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Abstract: This paper presents an effective hybrid optimization technique based on a chaotic sine co-
sine algorithm (CSCA) and pattern search (PS) for the coordinated design of power system stabilizers
(PSSs) and static VAR compensator (SVC)-based controllers. For this purpose, the design problem
is considered as an optimization problem whose decision variables are the controllers’ parameters.
Due to the nonlinearities of large, interconnected power systems, methods capable of handling
any nonlinearity of power networks are preferable. In this regard, a nonlinear time domain-based
objective function was used. Then, the proposed hybrid chaotic sine cosine pattern search (hCSC-PS)
algorithm was employed for solving this optimization problem. The proposed method employed the
global search ability of SCA and the local search ability of PS. The performance of the new hCSC-PS
was investigated using a set of benchmark functions, and then the results were compared with those
of the standard SCA and some other methods from the literature. In addition, a case study from the
literature is considered to evaluate the efficiency of the proposed hCSC-PS for the coordinated design
of controllers in the power system. PSSs and additional SVC controllers are being considered to
demonstrate the feasibility of the new technique. In order to ensure the robustness and performance
of the proposed controller, the objective function is evaluated for various extreme loading conditions
and system configurations. The numerical investigations show that the new approach may provide
better optimal damping and outperforms previous methods. Nonlinear time-domain simulation
shows the superiority of the proposed controller and its ability in providing efficient damping of
electromechanical oscillations.

Keywords: sine cosine algorithm; pattern search; PSS; SVC; optimization; oscillation

1. Introduction

The stability of power systems has become a key study area as a result of the
integration of power systems. As a result, the power system has been upgraded with
more complex control technology and stronger protective mechanisms to improve
stability. Electromechanical oscillations, which can be categorized into inter-area and
local modes, are detected in the power system as a result of mechanical and electrical
torque imbalances at the synchronous generator, which are induced by changes in the
power system topology or loads [1]. The generator rotor shaft and power transfers
are severely damaged when these low frequency oscillations (LFOs) are insufficiently
damped. These oscillations have a significant impact on the dependability and security
of a power supply. Power system stabilizers (PSSs) have long been used to increase
power system stability and boost system damping of oscillation modes in order to
combat these negative phenomena. These stabilizers are used to add damping torque
to the generator rotor oscillations that are caused by the generator’s speed, frequency,
or power. However, power networks are nonlinear and complex, making the use
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of nonlinear models instead of linear approximations more advisable to treat any
nonlinearity in the tuning problem. Moreover, recent research has revealed that if
only one PSS is tuned, the required damping level cannot be reached. Thus, it is
advised to ensure coordination between the design processes of all PSSs. From the
literature review, such as in [1], it is shown that PSSs regulators may fail sometimes to
provide adequate damping torque for inter-area modes. Unfortunately, some weakness
is encountered in the damping of inter-area oscillations, and other solutions need to
be involved.

In recent years, power electronic-based flexible AC transmission systems (FACTS)
controllers, which are based on power electronics, have been considered as efficient
alternative solutions [2]. Generally, FACTS devices have been employed for handling
different power system control problems [3]. In other words, they can increase power
transfer capability, and improve power system stability and controllability. Thus, power
flow will be better controlled, and the voltages will be better maintained within their
rated limits, which will make it possible to increase the stability margins and to tend
towards the thermal limits of the lines. However, the combination of PSSs and FACTS
devices in the same network has raised a new problem in terms of coordination between
these regulators. Indeed, it is essential to ensure that there is a good coordination
between these devices in a way that their actions are not negative in view of the security
of the network.

One of the well-known shunt FACTS devices, named static VAR compensator (SVC), is
considered a competent device to provide adequate damping of the LFOs in modern power
systems after the apparition of disturbances [4]. It also has the capability of regulating bus
voltage at its terminals by injecting controllable reactive power into the power network
through the bus where it is connected. In the last few years, many studies have proposed
design techniques for SVC devices to enhance power system stability. Furthermore, other
proprieties of the power system can be improved, such as the dynamic control of power
flow, steady-state stability limits, and damping of electromechanical oscillations [5]. Most
of these studies have been focused on the coordinated design of SVC and PSS controllers.
Uncoordinated design between SVC and PSS causes the system to become unstable. There-
fore, stability and damping modes are essential for optimal coordinated design between
PSS and SVC-based controllers. A comprehensive study of the PSS and SVC controllers
when applied in a coordinated manner and also separately has been investigated in [6].
The problem of designing the power system controller’s parameters is formulated as a non-
differentiable, large-scale nonlinear problem. This optimization problem is hard to solve by
employing traditional optimization techniques such as sequential quadratic programming
(SQP) techniques due to their high sensitivity to the initial point [7]. Furthermore, these
methods require a long convergence process. To overcome the drawbacks mentioned,
intelligent techniques are involved in real-life engineering problems, including power
system stability [8–14].

Most of this research has been focused on the coordinated design of SVC and PSS
controllers. For the coordinated design of power system controllers, a large number
of such algorithms have recently been offered, including: Teaching–Learning Algo-
rithm (TLA) [15], Bacterial Foraging Optimization (BFO) [16], Brainstorm optimization
algorithm (BOA) [17], Coyote Optimization Algorithm (COA) [18], ant colony opti-
mization (ACO) [19], bat algorithm (BAT) [20], bee colony algorithm (BCA) [7], Genetic
Algorithm (GA) [21], particle swarm optimization (PSO) [22], flower pollination algo-
rithm (FPA) [23], gravitational search algorithm (GSA) [24,25], sine-cosine algorithm
(SCA) [26], grey wolf optimizer (GWO) [27], firefly algorithm (FA) [28], Differential
Evolution (DE) [29], Biogeography-Based Optimization (BBO) [30], Cuckoo Search (CS)
algorithm [31], Harmony Search (HS) [32], Seeker Optimization Algorithm (SOA) [33],
Imperialist Competitive Algorithm (ICA) [34], Harris Hawk Optimization (HHO) [35],
Sperm Swarm Optimization (SSO) [36], Tabu Search (TS) [37], Simulated Annealing [38],
Multi-Verse Optimizer (MVO) [39], Moth-flame Optimization (MFO) [40], Tunicate
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Swarm Algorithm (TSA) [41] and collective decision optimization (CDO) [42]. Although
metaheuristics algorithms could provide relatively satisfactory results, no algorithm
could provide superior performance than others in solving all optimizing problems.
Therefore, several studies have been carried out to improve the performance and ef-
ficiency of the original metaheuristic algorithms in some ways and apply them for a
specific purpose [43–48].

