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Abstract 

The research conducted in this paper focuses on providing a superior solution for controlling 

the active suspension system through machine learning algorithm. An active suspension system 

is embedded with an extra actuator and can provide more flexibility in dealing with different 

road situation than a passive suspension system that only contains a fixed set of spring and 

damper. 

Among various control methods, the machine learning control strategy has demonstrated its 

optimality in dealing with different classes of roads depending on its self-learning capability. 

In this study, an advanced method of creating pavement signal has been presented to guarantee 

the quality of the simulation, together with Twin Delayed Deep Deterministic Policy Gradients 

(TD3) in suspension control that is an application of one of the cutting-edge algorithms in 

Reinforcement Learning (RL). To be able to realize the research, policy gradient algorithm, 

Markov decision process, and neural network modelling have been adopted. 

To achieve such a proposed frame structure, a vehicle suspension model has been established 

together with a frame of reinforcement learning algorithm and an input signal of road 

pavement. The performance of the proposed twin delayed reinforcement agent has been 

compared against Deep Deterministic Policy Gradients (DDPG) and Deep Q-Learning (DQN) 

algorithms under different types of pavement input. The simulation result shows its superiority, 

robustness, and learning efficiency over other reinforcement learning algorithms. 

 

 

 

 



VIII 
 

Contents 

Abstract .................................................................................................................................. VII 

 Introduction .......................................................................................................... 1 

1.1 Background ................................................................................................................. 1 

1.2 Research significance .................................................................................................. 2 

1.3 Thesis Outline ............................................................................................................. 3 

 Literature review .................................................................................................. 5 

2.1 Type of suspension system .......................................................................................... 6 

2.2 RBF (Radial basis function network) neural network control .................................... 8 

2.3 Active suspension control based on deep reinforcement learning .............................. 9 

2.4 Vibration control using DDPG .................................................................................. 13 

2.5 Stochastic road excitation .......................................................................................... 16 

2.6 Summary and conclusion .......................................................................................... 18 

 Suspension system modeling ............................................................................. 19 

3.1 Theoretical modelling and parameters definition ...................................................... 19 

3.2 Systematic force analysis .......................................................................................... 20 

3.3 State space form of quarter car model ....................................................................... 23 

3.4 Simulation of the suspension model .......................................................................... 25 

 Reinforcement learning frame definition ........................................................... 30 

4.1 Introduction of reinforcement learning ..................................................................... 30 

4.2 Establishment of environment, observation space and action space ......................... 32 

4.3 Reward function definition and simulation ............................................................... 33 

4.4 Policy and neural network definition ........................................................................ 34 

4.5 Reinforcement learning frame assembly ................................................................... 38 

4.6 System test with sinusoidal signal ............................................................................. 40 

 Road excitation signal generation ...................................................................... 44 

5.1 Modeling ................................................................................................................... 44 

5.2 Simulation and analysis ............................................................................................. 48 

 System Assembly and Simulation ..................................................................... 52 

6.1 DQN algorithm application ....................................................................................... 52 

6.1.1 Impact analysis of different neural network structure ....................................... 54 

6.1.1.1 Single layer neural network structure ......................................................... 54 

6.1.1.2 Double layer neural network structure ....................................................... 59 



IX 
 

6.1.1.3 Triple layer neural network structure ......................................................... 62 

6.1.2 Impact analysis of hyper-parameters of reinforcement learning ....................... 66 

6.1.2.1 Learning Rate Analysis .............................................................................. 66 

6.1.2.2 Greedy Rate Analysis ................................................................................. 68 

6.1.2.3 Sample Rate Analysis ................................................................................. 72 

6.1.2.4 Action Space Size Analysis ........................................................................ 74 

6.2 DDPG Algorithm Application .................................................................................. 76 

6.2.1 Introduction ........................................................................................................ 76 

6.2.2 DDPG Algorithm ............................................................................................... 79 

6.2.3 Simulation and comparison................................................................................ 79 

6.3 TD3 Algorithm Application ...................................................................................... 82 

6.3.1 Introduction ........................................................................................................ 82 

6.3.1.1 Twin Critic Networks ................................................................................. 83 

6.3.1.2 Delayed Updates ......................................................................................... 83 

6.3.1.3 Noise Regularization .................................................................................. 84 

6.3.2 TD3 Algorithm................................................................................................... 85 

6.3.3 Simulation and Comparison ............................................................................... 86 

6.3.3.1 System Simulation Setup ............................................................................ 86 

6.3.3.2 Class B Pavement Signal Test .................................................................... 86 

6.3.3.3 Class D Pavement Signal Test .................................................................... 91 

 Conclusions and future work ............................................................................. 95 

7.1 Summary ................................................................................................................... 95 

7.2 Prospective of future work ........................................................................................ 96 

Reference ................................................................................................................................. 98 

 

 

 

 

 



1 
 

  Introduction 

1.1 Background 

Suspension system development has a long history that can trace back to the time when horse-

drawn vehicles were dominating the streets. Those carriages can only work in a low speed 

because their suspension systems have not been designed to be functioning in a high driving 

speed.  

In 1901 shock absorbers had been first used in vehicles by Mors in Paris. The brand-new design 

of suspension system with damping which is so called “Mors Machine” helped Henri Fournier 

defeat others competitors in Paris-to-Berlin race on 20 June 1901. In 1906 Brush Motor 

Company presented a suspension design in its production vehicles which utilized a coil spring. 

These days, this design has widely applied in almost all vehicles from different manufactures. 

