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ABSTRACT A compact metasurface-based circularly polarized (CP) dielectric resonator antenna (DRA)
is proposed with wideband characteristics. The antenna forms a very simple structure, composed of a
rectangular DR, a single coaxial probe, and plus-shaped unit cells-based metasurface. The metasurface is
realized on a grounded FR-4 substrate. Next, a rectangular DR is loaded centrally over the metasurface.
The DR is fed with a perturbed probe feed at an appropriate angle of (#=29°), along the diagonal
line. Thus, a novel hybrid technique involving the angle of feed location from the center of DR, and
the N x N unit cells-based metasurface is utilized for generating a wideband CP radiation. The resonance
from the rectangular DR and surface waves along the 7 x 7 plus-shaped unit cells-based metasurface is
exploited to achieve a wide 3-dB axial ratio (AR) and impedance matching bandwidth. The fabricated
antenna prototype used for the validation of predicted results confirms the successful implementation of the
proposed technique. Measured results demonstrate a wide impedance bandwidth of 32% (3.6 GHz - 7.0 GHz)
and an overlapping 3-dB AR bandwidth of 20.4% (4.2 GHz - 5.2 GHz). Moreover, the antenna adopts a
left-hand circular polarization (LHCP) with 6-7 dBic measured gain within the operational frequency range.
Overall, the proposed antenna offers low-profile, simplicity, ease of design, and high performance.

INDEX TERMS Circular polarization, CP feed, metasurface antenna, metamaterial, rectangular dielectric
resonator, DRA, probe feed, coaxial, wideband.

I. INTRODUCTION

With the rapid deployment of 5G at our doorstep, forthcom-
ing wireless solutions incorporate smart technologies and
pose stringent expectations. The demand for compact, effi-
cient, lightweight, wideband, and high-gain antennas is on
the rise. Besides, polarization is considered one of the most
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significant performance features for antenna integration with
modern communication systems [1]. Compared to linearly
polarized antennas, circularly polarized (CP) antennas are
gaining more recognition, owing to their salient advantages
of low-cross talk, improved multipath rejections, and better
mobility [2]. These features are extremely useful and have
great significance in implementing various telecommunica-
tion systems and satellite applications. This includes radio
frequency identification (RFID), radar technology, global
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positioning systems, healthcare, and weather forecast. Fur-
thermore, with ever-growing requirements of higher data
rates and insensitivity to the transmitter and receiver orienta-
tion, low-profile wideband CP antennas are desired [3], [4].
Microstrip patch antennas offer polarization flexibility, planar
structure, and ease of fabrication. They have long remained a
suitable candidate for various wireless applications. Despite
many advantages, patch antennas are constrained by their
narrow bandwidth and low gain performance [5], [6]. Dielec-
tric resonator antenna (DRA), on the other hand, offers an
edge over microstrip antenna in multiple ways, such as small
size, easily fed, metallic lossless, high-quality factor, higher
radiation efficiency, and no surface wave excitation [7], [8].
The realization of circular polarization typically requires
the generation of dual orthogonal modes with a 90° phase
shift. In CP DRAs, this 90° phase shift is generated by making
use of either single-point or multi-point feeding techniques
[9], [10], [11], [12]. Dual and quadrature feeds are demon-
strated to achieve wide impedance matching and 3-dB axial
ratio (AR) bandwidth [11], [13], [14]. However, the imple-
mentation of these feeds requires power dividers or external
hybrid couplers, which come with in [29]-creased complex-
ity, and bigger antenna size. On the other hand, the require-
ment of CP radiation is particularly challenging to achieve
over a wide range of frequencies, for designing a single-feed
wideband CP DRA. Considering this, an increased amount
of interest resulted in the design of various single-feed CP
DRAs. These DRAs are demonstrated to enhance the CP
radiation bandwidth such as CP radiation was generated by
the perturbation method in [15], by a circular-sector-slot
in a circular cylinder DR [16], square-slots in rectangular
DR [17], hexagonal-shaped DR [18], and a slotted-square
DR with parasitic strips [19] for omnidirectional radiation.
In addition, various researchers have expanded the AR band-
width of DRAs by using a high-order mode approach. For
example, in the case of a cylindrical DRA [20], the funda-
mental mode HEM111 and high-order mode HEM113 were
excited by designing two feed strips for achieving broadband
CP radiation. While three orthogonal modes were excited
simultaneously by employing a trapezoidal DRA in [21].
Numerous methodologies have also been reported to improve
the performance of CP DRAs with array configurations.
Some of these approaches include probe fed DRA array [22],
rectangular DRA array [23], elliptical DRA array [24], and
a 2 x 4 sequentially rotated DRA array [25]. One of the
major drawbacks of these configurations is the requirement
of a feeding network, which may lead to design complexities.
Recently, efforts have been dedicated to improving the
performance parameters of antennas by employing metasur-
face structures [26]. Metasurface, owing to their property of
manipulating the electromagnetic waves, are placed either
above or beneath the patch/radiators for achieving wideband
and high gain operation [27], [28], and more recently on the
single layer. CP microstrip single feed antennas have been
miniaturized with improved bandwidth by using metasur-
face structures. These include a reactive impedance surface
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(RIS) [29], [30], an artificial ground plane/metamaterial-
surface based single dipole antenna [31], a metasurface based
slotted-rectangular microstrip antenna [32], and a stacked
asymmetric metasurface above the rectangular patch [33] for
wide 3-dB AR bandwidth, and high gain, respectively. More
recently, a wide selection of antennas combining patches and
metasurface of various shapes and sizes are investigated [34],
[35], [36], [37], [38], [39], [40], [41], [42], [43]. However,
to the best of the author’s research, literature review, and
knowledge, no rectangular DR antenna is yet reported over
a metasurface for achieving wideband CP characteristics.