The SCA is a relatively new meta-heuristic optimization approach introduced by
Mirjalili in 2016 [49]. Compared with other meta-heuristic, the SCA has a simple concept
and structure and does not have complicated mathematical functions. In the SCA, the
formulas for updating the population rely solely on sine and cosine functions. SCA is
better than other competitive methods at finding optimal solutions and is suitable for
tackling real-world optimization problems [50]. However, SCA tends to become trapped
in local optima and, in some complex cases, is unable to successfully converge [51]. In ad-
dition, according to the No-Free-Lunch theorem [52], even though various optimization
algorithms are introduced in the literature, there is no guarantee that an optimization al-
gorithm could solve every kind of optimization problem. In other words, one algorithm
or method cannot outperform others in all optimization problems. An optimization
method may have satisfied results for some problems, but not for others. As a result,
opportunities to introduce new methods will always exist. Therefore, in the current
study an effective hybrid algorithm is developed based on the chaotic version of the SCA
and pattern search (PS) method called hCSC-PS. The proposed hybrid algorithm utilizes
the exploration ability of SCA and exploitation ability of PS, which can significantly
improve the finding results. SCA and pattern search offer complementary benefits and
the combination these two techniques can result in a faster and more reliable algorithm.
To validate the efficacy of the new hybrid approach, a set of benchmark functions as well
as controller design problems of a multi-machine power system are studied. Simulation
results validate the superiority of the new method in design controllers under several
loading situations.

The rest of this paper is organized as follows: Section 2 explains the proposed hybrid
optimization algorithm. The problem is formulated as an optimization problem in Section 3.
Section 4 discusses model verification. Section 5 contains a description of the simulation
results. Finally, in Section 6, the study’s findings are summarized.

2. Proposed Hybrid Algorithm
2.1. CSCA

SCA is a population-based metaheuristic technique based on the mathematical
properties of sine and cosine functions [49]. This algorithm begins the search process
with a collection of randomly generated solutions in the search space, as shown in the
following equation.

xi = lbi + rand× (ubi − lbi); i = 1, 2, . . . , N (1)

where xi is the placement of ith solution in the search space. Furthermore, ubi and lbi
represent the solution’s lower and upper bounds, respectively. The parameters are defined
in Appendix B. Following the generation of the random starting solutions, each solution
dynamically modifies the positions using the equations below:{

xt+1
i = xt

i + A× sin(r1)×
∣∣r2 × xBest − xt

i

∣∣ i f r3 < 0.5
xt+1

i = xt
i + A× cos(r1)×

∣∣r2 × xBest − xt
i

∣∣ otherwise
(2)

where, xt
i is the position of ith solution at iteration t, xBest represents the best solution in the

population, r1 is a random numbers in the range of [0, 2π], r2 is a random weight of the
best solution among −2 and 2, r3 is a random number among 0 and 1, and the symbol | . |
signifies absolute value. If the parameter r3 is lesser than 0.5, the applicant solution selects
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the sine function to update its position. The parameter A is a function that may be defined
as follows to help balance the exploration and exploitation of a search space:

A = 2− 2
(

t
tmax

)
(3)

where, tmax is the maximum number of iterations. The aim of the current research is to
implement the global search ability of the SCA. Therefore, to increase the exploration
ability of the algorithm and to avoid premature convergence in early iterations, the chaotic
sequence is applied in the updating position equation (Equation (2)). Chaotic systems are
deterministic systems that present randomness, irregularity and the stochastic property,
depending on the initial conditions. Chaotic variables can oscillate through certain ranges
based on their own irregularity without repetition. A chaotic map is a map that presents
some kind of chaotic behavior, capable of generating chaotic motion. In the current study, a
well-known logistic map is applied based on the following equation:

λ (t + 1) = a × λ (t) × (1 − λ (t)) (4)

In this equation, λ (t) is the chaotic map and t denotes the iteration number. λ (0) is in
the range of (0, 1) and should not be equal to 0, 0.25, 0.5, 0.75 and 1. a is a constant equal to
4. In the CSCA, to increase the stochastic behavior of the algorithm and avoid premature
convergence, the random parameters r1 and r2 in Equation (2) are changed with the chaotic
map of Equation (4). Therefore, the updated position of the tunicate with respect to the
position of the food source is evaluated using the Equation (5). The steps of the proposed
CSCA are presented in Algorithm 1.{

xt+1
i = xt

i + A× sin(λ1)×
∣∣λ2 × xBest − xt

i

∣∣ i f r3 < 0.5
xt+1

i = xt
i + A× cos(λ1)×

∣∣λ2 × xBest − xt
i

∣∣ otherwise
(5)

Algorithm 1. CSCA.

Initialization algorithm parameters: population size (N), maximum iteration number (tmax).
Initialize random population X
For i = 1 to N

Calculate the fitness of each random solution
Record the optimal individual as Xbest

End
While (t ≤ tmax)

Update A using Equation (3)
Update λ using Equation (4)
For i = 1 to N

For j = 1 to dim
Update r3
If r3 < 0.5

Update X by the sine part of Equation (5)
Else

Update X by the cosine part of Equation (5)
End if

End for
Calculate the fitness of the updated X

Update Xbest
End for
t = t + 1

End
Return the best solution
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2.2. Pattern Search (PS)

PS is a derivative-free algorithm that can be simply implemented to fine-tune local
search. The PS algorithm generates a set of points that may or may not be close to the
optimum [53]. To begin, a mesh (a collection of points) is created around an existing
point. If a new point in the mesh has a lower value of objective function, it becomes the
current point in the following iteration. The PS starts the search with an initial point
X0 defined by the user. At the first iteration, the mesh size is considered equal to 1
and the pattern vectors (or direction vectors) are constructed as [0 1] + X0, [1 0] + X0,
[−1 0] + X0 and [0 −1] + X0, and new mesh points are added as presented in Figure 1.
Then, the objective function is calculated for produced trial points until a value smaller
than X0 is found. If there is such a point (f (X1) < f (X0)), the poll is successful, and the
algorithm sets this point as a source point. The method multiplies the current mesh
size by 2 (called the expansion factor) after a successful poll and moves on to iteration
2 with the following new points: 2 × [0 1] + X1, 2 × [1 0] + X1, 2 × [−1 0] + X1 and
2 × [0 −1] + X1. If a value lesser than for X1 is created, X2 is defined, the mesh size
is improved by two, and iterations continue. The current point is not modified if the
poll is unsuccessful at any stage (i.e., no point has an objective function lesser than the
greatest latest rate) and the mesh size is reduced by multiplying by a reduction factor.
This process is repeated until the minimum is found or a terminating conditions is met.
The steps of the PS method are presented in Algorithm 2.
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Algorithm 2. Pattern search method.