In 1922, the idea of independent front suspension system was delivered by Lancia Lambda and 

soon it was spreading out in the industry and then widely accepted. In modern ages of car 

industry, independent suspension has been applied on four wheels in almost every vehicle and 

advanced control technologies have been developed and involved [1]. 

To the recent days, suspension systems start to pose a significant influence on design standard 

from the industry, which closely related to driving stability, safety and riding experience [2]. 

According to the latest method of category, suspension system can be put into three divisions 

[3], which are passive suspension, semi-active suspension and active suspension. Since passive 

suspension is not adjustable which means the parameters of system are fixed, it can hardly fit 

to different types of road conditions, while semi-active and active suspension system have 

changeable dynamic properties, therefore have a better performance  [4] and become a new hot 

spot of research in both academia and industry. 

According to the design purpose of the suspension system, when the car body is having some 

road oscillation, vehicle is not supposed to experience large disturbance, and the vibration 
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should be reduced in a short period of time. To enhance the overall performance of the vehicle, 

road holding ability is important towards an acceptable design of an automotive suspension 

system, while riding comforts are still provided when running over bumps and holes in the 

street. In this case, a real-time learning ability of the system is vital in vehicle suspension 

control design work when suspension parameters can be changeable according road situation. 

By echoing to this demand, new method has been developed to accelerate the research of 

suspension system which contains a damping adjustable damper or an additional facility which 

is called actuator which can provide an extra force to the suspension system. Machine learning, 

as a cutting edge controlling method has emerged in public horizon and been applied in a 

diversity of industrialized designing work [5] [6] [7] [8] [9] [10] [11] [12] and manufacturing 

process [13] [14] [15]. This study investigated the performance of an active suspension system 

which is controlled by a reinforcement learning algorithm in multiple road situation. The key 

deliverables of this study are listed below 

1.2 Research significance  

This research focused on applying one of the most powerful and cutting-edge algorithms in 

Reinforcement Learning (RL), Twin Delayed Deep Deterministic Policy Gradients (TD3) in 

suspension control. To the best of our knowledge, this is the first time a TD3 algorithm is used 

in active suspension control with reinforcement learning. Among numbers of divergent 

controlling methods, a machine learning control, especially, a reinforcement learning control 

has demonstrated its unique performance which illustrated a big potential. Reinforcement 

learning uses dynamic environmental data to output the best sequence of actions from action 

space that produces the optimal result. To achieve that target, a component which is called as 

agent is used in reinforcement learning to explore the environment, communicate with the 

environment, and learn from the environment without knowing what the environment is. This 
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approach is perfectly suitable in controlling the force of an actuator when interacting with a 

dynamic process of active suspension system controlled by a stochastic road signal.  

Considering the current reinforcement learning algorithms, DQN can only handle a discrete 

action space while the force from the actuator is actually continuous which limits the control 

performance. DDPG is able to cope with a continuous action space, however is sometimes 

trapped in a second optimal solution due to the complexity of the system with nonlinear and 

stochastic attributes. A TD3 strategy tackles this problem by reducing the overestimation bias 

from DDPG to get a better performance. Therefore, based on the result of literature review that 

have been shown above, in this paper, a suspension control strategy with TD3 deep 

reinforcement learning algorithm is proposed to fill the blank of this area. 

1.3 Thesis Outline 

The thesis consists of 7 chapters, shown as follows: 

Chapter 1: The background information, research significance and the overview of this paper 

are introduced. 

Chapter 2: A literature review of the modern suspension system, traditional method of 

suspension control, reinforcement learning application and road pavement signal generation 

are covered in this chapter. 

Chapter 3: The modelling of suspension system is introduced in this chapter. This includes the 

establishment of the dynamic model, parameters definition and simulation analysis of the 

suspension model. 

Chapter 4: In this chapter, a reinforcement learning frame is created. The chapter introduces 

the background knowledge of machine learning and reinforcement learning, it also covers key 

components definition in RL, which consists of environment, observation and action space, 

reward signal and training policy application. A simulation test forms the last part of this 

chapter. 
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Chapter 5: This chapter consists of how a reliable stochastic pavement signal can be generated. 

The chapter focuses on the current method of creating a road signal and provides an optimized 

method in generating an accurate road signal according to the industry standard. 

Chapter 6: This chapter provides the system level validation and simulation. A detailed analysis 

and study are conducted into evaluating the impact of hyper-parameters of reinforcement 

learning towards the learning progress and control performance in the system. Three different 

algorithms are applied into the control system, they are DQN, DDPG and TD3. The 

performance of all algorithms is illustrated and presented. According to the original plan, 

hardware validation was schemed, and the result was expected to be illustrated in this chapter. 

However due to the COVID restriction applied in the time frame of this study, the lab was not 

accessible, hence, the hardware validation was finally canceled. 

Chapter 7: Conclusions of this work are given and further recommendations are summarized. 
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  Literature review 

This chapter intends to introduce about background information and classification of 

suspension system. Also, the paper detail some classic and modern methods in current practices 

of suspension system control. Turkay investigated the design of the active suspension model 

based on the linear-quadratic-Gaussian (LQG) methodology[16]. Bhanu has defined the 

category of suspension systems according to their function[3]. Turkay and Akcay are trying to 

investigate the performance of a half car suspension model through integrating a method of a 

mixed H2-H∞ algorithm[17]. Qiang Zhao and Jiaxing Yin have worked out an RBF neural 

network method and applied it into the active suspension system control[18]. Yagiz and 

Hacioglu created a non-linear full vehicle model of seven degree of freedom, by using 

backstepping method they investigated the system both in time and frequency domains[19]. 

