x SFy. Set k <— k + 1 and return to step 1 for a new iteration
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sine funeti on

Yes

2.3. Proposed Method (hCSC-PS)

The original SCA has some advantages compared with other optimization algorithms. It
has a simple structure and fewer parameters. In addition, the performance of the algorithm
depends on the sine and cosine functions for iteration to find the optimal solution. Although
the original SCA has high global search capabilities, its parameters are incompatible with the
search process in the latter stages of the algorithm. This will reduce the rate of convergence
and population diversity. In this study, a hybrid algorithm combining the CSCA with the PS
algorithm, called hCSC-PS, is proposed for the coordinated design of PSSs and SVC-based
controllers. The hybrid algorithm may take advantage of both the CSCA’s strong global
searching capacity and the PS’s strong local searching ability. The chaotic sine cosine method
has excellent global optimal performance and is easy to escape from local minima. Theoreti-
cally, increasing the numbers of CSCA iteration can improve the search accuracy. When the
number of iterations is great enough, however, CSCA is unable to enhance precision. As a
result, CSCA’s local search capability is still insufficient. Pattern search is a local optimization
approach, and the initial point has a significant impact on the algorithm’s output. However, if
a good starting point is chosen, pattern search will be a simple and effective strategy. In this
study, we integrate the CSCA’s benefits as global optimization and PS’s advantages as the
local optimization to effectively find the optimal solution. The proposed hybrid algorithm
begins with the CSCA since the PS is sensitive to the initial solution. The searching process
continues with the CSCA for a specific number of iterations. The PS is then turned on to
conduct a local search using the current best solution obtained by CSCA as its starting point.
The suggested hCSC-PS algorithm’s flowchart is given in Figure 2.

Initialize the random I Initialization param eters: s
population ' N, tmere [
Calculate the fitness of the . Set CECA result as starting point
initial random sclutions : for P§
Ell T () _ Construct pattern vector and
' create mesh points
Update 4 using Eq. (4)
Evaluate objective functions of
mesh points _
Update ryrars t=t+1
t=t+1
Check if No : Update population 4 Is termination condition Yes
= 2 reached?
re s 00 cosine function
No
Calculating the fitness of
Bowpoplaion . ReduceMesh _ No Yes | Double Mesh
- 7
TR Size by 112 e ped s Size by 2
Check if { = fmac
£ Export the result of
X frg the HCSC-PS
y No

E.eturn the best solution of

the CSCA

Figure 2. The flowchart of the proposed hCSC-PS algorithm.
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3. Optimization Problem Formulation
The general form of a constraint optimization problem can be expressed mathemati-
cally as follows:
minimize f(X)

subject to
Qi(X)<0. i=12,...,p (6)
hi(X)<0. j=12,...,m
XL<x<x4

where X is n dimensional vector of design variables, f(X) is the fitness function which
returns a scalar value to be minimized, g(X) and h(X) are inequality and equality constraints,
respectively. Boundary constraints, X and XY, are the boundary constraints. Many
optimization methods have been developed over the last few decades. Metaheuristics are a
new generation of optimization methods that are proposed to solve complex problems.

3.1. Power System Model

The standard modeling for power systems is based on a set of nonlinear differential
algebraic calculations, which are as follows:

X = f(X.U) @)

where X = [4, w, Eq, Ey] is the state variables vector and U = [upgs, Usyc] is the input
control parameters vector. The linear equation with PSSs and SVC controllers is obtained
by Equation (8).

X = AX+BU (8)

At a certain operating point, both A and B are evaluated. The goal of the optimum
design is to put the state matrix modes on the left side.

3.1.1. PSS Structure

PSS compensates for the phase lag between exciter input and machine electrical torque.
An additional stabilizing signal is presented through the excitation system to achieve this
goal. PSS generates the necessary torque on the machine’s rotor. The additional stabilizing
signal and the speed are proportional. As shown in Figure 3, this stabilizer style contains
of a washout filter and a dynamic compensator. The washout filter, which is primarily a
high pass filter, will remove the mean component of PSS’s output. In general, the constant
value of time can be anywhere between 0.5 and 20 s.

Eu
K

4 E,

1+sT, s

Eg’
sT, [ 1+sT, | I+sT; A®
1+sT \ 1+sT, )\ 1+sT,
Mﬁé’; Lead-Lag PSS

Figure 3. Lead/Lag PSS.
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3.1.2. SVC Based Damping Controller Model

Figure 4 shows the SVC structure in this study, which is a fixed capacitor thyristor-
controlled reactor. The firing angle varies between 90 and 180 degrees depending on the
capacitor voltage.