Initialization:
Initialize the starting point X0 and step size factor SF
Set t = 0

Iteration:
1. Search step: evaluate f at a finite number of points with the goal of decreasing the objective
function value at Xk. If Xk+1 is found satisfying f (Xk+1) < f (Xk), go to step 4.
Otherwise, go to step 2.
2. Poll step: If f (Xk ) ≤ f (X) for every X in the mesh neighborhood, go to step 3.

Otherwise, choose a point Xk+1 such that f (Xk+1) < f (Xk), go to step 4.
3. Mesh reduction: let SFk+1 = 1/2 × SFk. Set k← k + 1 and return to step 1 for a new iteration.
4. Mesh expansion: let SFk+1 = 2 × SFk. Set k← k + 1 and return to step 1 for a new iteration



Sustainability 2022, 14, 541 6 of 27

2.3. Proposed Method (hCSC-PS)

The original SCA has some advantages compared with other optimization algorithms. It
has a simple structure and fewer parameters. In addition, the performance of the algorithm
depends on the sine and cosine functions for iteration to find the optimal solution. Although
the original SCA has high global search capabilities, its parameters are incompatible with the
search process in the latter stages of the algorithm. This will reduce the rate of convergence
and population diversity. In this study, a hybrid algorithm combining the CSCA with the PS
algorithm, called hCSC-PS, is proposed for the coordinated design of PSSs and SVC-based
controllers. The hybrid algorithm may take advantage of both the CSCA’s strong global
searching capacity and the PS’s strong local searching ability. The chaotic sine cosine method
has excellent global optimal performance and is easy to escape from local minima. Theoreti-
cally, increasing the numbers of CSCA iteration can improve the search accuracy. When the
number of iterations is great enough, however, CSCA is unable to enhance precision. As a
result, CSCA’s local search capability is still insufficient. Pattern search is a local optimization
approach, and the initial point has a significant impact on the algorithm’s output. However, if
a good starting point is chosen, pattern search will be a simple and effective strategy. In this
study, we integrate the CSCA’s benefits as global optimization and PS’s advantages as the
local optimization to effectively find the optimal solution. The proposed hybrid algorithm
begins with the CSCA since the PS is sensitive to the initial solution. The searching process
continues with the CSCA for a specific number of iterations. The PS is then turned on to
conduct a local search using the current best solution obtained by CSCA as its starting point.
The suggested hCSC-PS algorithm’s flowchart is given in Figure 2.
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3. Optimization Problem Formulation

The general form of a constraint optimization problem can be expressed mathemati-
cally as follows:

minimize f (X)
subject to

gi(X) ≤ 0. i = 1, 2, . . . , p
hj(X) ≤ 0. j = 1, 2, . . . , m

XL ≤ X ≤ XU

(6)

where X is n dimensional vector of design variables, f (X) is the fitness function which
returns a scalar value to be minimized, g(X) and h(X) are inequality and equality constraints,
respectively. Boundary constraints, XL and XU, are the boundary constraints. Many
optimization methods have been developed over the last few decades. Metaheuristics are a
new generation of optimization methods that are proposed to solve complex problems.

3.1. Power System Model

The standard modeling for power systems is based on a set of nonlinear differential
algebraic calculations, which are as follows:

.
X = f (X.U) (7)

where X = [δ, ω, Eq, Efd] is the state variables vector and U = [uPSS, usvc] is the input
control parameters vector. The linear equation with PSSs and SVC controllers is obtained
by Equation (8).

.
X = AX + BU (8)

At a certain operating point, both A and B are evaluated. The goal of the optimum
design is to put the state matrix modes on the left side.

3.1.1. PSS Structure

PSS compensates for the phase lag between exciter input and machine electrical torque.
An additional stabilizing signal is presented through the excitation system to achieve this
goal. PSS generates the necessary torque on the machine’s rotor. The additional stabilizing
signal and the speed are proportional. As shown in Figure 3, this stabilizer style contains
of a washout filter and a dynamic compensator. The washout filter, which is primarily a
high pass filter, will remove the mean component of PSS’s output. In general, the constant
value of time can be anywhere between 0.5 and 20 s.
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3.1.2. SVC Based Damping Controller Model

Figure 4 shows the SVC structure in this study, which is a fixed capacitor thyristor-
controlled reactor. The firing angle varies between 90 and 180 degrees depending on the
capacitor voltage.
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Figure 5 shows an SVC-based damping controller that acts as a lead-lag compensator
and consists of two stages of the lead-lag compensator: a signal-washout block, and a gains
block. SVC has the following dynamic equation:

.
BSVC =

(
Ks

(
Bre f

SVC − uSVC

)
− BSVC

)
/Ts (9)
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3.2. Problem Formulation 
The optimum parameters are obtained using the suggested technique under a variety 
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ே
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hCSC-PS determines the gain (K) and time constants (T) of controllers. The washout time 
constant for both PSS and SVC controllers is TWi =10 s in most previous works. The deci-
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In this section the effectiveness verification of the proposed hybrid method will be 
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3.2. Problem Formulation

The optimum parameters are obtained using the suggested technique under a variety
of operating conditions and disturbances. For the optimal setting of PSSs and SVC con-
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trollers, a nonlinear time domain objective function called ITAE is used in this study. The
equation can be used to define ITAE based on system performance characteristics (10).

J =
N

∑
j=1

M

∑
i=1

tsim∫
0

t(|∆ωi|)dt (10)

where ∆ω is the speed deviation of rotor, tsim is the time of simulation, N and M are the
number of machine and the operating points respectively. The objective function and
constrained optimization problem can be described by the following equation for various
loading conditions:

minimize J
subject to

Kmin
i ≤ Ki ≤ Kmax

i
Tmin

ji ≤ Tji ≤ Tmax
ji j = 1, . . . , 4

(11)

hCSC-PS determines the gain (K) and time constants (T) of controllers. The washout time
constant for both PSS and SVC controllers is TWi =10 s in most previous works. The decision
variables’ typical ranges are [1, 100] for Ki and [0.01, 1.5] for T1i to T4i.

4. Performance Verification of hCSC-PS

In this section the effectiveness verification of the proposed hybrid method will be
investigated. To this aim, the performance of hCSC-PS is compared with the standard ver-
sion of the algorithm as well as some well-known metaheuristic algorithms on a collection
of benchmark test functions from the literature. These are all minimization problems that
can be used to assess the robustness and search efficiency of new optimization algorithms.
Tables 1–3 show the mathematical formulation and features of these test functions.

Table 1. Description of unimodal benchmark functions.

Function Range fmin n (Dim) 3D View

F1(X) = ∑n
i=1 x2

i [−100, 100]n 0 30
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Table 1. Cont.

Function Range fmin n (Dim) 3D View

F3(X) = ∑n
i=1

(
∑i

j=1 xj

)2
[−100, 100]n 0 30
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Table 2. Description of multimodal benchmark functions.

