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Spread velocity, epidemic threshold, and infection density at steady state are three non-
negligible features describing the spread of epidemics. Combining these three features
together, a new network robustnessmetric with respect to epidemics was proposed in this
paper. The real-time robustness of the network was defined and analyzed. By using the
susceptible–infected (SI) and susceptible–infected–susceptible (SIS) epidemic models, the
robustness of different networks was analyzed based on the proposed network
robustness metric. The simulation results showed that homogeneous networks
present stronger robustness than do heterogeneous networks at the early stage of the
epidemic, and the robustness of the heterogeneous networks becomes stronger than that
of the homogeneous ones with the progress of the epidemic. Moreover, the irregularity of
the degree distribution decreases the network robustness in homogeneous networks. The
network becomes more vulnerable as the average degree grows in both homogeneous
and heterogeneous networks.
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INTRODUCTION

Nowadays, various dynamic phenomena exist in real networks, many of which are harmful and bring
great damage to real life. Especially, the threat of infectious diseases is growing increasingly due to the
increasing complexity of modern social networks in all facets of human endeavor [1–5]. For example,
as reported by the WHO on October 29, 2021, there have been more than 245 million confirmed
cases of coronavirus disease 2019 (COVID-19) globally, including almost 5 million deaths (https://
covid19.who.int/). Also, other fields like economy, politics, and culture have suffered extensive
damages during the outbreak of COVID-19. Since network structures show a great impact on the
propagation dynamics [6–9, 11], it is crucial to assess the robustness of different network structures
with respect to the spread.

Epidemic propagation models have been recently used to analyze network robustness against
virus attacks, and the robustness of different networks has been studied [10–14]. By modeling and
analyzing the epidemic propagation, the descriptive features of the propagation process are often
used to measure network robustness against the epidemic spread. For example, the epidemic
threshold and the final infection rate at the steady state have been used to measure the robustness of
the network against virus attacks individually or jointly [13]. The results of network robustness with
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respect to epidemics can help in understanding and further
improving network robustness against epidemics.

Although the existing measurements have been proven to be
effective for network robustness when it comes to the spread of
epidemics, some inherent challenges have been overlooked.
Firstly, the existing measurements have mainly focused on the
robustness of the network at the steady state. To our knowledge,
the real-time robustness of complex networks with respect to
epidemics has not been widely studied, i.e., the changes in the
network robustness over time in different network structures
have not been explored. Secondly, it is not accurate to measure
network robustness without considering the spread velocity,
which is an important factor in measuring the spread of
epidemics. Therefore, the robustness of the network against
epidemics can be comprehensively and accurately measured by
considering the spread velocity. Furthermore, the spread velocity
describes the changes in the propagation over time, which is very
suitable for measuring the real-time network robustness with
respect to epidemics [17].

In this paper, combining spread velocity, infection density at
steady state, and the epidemic threshold, a novel metric was
proposed to measure real-time robustness with respect to
epidemics in complex networks. Network robustness with
respect to the spread of the susceptible–infected (SI) [15] and
susceptible–infected–susceptible (SIS) models [16] was analyzed
based on the new metric, and some interesting results are
presented in our paper. Firstly, the results confirmed that the
irregularity of the degree distribution strengthens the network’s
vulnerability with respect to the epidemic in homogeneous
networks. However, the simulation results on the real-time
robustness of the different networks showed that the
robustness of the Barabási–Albert (BA) scale-free network [19]
is not always stronger than that of the Watts–Strogatz (WS)
network [20] at any time, which was different from the results of
existing studies. At the early stage of the epidemic, the BA
network is more fragile than the WS network. As the infection
rate worsens, the BA network becomes more robust than the WS
network. Moreover, the simulation results showed that the
network becomes more vulnerable to the epidemic as the
average degree grows in both homogeneous and heterogeneous
networks.

The rest of this paper is organized as follows. Related Work
presents the literature review and related works. In Network
Robustness With Respect to Epidemic Models, we analyze the
necessity of proposing the new metric to measure the network
robustness against diseases. In The Novel Metric to Quantify
Network Robustness, the novel metric to quantify the network
robustness with respect to the SI/SIS epidemic spread is proposed.
The simulation results in different networks are presented and
analyzed in Results, and the main conclusions and the direction
for future studies are summarized in Discussion.