In this paper, a metasurface-based rectangular DR is
demonstrated by utilizing a single coaxial feed at a par-
ticular angle for wideband CP radiation. The rectangular
DR is placed over a metasurface consisting of 7 x 7 unit
cells etched on a grounded substrate and a coaxial feed.
The DR is excited along the diagonal at a particular angle
using a modified upper probe of coaxial feed to investigate a
wide 3-dB AR bandwidth. The proposed hybrid tech-
nique combining the feed angle and well-matched metasur-
face demonstrates a wide 3-dB AR bandwidth within the
2-VSWR-frequency range. Also, a wider 20.4% 3-dB AR
bandwidth with 6-8 dBic gain and 1-1.5 dB gain variation is
demonstrated over the 3-dB AR bandwidth for the proposed
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FIGURE 1. Schematics of wideband CP DRA over metasurface: (a) cross-
sectional view (b) evolution towards final design (c) 7 x 7 array of
plus-shaped unit cells-based metasurface.
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FIGURE 2. Reflection phase characteristic of unit-cell metasurface.

antenna. This antenna is designed and analyzed rigorously
using CST microwave studio [44]. It can be utilized in defense
and satellite communication applications such as weather
radar systems or terrestrial microwave links etc.

Il. ANTENNA STRUCTURE AND CONFIGURATIONS

This section presents a detailed design of the metasurface
DR antenna based on the proposed hybrid technique. It also
explains the antenna radiation mechanism by considering pre-
dicted results and E-Field characteristics. Later, a comparison
of predicted and measured results is carried out for practical
validation.

A. DESIGN PROCESS

Based on the analogy presented in [45], an exploded view of
the proposed wideband CP DRA is depicted in Fig. 1 (a). The
antenna design is comprised of rectangular DR, metasurface,
a single substrate layer, and a ground plane. Initially, it fol-
lows the design procedure by having rectangular DR without
any metasurface and later introducing periodic patches of
N X N unit cell array metasurface, as illustrated in Fig. 1 (b).
The rectangular DR is designed using TMM10i dielectric
substrate (hp = 6.5 mm, € = 10.2, tand = 0.002) with
the following dimensions (length, 1 = 14.9 mm and width,
w = 12.6 mm) on the middle of a FR4 substrate.
A N x N unit cell metasurface (where N = 7) is realized
on a grounded FR4 dielectric substrate (h; = 3.2 mm, €| =
4.2, and tand = 0.022), as shown in Fig. 1 (c). The overall
size of this FR4 substrate is 55 mm x 76 mm. Whereas,
the metasurface unit cell takes the shape of a plus with
dimensions S, = 2.5 mm, W, = 6.0 mm, L, = 8.76 mm,
each separated by distance dx (in normal plane) and dy
(in azimuth plane), respectively, for maintaining the period-
icity. Generally, square, and rectangular-shaped metasurfaces
have been utilized by various researchers previously with
limitations of the narrow band. Therefore, a plus-shaped
metasurface is considered here because of its potential wide-
band response. From the design perspective, a unit cell should
have a reflection phase response of (+£90°) exceeding the
required operating frequency band [32]. To demonstrate this,
the reflection phase characteristics of the proposed metasur-
face are investigated and shown in Fig. 2. The zero-degree
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reflection phase is located at 5.75 GHz with the reflection
phase bandwidth (£90°) ranging from 4.9 GHz to 7 GHz,
demonstrating the broadband response of the proposed meta-
surface. The metasurface unit cells are separated by 1.46 mm
and 1.5 mm in both normal and azimuth plane. The antenna
structure is then excited with a single coaxial feed positioned
at [x, x cos(8), x, x sin(0)], [x, = 7.5 mm, 6 = 29°] from
the center of DR. The coaxial feed location is optimized along
the diagonal line direction on the rectangular DR for a wide-
band CP radiation [32]. Lastly, the metallic part around the
feed location from the metasurface is removed with a radius
of 2.0 mm, to avoid any deterioration of the results due to the
contact between the coaxial feed and unit cells.