Function Range fmin n (Dim) 3D View

F8(X) = ∑n
i=1−xi sin

(√
|xi|
)

[−500, 500]n 428.9829 × n 30
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x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]n 0 30
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Table 2. Cont.

Function Range fmin n (Dim) 3D View

F11(X) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 [−600, 600]n 0 30
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Function Range 𝒇𝒎𝒊𝒏 n (Dim) 3D view 

𝐹ଵସሺ𝑋ሻ = ൭ 1500 + ෍ 1𝑗 + ൫𝑥௜ − 𝑎௜௝൯଺ଶହ௝ୀଵ ൱ିଵ

ሾ−65.53, 65.53ሿଶ 1 2

𝐹ଵହሺ𝑋ሻ = ෍ ቈ𝑎௜ − 𝑥ଵ൫𝑏௜ଶ + 𝑏௜𝑥ଶ൯𝑏௜ଶ + 𝑏௜𝑥ଷ + 𝑥ସ቉ଶଵଵ௜ୀଵ
ሾ−5, 5ሿସ 0.00030 4 

F12(X) =π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+ ∑n

i=1 u(xi. 10. 100. 4)

yi = 1 + xi+4
4 u(xi.a. k. m) =


k(xi − a)m xi > a

0 a < xi < a
k(−xi − a)m xi < −a

[−50, 50]n 0 30
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Table 3. Description of fixed-dimension multimodal benchmark functions. 

Function Range 𝒇𝒎𝒊𝒏 n (Dim) 3D view 

𝐹ଵସሺ𝑋ሻ = ൭ 1500 + ෍ 1𝑗 + ൫𝑥௜ − 𝑎௜௝൯଺ଶହ௝ୀଵ ൱ିଵ

ሾ−65.53, 65.53ሿଶ 1 2

𝐹ଵହሺ𝑋ሻ = ෍ ቈ𝑎௜ − 𝑥ଵ൫𝑏௜ଶ + 𝑏௜𝑥ଶ൯𝑏௜ଶ + 𝑏௜𝑥ଷ + 𝑥ସ቉ଶଵଵ௜ୀଵ
ሾ−5, 5ሿସ 0.00030 4 

F13(X) = 0.1
{

sin2(3πx1) + ∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+

∑n
i=1 u(xi. 5. 100. 4)

[−50, 50]n 0 30
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Table 3. Description of fixed-dimension multimodal benchmark functions. 

Function Range 𝒇𝒎𝒊𝒏 n (Dim) 3D view 

𝐹ଵସሺ𝑋ሻ = ൭ 1500 + ෍ 1𝑗 + ൫𝑥௜ − 𝑎௜௝൯଺ଶହ௝ୀଵ ൱ିଵ

ሾ−65.53, 65.53ሿଶ 1 2

𝐹ଵହሺ𝑋ሻ = ෍ ቈ𝑎௜ − 𝑥ଵ൫𝑏௜ଶ + 𝑏௜𝑥ଶ൯𝑏௜ଶ + 𝑏௜𝑥ଷ + 𝑥ସ቉ଶଵଵ௜ୀଵ
ሾ−5, 5ሿସ 0.00030 4 
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Table 3. Description of fixed-dimension multimodal benchmark functions.

Function Range fmin n (Dim) 3D View

F14(X) =

(
1

500 + ∑25
j=1

1
j+(xi−aij)

6

)−1
[−65.53, 65.53]2 1 2
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ሾ−600, 600ሿ௡ 0 30
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Table 3. Description of fixed-dimension multimodal benchmark functions. 

Function Range 𝒇𝒎𝒊𝒏 n (Dim) 3D view 

𝐹ଵସሺ𝑋ሻ = ൭ 1500 + ෍ 1𝑗 + ൫𝑥௜ − 𝑎௜௝൯଺ଶହ௝ୀଵ ൱ିଵ

ሾ−65.53, 65.53ሿଶ 1 2

𝐹ଵହሺ𝑋ሻ = ෍ ቈ𝑎௜ − 𝑥ଵ൫𝑏௜ଶ + 𝑏௜𝑥ଶ൯𝑏௜ଶ + 𝑏௜𝑥ଷ + 𝑥ସ቉ଶଵଵ௜ୀଵ
ሾ−5, 5ሿସ 0.00030 4 

F15(X) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
[−5, 5]4 0.00030 4
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Table 3. Description of fixed-dimension multimodal benchmark functions. 

Function Range 𝒇𝒎𝒊𝒏 n (Dim) 3D view 

𝐹ଵସሺ𝑋ሻ = ൭ 1500 + ෍ 1𝑗 + ൫𝑥௜ − 𝑎௜௝൯଺ଶହ௝ୀଵ ൱ିଵ

ሾ−65.53, 65.53ሿଶ 1 2

𝐹ଵହሺ𝑋ሻ = ෍ ቈ𝑎௜ − 𝑥ଵ൫𝑏௜ଶ + 𝑏௜𝑥ଶ൯𝑏௜ଶ + 𝑏௜𝑥ଷ + 𝑥ସ቉ଶଵଵ௜ୀଵ
ሾ−5, 5ሿସ 0.00030 4 

F16(X) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5, 5]2 −1.0316 2
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Table 3. Cont.

Function Range fmin n (Dim) 3D View

F17(X) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 [−5, 5]2 0.398 2
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F18(X) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]
×[

30 + (2x1 − 3x2)
2 ×

(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] [−2, 2]2 3 2
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F19(X) = −∑4
i=1 ci exp

(
−∑3

j=1 aij

(
xj − pij

))2
[1, 3]3 −3.86 3
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− 𝑝௜௝൯ቇଶ ሾ0, 1ሿ଺ −3.32 6 

𝐹ଶଵሺ𝑋ሻ = − ෍ ሾሺ𝑋 − 𝑎௜ሻሺ𝑋 − 𝑎௜ሻ் + 𝑐௜ሿିଵହ௜ୀଵ  

ሾ0, 10ሿ௡ −10.1532 4 

F20(X) = −∑4
i=1 ci exp

(
−∑6

j=1 aij

(
xj − pij

))2
[0, 1]6 −3.32 6
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Table 3. Cont.

Function Range fmin n (Dim) 3D View

F21(X) = −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0, 10]n −10.1532 4
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F22(X) = −∑7
i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0, 10]n −10.4028 4
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The results and performance of the proposed hCSC-PS is compared with original
SCA and other well-established optimization algorithms include GSA [54], TSA [55] and,
GWO [56]. For both hCSC-PS and SCA the size of solution (N) is considered equal to
50. As the proposed algorithm required extra function evaluation, the same value of
maximum number of iterations may cause an unfair comparison. Therefore, to have a fair
comparison between the algorithms, the same number of function evaluations equal to
50,000 is considered in all experiments. The parameters of the hCSC-PS and other methods
are presented in Table 4. Because metaheuristics approaches are stochastic, the findings
of a single run may be erroneous, and the algorithms may find better or worse solutions
than those previously found. As a result, statistical analysis should be used to make a
fair comparison and evaluate the algorithms’ effectiveness. In order to address this issue,
30 separate runs were carried out for the specified algorithms and the statistical outcomes
are described in Tables 5–7.