Seong-Jae Kim, Hyun-Soo Kim and Dong-Joong Kang have put some effort into the 

investigation of DDPG algorithm and its application in suspension control with the road 

simulation in the form of sinusoidal and step signal[20]. Witters and Swevers studied the 

possibility of identifying a variable changeable damper by applying a multilayer perception 

neural network and then defined the damper dynamics through their work[21]. Liu Ming and 

Li Yibin also implement a study in suspension system control with DDPG algorithm[22], they 

improve the road simulation method through a practice of using a random white noise signal. 

Fateh and Alavi developed a new method in controlling an active suspension system through 

the input loops from two internal active forces and a displacement[23]. Through these 

researches, a clear view of current technology of suspension system development can be 

presented and a possible way of a future direction of research is demonstrated. 
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2.1 Type of suspension system 

According to Bhanu’s paper[3], suspension plays an important role in car industry. It is 

working for reducing and absorbing the vertical vibration, abating and restraining the shock 

and vibration. It also poses a significant influence on the driving comfort, safety requirement 

and road handling of performance. Recently, the research and development of active 

suspension has become a hotspot for research. 

The three main types of suspension system are defined as passive suspension system, semi-

active suspension system and active suspension system. Each type of suspension system has 

its pros and cons. However, semi-active suspension system is most used across the industry. 

A passive suspension system is demonstrated in Figure 2-1. This system contains energy 

storing units which are springs, and energy dissipating parts which are dampers. Since springs 

and dampers are not able to create a controllable active force which can add energy to the 

suspension system, this type of suspension is called passive suspension system. 

 

Figure 2-1 Passive Suspension System 

According to Figure 2-2, a structure of semi active suspension system is presented. To realize 

a balance between functional advantage and cost of development, a semi active suspension 

system has emerged.  
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Figure 2-2 Semi Active Suspension System 

In this design, on one hand, a passive suspension spring is kept, on the other hand, the damping 

coefficient can be modified in according to the road conditions. Based on the design of the 

damper, orifice area can be changed to impact the fluid flow so that the damping force can be 

adjusted accordingly.  

Regarding to an active suspension system which is showed in Figure 2-3, a force actuator is 

placed in parallel to a passive suspension system. Parameters such as accelerations of sprung 

mass and unsprung mass, can be monitored by the sensors installed. The measurement results 

are delivered as analog signals which will be sent to a controller, then the controller shall 

provide appropriate feedbacks to the force actuator.  

 

Figure 2-3 Active Suspension System 
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Because active suspension system requires additional energy and structure to power, so it is 

apparently, a tradeoff by considering the simplicity and complexity, high low cost of the whole 

system. 

2.2 RBF (Radial basis function network) neural network control  

Before machine learning was widely researched, neural network was a research focus due to 

its special attribute of working as a general function estimator. Although not a direct application 

of machine learning control, it has contributed to the development of machine learning. 

Therefore, it is worthwhile to look into the applications related to suspension control. Qiang 

Zhao and Jiaxing Yin[18], has developed a method to control the suspension system by 

applying RBF neural network control. The RBF neural network principle is first brought up by 

J. Moody and C. Darken, which is a neural network with the function of domestic 

estimation[24]. The benefit of RBF neural network is obvious, it provides a quick response 

regarding to the converge of the results and the accuracy of the output is also very high, 

therefore, its application has crossed a wide range of, such as pattern recognition, function 

fitting and real-time control. A diagram of the structure of the RBF neural network is shown in 

Figure 30, the parameters training is based on an algorithm of gradient descent. 

 

Figure 2-4 Structure of RBF Neural Network 
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The input vector of RBF Neural network is denoted as  1 2 3, , ,..., nX x x x x , the radial basis 

vector is denoted as  1 2 3, , ,..., mH h h h h , where jh  is the Gaussian basis function, which can 

be described as 

 
2

exp , 1,2...,
2

j
j

j

X C
h j m

b

 
   

 
  (1) 

where jC  is the central vector, jB  is the basis width parameter. The weight vector is the 

network that is denoted as 1 2 3[ , , ..., ]nW w w w w ,  therefore the output is 

 1 1 2 2( ) ...T
m m my k W H w h w h w h      (2) 

Then author uses an integrated control method of PID and RBF neural network to rule the servo 

system. As shown in Figure 2-5, RBF neural network has been fed with signal from a PID 

controller as the signal that functions as a supervision. After couple of cycles of learning, RBF 

neural network can follow the PID controller with high precision. 

 

Figure 2-5 PID with RBF neural network Control 

2.3 Active suspension control based on deep reinforcement learning 

Liu Ming and Li Yibin[22], claim in their paper that active or semi-active suspension system 

is better than passive suspension regarding to the performance of vehicle body vibration and 

ride comfort. They also claimed that a strong real-time learning ability from the system is a key 
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towards an optimal control result in matching the road excitation and suspension parameters. 

According to their opinion, the traditional neural network controller is mostly working on 

offline learning scenario by dealing a big amount of static samples. Therefore, they proposed 

deep reinforcement learning strategy as an alternative to tackle the problem. An improved 

DDPG (Deep Deterministic Policy Gradient) algorithm has been applied into the system. To 

eliminate the disadvantage on learning efficiency from DDPG algorithm, empirical samples 

are involved. According to the simulation, it is easy to conclude that a DDPG algorithm 

integrated suspension system has a better performance on different class of roads comparing 

with the performance of a passive suspension system. 