B. OPERATING PRINCIPLE AND NUMERICAL STUDIES

A metasurface being the 2-D equivalent of 3-D metamate-
rial is considered a surface distribution of electrically small
scatterers, which can be utilized to control and manipulate
the electromagnetic waves and the radiation mechanism of
primary radiators [28]. The extra resonance for the radiation
structure can be yielded by combining the primary radiator
with a finite-sized metasurface [46]. The surface waves which
propagate on the metasurface structure produce these extra
resonances. The surface wave resonances generated on a
finite metasurface structure depends on the number of unit
cells and periodicity among them, which can be qualitatively
calculated by he cavity model and transmission line model,
as presented in [28] as:

Bsw x Lys =m (1

where, Bsw denotes the propagation constant of the surface
wave resonances, and Lyys is the metasurface structure length,
as given by:

Lys =N x P 2)

where, N is the number of metasurface unit-cells, and P is
the periodicity among them. Replacing value of Ly in (1),
we get:
b4
N x P

From [47], the propagation constant of the surface waves
travelling and decaying away from the metasurface are
related to the decay constant («) and the frequency (), using
the following equation:

Bsw =/ n*w? + a? “)

The propagation constant of the transverse magnetic (TM)
and transverse electric (TE) can be computed by the following

expressions:
/ 2
By = 8 1 — ZMetasszace (5)
¢ n
2
@ n
Bre=21- T ©)
¢ ZMetasurface
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where, w is the angular frequency, c is the speed of light,
n is the intrinsic impedance, and Zyjerasurface Tepresents the
surface impedance of the metasurface structure.
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FIGURE 3. Varying upper probe UP of the coaxial feed to improve
impedance matching bandwidth, so as to complement wideband 3-dB AR
bandwidth (a) side and top view of UP (b) |S;; | characteristics.
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FIGURE 4. |S;;]| characteristics of antenna with and without metasurface.

Considering the above, the surface wave resonance prop-
erty of the metasurface structure is exploited here for the
design of the proposed CP DRA. To serve the purpose,
a hybrid technique for the DRA using diagonal probe feed
along with a well-matched metasurface is investigated and
presented in this article. This method is demonstrated to
achieve a wideband CP performance. By utilization of a
plus-shaped unit cells-based metasurface extra resonances
both in |S7;] and AR can be generated, which is then
fine-tuned by perturbing the upper probe (UP) of the coaxial
feed, as demonstrated in Fig. 3 (a). Fig. 3 (b) shows that a very
good impedance matching of 29.4% (3.6 GHz - 6.6 GHz) is
achieved by optimizing UP to 1.1mm. Furthermore, it also
improved the antenna’s AR performance.