Table 4. Bound setting of the proposed methods.

Year Algorithm Parameter Specifications

2021 hCSC-PS
Search agents

Number of elites
Number of function evaluations

50
2

50,000

2016 SCA
Search agents

Number of elites
Number of function evaluations

50
2

50,000

2009 GSA

Search agents
Gravitational constant

Alpha coefficient
Number of function evaluations

50
100
20

50,000

2014 GWO
Search agents

Control parameter (→a)
Number of function evaluations

50
[2,0]

50,000

2020 TSA

Search agents
Parameter Pmin
Parameter Pmax

Number of function evaluations

50
1
4

50,000

Table 5. Comparison of other techniques in resolving multimodal test functions in Table 1.

Function Statistics hCSC-PS SCA GSA TSA GWO

F1

Best
Worst
Mean

Median
Std.

0.000
0.000
0.000
0.000
0.000

1.551 × 10−6

2. 030 × 10−3

2.340 × 10−5

1.874 × 10−4

7.929 × 10−5

1.101 × 10−17

3.186 × 10−17

2.117 × 10−17

2.007 × 10−17

5.815 × 10−17

5.145 × 10−60

1.058 × 10−55

8.215 × 10−55

7.401 × 10−55

2.390 × 10−55

2.391× 10−61

3.564× 10−58

4.116× 10−59

1.153× 10−59

1.123× 10−58

F2

Best
Worst
Mean

Median
Std.

0.000
0.000
0.000
0.000
0.000

1.500 × 10−6

9.830 × 10−6

1.687 × 10−6

5.402 × 10−7

2.304 × 10−6

1.528 × 10−8

3.331 × 10−8

2.393 × 10−8

2.347 × 10−8

4.002 × 10−8

1.119 × 10−35

3.281 × 10−32

2.151 × 10−33

3.104 × 10−34

6.023 × 10−33

8.362 × 10−36

5.340 × 10−34

8.361 × 10−35

5.929 × 10−35

9.850 × 10−35

F3

Best
Worst
Mean

Median
Std.

0.000
0.000
0.000
0.000
0.000

7.172 × 10
2.660 × 103

7.991 × 102

6.294 × 102

7.562 × 102

1.029 × 102

4.686 × 102

2.454 × 102

2.211 × 102

1.001 × 102

2.568 × 10−32

2.449 × 10−17

8.174 × 10−19

1.869 × 10−24

4.471 × 10−18

1.253 × 10−19

3.557 × 10−13

1.509 × 10−14

2.074 × 10−17

6.554 × 10−14
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Table 5. Cont.

Function Statistics hCSC-PS SCA GSA TSA GWO

F4

Best
Worst
Mean

Median
Std.

0.000
0.000
0.000
0.000
0.000

1.161
3.467 × 10

9.208
6.080
8.672

2.230 × 10−9

5.085 × 10−9

3.303 × 10−9

3.200 × 10−9

7.444 × 10−9

3.235 × 10−8

6.342 × 10−5

1.011 × 10−5

2.027 × 10−6

1.692 × 10−5

9.821 × 10−16

2.441 × 10−13

1.948 × 10−14

6.381 × 10−15

4.491 × 10−14

F5

Best
Worst
Mean

Median
Std.

5.061× 10−1

8.123× 10−1

7.183× 10−1

7.270× 10−1

1.063× 10−1

2.712 × 10
4.951 × 10
2.911 × 10
2.900 × 10

4.152

2.574 × 10
2.209 × 102

4.228 × 10
2.617 × 10
4.544 × 10

2.562 × 10
2.954 × 10
2.844 × 10
2.891 × 10

7.619 × 10−1

2.521 × 10
2.872 × 10
2.690 × 10
2.713 × 10

8.408 × 10−1

F6

Best
Worst
Mean

Median
Std.

0.000
0.000
0.000
0.000
0.000

3.457
4.843
4.436
4.457

2.850 × 10−1

9.712 × 10−18

8.642 × 10−17

3.097 × 10−17

2.933 × 10−17

6.169 × 10−17

2.054
4.772
3.670
3.561
0.693

2.456 × 10−1

1.291
6.476 × 10−1

7.252 × 10−1

3.053 × 10−1

F7

Best
Worst
Mean

Median
Std.

3.305×10−10

1.221 × 0−14

7.280 × 0−16

3.300 × 0−10

2.488 × 10−5

4.150 × 10−2

3.100 × 10−3

4.116 × 10−1

8.780 × 10−2

5.010 × 10−2

8.100 × 10−3

9.620 × 10−2

3.370 × 10−2

1.220 × 10−2

8.800 × 10−3

6.710 × 10−4

3.100 × 10−2

4.800 × 10−2

5.800 × 10−2

7.7266 × 10−4

1.523 × 10−4

4.200 × 10−2

7.995 × 10−4

7.069 × 10−4

4.678 × 10−4

Table 6. Comparison of other techniques in resolving multimodal test functions in Table 2.

Function Statistics hCSC-PS SCA GSA TSA GWO

F8

Best
Worst
Mean

Median
Std.

−1.100 × 104

−1.001 × 104

−1.100 × 104

−1.102 × 104

1.734 × 102

−5.399 × 103

−3.432 × 103

−4.576 × 103

−3.672 × 103

3.768 × 102

−3.627 × 103

−2.103 × 103

−2.882 × 103

−2.846 × 103

3.754 × 102

−7.999 × 103

−5.376 × 103

−6.412 × 103

−6.513 × 103

5.692 × 1023

−8.917 × 103

−4.878 × 103

−6.357 × 103

−6.426 × 103

8.524 × 1023

F9

Best
Worst
Mean

Median
Std.

0.000
0.000
0.000
0.000
0.000

1.066 × 10−6

4.143 × 10
5.969

8.339 × 10−4

1.124 × 10

8.854
2.788 × 10
1.672 × 10
1.531 × 10

3.204

7.877 × 10
2.949 × 102

1.014 × 102

1.096 × 102

3.387 × 10

0.000
1.105 × 10

8.553 × 10−1

0.000
2.4938

F10

Best
Worst
Mean

Median
Std.