Deep Reinforcement Learning has become the main focus in regarding to the family of machine 

learning. It is widely admitted that deep learning is good at perception and reinforcement 

learning has a capability of decision making. And a DRL is actually a combination of 

advantages from deep learning and reinforcement learning. the criteria of DRL allows it to be 

adapted easily into different circumstance in control area. DRL has a unique advantage that it 

can be learning while accepting samples. This function optimizes the parameters from the 

samples with which it has been fed up and then decide the actions that will be taken in the next 

step. So, it can be fit to complicated situation that the system never come across before.  

During the learning period, the performance declines. To resolve this issue, passive suspension 

system is activated in the learning gap of the DDPG control. Some positive training experiences 

have been shared to the DDPG algorithm so that the training efficiency can be enhanced. 

In this paper, author uses a 2-DOF quarter car dynamic model to apply into the study. Below 

Figure 2-6 gives the idea of the model. 

Where, bm  is mass of the vehicle body, sk  is spring stiffness, sC  is damping coefficient, wm  

is unsprung mass, wk  is stiffness of tire, Fu  is active control force generated by linear motor 
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actuator, gx  is road excitation, bx  and wx  are absolute displacements of body and tire 

respectively. b wx x is suspension deflection. bx  is body acceleration. 

 

Figure 2-6 1/4 Car model with semi-active suspension 

By using Newton’s second law, and the state space theory, the model can be described in below 

form: 

 
X AX BU

Y CX DU

  


 


 (3) 

Where, 

[ ]Tw b w bX x x x x    

[ ]Tg FU x u  

[ ]Tb b wY x x x   

0 0 1 0

0 0 0 1

s w s s s

w w w w

s s s s

b b b w

k k k c c
A

m m m m

k k c c

m m m m

 
 
 
 
   
 
 

  
 
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0 0

0 0

1

1
0

w

w w

b

k
B

m m

m

 
 
 
 
   
 
 
 
 

 

1 1 0 0
s s s sk k c c

C
  

   
 

1
0

0 0
bmD

 
   
  

 

In their paper, they also established a road roughness model. They used PSD which is power 

spectral density to describe the random roughness of road surface. If looking into industrial 

standard, power spectrum of road roughness is given by an equation as follows: 

 0
0

( ) ( )( )q q

n
G n G n

n
  (4) 

Then the road roughness model expression is: 

 00 0 0( ) 2 ( ) 2 ( ) ( )qg t n g t n G n t       (5) 

This model is well in line with the standard PSD from industry. The structure of suspension 

control system based on DDPG is shown in Figure 2-7 

There are two networks in the whole system: actor network and critical network. Actor network 

provides an action to the suspension system based on the information received. The system 

then applies DDPG algorithm on critic network to judge to the actions from the actor network 

and then, adjust the parameters of the actor network. By taking observation of previous and 

current state into consideration, the network is updated, the judging network is called a critical 

network. 
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Figure 2-7 DDPG Control Structure 

According to this structure, the reward function has been decided as below equation 

 2 2 2
1 1 2 2 3 3( )r k y k y k y     (6) 

In order to improve the performance of the model, a passive suspension have been used as 

learning samples. By doing this, a good reference for learning has been provided therefore 

improves the learning speed. 

After simulation, the author claims that a DDPG controlled active suspension system can be 

well applied into all kinds of road conditions. Also, the author mentions that the performance 

of the method that is mentioned above is considerably outstanding comparing to other strategies.  

2.4 Vibration control using DDPG 

Seong-Jae Kim, Hyun-Soo Kim and Dong-Joong Kang[20], also developed a method of using 

DDPG strategy to control vehicle suspension system. In their thesis, they propose DDPG 

algorithm because the other learning method can only output discrete actions, whereas DDPG 

algorithm is about to deliver continuous actions.  

Reinforcement learning is a machine learning method. It is a method in which the environment 

and agents interact with each other and learn the reward value for the current state, future 

behavior, and the reward of behavior. There are some basic components of reinforcement 

learning: action, state, reward, policy, value, and Q-value. ‘Action’ means all the behaviors 
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that agents can take. ‘State’ indicates the current state agent received from the environment. 

‘Reward’ denotes the value of the last action received from the environment. ‘Policy’ is the 

action that the agent should take based on the current state. ‘Value’ is the expected reward in 

the current state. ‘Q-value’ is the expected reward after taking the current action. In the case of 

active suspension system, the agent is active suspension and the environment is the quarter car 

model. The state is the displacement and velocity of the car body and wheel. Action is a force 

from the active system. Reward model is relative to car body’s displacement and velocity. The 

result from using DDPG algorithm show that the reward of system converges to 0, which 

confirms that it is working well. Below picture shows a diagram of a reinforcement learning. 

 

Figure 2-8 Reinforcement Learning Diagram 

The Actor-Critic learning algorithm is a reinforcement learning algorithm. The concept of the 

Actor-Critic learning algorithm is that it should learn both the policy network and the value 

network. The policy network is called the actor and the value network is called the critic. The 

actor receives the current state of the environment and produces an action. The critic receives 

the state and reward and produces a TD error, which is the difference between the target value 

and the current value. With the TD error, the actor network updates in the direction suggested 

by the critic network. Figure 2-9 shows the diagram of Actor-Critic algorithm. 
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Figure 2-9 Actor-Critic Algorithm 

In their paper they established a quarter car model to start their analysis, which can be described 

with a state space form. 

To apply the DDPG algorithm, quarter car active suspension system must be connected with 

DDPG algorithm. In the system, the agent is active suspension and the environment is the 

quarter car model. The state is the displacement and velocity of the car body and the wheel. 

The action is the force from the active suspension. The reward model is related to the car body’s 

displacement and velocity. Below is the reward model and diagram of whole control loop. 