RELATED WORK

Epidemics in social networks can be theoretically described using
biological epidemic models, through which the spread

mechanism of viruses can be described and analyzed. For
example, the SI and SIS epidemic models are often used to
model the spread of epidemics [13–17]. In the SI model, the
S-state nodes can pass to the infected state through contagion by
the infected ones, and the rate of an S-state node being infected by
a single infected neighbor is β. In the SIS model, the I-state node
recovered to the S state at the rate δ in the SIS model, and the ratio
between β and δ is denoted the effective infection rate τ. The time
evolution of the different states of the nodes can be described
using differential equations from which the relevant conclusions
of epidemics can be derived.

In the complex network theory, three important features
describing the epidemic spread were introduced into the
epidemic models. Firstly, the epidemic threshold τc, as a
function of the basic reproductive number R0, was used to
determine the outbreak of the epidemic [21]. When the
effective infection rate τ is higher than τc, i.e., R0 > 1, the
epidemic spreads in the population, but when the effective
infection rate τ is lower than τc, the epidemic dies out. With
the outbreak of the epidemic, the states of the nodes in the
network change with time, and the changing rate can be
measured by the spread velocity. When the network reaches a
stable state, the density of each state in the network becomes
stable, and the final infection rate at the steady state can be used to
measure the scale of the spread.

Therefore, the epidemic threshold, spread velocity, and the
final infection rate at the steady state can comprehensively
describe the propagation mechanism and can also be used as a
measure of network robustness with respect to epidemics. As one
of the most prominent features, the epidemic threshold is the first
and commonly used measure of network robustness with respect
to the epidemic spread [22, 23]. The larger the threshold, the
more difficult it is to spread the virus, i.e., the more robust a
network is against the virus attack [13]. Studies have found that
the threshold cannot fully measure network robustness. For
example, the Erdős–Rényi (ER) network [18] and the BA

FIGURE 1 | The susceptible–infected–susceptible (SIS) epidemic
spreading process in different networks, β � δ � 0.3. I(t) represents the
fraction of infected nodes at time t and V(t) the growth rate of infection at time t.
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network [19] have two opposing features—the epidemic
threshold and the steady-state infection rate—to measure their
robustness. In [13], a new measure incorporating the fraction of
infected nodes at the steady state and the epidemic threshold to
assess the robustness of the complex networks with respect to the
spread of epidemic has been proposed and proven to be effective
in modeling epidemics with different final infection densities.

NETWORK ROBUSTNESS WITH RESPECT
TO EPIDEMIC MODELS

In existing studies, the epidemic threshold and the steady-state
infection rate have been bound together to measure network
robustness against epidemics since it has been proven that the
results are inaccurate when only one feature is considered.
Besides the epidemic threshold and the steady-state infection
rate, the spread velocity is another widely discussed variable that
should not be ignored in the study of network robustness. For
example, Figure 1 shows the infection rate at the nodes at time t
due to the SIS epidemic spreading process in the WS and BA
networks, where the average degree of the two networks is the
same. We can differentiate between the propagation processes in
the two networks from the curve in Figure 1. Firstly, the final
infection density in the BA network (IBA) is smaller than that in
the WS network (IWS), i.e., IWS > IBA. Based solely on the
infection scale at the steady state, we can conclude that the
BA network is more robust than the WS network.

However, the performance of spread velocity is more
interesting than that of the final propagation scale. In our
simulation, we first described the spread velocity as the growth
of the infection rate, i.e., V(t) � I(t + 1) − I(t). As shown in
Figure 1, when t < 9, the spread velocity of the epidemic in the
WS network is slower than that of the BA network,
i.e., V(t)BA >V(t)WS. However, when t≥ 9, the spread velocity
of the epidemic in the WS network is faster than that of the BA

network, i.e., V(t)BA <V(t)WS. Especially, when the final
infection densities at the steady state are the same, such as in
the SI model shown in Figure 2, we can hardly conclude which
network shows stronger robustness based solely on the spread
velocity. Therefore, estimating the robustness of different
networks based solely on the spread velocity is different,
which is one of the reasons to study real-time network
robustness. In addition, since the spread velocity describes the
dynamics of the propagation process before attaining the steady
state, it is essential in measuring real-time network robustness.

