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Abstract In recent years, the problem of matrix completion based on rank minimization has 

received widespread attention in machine learning. The tightest convex relaxation of this problem 

is the linearly constrained nuclear norm minimization. Fixed point continuation (FPC), as a 

representative nuclear norm relaxation matrix completion algorithm, has been proven to perform 

well in theories and experiments. However, the traditional FPC algorithm initializes the matrix to 

be completed by zero, which does not make full use of the shrinkage characteristics of the singular 

value shrinkage operator on the matrix elements and the known field data information, then will 

lead to slow convergence and poor accuracy. Aiming at this problem, this paper analyzes the 

shrinkage properties of matrix elements in the iterative process of the FPC algorithm. Combined 

with the known rating information in the recommendation systems, a new initialization method of 

overestimation based on FPC is proposed, and it is applied to the rating prediction in the 

recommendation systems. The experimental results show that the initialization method proposed 

in this paper greatly improves the algorithm efficiency and prediction accuracy. 
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1 Introduction 

Recommendation systems (RSs) (Ko, Lee, Park, & Choi, 2022) are the most popular 

information filtering systems in the Internet world. They have been used in many areas such as 

e-commerce, music video sites, and online advertising. From the types of recommendation 

algorithms, it can be divided into collaborative filtering (Tang, Zhao, Bu, & Qian, 2021), 

content-based filtering (Pujahari, & Sisodia, 2022), and hybrid filtering (Biswas, & Liu, 2021). 

Collaborative filtering is the most successful and widely used recommendation algorithm, which 

analyzes the historical behavior data of users and explores their preferences in order to 

recommend items of interest to them. The main idea of the collaborative filtering method is to find 

N users whose ratings are very similar to U's when making recommendations for user U, and then 

estimate U's rating based on the ratings of these users. The advantage of this method is that it does 

not need to make the feature selection. The disadvantage is that it is difficult to find users who 

rated the same items due to the sparse rating matrix, and it can not effectively solve the cold-start 

problem. Content-based filtering is an algorithm for a recommendation based on item profiles. 

The main idea is to find some items that are similar to the items that user U ratings highly, and 

then recommend them to user U. The advantage of this method is that it does not need the data of 

other users, and makes recommendations based on the attribute information of items, so there is 

no cold-start problem and sparse problem. Its main disadvantage is that it is difficult to find 

appropriate features. In order to get the advantages of the above two methods, some researchers 

add content-based filtering to collaborative filtering and get a hybrid filtering method. 

As one of the latent factor models in collaborative filtering, matrix completion (Ramlatchan, 

Yang, Liu, Li, Wang, & Li, 2018; Chen, & Wang, 2022) is widely used in personalized 

recommendation systems. It treats the users' ratings of items as a matrix, and completes the 

missing values according to the observed entries in the matrix. It is generally believed that the 

factors that affect users' ratings of items are limited, so the rank of the rating matrix is low. 

According to this characteristic, the matrix completion problem can be modelled as: 

 

min ( )

. . , ( , )ij ij

rank X

s t X M i j 
 

(1) 

Where X  and M  are the matrices of m n , and   is the index set of the observed 

entries in the matrix. The significance of this model is that after the missing entries in the matrix 



are completed, the matrix still maintains good properties, that is, the rank is as low as possible. 

Unfortunately, the time complexity of solving this problem is exponential, which is an NP-Hard 

problem. One method is to replace the rank of a matrix with the nuclear norm of the matrix, and 

obtain the nuclear norm relaxation model of matrix completion: 

 

*
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X

s t X M i j 
 

(2) 

Where 
*

1

n

k

k

X 


 , and k  represent the kth singular value of the matrix X . Since 

the solution of the model involves complex singular value decomposition, it is still a challenging 

problem, and many scholars have conducted in-depth research on it. 