8.881 × 10−16

8.881 × 10−16

8.881 × 10−16

8.881 × 10−16

0.000

1.556 × 10−5

2.121 × 10
1.336 × 10
2.112 × 10

7.977

2.428 × 10−9

4.582 × 10−9

4.691 × 10−9

3.486 × 10−9

5.133 × 10−10

1.569 × 10−14

4.012
2.409
2.765
1.097

1.560 × 10−14

2.020 × 10−14

1.547 × 10−15

1.459 × 10−14

2.376 × 10−15

F11

Best
Worst
Mean

Median
Std.

0.000
0.000
0.000
0.000
0.000

4.348 × 10−7

7.654 × 10−1

2.148 × 10−1

1.320 × 10−2

2.218 × 10−1

1.654
1.028 × 10

4.452
3.565
2.023

0.00
1.090 × 10−2

6.700 × 10−2

7.200 × 10−2

5.700 × 10−2

0.000
8.400 × 10−2

9.400 × 10−3

0.000
4.100 × 10−3

F12

Best
Worst
Mean

Median
Std.

4.611 × 10−32

4.611 × 10−32

4.611 × 10−32

4.611 × 10−32

1.044 × 10−47

2.456 × 10−1

5.632
9.654 × 10−1

4.209 × 10−1

1.144

8.214 × 10−20

1.343 × 10−1

4.580 × 10−2

1.303 × 10−19

4.230 × 10−2

2.876 × 10−1

1.398 × 10
6.094
6.765
3.409

2.540 × 10−2

4.200 × 10−2

6.640 × 10−2

8.290 × 10−2

5.010 × 10−2

F13

Best
Worst
Mean

Median
Std.

1.245 × 10−32

1.000 × 10−2

5.000 × 10−3

1.000 × 10−2

4.000 × 10−3

1.945
2.298 × 10

3.541
2.366
3.980

1.354 × 10−18

1.000 × 10−2

6.334 × 10−4

2.109 × 10−18

1.800 × 10−2

1.9876
3.2305
1.9976
1.8574

6.436 × 10−1

1.001 × 10−1

1.041
5.283 × 10−1

5.235 × 10−1

3.351 × 10−1
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Table 7. Comparison of other techniques in resolving multimodal test functions in Table 3.

Function Statistics hCSC-PS SCA GSA TSA GWO

F14

Best
Worst
Mean

Median
Std.

9.980 × 10−1

9.980 × 10−1

9.980 × 10−1

9.980 × 10−1

1.472 × 10−11

9.980 × 10−1

2.982
1.196

9.980 × 10−1

6.054 × 10−1

9.980 × 10−1

8.085
3.621
3.045
2.194

9.980 × 10−1

1.267 × 10
7.665

1.076 × 10
4.884

9.980 × 10−1

1.267× 10
4.131
2.982
4.144

F15

Best
Worst
Mean

Median
Std.

3.138 × 10−4

3.968× 10−4

3.364 × 10−4

3.232 × 10−4

2.458 × 10−5

3.406 × 10−4

1.400 × 10−2

8.597 × 10−4

7.309 × 10−4

3.808 × 10−4

1.200 × 10−2

1.180 × 10−1

2.500 × 10−2

2.100 × 10−2

1.900 × 10−2

3.751 × 10−4

5.660 × 10−2

4.300 × 10−2

4.539 × 10−4

1.160 × 10−1

3.174 × 10−4

2.040 × 10−2

4.400 × 10−2

3.075 × 10−4

8.100 × 10−2

F16

Best
Worst
Mean

Median
Std.

−1.031
−1.031
−1.031
−1.031

1.859 × 10−6

−1.031
−1.031
−1.031
−1.031

1.039 × 10−5

−1.031
−1.031
−1.031
−1.031

5.608 × 10−5

−1.031
−1.000
−1.030
−1.031

5.800 × 10−2

−1.031
−1.031
−1.031
−1.031

4.738 × 10−9

F17

Best
Worst
Mean

Median
Std.

3.979 × 10−1

3.979 × 10−1

3.979 × 10−1

3.979 × 10−1

0.000

3.979 × 10−1

3.992 × 10−1

3.982 × 10−1

3.982 × 10−1

3.488 × 10−4

3.979 × 10−1

3.979 × 10−1

3.979 × 10−1

3.979 × 10−1

0.000

3.979 × 10−1

3.980 × 10−1

3.979 × 10−1

3.979 × 10−1

1.371 × 10−5

3.979 × 10−1

3.979 × 10−1

3.979 × 10−1

3.979 × 10−1

1.105 × 10−6

F18

Best
Worst
Mean

Median
Std.

3.000
3.000
3.000
3.000

1.098 × 10−14

3.000
3.000
3.000
3.000

5.349 × 10−6

3.000
3.000
3.000
3.000

1.592 × 10−15

3.000
8.400 × 10

5.700
3.000

14.7885

3.000
3.000
3.000
3.000

9.505 × 10−6

F19

Best
Worst
Mean

Median
Std.

−3.862
−3.862
−3.862
−3.862

4.186 × 10−16

−3.862
−3.854
−3.875
−3.806

2.800 × 10−2

−3.862
−3.862
−3.862
−3.862

2.479 × 10−5

−3.862
−3.954
−3.062
−3.962

1.500 × 10−2

−3.862
−3.954
−3.962
−3.962

2.100 × 10−2

F20

Best
Worst
Mean

Median
Std.

−3.322
−3.322
−3.322
−3.322

1.355 × 10−15

−3.191
−2.048
−3.015
−3.013

1.974 × 10−1

−3.322
−1.855
−2.953
−2.987

2.446 × 10−1

−3.321
−3.088
−3.253
−3.202

6.710 × 10−2

−3.322
−3.029
−3.249
−3.262

8.210 × 10−2

F21

Best
Worst
Mean

Median
Std.

−1.015 × 10
−1015 × 10
−1.015 × 10
−1.015 × 10
2.499 × 10−17

−8.137
−8.800 × 10−1

−4.318
−4.905
2.078

−1.015 × 10
−2.682
−6.396
−3.954
3.590

−1.013 × 10
−2.666
−7.287
−7.419
2.859

−1.015 × 10
−5.099
−9.479

−1.015 × 10
1.746

F22

Best
Worst
Mean

Median
Std.

−1.040 × 10
−1.040 × 10
−1.040 × 10
−1.040 × 10
5.420 × 10−15

−9.054
−9.064 × 10−1

−5.415
−5.037
1.738

−1.040 × 10
−1.040 × 10
−1.040 × 10
−1.040 × 10
4.661 × 10−6

−1.039 × 10
−2.748
−7.838

−1.025 × 10
3.184

−1.040 × 10
−5.085

−1.022 × 10
−1.040 × 10
9.723 × 10−1

F23

Best
Worst
Mean

Median
Std.