Moreover, we also measured the moment at which the steady
state of the infection first arrives [T(i_max)] under different
infection rates β in the BA and WS networks. Figure 3 shows
that the T(i_max) in the WS network was larger than that in the
BA network under the same β, especially when β was very small.
Therefore, we can conclude that one single feature may fail to
comprehensively measure the robustness of the network.
Besides the epidemic threshold, the infection rate at the
steady state and the spread velocity are also very important
in measuring network robustness with respect to epidemics.
Therefore, we proposed a novel metric with multiple features to
quantify network robustness against the spread of the epidemic
in this paper.

NOVEL METRIC TO QUANTIFY NETWORK
ROBUSTNESS

We proposed a multi-indicator-based measurement to quantify
network robustness against the epidemic by combining the
epidemic threshold, the infection density at steady state, and
the spread velocity. Suppose that, in the SIS epidemic model, the
rate of a susceptible node being infected by a single infected
neighbor is β and the infected node recovered at the rate δ in the
SIS model. When δ � 0, the SIS model is transformed into the SI
model. In the SIS model, the effective recovery rate can be defined
as s � 1/τ � δ/β, s ∈ (0, λmax). The density of the infected nodes

FIGURE 2 | The susceptible–infected (SI) epidemic spreading process in
different networks, β � 0.3. I(t) represents the fraction of infected nodes at time
t and V(t) the growth rate of infection at time t.

FIGURE 3 | The time of reaching the steady states of the epidemic
spread under different infection rates in the Barabási–Albert (BA) and
Watts–Strogatz (WS) networks.
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at time t is described as i(t), and the steady state of the infection
under the effective infection rate τ can be written as i∞(τ).
Considering the infection at the steady state and the spread
velocity, we define iA(T) as the average infection rate of the
network after time T:

iA(T) � 1
T
∫T

0
i(t)dts. (1)

The network robustness with respect to the epidemic spread
can be written as

RG � ∫λmax

0
iA(s)ds. (2)

Equation 2 shows that the greater the value of RG, the more
fragile is the network, i.e., the weaker is its robustness.

The real-time robustness of network G can be written as

RG(T) � 1
T
∫ λmax

0

∫
0

T

i(t, s)dtds. (3)

Especially, when T → ∞,

iA(T) � 1
T
∫
0

T

i(t)dt � 1
T
⎛⎝∫Ts

0

i(t)dt+ ∫
Ts

∞
i∞dt⎞⎠ ≈ i∞, (4)

where Ts represents the moment when the infection reaches a
steady state for the first time. Then, the network robustness can be
written as

RG � ∫λ max

0
i∞(s)ds, (5)

which is the viral conductance proposed in Eq. 13.
Based on the SI and SIS epidemic models, we can further write

the robustness of the network with respect to the spread of the SI
and SIS epidemic models.

Case 1
The robustness of homogeneous networks with respect to the
spread of the SI model is shown. The state of each node in the SI
model is either infected or healthy, and the change in infected
individuals over time can be described as

di

dt
� β〈k〉i(1 − i). (6)

By separating the variables, Eq. 6 can be written as

di

i(1 − i) � β〈k〉dt, (7)

Integrating both sides of Eq. 7, we can obtain

ln
1 − i(t)
i(t) � −β〈k〉t + c. (8)

The density of the infected nodes at time t can be written as

i(t) � 1

1 + (1/i0 − 1)e−β〈k〉t. (9)

The final infection density of the SI model is equal to 1,
i.e., i∞ � 1. Based on Eqs. 5 and 9, the robustness of the
homogeneous network G with respect to the spread of the SI
epidemic can be written as

RSI
G (T) �

1
T
∫1

0
∫T

0
i(t,β)dtdβ� 1

T
∫1

0
∫T

0

1

1+ (1/i0 −1)e−β〈k〉t dtdβ

� 1
T
∫1

0
∫T

0

⎛⎝1−
(1/i0 −1)e−β〈k〉t

1+(1/i0 −1)e−β〈k〉t
⎞⎠dtdβ

(10)

RSI
G (T) �

1
T
∫1

0
∫T

0

⎛⎝1 −
(1/i0 − 1)e−β〈k〉t

1 + (1/i0 − 1)e−β〈k〉t⎞⎠dtdβ

� 1
T
∫1

0

⎛⎝∫T

0
1dt − ∫T

0

(1/i0 − 1)e−β〈k〉t
1 + (1/i0 − 1)e−β〈k〉t dt⎞⎠dβ

� 1
T
∫1

0
(t + 1

β〈k〉 ln(1 + (1/i0 − 1)e−β〈k〉t))
∣∣∣∣∣∣∣∣∣
t � T

t � 0
dβ

� 1
T
∫1

0

⎛⎝T + 1
β〈k〉 ln

(1 + (1/i0 − 1)e−β〈k〉T)
1/i0 ⎞⎠dβ

� 1 + 1
T
∫1

0
( 1
β〈k〉 ln(i0 + (1 − i0)e−β〈k〉T))dβ.