 2 2
1 10.1 0.001 sx x f   (7) 

 

Figure 2-10 Control Loop 
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The author simulated the whole system with the cosine and step road input and claimed that 

using DDPG algorithm for an active suspension system does contribute to reduction of the 

vehicle body. The conclusion is based on the application of DDPG algorithm towards active 

suspension system with two types of road conditions. However apparently, author of the paper 

applies road excitation only with cosine signal and step signal, which is an ideal situation of 

the road situation. Therefore, the output of simulation only suggests a reference result which is 

less meaningful in the real world. A following up work can be commenced with adding road 

excitation according to the real industry standard. 

2.5 Stochastic road excitation 

Regarding recent research, vehicle riding comfort and handling stability is importantly 

impacted by road surface roughness [25] [26] [27] [28] [29]. So far, one commonly 

implemented method to illustrate the stationary road pavement energy is called power spectral 

density which is also known as PSD[30]. When a car goes on a road with a constant velocity, 

the road roughness can be considered as a stochastic process in space domain which abbey to 

Gaussian probability distribution[31]. In this case, PSD is an ideal method to describe the 

distribution of roughness energy in space domain[32]. According to ISO 8608[33], a PSD of 

road displacement dG  can be presented in the form of spatial frequency: 

  

 0
0

( ) ( )
w

d d

n
G n G n

n


 

  
 

 (8) 

Or in the form of angular spatial frequency: 

 0
0

( ) ( )

w

d dG G


 

     
 (9) 
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However, it is important to realize that those PSD equations do not take vehicle velocity into 

account. In the vehicle vibration system, it is essential to consider the speed of the car because 

it impacts greatly to the dynamic of the whole system.  

Considering the assumption that the vehicle drives in a constant velocity, some researches have 

been carried out by studying the road simulation by using stationary random vibration method. 

According to Goenaga[34], a methodology of sinusoidal approximation has been applied into 

the simulation considering that the vehicle travels at a constant speed. A hypothesis is presented 

that longitudinal road roughness is able to be structed through a group of sinusoidal waves that 

contain a variety of wavelengths, amplitudes and phases, which can be summarized into the 

equation below. 

 
1

( ) sin( )
N

R i i i
i

Z s A s 


    (10) 

where iA  is defined as  

 ( )i iA



    (11) 

As argued by Yunqing[35], the vehicle in most cases is travelling in a variable speed 

considering the vehicle motion of start, acceleration and break. A step forward research has 

been brought up by him to investigate the road profile as a non-stationary random process. the 

road roughness can still be obtained through a white noise signa which is following a certain 

power spectral density with a modification on the equation which has been showed below. 

 0 0( ) 2 ( ) ( ) ( ) ( ) ( )r r qz t u t n z t G u t w t    (12) 

where, ( )rz t  is the road roughness, ( )w t  is a white noise signal whose power spectral density 

is 1. Similar to stationary random process, a simulation can be established in Simulink to check 
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the performance of the model. Given an initial car speed of 0 m/s, and then being increased to 

2 m/s.  

However, none of these research have a quantitative analysis on how good is the simulation 

result in comply with the ISO 8608 standard. It is very important to guarantee the quality of 

the signal because in a lot of cases, it will be used as an input in driving a vehicle suspension 

model. 

2.6 Summary and conclusion 

The target of this project is to study the possibility of applying machine learning into the control 

of an active suspension system in different pavement situation. According to the literature 

review that has been conducted in this chapter, attempts have been initiated in integrating 

reinforcement learning control with suspension system, however, the current works are not 

perfect, some areas can still be improved. For instance, in simulation, the road pavement signal 

is designed to be a cosine or step signal which is quite ideal. The algorithms that are applied 

can sometimes lead to an unstable situation due to an internal error. Method that is used to 

generate stochastic road signal hasn’t taken accuracy into consideration.  

In this research, a TD3 reinforcement algorithm is defined as the controlling unit of the whole 

system, together with an optimized pavement generator that are used to address these research 

gaps that have been mentioned above. Nonlinearities of the system and hyper parameters of 

machine learning are analyzed and the relative impacts are also disclosed.   
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 Suspension system modeling 

Vehicle longitudinal and vertical analysis form two major part of the current research areas. 

Vehicle state [36] [37] analysis and calibration [38] [39] [40] [41] [42] [43] [44] are the main 

direction in working with a longitudinal research, whilst suspension design contributes a lot to 

the car vertical study. When considering the suspension modeling, road holding ability is 

important towards an acceptable design of the system, while riding comforts are still provided 

when running over unstable street. When the car body is having oscillation, suspension should 

provide the force to cancel the vibration in a short period of time. The traditional passive 

suspension system is able to store energy through the spring and dissipate it from the damper, 

however the parameters of which are normally not changeable, therefore, they cannot fit well 

into different pavement situation. At the same time, active suspension system is gradually 

forming a trend in the automotive industry and is spreading down from luxury vehicles to the 

normal ones. In this study a combination of a 2-DOF quarter car model and an actuator is 

established which is utilized as an active suspension system [45] [46] [47]. 

A quarter car model with a force actuator is used to work as an active suspension system. 

Considering the dynamic performance, when a car moves through uneven roads, the spring 

from suspension is responsible for absorb and store the energy, which is then dissipated in the 

form of heat by the damper. The purpose of an actuator is to reduce the acceleration of car body 

and displacement of suspension by getting involve into energy transforming process via 

applying a force to the suspension with extra energy consumption. Therefore, it is necessary to 

carry out system modeling through Newton’s second law and dynamic system theory. 

