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In the era of big data, tremendous amounts of information 
and data have drastically changed human civilization. 
The rapid growth in the number of documents generated 
everyday means that a large amount of knowledge is 
proposed, improved, and used. For readers, especially 
newcomers to a given field, excavating suitable knowledge 
entities from massive documents is time-consuming 
and labor-consuming, negatively impacting research 
efficiency. The broad availability of information provides 
more opportunities for people, but a new challenge has 
risen as well; that is, how to extract and use knowledge 
from numerous information resources, especially how to 
conduct knowledge extraction and text mining (TM) from 
massive documents in special domains.

A knowledge entity is a relatively independent and 
integral knowledge module in a special discipline or 
research domain (Chang & Zheng, 2007). In scientific 
documents, knowledge entities refer to the knowledge 
mentioned or cited by authors, such as algorithms, 
models, theories, datasets, and software (Wang & Zhang, 
2018), and reflect various resources used by the authors in 
problem-solving (Zhang, Mayr, Lu, & Zhang, 2020; Hou, 
Jochim, Gleize, Bonin, & Ganguly, 2019; Brack, D’Souza, 
Hoppe, Auer, & Ewerth, 2020). Extracting knowledge 
entities from numerous information resources is useful for 
multiple downstream tasks in information extraction, TM, 
natural language processing (NLP), information retrieval, 
digital library research, and so on. Particularly, in the 
field of artificial intelligence (AI), information science, 

and some other related disciplines, discovering methods 
from a large scale of academic literature, and evaluating 
the performance and influence of such methods, have 
become increasingly necessary and meaningful (Hou et 
al., 2020). In 2019, the “Heart of Machine” launched the 
project “SOTA (state of the art) model”. Targeting more 
than 100 tasks in machine learning research, the project 
obtained models, open datasets, evaluation indicators, 
and results from academic literature through manual 
annotation and named entity recognition, and provided 
open retrieval services for users. Defense Advanced 
Research Projects Agency (DARPA) has recently launched 
the Automating Scientific Knowledge Extraction (ASKE) 
project to develop next-generation applications of 
artificial intelligence.

In parallel, deep learning techniques introduce new 
progresses to NLP and TM. Many kinds of neural network 
models, e.g., convolutional neural network (CNN), 
recurrent neural network (RNN), graph neural networks 
(GNN), and attention mechanism, have been widely 
involved in these tasks (Qiu et. al, 2020), particularly, text 
classification (Zhang, Zhao, & LeCun, 2015; Lai, Xu, Liu, & 
Zhao, 2015; Yao, Mao, & Luo, 2019; Liu & Guo, 2019) and 
clustering (Xu et al., 2015; Xu et al., 2017).

There are some conferences and workshops in line 
with this topic, such as the Joint Workshop on Bibliometric-
enhanced Information Retrieval and Natural Language 
Processing for Digital Libraries (BIRNDL) (Cabanac et al., 
2016), the Workshop on Mining Scientific Publications 
(WOSP), the Workshop on Extraction and Evaluation of 
Knowledge Entities from Scientific Documents (EEKE) 
(Zhang et al., 2020), the Workshop on AI + Informetrics 
(AII) (Zhang, Zhang, Mayr, & Suominen, 2021), and the 
Workshop on Scholarly Document Processing (SDP) 
(Chandrasekaran et al., 2020).

 We are very grateful that three contributions were 
invited to the special issue of Data and Information 

1  See the website: https://www.jiqizhixin.com/sota
2  See the website: https://www.darpa.mil/program/automating-
scientific-knowledge-extraction
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Management (DIM). These three submissions were 
accepted after several rounds of peer-reviewing and 
revisions.

The paper “Discovering Booming Bio-entities and 
Their Relationship with Funds” (Tan, Zhang, Yang, Wu, 
& Xu, 2021) tracked the overall trends and changes in 
biomedical topics from 1988 to 2017. It collected funding 
information in the PubMed database and the website of 
the United States National Institutes of Health (USNIH), 
and extracted funding-related entities and research 
hotspots in the corresponding fields. This study provides 
new insights for research funding allocation, and may 
support the science policy and strategic management of 
stakeholders.

The paper “A Pattern and POS Auto-Learning Method 
for Terminology Extraction from Scientific Text” (Shao, 
Hua, & Song, 2021) proposed an unsupervised method 
based on sentence patterns and part of speech (POS) 
sequences extracted from scientific texts. The proposed 
method only requires a few initial learnable patterns 
to obtain initial terminological tokens and their POS 
sequences. Experiments on abstracts of articles in the Web 
of Science (WoS) database demonstrate its recognized 
performance.

The paper “Automatic Subject Classification of Public 
Messages in E-government Affairs” (Pan & Chen, 2021) 
touched upon the task of automatic classification using 
bi-directional long short-term memory (Bi-LSTM) network 
model based on attention mechanism. This paper used 
the Bi-LSTM algorithm to strengthen the relevance of 
messages before and after the training process, and 
introduced semantic attention to highlight the weight of 
important text features.
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