(11)

Case 2
The robustness of homogeneous networks with respect to the spread
of the SIS model is calculated. Ignoring the degree of correlations in
the nodes of the homogeneous networks, the density of the infected
nodes at time t in the SIS epidemic model, i.e., i(t), satisfies

di

dt
� −δi + β〈k〉i(1 − i). (12)

Integrating both sides of Eq. 12,

∫t

0
dt � ∫i(t)

i0

1
−δi + β〈k〉i(1 − i)di, (13)

Then, Eq. 13 can be rewritten as

t � 1
β〈k〉 − δ

∫i(t)

i0

1
i
di + β〈k〉

β〈k〉 − δ
∫i(t)

i0

1
β〈k〉 − β〈k〉i − δ

di,

(14)

We can obtain

e(β〈k〉−δ)t � i(t)
β〈k〉 − β〈k〉i(t) − δ

/ i0
β〈k〉 − β〈k〉i0 − δ

, (15)

After a simple combination, Eq. 15 can be rewritten as

i(t)(β〈k〉 − β〈k〉i0 − δ) � i0e(β〈k〉−δ)t(β〈k〉 − β〈k〉i(t) − δ).
(16)
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The density of the infected nodes at time t can be written as

i(t) � (β〈k〉 − δ)i0e(β〈k〉−δ)t
β〈k〉 − β〈k〉i0 − δ + i0β〈k〉e(β〈k〉−δ)t

. (17)

Let Eq. 12 be equal to 0. We can obtain −δi + β〈k〉i(1 − i) � 0.
When τ � β

δ � β> τc, the infection density of the final stable
state is

i∞ � 1 − δ

β〈k〉 � 1 − 1
τ〈k〉. (18)

Based on Eqs. 5 and 17, the robustness of the homogeneous
network G with respect to the spread of the SIS epidemic can be
written as

RSIS
G (T) � 1

T
∫λmax

0
∫T

0
i(t, s)dtds

� 1
T
∫λmax

0
∫T

0

(〈k〉
s

− 1)i0e(〈k〉
s −1)t

〈k〉
s

− 〈k〉
s

i0 − 1 + i0
〈k〉
s

e(〈k〉
s −1)t

dtds

(19)

Using simple operational processes, RSIS
G (T) can be

rewritten as

RSIS
G (T) � 1

T
∫λmax

0
∫T

0

(〈k〉
s

− 1)i0e(〈k〉
s −1)t

〈k〉
s

− 〈k〉
s

i0 − 1 + i0
〈k〉
s

e(〈k〉
s −1)t

dtds

� ∫λmax

0

s

T〈k〉∫
T

0

1
〈k〉
s

− 〈k〉
s

i0 − 1 + i0
〈k〉
s

e(〈k〉
s −1)t

d(〈k〉
s

− 〈k〉
s

i0 − 1 + i0
〈k〉
s

e
(〈k〉

s −1)t)ds

� ∫λmax

0

s

T〈k〉 ln(〈k〉s − 〈k〉
s

i0 − 1 + i0
〈k〉
s

e
(〈k〉

s −1)t)
∣∣∣∣∣∣∣∣∣
t � T

t � 0
ds

� ∫λmax

0

s

T〈k〉(ln(〈k〉 − 〈k〉i0 − s + i0〈k〉e
(〈k〉

s −1)T) − ln(〈k〉 − s))ds.
(20)

RESULTS

Based on the new network robustness measurement we
proposed, Monte Carlo simulations were performed to
further explore the robustness of the different networks with
respect to the spread of the epidemic. It is generally known that
most of the real-world networks are characterized by a high
clustering effect, a short average path length, and power law
node degree distribution, i.e., small-world phenomenon and
scale-free property. Therefore, WS small-world networks, BA
scale-free networks, and several real-world networks were used
in our simulations. All the simulation results were averaged over
500 runs.