Fig. 4 depicts the |S1;]| characteristics of standalone DRA
and DRA with 3 x 3, 5 x 5, and 7 x 7 metasurface,
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respectively. This comparison shows that DRA with 7 x 7
metasurface achieves multiple resonance responses with sig-
nificant input matching. The reflection characteristics and
AR performance of the optimized DRA before and after
the metasurface is compared in Fig. 5 (a), 5 (b), and 5 (c),
for |S11], VSWR, AR, and realized gain, respectively. The
predicted 2:1-VSWR bandwidth of the antenna is shown in
Fig. 5 (a), depicting higher VSWR bandwidth of DRA with
metasurface as compared to DRA without metasurface. For
DRA without metasurface, a single resonance occurs around
4.82 GHz with AR = 4.7 dB, indicating that the DRA without
metasurface is not a CP (AR more than 5 dB) as shown
in Fig. 5 (b). However, the DRA with metasurface achieves
CP radiation depending upon the number of unit cells (V).
Fig. 5 (b) also demonstrates the impact on the predicted AR
range for a different number of unit cells (N). For N = 3 and
N = 5, the multi-resonance response is observed which
shifts first resonance towards the lower frequency range at
4.35 GHz (with AR = 0.8 dB and AR = 1.23 dB), while
second resonance towards the higher frequency at 5.2GHz
(with AR = 6.4 dB and AR = 0.66 dB), respectively. It is
noteworthy that N = 5 also yields a third frequency res-
onance in the higher frequency range at 5.8 GHz (with
AR = 2.4 dB), however, the overall trend does not satisfy the
minimum AR requirement of <3-dB between 4.5 GHz and
5.1 GHz, resulting in a narrow 3-dB AR bandwidth. Finally,
the optimized performance and desired CP performance are
achieved by incrementing N = 7 with the two lowest AR
values at 0.45 dB and 0.5 dB, discretely. It is also shown to
achieve a wide 3-dB AR bandwidth of 19% ranging from
4.45 GHz to 5.39 GHz within the desired frequency range
(2-VSWR).

The addition of metasurface on the ground extends the
effective aperture of the antenna which leads to gain enhance-
ment. Fig. 5 (c) provides a comparison of the realized gain.
After placing DRA over the 7 x 7 metasurface, a gain
improvement of 2.5 dB can be observed at the lower fre-
quency band. Moreover, the DRA with metasurface shows
a flat gain of 6 - 6.5 dBic across the frequency range from
3.8 GHz to 5.05 GHz, with a maximum gain value reach-
ing up to 7.2 dBic at 4.75 GHz. Although a comparable
performance is achieved in terms of |Si| and gain, the AR
response of 7 x 7 metasurface stands out to be the best among
these. Thus 7 x 7 metasurface is preferred over 3 x 3 and
5 x 5 metasurface.

To further understand the CP wave’s generation phe-
nomenon, the distributions of the electric fields are inves-
tigated and presented with cone visualizations. These
time-dependent field distributions on the DRA, at 5.0 GHz
for wt = 0°, 45°, 90°, and 180°, respectively are presented
in Fig. 6. The circularly rotated behavior of these fields
as observed from the DR with metasurface clearly recom-
mends that the proposed DRA over metasurface undergoes
a wideband CP radiation. Thus, it satisfies the requirement
of the equal amplitude excitation of two orthogonal modes
and a phase shift of 90° across a wide frequency range.

90247



IEEE Access

A. Kiyani et al.: Single-Feed Wideband CP DRA Using Hybrid Technique With a Thin Metasurface

vest 18
10 4

.15 4

-20 4

$ £
= i 10
+ 25 | * ¢ Without Metasurface .'. . 2
- @ With 7 x 7 Metasurface -..' -8
30 4 == == Without Metasurface
@ \With 7 X 7 Metasurface reé
35 \\\ - P
e 7 7~
-40 D N R S . S 12
i 5l
-45 T T T ]
3 3.5 4 4.5 5 5.5 6 6.5 7

Frequecny (GHz)
(a)

® DRA without Metasurface
35 4 eee DRAWith3x3
== == DRA with 5 x 5 Metasurface
30 4| e===DRA with 7 x 7 Metasurface

Axial Ratio (dB)
N
S

N
@

35 4 4.5 5 5.5 6
Frequency (GHz)

(b)

Gain (dBi)
B w (=)}
o R
%
Y

w
L
L)

° [ e DR wWithout Metasurface

) ¢ « e DR with 3 x 3 Metasurafce
= = =DR with 5x 5 Metasurface

° == DR with 7 x 7 Metasurface

N
L
.

[
L
L]

o

3 3.5 4 4.5 5 5.5 6
Frequency (GHz)

(©)

FIGURE 5. Antenna characteristics with and without metasurface (a) |S;;|
& VSWR (b) axial ratio (c) realized gain.

Furthermore, the clockwise rotation of electric fields is vis-
ible from Fig. 6, which confirms that the proposed antenna
holds the characteristics of a left-hand circularly polarized
(LHCP) radiation.