1 X

Og

l l

a Switcl}ing > ¥ ii
Logic |

|

\|
e

Figure 4. Modeling the SVC.

Figure 5 shows an SVC-based damping controller that acts as a lead-lag compensator
and consists of two stages of the lead-lag compensator: a signal-washout block, and a gains
block. SVC has the following dynamic equation:

Bsyc = (Ks (ng{/(c - Msvc) - stc) /Ts 9)
Bgye
KS '
14T, /7 >Boc
By

STW 1+ s]’} 1+ STJ., Control input
«—
I1+sT \ 1+sT, \ 1+sT,

min

Usyc

Lead-Lag Controller

Figure 5. SVC with lead-lag controller.

3.2. Problem Formulation

The optimum parameters are obtained using the suggested technique under a variety
of operating conditions and disturbances. For the optimal setting of PSSs and SVC con-
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trollers, a nonlinear time domain objective function called ITAE is used in this study. The
equation can be used to define ITAE based on system performance characteristics (10).

~

= (| Ayt (10)
1

I
—_

1=
M=
o

]

where Aw is the speed deviation of rotor, fg,, is the time of simulation, N and M are the
number of machine and the operating points respectively. The objective function and
constrained optimization problem can be described by the following equation for various
loading conditions:

minimize |
subject to
min szm = IfniaxS I'qmm
T]’i STJISTJZ ]:1,,4

(11)

hCSC-PS determines the gain (K) and time constants (T) of controllers. The washout time
constant for both PSS and SVC controllers is Ty; =10 s in most previous works. The decision
variables’ typical ranges are [1, 100] for K; and [0.01, 1.5] for T+; to Ty;.

4. Performance Verification of hCSC-PS

In this section the effectiveness verification of the proposed hybrid method will be
investigated. To this aim, the performance of hCSC-PS is compared with the standard ver-
sion of the algorithm as well as some well-known metaheuristic algorithms on a collection
of benchmark test functions from the literature. These are all minimization problems that
can be used to assess the robustness and search efficiency of new optimization algorithms.
Tables 1-3 show the mathematical formulation and features of these test functions.

Table 1. Description of unimodal benchmark functions.

Function Range Fnin n (Dim) 3D View

F(X) =Y, 22 [—100, 100]" 0 30

i

By (X) = Ll [xi] + T [l [~10, 10]" 0 30
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Table 1. Cont.

Function Range Jonin n (Dim) 3D View

daet

B(X) = 2y (T x].)z [~100, 100]" 0 30

Fy(X) = max {jx]. 1 < i <n} [—100, 100]" 0 30
F(X) = T [100(xi1 = 32)” + (v = 1)7] (30, 30]" 0 30
Fo(X) = Y ([x; + 0.5]) [—100, 100]" 0 30

F(X) = YLy ix} + random[0.1) [-1.28, 1.28]" 0 30
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Table 2. Description of multimodal benchmark functions.

Function Range Fonin n (Dim) 3D View
Fy(X) =Y, —x; sin(,/|xi|) (500, 500]" 428.9829 x n 30
Fo(X) = ¥ [x? — 10 cos(27x;) + 10] [-5.12, 5.12]" 0 30
0 30

Fio(X) = —20 exp(—0.2« [Lyn, xlz) - exp(% ? cos(27rxi)) +20+e [-32, 32]"
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Table 2. Cont.

Function Range Jonin n (Dim) 3D View
Fi(X) = g Xy <2 —TT, Cos(ﬁi) 1 [~600, 600]" 0 30
Fip(X) =2 {10 sin(ryy) + 20 (i — 1) [1+10sin? (1)) + (yn — 1)2} + Y u(x;. 10. 100. 4) )

K(x; — a)" x >a [—50, 50] 0 30

yi =1+ Zu(x.a. k.om) = 0 a< x; <a

k(—x; —a)" xp < -—a

FX—01{'23 " (x;—1)%[1+sin?(3mx; + 1 —1)?[1 +sin?(2

13(X) = 0.14 sin*(37x1) + Y7t (x; — 1)7[1 + sin®*(37x; + 1) | + (x4 — 1)°[1 + sin®(27x,) | ¢ + (50, 50" 0 30

i, u(x;.5.100.4)
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Table 3. Description of fixed-dimension multimodal benchmark functions.

Function Range Fonin n (Dim) 3D View
- 1 2
Fu(X) = ( Aoy ) [—65.53, 65.53]
500 j=1 ]+(Xi—llij)6 \ HQ#((
'l c\ ‘ ": <~ n
o
2
_w11 | n(Bbiva) -5, 54 0.00030 4
Fs5(X) =Y, {ﬂz R [ ]

Fie(X) = 4x2 — 2.1x} + 1x8 + xyxp — 423 + 423 (-5, 5] —1.0316 2
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Table 3. Cont.