Firstly, the BA and WS networks, with the same average
degree, 〈k〉 � 6, were used in our simulation to study the
effect of degree distribution on the robustness of the
networks. Figure 4 shows the network robustness RSIS

G at
time T with respect to the spread of the SIS model. For
simplicity, the recovery rate δ was set as 1. The curves in

Figure 4 show that, when T < 15, RSIS
BA >RSIS

WS, i.e., the
robustness of the WS network is stronger than that of the
BA network. Due to the existence of a small fraction of hub
nodes, the epidemic in the BA network is more likely to break
out than that in the WS network. Therefore, at the early stage of
the epidemic, the BA network is more fragile than the WS
network because of the higher epidemic threshold and faster
spread velocity. However, when the infection rate becomes more
severe, the spread gradually slows down since most of the nodes
in the BA network are of a lower degree than that of the average,
and the infection scale in the WS network becomes larger than
that in the BA network. Therefore, when T≥ 15, theWS network
becomes more fragile than the BA network, i.e., RSIS

BA <RSIS
WS, as

shown in Figure 4.
Moreover, the simulations were carried out in a group of WS

small-world networks, where the irregularity/randomness of the
networks increases as the value of the rewiring rate p grows
following the generation algorithm of theWS network. Especially,
when p � 0, the network is a regular graph; when p � 1, the
network is completely random. Figure 5 shows that, as p grows,
RSIS
G becomes larger; that is, the network becomes more

vulnerable. Therefore, the irregularity/randomness of the
network weakens the robustness of the homogeneous
networks. In addition, compared with the robustness of the
BA network (red circle), the homogeneous networks were
more robust than the BA network at the early stage of the
epidemics (T< 8 in Figure 5). Also, after T> 15, the BA
network showed better robustness than the group of
homogeneous networks. The results further extend our
conclusion that, in the initial stage of propagation, the
homogeneous networks showed better robustness than the
heterogeneous networks. As the robustness gap grew smaller
with the spread of the epidemic, and finally, the heterogeneous
networks became more robust than the homogenous networks.

The above simulation results indicated that it is not
adequate to simply conclude which network is more robust

FIGURE 4 | The robustness of the Watts–Strogatz (WS) and
Barabási–Albert (BA) networks with respect to the
susceptible–infected–susceptible (SIS) epidemic model.
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with respect to the epidemic. The robustness of the network
changes with time, and the network does not always show a
strong/weak robustness at all stages of the epidemic. During
the early stage of the epidemic spread, the robustness of
homogeneous networks was stronger than that of the
heterogeneous networks. After the propagation reached the
steady state, heterogeneous networks showed better robustness
than the homogeneous networks.

To analyze the impact of the degree distribution on
network robustness with respect to the epidemic,
simulations were also carried out in the WS and BA
networks with different average degrees, 〈k〉, as shown in
Table 1 and Figure 6. Table 1 shows that, at the steady state
(T � 30), the network became more vulnerable to virus attacks
as the average degree of the network increases. The results
validated the BA network as having stronger robustness than
the WS network at the steady state.

Figure 6 shows the changes of network robustness as time T
increased in the WS and BA networks with different average
degrees, 〈k〉. The figure shows that the WS network exhibited
stronger robustness than did the BA network with the same
average degree at the early stage of the epidemic, and the
robustness of the BA network was stronger than that of the
WS network at the steady state.

We also applied the proposed metric to real-world
networks where the dynamics processes can be described
by epidemic models [24–27]. For example, the virus spread
in e-mail networks, the information transfer in neural
networks, and rumor diffusion in online social networks. In
this paper, three real-world networks were used to validate
our results on network models [28]: 1) e-mail network—the
network of e-mail interchanges between members of the
University Rovira i Virgili (Tarragona); 2) neural
network—the network representing the neural network of
Caenorhabditis elegans, which was compiled by D. Watts
and S. Strogatz; and 3) Facebook network—the complete

Facebook network data (from a single-time snapshot in
September 2005) of Caltech. Only intra-college links were
included. The basic topological properties of these three
networks are shown in Table 2. In order to study the
impact of degree distribution on the robustness of real-
world networks, new network models were created by
rewiring the links in the real-world networks. After
rewiring, the heterogeneity of the degree distribution of
nodes was reduced, while the numbers of nodes and links
remained unchanged, and the new created networks were
connected graphs.