1Il. FABRICATION OF THE PROPOSED ANTENNA

A. PROTOTYPE AND MEASUREMENTS

For practical realization, the proposed DR antenna prototype
was fabricated and is shown in Fig. 7 (a), 7 (b) and 7 (c),
respectively. The metasurface is printed on top of a grounded
FR4 substrate availing a standard etching technique. On the
other hand, the rectangular DR is cut out of a TMM10i dielec-
tric slab using the precision cutting facility. The prototype
antenna is fed with a standard 50-2 probe feed connector.
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FIGURE 6. Clockwise rotating field distributions on the proposed DRA at
5.0 GHz for (a) wt = 0° (b) 45° (c) 90° (d) 180°.

The required diameter of the upper probe UP of the feed is
achieved by bonding a copper tape, referring to Fig. 7 (a).

Careful consideration is carried out to measure the probe
thickness with Vernier caliper, before placing the DR on
top of the metasurface, to minimize the fabrication losses.
Once placed, the DR is fixed with the help of a thin adhe-
sive tape, which has an insignificant impact on the radi-
ation performance of the antenna. A fabricated prototype
was then tested with PNA Vector Network Analyzer and
an anechoic chamber to compute the antenna’s impedance
characteristics and its radiation performance, as demonstrated
in Fig. 8 (a) and 8 (b).

B. |Sy1| CHARACTERISTICS

The predicted and measured |S1;| results of the prototyped
antenna is depicted in Fig. 9. These results are measured using
an Agilent N5242A Vector Network Analyzer and are shown
to be in good agreement with the predicted results. However,
a slight shift can be observed from the |S11| plot. The second
resonance takes its minimum value at 6 GHz against the
predicted 5.5 GHz, which can be primarily ascribed to the fab-
rication tolerances (either bonded copper tape thickness or the
hole drilled in the DR for probe feed). Due to smaller changes
in physical length, the effective/radiating length changes are
more significant on higher frequencies. It could be due to
inconsistency of the bit used for the drilling of the feed
hole, thus impacting the feed diameter, which leads to the
difference. The measured | S| offers a wide impedance band-
width of 32% ranging from 3.6 GHz to 7 GHz. Similarly, the
measured 2:1-VSWR bandwidth ranges 34% from 3.4 GHz
to 7 GHz, complementing a wide impedance matching within
the operational frequency range.

C. AR, GAIN AND RADIATION PATTERNS

The AR, gain, and radiation patterns of the fabricated
metasurface-based DR antenna were measured by using the
NSI-700S-50 spherical near-field chamber, available at the
Australian Antenna Measurement Facility (AusAMF). These
parameters are presented in Fig. 10, and Fig. 11, separately.
Fig. 10 shows the antenna’s predicted and measured AR.
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TABLE 1. Comparison of the proposed wideband CP DRA with previously published literature based on wideband antennas.

Refs. Antenna Structure Impedance 3-dB AR Gain Antenna Size
Bandwidth (%) Bandwidth (%) (dBic) (Ao X Ao X Ao)
44 Metasurface over DR 17.2 NA 6.6 0.32 x 0.32 x 0.044 at 1.2 GHz
38 Patch + metasurface, capacitive loading 21.0 8.5 6.57 0.58 x 0.58 x 0.043 at 3.5 GHz
42 Patch + metasurface 17.0 14.5 >7.0 0.93 x 0.93 x 0.024 at 1.2 GHz
37 AMC Metasurface 33.07 15.92 5.76 0.37 x 0.37 x 0.18 at 2.5 GHz
36 Slot + metasurface 39.25 17.77 6.8 0.65 x 0.65 x 0.06 at 5.5 GHz
40 Rectangular loop + metasurface 19.0 11.4 7.53~8.2 0.75 x 0.75 x 0.06 at 5.8 GHz
47 Rectangular DRA 31.7 20 3.1~4.5 0.5 x 0.52 x 0.15 at 3.5 GHz
39 Patch +metasurface 20.6 17.4 8.0 0.79 x 0.79 x 0.067 at 5.8 GHz
48 Rectangular DRA with L-shaped slots 36.2 17.59 3.5~4.5 0.45 x 0.45 x 0.22 at 3.39 GHz
41 Patch + metasurface 14.3 14.3 4.8 0.86 x 0.67 x 0.13 at 5.60 GHz
Proposed DRA + metasurface 32.0 20.04 6.5~7.2  0.93 x 1.29 x 0.16 at 5.12 GHz
0 12
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FIGURE 7. Fabricated prototype of the proposed antenna: (a) front view,
(b) side view, and (c) top view (d) bottom view.