14 of 27
Function Range Fonin n (Dim) 3D View
0y
2
Fiy(X) = (xz — Sl Sy 6) +10 (1 - %) cosxq + 10 (-5, 5 0.398 2
Fig(X) = [1+(x1 +x2 +1)%(19 — 14x; +3x%714x2+6x1x2+3x%)} X 2, 2P 2 )
{30 + (201 —3x2)? x (18 — 32x; + 1222 + 48x; — 36x1 %, + 27x§)] '
4 3 2 1 3] ~3.86 3 "
Fo(X)=—-Yiq¢ EXP(* L1 aij (Xj - Pij)) 1, 3] :

Fx(X) = — iy ci exp (— Y1 i (x,- - Piz‘))2

s
—3.32 v
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Table 3. Cont.

Function Range Fonin n (Dim) 3D View
-1 n
B = ~ E [(X - a) (X -0+ 0,10 101552 i
N s
7 T, 11 0, 10]" 10.4028 4 l v
Fo(X) = - Xiy [(X—ﬂi)(X—ﬂi) +Ci] [0, 10] —
02~ s
- ! il '
Fn(X) = ~ LI [(X = a) (X —a)T +¢] 0, 10] ~10.5363 !
; =
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The results and performance of the proposed hCSC-PS is compared with original
SCA and other well-established optimization algorithms include GSA [54], TSA [55] and,
GWO [56]. For both hCSC-PS and SCA the size of solution (N) is considered equal to
50. As the proposed algorithm required extra function evaluation, the same value of
maximum number of iterations may cause an unfair comparison. Therefore, to have a fair
comparison between the algorithms, the same number of function evaluations equal to
50,000 is considered in all experiments. The parameters of the hCSC-PS and other methods
are presented in Table 4. Because metaheuristics approaches are stochastic, the findings
of a single run may be erroneous, and the algorithms may find better or worse solutions
than those previously found. As a result, statistical analysis should be used to make a
fair comparison and evaluate the algorithms’ effectiveness. In order to address this issue,
30 separate runs were carried out for the specified algorithms and the statistical outcomes
are described in Tables 5-7.

Table 4. Bound setting of the proposed methods.

Year Algorithm Parameter Specifications
Search agents 50
2021 hCSC-PS Number of elites 2
Number of function evaluations 50,000
Search agents 50
2016 SCA Number of elites 2
Number of function evaluations 50,000
Search agents 50
Gravitational constant 100
2009 GSA Alpha coefficient 20
Number of function evaluations 50,000
Search agents 50
2014 GWO Control parameter (a) [2,0]
Number of function evaluations 50,000
Search agents 50
Parameter Pmin 1
2020 TSA Parameter Pmax 4
Number of function evaluations 50,000

Table 5. Comparison of other techniques in resolving multimodal test functions in Table 1.

Function Statistics hCSC-PS SCA GSA TSA GWO

Best 0.000 1551 x 106 1.101 x 1077 5.145 x 100 2.391x 10761

Worst 0.000 2.030 x 1073 3.186 x 10717  1.058 x 1075 3.564x 1058

F Mean 0.000 2.340 x 107° 2117 x 10717 8215 x 10~%° 4.116x 10~
Median 0.000 1.874 x 1074 2.007 x 10°Y  7.401 x 10~5° 1.153x 10~

Std. 0.000 7.929 x 107° 5815 x 10777 2.390 x 10755 1.123% 1038

Best 0.000 1.500 x 106 1.528 x 108 1.119 x 107%  8.362 x 103

Worst 0.000 9.830 x 10~ 3.331 x 108 3281 x 10732 5.340 x 1073+

F, Mean 0.000 1.687 x 106 2.393 x 1078 2151 x 10733 8.361 x 10735
Median 0.000 5.402 x 1077 2.347 x 10~8 3.104 x 1073 5.929 x 103>

Std. 0.000 2.304 x 107 4.002 x 10°8 6.023 x 1073 9.850 x 10~%

Best 0.000 7.172 x 10 1.029 x 102 2568 x 10732 1.253 x 107 1?