Fixed point continuation (Ma, Goldfarb, & Chen, 2011) is an optimization algorithm for 

solving matrix completion problems. It transforms problem (2) into an unconstrained optimization 

problem for an iterative solution. It has been proved that, compared with the classical matrix 

completion algorithm such as the interior point method (Karmarkar, 1984), its efficiency is greatly 

improved. However, the FPC algorithm initializes the matrix to be completed by zero, which will 

affect the effect of the algorithm. Aiming at this problem, we improved the matrix initialization of 

the FPC algorithm from two aspects: The first is to study the change of matrix entries in the 

iterative process of the FPC algorithm, and apply this property to initialization to accelerate the 

convergence speed of the algorithm; The second is to improve the accuracy of the 

recommendation algorithm by integrating the rating prior information into initialization from the 

aspect of resource utilization. 

The contributions of this paper can be summarized as follows: 

• We analyze and obtain the contraction effect of the singular value shrinkage operator on 

the matrix entries. Using this property and combining the known rating information in the 

recommendation systems, an overestimation initialization method of the FPC algorithm is 

proposed. Compared with the original initialization, the prediction accuracy and algorithm 

efficiency are greatly improved. 

• We take the upper limit of the rank as the parameter k  and estimate it in advance, and 

only calculate the first k  largest singular values during the iteration process, which greatly 

improves the efficiency of the algorithm. 



The content structure of the paper is as follows: Section 2 introduces the research status and 

related work of matrix completion algorithms; Section 3 introduces the fixed point continuation 

algorithm of matrix completion and our initialization method; Section 4 introduces our 

experimental results and performs analysis; the last Section 5 is the summary and outlook of the 

work. 

2 Related work 

In the recommendation systems, the rating prediction model based on matrix completion has 

been widely used. The methods of matrix completion can be classified into rank minimization 

models, matrix decomposition models, and the models combined with the neural network. 

At present, the research on the matrix completion model based on rank minimization has 

been very intensive. Fazel (2002) proved that the best convex approximation of matrix rank 

function is the nuclear norm of the matrix, which is similar to the skill of relaxing vector 
0L  

norm to vector 
1L  norm in compressed sensing. In order to solve the problem easily, the rank 

function of the matrix is replaced by the nuclear norm. This kind of algorithm usually realizes the 

low-rank properties of the rating matrices through singular value shrinkage and completes the 

missing data through the closed-form optimal solution. Subsequently, a series of algorithms for 

solving the matrix completion model based on the relaxation of matrix nuclear norm has been 

proposed. Cai et al. (2010) proposed a simple first-order optimization method called the singular 

value threshold (SVT) algorithm; Tho et al. (2010) proposed an accelerated proximal gradient 

(APG) algorithm using the Nesterov technique. After using the continuation technique and line 

search technique, the convergence speed of the algorithm is much faster than that of SVT and 

other algorithms; Lin et al. (2010) regarded the matrix completion problem as a special case of 

matrix restoration, and proposed an inexact augmented Lagrangian multiplier (IALM) method by 

using imprecise strategy, which further improved the efficiency of matrix completion. Zhang & 

Yang et al. (2019) proposed a weighted nonconvex nonsmooth rank relaxation function to solve 

the problem of over shrinking the rank components in the matrix completion method based on 

nuclear norm minimization. Zhang & Wei et al. (2019) proposed a modified Schatten-p norm 

minimization algorithm that has a fast convergence speed. 

Another recommendation algorithm based on low-rank matrix completion is to decompose 



the rating matrix into two factor-matrices, which are called user characteristic matrix and item 

characteristic matrix respectively. Koren et al. (2008) incorporated implicit feedback information 

into the matrix decomposition model to improve the accuracy of rating prediction. Xu et al. (2021) 

proposed a multi-armed bandit-based collaborative filtering recommender system on handling the 

dynamic changes in user preferences. 

In recent years, the matrix completion method combined with neural network has been 

widely concerned in recommendation systems. Berg et al. (2017) employed graph autoencoders 

derived from graph convolutional network to retrieve the missing values in an incomplete matrix, 

where the matrix completion task was converted into the link prediction problem on graphs. Wang 

et al. (2019) presented a neural graph collaborative filtering (NGCF) framework which integrates 

user-item interactions into the GCN framework and explicitly leverages the collaborative signal. 

The advantages and disadvantages of the various related work approaches are compared in Table 

1. 