FIGURE 8. Measurement setup for computing measured results: (a) using
VNA and (b) radiation characteristics using anechoic chamber setup.

The AR measurements are carried out by fixing the linearly
polarized transmitting antenna and measuring the received
signals of the CP DRA with 360° rotation method. Measured
values for the AR are collected across all frequencies to get
a frequency versus AR plot. A wide 3-dB AR bandwidth
of 20.4% ranging from 4.2 GHz to 5.2 GHz is achieved,
with a 0.5 dB increment and a slightly shifted response as
compared to the predicted 19% 3-dB AR bandwidth ranging
from 4.45 GHz to 5.39 GHz. This shift is similar to the
measured |S11| plot and it can be attributed either by the
fabrication/material tolerances or measurement errors due to
the antenna’s alignment and rotation in the anechoic chamber.

Fig. 10 also provides a comparison of the predicted and
measured CP gain at the boresight. It can be observed that
measured gain varies between 6-7 dBic across the operating
frequency band. The measured gain values remain 0.5-1 dB
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FIGURE 9. Comparison of predicted and measured antenna input
matching including |S;;| and VSWR.
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FIGURE 10. Comparison of predicted and measured antenna radiation
characteristics including AR and gain.

below the predicted gain values at the lower frequency in the
range of 3.4 GHz to 4.8 GHz. On the other hand, the gain
values are 0.5-1 dB above the predicted gain values at the
higher frequency range from 5.4 GHz to 6.0 GHz (off CP
band) except for 1.8 dB at 5.2 GHz. The slight discrepancy in
the gain values can be attributed to the antenna alignment in
the anechoic chamber, as an experimental error.

D. FAR-FIELD RADIATION PATTERNS

The antenna’s 3-D radiation patterns are presented in Fig. 11
at three different frequencies of 4.8 GHz, 5.0 GHz, and
5.4 GHz. The normalized predicted and measured radiation
patterns are taken in two principal planes. LHCP radia-
tion patterns are compared at these frequencies as plotted
in Fig. 12, respectively. The antenna depicts quite stable
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FIGURE 11. 3-D radiation patterns of antenna including the gain bar at
(a) 4.8 GHz, (b) 5.0 GHz, and (c) 5.4 GHz.

radiation patterns in the broadside direction; however, a slight
beam squinting has occurred at higher frequencies. Overall,
the predicted and measured results show good agreement
among them.

E. PERFORMANCE COMPARISON WITH EXISTING CP
WIDEBAND ANTENNAS

This next section compares the proposed antenna’s
key performance parameters against the newly reported
wideband CP hybrid antennas. For this purpose, a fair com-
parison is presented in Table 1 by selecting the recently
published designs of wideband CP antennas integrating meta-
surfaces [35], [36], [37], [38], [39], [40], [41] and those of
wideband DRA CP antennas [48], [49]. These antennas are
compared in terms of their structure, 3-dB AR bandwidth,
impedance bandwidth, gain, and antenna dimensions. From
Table 1, the proposed antenna exhibits better AR bandwidth
than those reported in [35], [36], [37], [38], [39], [40], [41],
and [48], and [49], respectively. Furthermore, it is noteworthy
that only the proposed antenna offers a rectangular DR over
a metasurface, thus making it novel among this class of
antennas.
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FIGURE 12. Predicted and measured radiation patterns (left-hand
polarization) of antenna in two principal planes compared at
(a) 4.8 GHz, (b) 5.0 GHz, and (c) 5.4 GHz.

IV. CONCLUSION

A low-profile, lightweight and single-fed wideband CP DR
antenna over a metasurface has been presented and demon-
strated experimentally. It uses a novel hybrid technique to
realize wideband CP radiation characteristics. The technique
is investigated to exploit the multi-resonance characteristics
of a plus-shaped unit cell-based metasurface, with a strategic
fed rectangular DR placed over it for performance improve-
ment. The antenna radiation with the introduction of the
metasurface is demonstrated to realize a wide bandwidth
performance. The fabricated antenna with a compact size
of 0.931, x 1.3X, x 0.16A, exhibits a measured wide
impedance bandwidth of 32% (3.6 GHz - 7 GHz) and an over-
lapping 3-dB AR bandwidth of 20.04% (4.2 GHz - 5.2 GHz),
respectively. The novel yet simple design tends to reduce the
complexity of staked layers, and it can be easily extendable
for multi-band and high-gain CP array configurations.
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