Worst 0.000 2.660 x 103 4.686 x 102 2449 x 10777 3557 x 10713

F3 Mean 0.000 7.991 x 10? 2.454 x 10? 8174 x 10719 1.509 x 10~ 4
Median 0.000 6.294 x 102 2.211 x 102 1.869 x 1072*  2.074 x 10717

Std. 0.000 7.562 x 102 1.001 x 102 4471 x 10718 6.554 x 10714
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Table 5. Cont.
Function Statistics hCSC-PS SCA GSA TSA GWO
Best 0.000 1.161 2.230 x 10~ 3.235 x 10~8 9.821 x 10716
Worst 0.000 3.467 x 10 5.085 x 10~ 6.342 x 1075 2441 x 10713
Fy Mean 0.000 9.208 3.303 x 10~? 1.011 x 107> 1.948 x 1014
Median 0.000 6.080 3.200 x 10~°? 2.027 x 10~° 6.381 x 10715
Std. 0.000 8.672 7.444 x 107 1.692 x 107> 4491 x 10°1*
Best 5061 x 10~1  2.712 x 10 2574 x 10 2562 x 10 2521 x 10
Worst 8123 X 101 4951 x 10 2.209 x 102 2.954 x 10 2.872 x 10
Fs Mean 7183 x 10~1 2911 x 10 4.228 x 10 2.844 x 10 2.690 x 10
Median  7.270 x 10~ 2.900 x 10 2.617 x 10 2.891 x 10 2.713 x 10
Std. 1.063 X 101 4.152 4544 x 10 7.619 x 1071 8.408 x 1071
Best 0.000 3.457 9.712 x 10718 2.054 2.456 x 1071
Worst 0.000 4.843 8.642 x 10717 4.772 1.291
Fe Mean 0.000 4.436 3.097 x 1077 3.670 6.476 x 1071
Median 0.000 4.457 2933 x 107V 3.561 7.252 x 1071
Std. 0.000 2.850 x 1071 6.169 x 10717 0.693 3.053 x 1071
Best 3305 x 10710 4150 x 102 8.100 x 1073 6.710 x 10~* 1.523 x 10~
Worst 1.221 x 0~ 3.100 x 1073 9.620 x 1072 3.100 x 1072 4.200 x 1072
F; Mean 7.280 X 0716 4116 x 1071 3.370 x 1072 4.800 x 102 7.995 x 1074
Median 3.300 X 0~10 8.780 x 102 1.220 x 102 5.800 x 102 7.069 x 1074
Std. 2.488 x 1075 5.010 x 102 8.800 x 1073 7.7266 x 10~* 4,678 x 10~*
Table 6. Comparison of other techniques in resolving multimodal test functions in Table 2.
Function Statistics hCSC-PS SCA GSA TSA GWO
Best —1.100 x 10* —5.399 x 103  —3.627 x 10° —7.999 x 10° —8.917 x 103
Worst —1.001 x 10* —3432x10° —2.103 x10° —5376 x 10° —4.878 x 10°
Fs Mean —1.100 X 10* —4576 x 10° —2.882 x 10> —6.412 x10° —6.357 x 103
Median —1.102 x 10*  —3.672 x 103 —2.846 x 10° —6513 x 10° —6.426 x 10°
Std. 1.734 x 10? 3.768 x 102 3.754 x 10% 5.692 x 108 8.524 x 108
Best 0.000 1.066 x 10~° 8.854 7.877 x 10 0.000
Worst 0.000 4143 x 10 2.788 x 10 2.949 x 102 1.105 x 10
Fo Mean 0.000 5.969 1.672 x 10 1.014 x 102 8.553 x 1071
Median 0.000 8.339 x 1074 1.531 x 10 1.096 x 102 0.000
Std. 0.000 1.124 x 10 3.204 3.387 x 10 2.4938
Best 8.881 x 10716 1556 x 107> 2428 x 1077 1569 x 10~  1.560 x 10714
Worst 8.881 x 1016 2.121 x 10 4582 x 10~° 4.012 2.020 x 10714
Fo Mean 8.881 x 1016 1.336 x 10 4.691 x 1077 2.409 1.547 x 10715
Median 8.881 x 1016 2.112 x 10 3.486 x 10~? 2.765 1.459 x 10~ 14
Std. 0.000 7.977 5.133 x 10710 1.097 2.376 x 10715
Best 0.000 4348 x 1077 1.654 0.00 0.000
Worst 0.000 7.654 x 1071 1.028 x 10 1.090 x 1072 8.400 x 102
Fi Mean 0.000 2.148 x 1071 4.452 6.700 x 1072 9.400 x 1073
Median 0.000 1.320 x 1072 3.565 7.200 x 1072 0.000
Std. 0.000 2.218 x 1071 2.023 5.700 x 1072 4.100 x 1073
Best 4611 X 10732 2456 x 1071 8214 x 10720 2876 x 10°!  2.540 x 1072
Worst 4.611 x 1032 5.632 1.343 x 101 1.398 x 10 4.200 x 102
Fio Mean 4611 X 10732 9654 x 1071 4.580 x 1072 6.094 6.640 x 1072
Median 4.611 X 10732 4209 x 10-1  1.303 x 10~1° 6.765 8.290 x 102
Std. 1.044 x 10~¥ 1.144 4.230 x 1072 3.409 5.010 x 10~2