In the process of matrix completion, proper initialization can accelerate the convergence 

speed and improve the completion accuracy. Koren (2008) proposed a valuation method called 

"baseline estimation". The method considered that the factors that affect user i 's rating of item j  

are mainly divided into three points: the first one is the average value of all users' ratings on the 

item, the second one is the user's bias term ip , and the third one is the bias term jq  of the item. 

Kannan et al. (2016) and Hsieh et al. (2017) used this method to initialize the matrix to be 

completed. They proposed the bounded low-rank matrix approximation (BMA) algorithm and the 

bounded matrix completion (BMC) algorithm respectively. These two algorithms were solved by 

block coordinate descent (BCD) and alternating direction method of multipliers (ADMM) 

respectively and achieved good results in the actual datasets. 

Although the evaluation initialization method can improve the performance of the algorithm, 

the above initialization method does not combine the characteristics of the respective algorithm 

itself, which limits the effect of the initialization to a certain extent. Aiming at this problem, we 

study the iterative characteristics of FPC algorithm, which is widely used in the rating prediction 

tasks of recommendation systems. As a matrix completion algorithm based on nuclear norm 

minimization, FPC has an obvious characteristic in which matrix norms and entries changes 



regularly in the iterative process. Using this property and combining it with the known rating 

information of the recommendation systems, an overestimation initialization method of FPC 

algorithm is proposed. The experimental results on the MovieLens datasets (Harper, & Konstan, 

2015) show that the initialization method given in this paper greatly improves the efficiency and 

prediction accuracy of the fixed point continuation algorithm, and is better than the above 

algorithms. 

Table 1 Comparison of the various related work approaches with the advantages and 

disadvantages 

Types of 

model 
Algorithms Advantages Disadvantages 

Rank 

minimization 

SVT 
Be efficient for large matrix 

completion problems. 

Only works well for very low 

rank matrix completion 

problems. 

ISVTA 
Has a faster convergence 

speed. 

The time complexity of the 

algorithm is high. 

Matrix 

factorization 

SVD++ 

Considering implicit feedback, 

the information utilization rate 

is high. 

There are certain requirements 

for data sets, and the 

complexity is high. 

BanditMF 

Able to effectively handle the 

dynamic changes in user 

preferences. 

Bandit algorithm does not 

consider contextual feature 

information. 

Neural 

network 

GCMC 

Graph neural networks can 

make better use of structured 

external information. 

The lack of efficient 

approximation schemes leads 

to poor scalability. 

NGCF 

Able to effectively inject the 

collaborative signal into the 

embedding process in an 

explicit manner. 

Compared with the baseline 

MF, the time consumption of 

the algorithm increases several 

times. 

 

3 Overestimation initialization method of FPC algorithm 

This section is mainly divided into two parts, preliminaries and methodologies. The first part 

mainly introduces the fixed point continuation algorithm used in this paper and the knowledge of 

matrix norms. The second part focuses on the initialization method of FPC algorithm given in this 

paper. The mathematical symbols used in this paper are summarized in Table 2. 

 

 



Table 2 Summary of mathematical notations 

Notations Explanations 

M  Observed rating matrix 

X  Rating matrix to be completed 

  Index set of known entries in the rating matrix 

 Linear transformation operator 

b  A vector consisting of the entries observed in the rating matrix 

( )rank  The rank of matrix  


 The nuclear norm of matrix  

F
 The Frobenius norm of matrix  

 S  Singular value shrinkage operator 

( )trace  The trace of matrix  

 Diag  Convert sequence  to a diagonal matrix 

i  The ith largest singular value 

3.1 Preliminaries 

3.1.1 FPC algorithm 

The fixed point continuation algorithm for the matrix completion problem was proposed by 

Ma et al. (2011). He described the matrix completion problem as follows: 

 

*
min

. . ( )

X

s t X b  

(3) 

Where  is a linear transformation and b  is a vector composed of observed entries. The 

Lagrangian expression is as follows: 
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*
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2
X X b  

 
(4) 

Suppose X  is the optimal solution of the problem, then: 
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(5) 