3.1 Theoretical modelling and parameters definition 

Vehicle suspension system design is a typical control problem that can be very challenging 

because it is often connected with another vehicle research area. Before designing any control 
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system, it is critical to establish a mathematical model of the suspension system. A single 

degree multiple spring-damper system can be used to describe a quarter of a car model. There 

exist some methods of creating such a model, however the damping of the tire is often ignored. 

In this paper, to guarantee the accuracy of the simulation, a damping coefficient is added to the 

suspension model, a diagram of this system is shown below Figure 3-1. 

 

Figure 3-1 Quarter Car Model 

 The system parameters are as follows. 

( 1M )    body mass                                                                          365 kg 

( 2M )    suspension mass                                                                 43 kg 

( 1K )    spring constant of suspension system                                 24,000 N/m 

( 2K )    spring constant of wheel and tire                                        3500,000 N/m 

( 1b )    damping constant of suspension system                              2,126 N.s/m 

( 2b )    damping constant of wheel and tire                                     1,000 N.s/m 

(u)     control force from the actuator  

3.2 Systematic force analysis 

According to Figure 3-1, assuming 1X > 2X , 2X W .  
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To be able to model the system, it is necessary to sum the forces that act on both masses (body 

and suspension) and integrate the accelerations of each mass twice so that velocities and 

positions can be granted.  

First, only considering the forces that have been applied to 1M , there are three forces that acts 

on 1M , one is from spring, the others are from damper and actuator which is the input u, the 

analysis result is showed in Figure 3-2 

 

Figure 3-2 Car Body Force Analysis 

From above diagram, by applying Newton’s second law, the differential equation of 

longitudinal motion of 1M  can be obtained as below 

 
1 1

1

1

1 1

1 1 2

1 1 2 1 1 2

( )

( ) ( )

u k b

k

b

M a F F F

F K X X

F b V V b X X

   
  


   
 

 (13) 

Based on the above three equations, it can be derived that 

 1 1 1 1 2 1 1 2( ) ( )uM X F K X X b X X        (14) 
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Second, only considering the forces that have been applied to 2M , based on the assumption,  

2M has five forces act on it. Two come from springs, two come from dampers, and the last is 

from the actuator, the analysis result is showed in  FIGURE 3-3.  

 

Figure 3-3 Suspension Force Analysis 

Through the same strategy, the motion of 2M  can be summarized by a group of equations 

showed below    

 

1 1 2 2

1

1

2

2

2 2

1 1 2

1 1 2 1 1 2

2 2

2 2 2 2

( )

( ) ( )

( )

( ) ( )

k b k b u

k

b

k

b W

M a F F F F F

F K X X

F b V V b X X

F K X W

F b V V b X W

     


 


   
  
    

 

 

  (15) 

Based on the above three equations, it can be derived that 

 2 2 1 1 2 1 1 2 2 2 2 2( ) ( ) ( ) ( ) uM X K X X b X X K X W b X W F              (16) 

Differential equations (14) and (16) have summarized the dynamic relationship of the quarter 

car suspension model. 
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3.3 State space form of quarter car model 

A dynamic system can be represented by a group of differential equations because of its 

property. In a lot of cases, a transfer function is a good way to describe a single input and single 

output system. However, when they system requires a multiple inputs and outputs, a transfer 

function is not suitable in this situation, and a state space method can be chosen to solve the 

problem. High order differential equations can be repacked into a set of first order differential 

equations by using state space method, which makes the system being analyzed easily. 

For a continuous linear time-invariant system, the state space form can be presented as below 

 
X AX BU

Y CX DU

 
 


 (17) 

To be able to derive the state space model of our quarter car model, equation (14) and 

equation (16)has been rewritten as 

 

1 1
1 1 2 1 2

1 1 1

1 1 2 2
2 1 2 1 2 2 2

2 2 2 2 2

( ) ( )

( ) ( ) ( ) ( )

u

u

FK b
X X X X X

M M M

FK b K b
X X X X X X W X W

M M M M M

      

         


  

    
 (18) 

Define state matrix 

 

11

2 1

3 2

4 2

Xa

a X
X

a X

a X

  
  
      
  
    





 (19) 

Then equation (19) and equation (18) can be rewritten into a state space form 

 

1 2

1 1
2 1 2 2 4
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3 4

1 1 2 2
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2 2 2 2 2
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









 (20) 
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Define input matrix 

 1

2

Ww

w W

  
   

   
 (21) 

 1

2

uF

U w

w

 
   
  

 (22) 

Combined with equation (21), equation (20) can be rewritten into below form 

 

1 2

1 1 1 1
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3 4
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  

      










 (23) 

According to the previous study, the most important fact that we are concerning is the 

acceleration of the vehicle body and the displacement of the suspension system because they 

are directly related to the riding comfort and road handling. Based on this, an output matrix can 

be decided 

 1 3a a    (24) 

 2aY

 

  
 


 (25) 

Based on the above investigation, the quarter car suspension model can be summarized into a 

state space model form 

X AX BU

Y CX DU

 
 


 

where,  
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3.4 Simulation of the suspension model 

Based on the above work, it is necessary to realize the simulation in Simulink, so that it can be 

further used to connect with machine learning algorithm and the road excitation signal. the 

blocks that represent the summary of the forces have been added and linked with gain blocks 

that work as the masses of the system. Then they have been connected with integral blocks to 

work out the velocity and displacement. Below picture demonstrates these relationships. 
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Figure 3-4 Mass Blocks and Force Blocks 

After that, spring forces and damper forces are looped back to the force block which drives the 

system.  