Best 1.245 x 1032 1.945 1.354 x 10718 1.9876 1.001 x 1071
Worst 1.000 x 102 2.298 x 10 1.000 x 102 3.2305 1.041
Fi3 Mean 5.000 X 103 3.541 6.334 x 1074 1.9976 5.283 x 107!
Median 1.000 x 102 2.366 2.109 x 10~18 1.8574 5.235 x 10~!
Std. 4.000 x 103 3.980 1.800 x 1072 6.436 x 10°1  3.351 x 107!
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Table 7. Comparison of other techniques in resolving multimodal test functions in Table 3.
Function Statistics hCSC-PS SCA GSA TSA GWO
Best 9.980 x 10~1  9.980 x 107! 9.980 x 1071 9.980 x 10~ 9.980 x 107!
Worst 9.980 x 10~ 1 2.982 8.085 1.267 x 10 1.267x 10
Fia Mean 9.980 x 10~ 1 1.196 3.621 7.665 4.131
Median 9.980 x 10~1  9.980 x 107! 3.045 1.076 x 10 2.982
Std. 1472 x 10711 6.054 x 1071 2.194 4.884 4.144
Best 3.138 X 1074 3.406 x 10~* 1200 x 10~2 3751 x 10~*  3.174 x 10~¢
Worst 3.968x 104 1.400 x 102 1.180 x 1071 5.660 x 1072 2.040 x 102
Fi5 Mean 3364 X 1074 8597 x 10~* 2500 x 1072 4.300 x 1072 4.400 x 1072
Median 3.232 X 1074 7309 x 10~ 2100 x 1072 4539 x 107*  3.075 x 10~*
Std. 2458 X 1075 3.808 x 10~* 1.900 x 1072 1.160 x 10~!  8.100 x 102
Best —1.031 —1.031 —1.031 —1.031 —1.031
Worst —1.031 —1.031 —1.031 —1.000 —1.031
Fie Mean —1.031 —1.031 —1.031 —1.030 —1.031
Median —1.031 —1.031 —1.031 —1.031 —1.031
Std. 1.859 X 10~%  1.039 x 10> 5608 x 107> 5.800 x 1072  4.738 x 10~?
Best 3.979 x 101 3979 x 10! 3.979 x 101 3979 x 10°1  3.979 x 10!
Worst 3.979 x 10°1 3992 x 107! 3979 x 10~ 3980 x 10!  3.979 x 107!
Fiy Mean 3979 x 101 3982 x10°! 3979 x 101 3979 x 10°!  3.979 x 107!
Median 3979 x 1071 3982 x 107! 3979 x 10~! 3979 x 10°!  3.979 x 10!
Std. 0.000 3.488 x 1074 0.000 1371 x 1075  1.105 x 10~°
Best 3.000 3.000 3.000 3.000 3.000
Worst 3.000 3.000 3.000 8.400 x 10 3.000
Fig Mean 3.000 3.000 3.000 5.700 3.000
Median 3.000 3.000 3.000 3.000 3.000
Std. 1.098 x 10~ 5349 x 107  1.592 x 1015 14.7885 9.505 x 10~°
Best —3.862 —3.862 —3.862 —3.862 —3.862
Worst —3.862 —3.854 —3.862 —3.954 —3.954
Fio Mean —3.862 —3.875 —3.862 —3.062 —3.962
Median —3.862 —3.806 —3.862 —3.962 —3.962
Std. 4186 X 1071 2.800 x 102 2479 x 107 1.500 x 1072 2.100 x 102
Best —3.322 —3.191 —3.322 —3.321 —3.322
Worst —3.322 —2.048 —1.855 —3.088 —3.029
Fxo Mean —3.322 —3.015 —2.953 —3.253 —3.249
Median —3.322 —3.013 —2.987 —3.202 —3.262
Std. 1.355 X 10°15  1.974 x 107! 2446 x 1071 6.710 x 1072 8.210 x 102
Best —1.015 X 10 —8.137 —1.015 x 10 —1.013 x 10 —1.015 x 10
Worst —1015 X 10  —8.800 x 107! —2.682 —2.666 —5.099
Fx Mean —1.015 X 10 —4.318 —6.396 —7.287 —9.479
Median —1.015 x 10 —4.905 —3.954 —7.419 —1.015 x 10
Std. 2.499 x 1017 2.078 3.590 2.859 1.746
Best —1.040 x 10 —9.054 —1.040 x 10 —1.039 x 10 —1.040 x 10
Worst —1.040 X 10 —9.064 x 10-1  —1.040 x 10 —2.748 —5.085
Fx Mean —1.040 x 10 —5.415 —1.040 x 10 —7.838 —1.022 x 10
Median —1.040 x 10 —5.037 —1.040 x 10 —1.025 x 10 —1.040 x 10
Std. 5.420 x 10~15 1.738 4.661 x 10~° 3.184 9.723 x 1071
Best —1.053 x 10 —9.3851 —-1.053 x 1.0  —1.051 x 10 —1.053 x 10
Worst —1.053 X 10 —3.2531 —1053 x 10 —1.675 —1.053 x 10
Fx Mean —1.053 X 10 —5.2925 —1.053 x 10 —7.673 —1.053 x 10
Median —1.053 x 10 —5.0398 —1.053 x 10 —1.041 x 10 —1.053 x 10
Std. 2.485 x 10~18 1.0982 1.836 x 10~1° 3.7585 2.585 x 10~4