Among them: 
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Eq. (5) is equivalent to: 
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(6) 

Let * * *( )Y X g X  , then the equivalent form of Eq. (4) is obtained: 
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*

* 2

1
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F
YXX 

 
(7) 

The closed-form optimal solution of the problem is as follows: 

 
   ( ) T

Y YX S Y U Diag s V   
 

(8) 

In summary, the FPC algorithm of the matrix completion problem can be described as: 
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(9) 

We can see that the FPC algorithm used in this paper is exactly the proximal gradient descent 

algorithm --- a classical first-order optimization algorithm for composite problems. The first line 

in Eq. (9) is the gradient step and the second line is the proximal operator for nuclear norm 

regularization. 

3.1.2 The shrinkage property of matrix elements in the iterative process 

The Frobenius norm of a matrix, F-norm for short, is a matrix norm, denoted as •
F

. The 

F-norm of matrix m nA R   is defined as the square root of the sum of squares of the elements 

of matrix A , namely: 

 

2

1 1

m n

ijF
i j

A a
 

 
 

(10) 

There is an identity relationship between the square root of the sum of squares of all singular 

values of matrix A  and the F-norm of matrix A , namely: 
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(11) 

It can be seen from Eq. (3) that the nuclear norm of the rating matrix X  is minimized by 

the FPC algorithm, and the core step of the algorithm is singular value shrinkage: 
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(12) 

Where v  is the threshold of singular value shrinkage. Let m n , and the matrix A  has 

k ( mk  ) singular values greater than v , then: 

  
22 2 2 2

1 1[( ) ] ...... ( ) ......k k mF
A v v v v              (13) 

After completing the singular value shrinkage operation: 
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1
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F
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Due to: 
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 (15) 

Therefore, the F-norm of the matrix is constantly decreasing with the shrinkage of singular 

values. In the recommendation systems, the users' ratings are generally specified as non-negative 

integers. For example, in the MovieLens datasets widely used in the recommendation systems, the 

users' ratings are integers between 1-5. In the iterative process, although some individual predicted 

ratings have negative values, most of the rating values are positive. Therefore, with the decrease of 

the F-norm of the rating matrix X , the elements in the matrix, that is, the users' ratings also have 

the tendency to become smaller. 

To verify this rule, we construct two matrices 
1500*1500

1X   and 
1500*1500

2X   whose 

element values are random numbers between 0-1 and 1-5 respectively. Inspired by an effective 

singular value shrinkage strategy in reference (Cai, Candès, & Shen, 2010), we take the singular 



value shrinkage threshold as 
2

0.8 *0.2k X  (where k  represents the number of iterations). 

Figure 1 shows the changing trend of the nuclear norm, F-norm and the average value of all 

elements of matrices 1X  and 2X  with the shrinkage of singular values. 

 

Fig. 1. The changing trend of the nuclear norm, F-norm, and the global average of  

matrices 1X  and 2X  

It can be seen from Figure 1 that the nuclear norm, F-norm, and the global average of 

matrices 1X  and 2X  have the same changing trend, and they all decrease continuously with 

the shrinkage of singular values. Therefore, in the iteration process, the matrix elements have a 

shrinking property. 

3.2 Methodologies 

Baseline estimation (Koren, 2008) is proved to be effective when applied to matrix 

initialization. This paper uses a similar method to pre-estimate unknown ratings and construct an 

estimation matrix. The difference is that according to the shrinkage property of matrix elements in 

the iterative process, we initialize X  as a matrix with larger elements values; that is to say, the 

values of all elements in the estimation matrix are expanded, which we call the overestimation 

initialization method. 