−1.053 × 10
−1.053 × 10
−1.053 × 10
−1.053 × 10
2.485 × 10−18

−9.3851
−3.2531
−5.2925
−5.0398
1.0982

−1.053 × 1.0
−1053 × 10
−1.053 × 10
−1.053 × 10

1.836 × 10−15

−1.051 × 10
−1.675
−7.673

−1.041 × 10
3.7585

−1.053 × 10
−1.053 × 10
−1.053 × 10
−1.053 × 10
2.585 × 10−4

The results of Tables 5–7 show that, for all functions, hCSC-PS could provide better
solutions in terms of the best and the mean value of the objective functions compared with
the standard SCA and also other optimization algorithms. The results show that hCSC-PS
is a more stable approach than the other methods in terms of standard deviation, which
indicates the algorithm’s stability. Based on the findings, it can be inferred that hCSC-PS
outperforms the standard algorithm as well as alternative optimization methods.
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5. Practical Applications

Figure 6 shows a single-line diagram of the 3-machine 9-bus (WSCC), which is used to
demonstrate the proposed technique’s efficacy and robustness [5,57]. Different strategies
for determining the best location for SVCs devices have been described in the literature [5].
The WSCC system was subjected to two strategies based on the effect of load percentage
and line outage on load bus voltages, with bus number 5 being selected as the best location
for the SVC device. The proposed controllers’ performance is evaluated using four different
loading conditions. Table 8 shows four operating conditions (cases), which they are consid-
ered as representative cases in the literature [5,15,18,44], for evaluating the performance
of the proposed controllers. These operating conditions are considered for the WSCC test
system in the design process. The dynamics model of the system is given in Appendix A.
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Table 8. System operating conditions.

Generator Normal Case Case 1 Case 2 Case 3

P(p.u) Q(p.u) P(p.u) Q(p.u) P(p.u) Q(p.u) P(p.u) Q(p.u)

G1 1.79 0.28 2.11 1.19 0.33 1.12 1.47 1.05

G2 1.65 0.08 1.22 0.57 2.00 0.57 2.01 0.6

G3 0.85 −0.11 1.29 0.38 1.50 0.38 1.5 0.7

Load

A 1.25 0.54 2.10 0.70 1.50 0.90 1.5 0.9

B 0.90 0.31 1.81 0.450 1.20 0.80 1.2 0.8

C 1.10 0.25 1.70 0.80 1.00 0.5 1 0.5

The objective function given in Equation (10) is minimized with two scenarios of
severe fault disturbances under the loading conditions described above in order to find the
optimum values of controllers’ parameters. Scenario 1: The line 5–7 close bus 5 experiences
a 6-cycle fault disturbance. The fault is cleared by tripping line 5–7 and reclosing it
successfully after 1.0 s. Scenario 2 is the same as scenario 1, except for a 0.2 (pu) step increase
in mechanical power. Lines 5–7 are tripped to clear the fault and reclosing successfully
after 1.0 s. The optimum controller parameters obtained using the nonlinear time domain
based objective function are shown in Table 9. To obtain the results presented in this table,
the problem has been solved 30 times using the proposed hCSC-PS and the best results are
presented in Table 9. After the proposed hCSC-PS technique had converged, these results
were obtained. To demonstrate the robustness of the coordination between PSSs and SVC
controllers, an individual design is also carried out.
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Table 9. Optimal parameters obtained by hCSC-PS.

Algorithm K T1 T2 T3 T4

Uncoordinated design

PSS1 20.45 0.070 0.073 0.030 0.045

PSS2 19.36 0.128 0.050 0.068 0.055

SVC 65.56 0.028 0.121 0.523 0.048

Coordinated design

PSS1 24.06 0.095 0.043 0.283 0.050

PSS2 15.03 0.056 0.050 0.054 0.029

SVC 25.02 0.028 0.230 0.058 0.493

Figure 7 shows the speed deviation response for various loading conditions under
two scenarios to demonstrate the contribution of the coordinated design versus the uncoor-
dinated design. When compared to when no controllers are used, Figure 8 clearly shows
that SVC-based controllers fail to provide adequate damping of system oscillations when
used alone. Furthermore, when compared to SVC controllers, PSSs regulators provide
good damping of system oscillations with a short settling time. The suggested coordinated
controllers, on the other hand, remain the most effective at damping oscillations and reduc-
ing their settling times. The coordinated design of the suggested method outperforms the
uncoordinated design, according to the simulation results.
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To determine the robustness of the suggested controllers, the parameters of
the controllers are also tuned using SCA, TSA, and GSA methods. The values of
these parameters are shown in Table 10. Figure 8 depicts the rate of convergence
for the best controller tuning. By minimizing a time domain objective function with
speed deviations, the proposed method is used to solve the problem of controller
parameter design in a multi-machine power system. In addition, when a controller
is designed with HCSC-PS, GSA, TSA, and SCA, over the simulation period, the
speed divergence is calculated, as shown in Figure 9. Note that w12 = w2− w1 and
w13 = w3− w1. The PSS and SVC controllers built by hCSC-PS provide good damp-
ing for the study system and have a superior feature than those designed by SCA,
GSA, and TSA, as seen in these graphs. Obtained minimum damping ratios are pre-
sented in Table 11 for different loading conditions. The higher values of minimum
damping ratio depict the higher capability of the controller to damp out the LFOs.
As can be seen from Table 11, proposed method give the larger value of minimum
damping ratio compared to the other methods. This means that PSS and SVC con-
trollers optimized by hCSC-PS are capable of providing better damping to the LFOs.
The damping ratio is a dimensionless parameter which describes how an oscillating
comes to rest. The damping ratio describes how rapidly the amplitude of a vibrat-
ing system decays with respect to time. By increasing the system damping ratio, the
forced oscillation amplitude can be reduced. The damping ratio of the oscillation is
defined as:

ξ =
−σ√

σ2 + ω2
(12)

Table 10. Optimal parameters obtained by SCA, TSA, and GSA.

Algorithm K T1 T2 T3 T4

Coordinated by SCA

PSS1 20.30 0.254 0.854 0.221 1.214

PSS2 17.24 0.052 0.563 0.034 0.376

SVC 36.92 0.058 0.034 0.031 0.098

Coordinated by TSA

PSS1 18.24 0.021 0.267 0.181 0.276

PSS2 26.08 0.854 0.189 0.023 1.149

SVC 18.65 0.523 0.123 0.081 0.100

Coordinated by GSA

PSS1 25.45 0.283 0.854 0.63 1.312

PSS2 18.05 0.054 0.561 0.101 0.734

SVC 51.23 0.058 0.034 0.045 0.087

Table 11. Damping ratio comparison for different loading conditions.