The results of Tables 5-7 show that, for all functions, hCSC-PS could provide better
solutions in terms of the best and the mean value of the objective functions compared with
the standard SCA and also other optimization algorithms. The results show that hCSC-PS
is a more stable approach than the other methods in terms of standard deviation, which
indicates the algorithm’s stability. Based on the findings, it can be inferred that hCSC-PS
outperforms the standard algorithm as well as alternative optimization methods.
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5. Practical Applications

Figure 6 shows a single-line diagram of the 3-machine 9-bus (WSCC), which is used to
demonstrate the proposed technique’s efficacy and robustness [5,57]. Different strategies
for determining the best location for SVCs devices have been described in the literature [5].
The WSCC system was subjected to two strategies based on the effect of load percentage
and line outage on load bus voltages, with bus number 5 being selected as the best location
for the SVC device. The proposed controllers’ performance is evaluated using four different
loading conditions. Table 8 shows four operating conditions (cases), which they are consid-
ered as representative cases in the literature [5,15,18,44], for evaluating the performance
of the proposed controllers. These operating conditions are considered for the WSCC test
system in the design process. The dynamics model of the system is given in Appendix A.

@—I—BCC — Load C BE—-—@

2 7 8 9 3

Load A Load B

VY

Figure 6. 3-machine, 9-bus power system from WSCC.

Table 8. System operating conditions.

Generator Normal Case Case 1 Case 2 Case 3
P(pu) Qpw  Pw Qpuw Ppuw Qpuw Ppu Qpuw
Gy 1.79 0.28 211 1.19 0.33 1.12 1.47 1.05
Gy 1.65 0.08 1.22 0.57 2.00 0.57 2.01 0.6
Gs 0.85 —0.11 1.29 0.38 1.50 0.38 1.5 0.7
Load
A 1.25 0.54 2.10 0.70 1.50 0.90 1.5 0.9
B 0.90 0.31 1.81 0.450 1.20 0.80 1.2 0.8
C 1.10 0.25 1.70 0.80 1.00 0.5 1 0.5

The objective function given in Equation (10) is minimized with two scenarios of
severe fault disturbances under the loading conditions described above in order to find the
optimum values of controllers’ parameters. Scenario 1: The line 5-7 close bus 5 experiences
a 6-cycle fault disturbance. The fault is cleared by tripping line 5-7 and reclosing it
successfully after 1.0 s. Scenario 2 is the same as scenario 1, except for a 0.2 (pu) step increase
in mechanical power. Lines 5-7 are tripped to clear the fault and reclosing successfully
after 1.0 s. The optimum controller parameters obtained using the nonlinear time domain
based objective function are shown in Table 9. To obtain the results presented in this table,
the problem has been solved 30 times using the proposed hCSC-PS and the best results are
presented in Table 9. After the proposed hCSC-PS technique had converged, these results
were obtained. To demonstrate the robustness of the coordination between PSSs and SVC
controllers, an individual design is also carried out.
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Table 9. Optimal parameters obtained by hCSC-PS.