When constructing the valuation matrix 1X , this paper fully captures the user characteristics 

and item features according to the known ratings. Assuming that the average of user i ’s existing 

ratings is ip , then ip  is defined as the average of all rating records of user i  in the training set, 

namely 
( )

( )
1

ijj N i

i

j N i

r
p









; Suppose the average value of the existing ratings of item j  is jq , 



then jq  is defined as the average value of all the ratings of item j  in the training set, namely 

( )

( )
1

iji N j

j

i N j

r
q









. We estimate user i 's rating of item j  as the average of ip  and jq , that is, 

1

1
( , ) ( )

2
i jX i j p q  . Since directly initializing the matrix 1X  will cause a great waste of 

storage resources, we initialize the matrix 1X  into two smaller matrices P  and Q  according 

to the idea of matrix decomposition (Srebro, 2004). After the evaluation matrix is constructed, the 

evaluation is expanded by   times, where 
meanr

rmax  ( maxr  represents the highest rating, 

meanr  represents the average of all known ratings). In the process of the experiment, we regard 

  as a variable parameter and adjust it around 
meanr

rmax
 to get the optimal value. 

The specific implementation steps are as follows: 

(1) Set up the valuation matrix 1

TX PQ , where 
2 2,m T nP Q   . 

(2) Initialize matrix 0 1X X , where 
max

mean

r

r
  . 

1   X 

P



TQ

1p

2p

1mp 

mp

1/ 2

1/ 2

1/ 2

1/ 2

1/ 21/ 2 1/ 21/ 2

1q 2q 1nq  nq

 

Fig. 2. Construction of estimation matrix 

Convergence analysis 

Regarding the convergence of FPC algorithm, the author has given a detailed proof in 

reference (Ma, Goldfarb, & Chen, 2011), which will not be repeated here. In this section, we 

mainly analyze and compare the convergence speed of the proposed method and the traditional 



initialization method. 

Each iteration of the FPC algorithm can be divided into the following four steps: 

• Update the elements in the known entries set Ω of the matrix; 

• Singular value decomposition of the matrix; 

• Shrinkage of singular values of the matrix; 

• Multiply the left and right singular matrices and the singular value matrix back. 

The detailed process is shown in Figure 3: 

Update elements in Ω 

Perform SVD Shrinkage of singular values

Multiply matrices back

X X

V

S

U

X

X

U

S

V

S S

T

T

 

Fig. 3. The detailed process of each iteration of the FPC algorithm 

In the first step, the update to the matrix X  can be expressed as 

*( ( ) )X X X b   . Where  represents a projection transformation, and ( )X  

maps the elements of matrix X  in   to a vector in a certain order; b  is a vector composed 

of known elements in the matrix (ie the ratings in the training set); *  is the inverse 

transformation of , and  * ( )X b  maps the vector ( )X b  back to the matrix. 

Because of the parameter 0  , when the overestimation initialization method is used, taking 

into account ( )X b , after this step is executed, the elements values of matrix in   are 

reduced; When using the original initialization method (that is, initializing all the elements of the 



matrix to 0), considering ( )X b , after this step is executed, the elements values of the 

matrix in   are increased. 

The second step is the singular value decomposition, namely *X U V  . This step does 

not make any changes to the values of the elements in matrix X , so there is no difference 

between the two initialization methods. 

The third step is the singular value shrinkage of the matrix X , namely 

    iS diag  


   . It can be seen from Section 3.1.2 that the shrinkage of singular 

value will lead to the decrease of matrix elements values. Therefore, after this step is performed, 

the values of the elements in the matrix will be reduced by using two initialization methods. 

The fourth step is the operation of multiplying left and right singular matrices and the 

singular value matrix back to X  after the singular value shrinkage in the third step, namely 

  *X US V  . Similar to the second step, this step does not change the elements of the matrix 

X , so there is no difference between the two initialization methods. 

The process of approaching the fixed point in one iteration between the overestimation 

initialization method and the original initialization method is shown in Fig. 4: 

Overestimate initialization

Fixed point

Original initialization

 

 

 

 

 

The two steps  

and   act in the 
same direction

The two steps  

and   act in 
different directions

»

 

Fig. 4. The process of two initialization methods approaching the fixed point 



It can be seen from Figure 4 that the overestimation initialization method will converge to the 

fixed point faster. 