Uncoordinated
Design

Coordinated
Design

Coordinated
by SCA

Coordinated
by TSA

Coordinated
by GSA

Case 1 0.0696 0.7779 0.5654 0.5412 0.2524

Case 2 0.2868 0.8379 0.5003 0.5177 0.5215

Case 3 0.2139 0.7686 0.4538 0.4417 0.5459



Sustainability 2022, 14, 541 22 of 27

Sustainability 2022, 14, x FOR PEER REVIEW 19 of 24 
 

 Uncoordinated 
Design 

Coordinated 
Design 

Coordinated by 
SCA 

Coordinated 
by TSA 

Coordinated 
by GSA 

Case 1 0.0696 0.7779 0.5654 0.5412 0.2524 
Case 2 0.2868 0.8379 0.5003 0.5177 0.5215 
Case 3 0.2139 0.7686 0.4538 0.4417 0.5459 

 
Figure 8. Fitness Convergence with hCSC-PS, GSA, TSA, GWO, SCA. 

 
(a) (b) 

Figure 8. Fitness Convergence with hCSC-PS, GSA, TSA, GWO, SCA.
Sustainability 2022, 14, x FOR PEER REVIEW 5 of 5 
 

  
(a) (b) 

  
(c) (d) 

Figure 9. Speed deviation response for various loading conditions. (a) Normal Case under sce-
nario 1; (b) Case 1 under scenario 2; (c) Case 2 under scenario 1; (d) Case 3 under scenario 2 

Figure 9. Cont.



Sustainability 2022, 14, 541 23 of 27

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 5 
 

  
(a) (b) 

  
(c) (d) 

Figure 9. Speed deviation response for various loading conditions. (a) Normal Case under sce-
nario 1; (b) Case 1 under scenario 2; (c) Case 2 under scenario 1; (d) Case 3 under scenario 2 
Figure 9. Speed deviation response for various loading conditions. (a) Normal Case under scenario 1;
(b) Case 1 under scenario 2; (c) Case 2 under scenario 1; (d) Case 3 under scenario 2.

6. Conclusions

In this paper, a novel hybrid optimization algorithm called hCSC-PS is suggested for
the simultaneous coordinated design of PSSs and SVC controllers in multi-machine power
system. The proposed hCSC-PS combines two search techniques: the chaotic CSA as an
effective global optimization, and pattern search as a robust local search method. Firstly,
the performance comparison of the proposed hCSC-PS algorithm on a set of benchmark
functions reveals that the proposed method outperforms the standard SCA and also other
algorithms. Then, the problem is formulated as an optimization problem where the con-
trollers’ parameters are the decision variables of the problem. The enhancement of the
system stability is taken into account in the objective function in which the time responses
of the speeds’ deviations of machines are involved. Then, the hCSC-PS algorithm is used
to optimize the objective function for four operating conditions (representative cases) and
severe fault scenarios. The performance and robustness of the proposed controller are
assessed on a power network test, frequently used in power system stability studies. Simu-
lation results showed that the proposed coordinated design of PSSs and SVC controllers
greatly improved the damping characteristics of power system oscillations, compared to
the individual design.
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Appendix A

The dynamics model of power system is given by [58]:

Appendix A.1. Generator

.
δi = ωb(ωi − 1) (A1)

.
ωi =

1
Mi

(Pmi − Pei − Di(ωi − 1)) (A2)

.
Éqi =

1
´Tdoi

(
E f di − (

.
xdi − x́di

)
idi − Éqi) (A3)

Pei = vdiidi + vqiiqi (A4)

Appendix A.2. Exciter and PSS

.
É f di =

1
´TAi

(
KAi(vre f i − vi + uPSSi

)
− E f di) (A5)

vi =
(

v2
di + v2

qi

)1/2
(A6)

vdi = xqiiqi (A7)

vqi = Éqi − ´xdiidi (A8)

Tei = Éqiiqi (xqi − x́di
)
idiiqi (A9)

Appendix A.3. SVC- Based Controller

.
BSVC =

(
Ks

(
Bre f

SVC − uSVC

)
− BSVC

)
/Ts (A10)

Appendix A.4. Linearized Model


∆

.
δ

∆ω

∆
.
E
′
q

∆
.
E f d

+


0 ω0 I 0 0

−M−1K1 −M−1D −M−1K2 0
−T′−1

do K4 0 −T′−1
do K3 T′−1

do
−T−1

A KAK5 0 −T−1
A KAK6 T−1

A




∆δ
∆ω

∆E′q
∆E f d



+


0 0
0 −M−1KpB

0 −T′−1
do KqB

T−1
A KA −T−1

A KAKvB

[ uPSSi
∆B

] (A11)

K1 =
∂Pe

∂δ
, K2 =

∂Pe
´

∂Eq

, K3 =
∂Eq
´

∂Eq

, K4 =
∂Eq

∂δ
, K5 =

∂v
∂δ

, K6 =
∂v
´

∂Eq

, KpB =
∂Pe

∂B
, KqB =

∂v
´

∂Eq

, KvB =
∂v
∂B

(A12)
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Appendix B

Table A1. Nomenclature and Abbreviation.

Variables & Abbreviation Description Variables & Abbreviation Description

f(X) Fitness function dim Dimension

g(X) Inequality constraints SF Size factor

h(X) Equality constraints Pmi Mechanical input power

X Dimensional vector of
design variables Pei Active power

XL & XU Boundary constraints M Machine inertia

δ Rotor angle D Damping the coefficient

ω Speed deviation vre f i Reference voltage

Eq Internal voltages Tdoi Open circuit field time constant

Efa Field voltages idi, iqi
Stator currents in d- and q

-axis circuits

u Input control parameters x Vector of state variables

tsim time of simulation y Vector of algebraic variables

N Number of machines BSVC Susceptance of SVC

M Number of operating points ξ Damping ratio

K Gain Fmin
Minimum value of the

objective function

T1–T4 Time constants dim dimension

TWi Time constant of washout A 4n × 4n matrix

xi
Placement of ith solution in

the search space B 4n × m matrix

ubi Upper bounds a Control parameter

lbi Lower bounds m PSS and SVC

r3 Random number among 0 and 1 X 4n × 1 state vector

xt
i

Position of ith solution at
iteration t SF Size factor

xBest
Best solution in
the population PSS Power system stabilizer

r1
Random numbers in the range

of [0, 2π] SVC Static VAR compensator

r2
Random weight of the

best solution CSCA Chaotic sine cosine algorithm

tmax
Maximum number

of iterations PS Pattern search

λ (t) Chaotic map FACTS Flexible AC transmission systems

t Iteration number hCSC-PS Hybrid CSCA and PS

a Constant equal to 4 LFO Low frequency oscillations

W12
Speed difference response of

G1–G2
SQP Sequential quadratic

programming

W13
Speed difference response of

G1–G3
SCA Sine cosine algorithm

K1–K6 Linearization constants Kp, Kq, KB Linearization constants
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