Algorithm K T T, T3 Ty
PSS1 20.45 0.070 0.073 0.030 0.045
Uncoordinated design PSS2 19.36 0.128 0.050 0.068 0.055
SvC 65.56 0.028 0.121 0.523 0.048
PSS1 24.06 0.095 0.043 0.283 0.050
Coordinated design PSS2 15.03 0.056 0.050 0.054 0.029
SvC 25.02 0.028 0.230 0.058 0.493

Figure 7 shows the speed deviation response for various loading conditions under
two scenarios to demonstrate the contribution of the coordinated design versus the uncoor-
dinated design. When compared to when no controllers are used, Figure 8 clearly shows
that SVC-based controllers fail to provide adequate damping of system oscillations when
used alone. Furthermore, when compared to SVC controllers, PSSs regulators provide
good damping of system oscillations with a short settling time. The suggested coordinated
controllers, on the other hand, remain the most effective at damping oscillations and reduc-
ing their settling times. The coordinated design of the suggested method outperforms the
uncoordinated design, according to the simulation results.

0.015

w2 (pu)
o

PSS & SVC
PSS & svC PSSs
PSSs sSvC

svc No Contoller
No Contoller

wi3 (pu)

—.0.03
o

= 0.015
— 8 10 0 2 4 6 8 10
Time (s) Time (s)

(a) (b)

0.01 T

w12 (pu)

data1 PSS & SVC
——PSS & SVC PSSs

svc
No Contoller No Contoller

w13 (pu)

—0.02
o

—0.01
0

Time (s) 8 10 Time (5)

(©) (d)

Figure 7. Speed deviation response for various loading conditions. (a) Normal case scenario 1;
(b) Case 1 under scenario 2; (c) Case 2 under scenario 1; (d) Case 3 under scenario 2.
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To determine the robustness of the suggested controllers, the parameters of
the controllers are also tuned using SCA, TSA, and GSA methods. The values of
these parameters are shown in Table 10. Figure 8 depicts the rate of convergence
for the best controller tuning. By minimizing a time domain objective function with
speed deviations, the proposed method is used to solve the problem of controller
parameter design in a multi-machine power system. In addition, when a controller
is designed with HCSC-PS, GSA, TSA, and SCA, over the simulation period, the
speed divergence is calculated, as shown in Figure 9. Note that wiy = w,— w; and
w13 = w3— wi. The PSS and SVC controllers built by hCSC-PS provide good damp-
ing for the study system and have a superior feature than those designed by SCA,
GSA, and TSA, as seen in these graphs. Obtained minimum damping ratios are pre-
sented in Table 11 for different loading conditions. The higher values of minimum
damping ratio depict the higher capability of the controller to damp out the LFOs.
As can be seen from Table 11, proposed method give the larger value of minimum
damping ratio compared to the other methods. This means that PSS and SVC con-
trollers optimized by hCSC-PS are capable of providing better damping to the LFOs.
The damping ratio is a dimensionless parameter which describes how an oscillating
comes to rest. The damping ratio describes how rapidly the amplitude of a vibrat-
ing system decays with respect to time. By increasing the system damping ratio, the
forced oscillation amplitude can be reduced. The damping ratio of the oscillation is
defined as:

%
¢= Nz (12)
Table 10. Optimal parameters obtained by SCA, TSA, and GSA.
Algorithm K T T, T3 Ty
PSS1 20.30 0.254 0.854 0.221 1.214
Coordinated by SCA PSS2 17.24 0.052 0.563 0.034 0.376
SvC 36.92 0.058 0.034 0.031 0.098
PSS1 18.24 0.021 0.267 0.181 0.276
Coordinated by TSA PSS2 26.08 0.854 0.189 0.023 1.149
SvC 18.65 0.523 0.123 0.081 0.100
PSS1 25.45 0.283 0.854 0.63 1.312
Coordinated by GSA PSS2 18.05 0.054 0.561 0.101 0.734
SvC 51.23 0.058 0.034 0.045 0.087

Table 11. Damping ratio comparison for different loading conditions.

Uncoordinated Coordinated Coordinated Coordinated Coordinated
Design Design by SCA by TSA by GSA
Case 1 0.0696 0.7779 0.5654 0.5412 0.2524
Case2 0.2868 0.8379 0.5003 0.5177 0.5215

Case 3 0.2139 0.7686 0.4538 0.4417 0.5459
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Figure 9. Speed deviation response for various loading conditions. (a) Normal Case under scenario 1;
(b) Case 1 under scenario 2; (¢) Case 2 under scenario 1; (d) Case 3 under scenario 2.

6. Conclusions

In this paper, a novel hybrid optimization algorithm called hCSC-PS is suggested for
the simultaneous coordinated design of PSSs and SVC controllers in multi-machine power
system. The proposed hCSC-PS combines two search techniques: the chaotic CSA as an
effective global optimization, and pattern search as a robust local search method. Firstly,
the performance comparison of the proposed hCSC-PS algorithm on a set of benchmark
functions reveals that the proposed method outperforms the standard SCA and also other
algorithms. Then, the problem is formulated as an optimization problem where the con-
trollers’ parameters are the decision variables of the problem. The enhancement of the
system stability is taken into account in the objective function in which the time responses
of the speeds’ deviations of machines are involved. Then, the hCSC-PS algorithm is used
to optimize the objective function for four operating conditions (representative cases) and
severe fault scenarios. The performance and robustness of the proposed controller are
assessed on a power network test, frequently used in power system stability studies. Simu-
lation results showed that the proposed coordinated design of PSSs and SVC controllers
greatly improved the damping characteristics of power system oscillations, compared to
the individual design.