Pseudo code 

Algorithm 1 

Input: 0 0 min, , , , , , ,X M b k     

Output: X  

Initialize: 0 0, ( ), , 1.99, 1/ 5X X b M           

While min   do 

While not converged, do 

    • Compute  * ( )Y X X b    

    • Compute  , ( ), _ ( , )U Diag V Partial svd Y k   

    • Compute  ( ) TX UDiag s V   

End while 

•    

End while 

Time complexity 

The most time-consuming step of the algorithm is the singular value decomposition of matrix 

Y . For a matrix of size m n , the time complexity of singular value decomposition is 

  2 2min ,mn m n , which will seriously affect the efficiency of the algorithm. Inspired by the 

truncated nuclear norm (Hu, Zhang, Ye, Li, & He, 2012), in the solution process, we only calculate 

the singular values of the former k , among which 0 { , }k m n  . In the experiment, we will 

take k  as the parameter for processing, and the time complexity is  kmn . Compared with 

the previous, the algorithm has a higher execution efficiency. 

Space complexity 

The memory space consumed by the algorithm in the running process mainly lies in the 

rating matrix X . If the matrix X  of size m n  is processed as a whole, the space complexity 



of the algorithm is  mn , which will seriously limit the scalability of the algorithm. In this 

paper, the matrix X  is initialized as a matrix P  of size 2m  and a matrix Q  of size 2n . 

In the iteration process, matrix X  is represented as matrix U  with size m r , matrix S  

with size r r  and matrix V  with size n r , where r k . The space complexity of the 

algorithm is  ( )r m n r  , which greatly reduces the consumption of storage resources. 

4 Experiment and analysis 

In order to test the effectiveness and efficiency of the initialization method proposed in this 

article, three parts of experiments are conducted in this section. The first part is the comparison 

with the FPC algorithm using the original initialization method; The second part is the comparison 

with the FPC algorithm which uses the random initialization method commonly used in 

recommendation systems; The third part is the comparison with three classic matrix completion 

algorithms SVT, IALM, BPMF and two state-of-the-art matrix completion algorithms BMC and 

GCMC. All experiments in this article are performed on a PC with Intel Core i5-6200U and 4GB 

memory under the Matlab R2018b environment. 

4.1 Experimental settings 

4.1.1 Datasets 

The datasets used in this paper are Movielens100K and Movielens1M, which are commonly 

used in the recommendation field. The specific information of the datasets is shown in Table 3. 

Table 3 Statistics of the datasets 

Dataset Users Items Ratings Scale Density 

MovieLens100K 943 1682 100,000 1-5 6.30% 

MovieLens1M 6040 3952 1,000,209 1-5 4.19% 

4.1.2 Data division and evaluation metrics 

In this paper, the datasets are divided into training sets and test sets according to the ratio of 

8:2. In order to reduce the chance of the experiment, we adopt a 5-fold cross-validation method, 

repeat each group of experiments five times, and take the average of the five experimental results 

as the final experimental result. This article uses the root mean square error (RMSE) and mean 

absolute error (MAE) commonly used in recommendation systems as the evaluation metrics of the 



algorithms' prediction accuracy and uses the time to measure the efficiency of the algorithms. The 

definition of RMSE and MAE are as follows: 
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Among them, Test  represents the number of test ratings, uir  represents the actual rating 

of user u  on item i , and ûir  represents the predicted rating of user u  on item i . 

4.1.3 Comparison algorithm 

In order to verify the effectiveness of our initialization method based on the FPC algorithm, 

this paper compares the following matrix completion algorithms: 

FPC (Fixed Point Continuation): A fixed point iterative algorithm for solving the nuclear norm 

minimization problem (Ma et al., 2011). 

SVT (Singular Value Threshold): A novel algorithm to approximate the matrix with minimum 

nuclear norm among all matrices obeying a set of convex constraints (Cai et al., 2010). 

IALM (Inexact Augmented Lagrangian Multiplier): A scalable and fast algorithm for solving the 

robust principal component analysis problem (Lin et al., 2010). 

BPMF (Bayesian Probabilistic Matrix Factorization): A fully Bayesian treatment of the 

probabilistic matrix factorization model in which model capacity is controlled automatically by 

integrating over all model parameters and hyperparameters (Salakhutdinov et al., 2008). 