Figure 7 shows the impact of degree distribution on the
robustness of real-world networks with respect to the spread
of the SIS epidemic. We can see that, at the early stage of the
epidemics, the robustness of the real-world networks (red
circles) was worse than that of the new created network
models (black circles). That is to say, the heterogeneity of
the degree distributions of nodes can reduce the network
robustness at the early stage of the epidemic. After the
propagation reached a steady state, the robustness of the
real-world networks (red circles) became stronger than that
of the new created network models (black circles). The
simulation results confirmed that homogeneous networks
present stronger robustness than do heterogeneous
networks at the early age of the epidemic, and the
robustness of the heterogeneous networks becomes stronger
than that of the homogeneous ones with the progress of the
epidemic. In addition, we can see from Figure 7 that the time
point when the robustness of the real networks was stronger
than that of the homogeneous networks was becoming earlier
with the increase of the average degree (as shown in Table 2,
the average degree was becoming larger from the e-mail
network to the Facebook network, i.e., from Figures 7A–C).

In summary, the simulation showed different results from
previous studies based on the new measures of network
robustness with respect to the spread of epidemic proposed
in this paper. Firstly, the robustness of the heterogeneous
networks was not always better than that of the
homogeneous networks. During the initial stage of
propagation, the homogeneous networks showed better
robustness than did the heterogeneous networks, and at the
steady state, the heterogeneous networks became more robust
than the homogenous networks. Furthermore, in both
homogeneous and heterogeneous networks, the networks
became more vulnerable as the average degree increased. In
homogeneous networks, the robustness of the networks with
respect to the spread of the virus decreased as p increased,
i.e., the irregularity in the networks increased the vulnerability

FIGURE 5 | The robustness of homogeneous networks at time T with
respect to the susceptible–infected–susceptible (SIS) epidemic spread.

TABLE 1 | The robustness of the Watts–Strogatz (WS) and Barabási–Albert (BA)
networks with different <k> values at the steady state (T � 30)

<k> = 4 <k> = 6 <k> = 8 <k> = 10

WS network 0.2981 0.3492 0.3716 0.3842
BA network 0.2274 0.2880 0.3209 0.3488

WS, Watts–Strogatz; BA, Barabási–Albert
(<k>) is the average degree of network.
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of the networks. The simulation results provided us with some
ideas to enhance the network robustness with respect to the
dynamic propagation processes. For example, at the beginning
of the epidemic, mass gathering was harmful to improve
network robustness, and after the epidemic entered a
relatively stable period, avoiding small-scale clustering
would help enhance the network robustness against
epidemic spread.

FIGURE 6 | The robustness of the Watts–Strogatz (WS) and Barabási–Albert (BA) networks with different <k> values at time T with respect to the
susceptible–infected–susceptible (SIS) epidemic spread. (A) <k> � 4. (B) <k> � 6. (C) <k> � 8. (D) <k> � 10.

TABLE 2 | The real-world networks studied and their basic properties

Networks N L <k> k_max

E-mail network 1,133 5,451 9.62 71
Neural network 297 2,148 14.47 134
Facebook network 762 16,651 43.70 248

N and L are the total numbers of nodes and links, respectively. <k> and k_max denote
the average and the maximum degree, respectively.

FIGURE 7 | The robustness of real-world networks at time T with respect to the susceptible–infected–susceptible (SIS) epidemic spread. (A) E-mail network. (B)
Neural network. (C) Facebook network.
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DISCUSSION

Considering the spread velocity, epidemic threshold, and the
infection density at steady state, a novel metric to quantify
network robustness with respect to epidemics was proposed in
this paper. The real-time network robustness and the robustness of
different networks were discussed. The simulation results showed
some interesting conclusions of the impact of network structure on
network robustness. The robustness of heterogeneous networks
was not always stronger than that of the homogeneous networks.
At the early stage of the epidemic, the homogeneous networks
showed stronger robustness than did the heterogeneous networks,
and at the steady state, the robustness of the heterogeneous
networks was stronger than that of the homogeneous networks.
In addition, the increase of irregularity and the average degree can
enhance the network robustness with respect to epidemics. Our
future work will explicitly focus on proposing a heuristic for
computing the robustness metric for general networks. In
addition, the metric proposed in our paper can be applied to
network optimization to maximize network robustness with
respect to different kinds of dynamic propagation processes.
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