 

Figure 3-5 Spring Forces and Damper Forces 

The last job is to add actuator force U to the system, then a complete quarter car model is 

showed in below diagram. With the knowledge I learned from the Matlab Advanced tutorial, I 

was able to create the whole system in Simulink which allows me to continue my study. 
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Figure 3-6 Quarter Car Model 

 After input the parameters that has been defined previously, the model is ready for simulation. 

Set the force U to zero, because we assume that no actuator force is created in this stage. Set 

another assumption that the car is running over a pothole with 0.05m in depth. There for in the 

step input block W, set the final value to -0.05. Then run the simulation in Simulink. When the 

simulation is done, the following chart can be presented. 

 

Figure 3-7 Body Acceleration with Step Input 
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Figure 3-8 Suspension Displacement with Step Input 

Change the input from step signal to a sinusoidal input to simulate a bumpy road condition. Set 

the signal frequency to 10 rad/sec and amplitude to 0.025 m. The result is displayed in the 

below diagram. 

 

Figure 3-9 Body Acceleration with Sinusoidal Input 
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Figure 3-10 Suspension Displacement with Sinusoidal Input 

The quarter car suspension system has been successfully simulated, and two interfaces have 

been prepared for a reinforcement learning controller and a road excitation signal to plug, so 

that a next stage study can be spread out. 
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  Reinforcement learning frame definition 

4.1 Introduction of reinforcement learning 

In reinforcement learning, an agent is interacting with an unknow environment by choosing an 

action in a sequence of time steps based on observation and trying to achieve a maximum of 

reward accumulation. This process can be modeled as a Markov decision process (MDP) which 

consist of a state space S, an action space A, an initial state distribution with density, a 

stationary transition dynamics distribution and a reward function r [48]. The agent then 

implements its policy to work with the Markov decision process to get a set of states, actions 

and rewards so that direction of gradient can be revealed.  

There are basically three types of learning algorithm that form the category of machine learning. 

The first one is called unsupervised learning which is used to determine the pattern or hidden 

structure of a data set that has not been classified or labelled. The next is known as supervised 

learning which aims to train a computer to label a given input. The last one is reinforcement 

learning which has been considered as a completely different approach. Supervised and 

unsupervised learning both use static data sets, whilst reinforcement learning uses dynamic 

environmental data and has a lot of current applications in reality [49] [50] [51] [52] [53]. The 

purpose of doing so is not to classify or label the data, but to determine the best sequence of 

actions that produces the optimal result. To achieve that target, reinforcement learning uses an 

agent to explore the environment, interact with the environment, and learn from the 

environment. This approach is perfectly suitable in controlling the force of an actuator when 

interacting with an active suspension system. 

There is a function in the agent to receive state observations (inputs) and map them to action 

sets (Output). In reinforcement learning, this function is called a strategy. Strategy is a logic 

function that is composed of editable and adjustable parameters which are decided by the 

actions taken, the observations of environment state and the reward value obtained. In a 



31 
 

summary, it works based on a given set of observation and then determines the action to be 

taken. 

The ultimate purpose of the agent is to work out the best environmental interaction strategies 

through learning process. So that the agent can always take the optimal action in any state 

which guarantees that a maximum long-term reward can be obtained. 

The learning process is generally an effort which systematically adjusts these parameters to 

converge to the optimized strategy. In this way, it is possible to just focus on setting up an 

appropriate structure of the strategy without having to manually adjust the entire function to 

get the best parameters. 

The basic reinforcement learning concept is showed below Figure 4-1: 

 

Figure 4-1 Reinforcement Learning Concept Diagram 

Policy gradient algorithm is widely applied in dealing with reinforcement learning projects. 

The fundamental concept is to construct a policy ( )a s   and makes it equal to a probability 

distribution [ ; ]P a s  which is able to select an action a  randomly in the state s  based on a 

parameter vector  . A policy gradient algorithm will change the policy parameter in regarding 

to a situation with higher reward accumulation through policy sampling.  
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4.2 Establishment of environment, observation space and action space 

The target of the agent is to utilize the reinforcement learning algorithm to obtain the optimized 

policy in interacting with the environment. No matter how an environment changes, the agent 

can guarantee a group of corresponding actions will be chosen according to that change, to get 

the maximized reward in the long run. Policy is actually a function or a group of functions with 

adjustable parameters. Parameters of functions can be modified by reinforcement learning 

algorithm based on a current action, observation and rewards. The process of parameters 

optimization is called learning. 

Reinforcement learning workflows: 

1. Establish environment 

2. Define action 

3. Define observation 

4. Design reward function 

5. Select a policy 

6. Select an algorithm to train the agent 

7. Apply the policy 

Environment in this study is the suspension system of a quarter car model, it can not only 

receive the actions that are created by the agent, but also output the observations and rewards 

back to the agent. The environment has been established in sub task 1.  

The best thing about reinforcement learning is that the agent is not necessary to carry any 

knowledge on the environment, however, still be able to work out how to be interactive with 

it. The action of the model is defined as a force which is created by the actuator of the active 

suspension system. The action space is a discrete space and has been finalized as a force 

interval from -4000N to +4000N which has an increment of 500N. The observation contains 
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three signal input, they are acceleration of the car body, displacement of the suspension system 

and the force from suspension spring. 

4.3 Reward function definition and simulation 

Reward is a function of “state” and “action”, which output a scalar representing “goodness”. 

