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ICP-MS inductively coupled plasma-mass spectrometry  

IgG sheep igg antibody  

IHC immunohistochemistry 

iMSI immuno-mass spectrometry imaging 

IR ionising radiation 

LA laser ablation  

LOD limit of detection  

LOQ limit of quantification 

m/z mass-to-charge ratio  

Mb myoglobin  

MeCAT metal coded affinity tags  

MRI magnetic resonance imaging  
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MW molecular weight 

NCX sodium-calcium exchanger  

NP nanoparticle 

NRAMP natural resistance-associated macrophage protein  

NSF nephrogenic systemic fibrosis 

OIO optimised ion optics 

PBS phosphate buffered saline  

PDMS dimethyl polysiloxane  

pI isoelectric point 

PM plasma membrane 

RF radio frequency  

RNase ribonuclease a  

ROI regions of interest  

ROS reactive oxygen species  

rpm revolutions per minute 

RSD relative standard deviation  

sDL size detection limit  

SDS sodium dodecyl sulfate  

SEC size exclusion chromatography  

SLG scan line gain 
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SLS scan line slope  

SM standard mode 

SMIL successive multiple ionic polymer layers  

SP single-particle  

SQ or Q single quadrupole  

TEM transmission electron microscopy  

Tf transferrin 

TfR transferrin receptor  

TQ or QQQ triple quadrupole 

TRIS tris(hydroxymethyl)aminomethan 

UCNPs upconversion nanoparticles 

UV ultraviolet 

ZIP zrt- and irt-like proteins  

ZnT10 zinc transporter 10  
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Abstract 

The underlying biological mechanisms of widespread radioresistance of many 

human tumours remain elusive despite decades of investigations. Research 

efforts have largely focussed on the genomics/proteomics-based enzymology of 

DNA repair and free radical scavenging enzymes such as the superoxide 

dismutases. A recent novel hypothesis is that radiation resistance is 

predominantly underpinned by non-enzymatic complexes of manganese and 

small molecular metabolites. These complexes are thought to act as free radical 

scavengers which provide metabolic radioprotection that render cells variably 

resistant to the products of ionising radiation.  

Multiple influx and efflux metal transporters are involved in manganese 

homeostasis and are potentially differentially expressed on the surface of cancer 

cells, leading to variable concentrations of manganese within tumours. 

Uncovering the mechanisms of tumour radioresistance requires complementary, 

reliable, and well characterised methods to spatially quantify manganese and its 

transporter proteins. Laser ablation-inductively coupled plasma-mass 

spectrometry (LA-ICP-MS) provides a single technological platform to construct 

quantified images of elements and may be extended to measure biomolecules 

via incorporation of immunoassays. However, high quality and reproducible 

analyses require quality assurance across all steps of the workflow including the 

characterisation of antibodies, nanoparticles and antibody tagging protocols. 

Accordingly, this thesis introduces a portfolio of methods of hyphenated ICP-MS 

for quality assurance of elemental and biomolecule analyses. 
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Chapter 2 introduces novel and universal workflows for the analysis of intact 

proteins via capillary electrophoresis (CE) and presents guidelines for the 

targeted selection of appropriate background electrolytes via consideration of the 

target proteins’ isoelectric point. Neutral dimethyl polysiloxane capillaries with 

dynamic coatings of cationic cetyltrimethylammonium bromide or anionic sodium 

dodecyl sulfate, and bare fused silica capillaries were systematically evaluated 

for the analysis of seven model proteins over a wide pH range. Multiple capillary 

and background electrolyte combinations were suitable for the analysis of each 

protein. The concept was demonstrated by the analysis of caseins and whey 

proteins in milk which separated the most abundant proteins, including the 

isoforms of A1 and A2 β-casein and β-lactoglobulin A and B.  

Chapter 3 presents the development of a simple, robust, and cost-effective 

interface to hyphenate CE and ICP-MS to enhance the sensitivity and specificity 

for the analysis of limited volume and complex biological samples. The interface 

components were thoroughly investigated to highlight crucial aspects that need 

to be considered when developing and assembling a CE-ICP-MS interface. The 

interface’s functionality, linearity and robustness were evaluated by separation 

and quantification of gadolinium-based contrast agents in urine samples collected 

after magnetic resonance imaging (MRI) examination. 

Chapter 4 combined these advancements to determine labelling efficiencies of 

metal conjugated antibodies by CE-ICP-MS, which are widely used in cytometry 

and imaging for the identification and examination of protein expression. The 

number of lanthanide ions per protein was measured in seven MAXPAR™ 

polymer conjugated antibodies. Variable numbers of lanthanides were observed 

between different antibodies, as well as antibodies of the same kind, highlighting 

the importance of quality control workflows. The CE-ICP-MS method was also 

applied to 15 nm gold nanoparticles to demonstrate feasibility to distinguish un-

conjugated and antibody conjugated nanoparticles. 

Chapter 5 details novel methods of single-particle ICP-MS to characterise the 

composition, size distribution and particle-particle interactions of (upconversion) 
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nanoparticles. The optimization of ion extraction, ion transport, and the operation 

of the quadrupole with increased mass bandwidth improved the signal-to-noise 

ratios significantly and decreased the size detection limits for all nanoparticle 

dispersions investigated. Gold nanoparticles were analysed as a model system 

to demonstrate the effects of increasing ion transmission, subsequently the 

methods were applied to determine stoichiometries and size distributions of three 

types of lanthanide-doped upconversion nanoparticles. A Poisson model was 

further applied to assess particle−particle interactions in the nanoparticle 

dispersions. 

Chapter 6 deployed these advanced techniques to demonstrate immuno-mass 

spectrometry imaging and elemental bioimaging of manganese transporters and 

transition metals in human melanomas. The transporter protein ZIP8 was 

visualised with an 153Eu polymer labelled anti-ZIP8 antibody, and the expression 

levels of the ZIP14 transporter protein were localised with an immunoassay of an 

unlabelled primary antibody with a secondary antibody-nanoparticle conjugate. 

Manganese, copper, zinc, and iron distributions were imaged on consecutive 

sections of the microarray and co-localised with the ZIP8 and ZIP14 expressions. 

The results show a variable correlation of transition elements and proteins, 

demonstrating the complex interplay between metals and their respective 

transporters.
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