BMC (Bounded Matrix Completion): A bounded matrix completion algorithm which imposes 

bounded constraints into the standard matrix completion problem (Hsieh et al., 2017). 

GCMC (Graph Convolutional Matrix Completion): A graph auto-encoder framework for the 

matrix completion task in recommender systems (Berg et al., 2017). 

4.1.4 Parameter settings 

In order to further improve the efficiency of the algorithm and reduce the time consumption 

of SVD in the iterative process, we use the propack package of Larsen et al. (Larsen, 2022) to 

obtain the first k  large singular values. Specific parameter settings are shown in Table 4. All 

hyper parameters in the compared methods are based on the suggestions of their corresponding 



papers. 

Table 4 Parameters in the Algorithm. 

Dataset k  min    
0    

MovieLens100K 7 6 1/5 
*

2
( )b  1.99 

MovieLens1M 14 12 1/4 
*

2
( )b  1.99 

4.2 Experimental results and analysis 

First of all, through the estimation method of parameter   in Section 3.2, after calculation, 

the values of   on MovieLens100K and MovieLens1M are 1.42 and 1.40 respectively. Then, 

we adjusted the parameters in the vicinity of these two values. The experimental results are shown 

in Figures 5. 

 

Fig. 5. Experimental results of parameter adjustment on two datasets 

It can be seen from the results of the tuning experiment that in the MovieLens100K and 

MovieLens1M datasets, when   is 1.43 and 1.46 respectively, the best experimental results are 

obtained. Similarly, when MAE is used as the evaluation metric, the best experimental results are 

obtained when   on two datasets is 1.45 and 1.48 respectively. After determining the final 

initialization method, we compared it with the traditional FPC algorithm that initializes the matrix 

X  by zero. The experimental results are shown in Figure 6, Figure 7 and Table 5. 



 

Fig. 6. experimental results on Movielens 100K 

 

Fig. 7. experimental results on Movielens 1M 

Table 5 Comparison of specific experimental results of FPC using original initialization method 

and proposed initialization method. 

 FPC_ZeroInit FPC_OverestimationInit 

MovieLens100K 

RMSE 0.9574 0.9085 

MAE 0.7483 0.7133 

Time(s) 19 2 

MovieLens1M 

RMSE 0.8681 0.8519 

MAE 0.6856 0.6702 

Time(s) 211 15 

The experimental results of Fig. 6 and Fig. 7 show that the fixed point continuation algorithm 

after using the initialization given in this paper has a faster convergence rate than before, and it 

only takes a few iterations to achieve higher prediction accuracy. From the detailed experimental 

results in Table 5, we can see that on the MovieLens100K, RMSE and MAE are reduced by 5.11% 

and 4.68% respectively; on the MovieLens1M, RMSE and MAE are reduced by 1.87% and 2.25% 

respectively. Therefore, compared with the original initialization method, the prediction accuracy 



of the proposed initialization method is improved. And the lapsed time of the algorithms shows 

that the FPC using the proposed initialization method has a higher filling efficiency. 

Random initialization (Rendle, & Schmidt-Thieme, 2008) is a commonly used initialization 

method in recommendation systems. It initializes the user feature matrix and item feature matrix 

to small random numbers. We compared this initialization method with the proposed initialization 

method. Since random initialization is affected by the dimension d  of the feature matrices, we 

compared random initialization methods of multiple dimensions. The experimental results are 

shown in Table 6. 

Table 6 Comparison of experimental results of FPC using random initialization method and 

proposed initialization method. 

 

MovieLens100K MovieLens1M 

RMSE MAE RMSE MAE 

FPC_RandomInit 

d = 10 0.9551 0.7456 0.8675 0.6843 

d = 20 0.9214 0.7284 0.8626 0.6802 

d = 30 0.9183 0.7235 0.8575 0.6778 

d = 40 0.9207 0.7263 0.8598 0.6791 

FPC_OverestimationInit 0.9085 0.7133 0.8519 0.6702 

It can be seen from the experimental results in Table 6 that when the feature dimension 

30d , the FPC using the random initialization method achieves the best prediction accuracy. 