Author Contributions: Conceptualization, M.N.; methodology, M.E.; software, MLE.; validation,
M.E., M.N. and S.A.K,; formal analysis, M.E. and S.A.K,; investigation, M.N.; resources, M.E.; data
curation, M.E. and M.N.; writing—original draft preparation, M.E. and S.A.K.; writing—review
and editing, M.E., S.A.K. and M.N.; visualization, M.E.; supervision, M.E.; project administration,
M.E.; funding acquisition, M.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2022, 14, 541 24 of 27
Appendix A
The dynamics model of power system is given by [58]:
Appendix A.1. Generator
6 = wp(w; = 1) (A1)
) 1
w;i = 3 (Pmi = Pei = Di(wi — 1)) (A2)
1
qu -1 (e i — (%ai — XGi ) igi — Egi) (A3)
Tdoz'
Pei = vgilg; + Vgilgi (A4)
Appendix A.2. Exciter and PSS
. 1
Efgi = — (KAi(Urefi — v+ Mpsa’) — Efai) (AD)
Tai
1/2
v = (Uzdi + vzqi> (A6)
Vgi = Xgilgi (A7)
vgi = Egi — Xgiiaj (A8)
Toi = Egigi (Xgi — Xai) ailgi (A9)
Appendix A.3. SVC- Based Controller
Bsyc = (Ks (Bg?/(c - Msvc) — Bsyc ) /Ts (A10)
Appendix A.4. Linearized Model
NS 0 wol 0 0 NS
Aw . -M 'Ky, -M'D MK 0 Aw
./ _ — —
AE, —T' 'Ky 0 T ks T || AE,
AEfd —TglKAKS 0 —TglKAKﬁ Tlgl AEfd (A11)
0 0
+ 0 _MflKPB Upssi
0 —T 7 Kyp AB
T,'Ka —T;'KaKyp
oP, oP, JE, JE, v v oP, Jv v
Kq = Ky=—,Ks3=—",Ky=—,Ks=—,K¢=—,K,p=—-,K,;p=—,Kyp = — Al2
1 85, 2 ] 1N 85’ 5 851 6 -~ D\pB aBr qB s \vB B ( )

JE, JE, JE, JE,
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Appendix B

Table A1. Nomenclature and Abbreviation.

Variables & Abbreviation Description Variables & Abbreviation Description
fX) Fitness function dim Dimension
g(X) Inequality constraints SF Size factor
h(X) Equality constraints P Mechanical input power
x Dlmen.smnal Yector of P, Active power
design variables
Xt & xU Boundary constraints M Machine inertia
1) Rotor angle D Damping the coefficient
w Speed deviation Vrefi Reference voltage
Eq Internal voltages Th0i Open circuit field time constant
. . Stator currents in d- and q
Eq Field voltages igi, lgi —axis circuits
u Input control parameters x Vector of state variables
Esim time of simulation Yy Vector of algebraic variables
N Number of machines Bsyce Susceptance of SVC
M Number of operating points ¢ Damping ratio
. Minimum value of the
K Gain Fnin objective function
T1-Ty Time constants dim dimension
Twi Time constant of washout A 4n x 4n matrix
Placement of ith solution in .
X; B 4n X m matrix
the search space
ub; Upper bounds a Control parameter
Ib; Lower bounds m PSS and SVC
73 Random number among 0 and 1 X 4n x 1 state vector
xf Posmon. of zth solution at SF Size factor
iteration £
Best solution in -
X Best the population PSS Power system stabilizer
1 Random numbers in the range SvC Static VAR compensator
of [0, 27]
9) Random welg}}t of the CSCA Chaotic sine cosine algorithm
best solution
Maximum number
tinax of iterations PS Pattern search
A(t) Chaotic map FACTS Flexible AC transmission systems
t Iteration number hCSC-PS Hybrid CSCA and PS
a Constant equal to 4 LFO Low frequency oscillations
Wi, Speed difference response of sQP Sequential qua.adrahc
G1-Gy programming
Wi Speed difference response of SCA Sine cosine algorithm
G1-G3
K;-Kg Linearization constants Ky, Ky, Kp Linearization constants
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