The overestimation initialization method given in this article is always better than random 

initialization, which shows that it is necessary to initialize the matrix with the known information 

of the data. 

Subsequently, we compared the prediction accuracy and efficiency of the FPC algorithm 

using the proposed initialization method with three classic matrix completion algorithms SVT, 

IALM and BPMF, and the currently more advanced bounded matrix completion algorithms BMC 

and GCMC. The experimental results are shown in Figure 8, Figure 9, Figure 10 and Table 7 (the 

FPC algorithm using the proposed initialization method is recorded as FPC in the Figures and 

Table): 



 

Fig. 8. Comparison of RMSE on two datasets 

 

Fig. 9. Comparison of MAE on two datasets 

 

Fig. 10. total time of five-fold cross-validation on two datasets 

Table 7 Specific experimental data on two datasets 

 
MovieLens100K MovieLens1M 

RMSE MAE Time(s) RMSE MAE Time(s) 

SVT 0.9868 0.7570 75 0.9058 0.7029 567 

IALM 0.9535 0.7467 56 0.8841 0.6914 363 

BPMF 0.9208 0.7287 145 0.8693 0.6878 412 

BMC 0.9133 0.7178 31 0.8572 0.6762 218 

GCMC 0.9098 0.7154 174 0.8561 0.6756 304 

FPC 0.9085 0.7133 10 0.8519 0.6702 74 
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It can be seen intuitively from the experimental results that the improved initialization of the 

fixed point continuation algorithm in this paper has greatly improved the prediction accuracy and 

algorithm efficiency compared with the two classic matrix completion algorithms SVT and IALM. 

Compared with bounded matrix completion BMC and neural network-based matrix completion 

GCMC, the prediction accuracy is less improved, but the lapsed time of the algorithm is reduced a 

lot. 

From all the above experimental results, whether compared with the other initialization 

methods of the FPC algorithm, or compared with other recommendation algorithms based on 

matrix completion, the FPC algorithm using the proposed initialization method has shown an 

outstanding effect. This shows that initialization has a huge impact on the FPC algorithm. 

Therefore, it is necessary to fully mine the known data information and combine the 

characteristics of the algorithm during the initialization process. 

5 Conclusion and future work 

In this paper, we analyzed the changing law of the matrix norm during the iterative process of 

the FPC algorithm, and then obtained the shrinkage characteristics of the matrix elements. Using 

this feature of the FPC algorithm and combining the known data information, an overestimation 

initialization method for the FPC algorithm is given, and the algorithm is analyzed in terms of 

convergence and space-time complexity. Experimental results on real datasets show that the 

proposed algorithm is better than the classical matrix completion algorithm and the current 

advanced algorithm. 

The main theoretical contribution of this paper is to give an idea of adapting matrix 

initialization to algorithm iteration in matrix completion. Aiming at rating prediction in the 

recommendation field, the given matrix initialization method integrates the prior information of 

users' ratings. The work of this paper is helpful to stimulate researchers to study further the 

initialization of matrix completion method based on nuclear norm minimization, and mine more 

prior information to integrate into the initialization of matrix. 

Although the initialization method proposed in this paper makes the matrix completion 

algorithm FPC has higher recommendation accuracy and faster speed. However, this method still 

has some limitations, mainly manifested as the following two points: First, the method fails to 

solve the problem of cold-start. Second, although it takes only a few iterations to achieve high 



accuracy, with the increase in the number of iterations, the accuracy will decline. 

As a generalization of low-rank matrix completion from two-dimensional space to 

multidimensional space, low-rank tensor completion (Zhou, Lu, Lin, & Zhang, 2017) is an 

effective tool for high-order data analysis and has been widely concerned in the fields of context 

recommendation systems (Frolov, & Oseledets, 2017) and computer vision (Yang, Zhao, Ma, Ding, 

& Huang, 2020). Compared with matrix completion, tensor completion started late, and the 

completion technology needs to be explored. Therefore, in future work, we plan to study the 

recommendation algorithm based on low-rank tensor completion and extend the initialization 

method in this paper to the tensor completion algorithm. 
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