Reward = function (State, Action) 

The reward function is close to a cost function used in LQR to penalize poor system 

performance. Of course, the difference is that the cost function tries to minimize the cost, while 

the reward function is to maximize the reward. But they are actually resolving a same problem, 

because reward can be seen as the opposite of cost. The instantaneous reward can be defined 

as below equation: 

 2T T T
i i i i i i i i i ir s Q s a R a s N a    (26) 

where Q, R, N are the weight matrix, s is the observation vector and a is the action vector. 

By combining the idea from [54] and [55], the reward signal is defined as below 

 

 2 2 2
1 2 3( ) ( ) ( ) ( )r t PAcc t P Dis t P F t    (27) 

where,  1 2 3, ,P P P  are the weight scalars, Acc(t) is the vehicle body acceleration in t, Dis(t) is 

the suspension displacement in t, F(t) is the actuator force in t. Based on this concept, a reward 

signal block can be created in the Simulink as below Figure 4-2. 
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Figure 4-2 Rewards Signal 

4.4 Policy and neural network definition 

The policy of the project has been defined by using Q-table which maps states and actions to 

values. The Q-table strategy will check the value of each possible action based on the current 

state, then choose the action with the highest value. Using Q-table to train the agent includes 

determining correct value from the table corresponding to each pair of state and action. After 

the table is completely filled with the correct values, the selection with maximized long-term 

rewards is quite straightforward. 

Regarding to the agent training algorithm, in this study, a critic network which contains a 

certain structure of neural network has been chosen to perform the task. There are currently a 

diversity of ways  in utilizing neural network application into the project design [56] [57] [58], 

and also there are a lot of different types of network architectures which are available in dealing 

with various tasks [59] [60] [61].  

Neural network works as a general function approximator that imitates any input and output 

relationship and is expected to be one of the key factors in this study. Intuitively, a more 

complex input output relation requires a more complex neural network structure [49]. However, 

the situation can be different considering the application in various environment. Therefore, it 

is necessary to define the architecture of the network prior to implement different algorithms 

[50] [52].  



35 
 

Although the target imitating function itself can be very complicated, the general nature of 

neural networks can ensure that some kind of neural network can achieve the goal. 

Therefore, comparing of finding a nonlinear structured function that is suitable for a typical 

scenario, it is better to use a neural network with the same combination of nodes and 

connections so that it can be applied into many different environments. The only difference is 

parameter configuration, learning process will conduct a systematically parameters 

optimization to find the best matching between input and output. A simple neural network has 

a basic structure illustrated in Figure 4-3. 

The nodes on left side are input nodes, a node corresponds to an input of the function, and the 

nodes on right side are output nodes. The layers in the middle are called the hidden layers. This 

network has two inputs, two outputs, and 2 hidden layers, which contains three nodes in each 

layer. For a fully connected network, there is a weighted connection that connects each node 

from different layers. 

To describe this network in a math perspective is that the any value from a specific node is 

equal to the sum of all input nodes that have been fed into that node plus a bias, and each of 

the input node needs to be multiplied with its respective weight coefficient. This relationship 

has been illustrated in Figure 4-4 and the math equation can be described in equation (28). 

 

 

Figure 4-3 Basic Neural Network Structure 
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Figure 4-4 Neural Network Node Value Transfer 

 

 (1) (0) (0) (1)
2 0 2 0 1 2 1 2A W A W A B       (28) 

This calculation can be performed on any node in any layer and what can be granted is a group 

of linear equations in the form of compact matrix which is showed in equation (29), and the 

purpose of which is to transfer the value from one layer of nodes to the next layer of nodes. 

 

(1) (1) (0) (1)

(2) (2) (1) (2)

(3) (3) (2) (2)

...

A W A B

A W A B

A W A B

   


  


  


 (29) 

Now the question is how can a series of cascaded linear equations act as a general function 

approximator? To be more specific, how do they work as non-linear functions? There is still 

one important piece missing in the chain, the activation function. An activation function can 

be applied to change a node value before it is delivered to the next layer. The mathematical 

expression of this concept is showed in equation (30). 

 (1) (1) (0) (1)( )activationA f W A B    (30) 
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There are several different activation functions. The common feature of those functions is 

nonlinearity, which is essential for constructing a network that can approximate any function. 

The reason is that many nonlinear functions can be simulated as a combination of a group of 

weighted activation functions. Below are the two commonly used activation functions. 

 
1

( ) ( )
1 x

f x x
e

  


 (31) 

 
( ) 0, 0

( ) , 0

f x x

f x x x

 
  

 (32) 

Equation (31) is the called sigmoid activation function. It generates a smooth curve, which 

makes any input between negative infinity and positive infinity be compressed into a value 

between zero and one. Equation (32) is called ReLU function. It can make any negative node 

value become zero, while keep positive value remains no change. 

Through above investigation, the neural network now can be explained in a mathematical way 

that allows us to utilize it into the project design.  

The critic network that has been applied in this study is basically a fully connected neural 

network that contains one input layer, one output layer and two hidden layers. The structure is 

showed in below picture. 
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Figure 4-5 Critic Network Structure 

4.5 Reinforcement learning frame assembly 

Based on above design, the reinforcement learning frame has been established in Simulink 

which has been showed in Figure 4-6.  

The action space is connected with the suspension block to provide a live controlling force. 

The observation space is fed with the signals from suspension model which contains the 

information of acceleration, displacement and controlling force. By adding the reward signal, 

the whole reinforcement model is ready to work. 

Some critical parameters have been defined in following context: 

1. Observation definition: 

Observation 1 is the acceleration of the car body, observation 2 is the displacement of 

the suspension system, and observation 3 is the force of the actuator. 

2. Action space definition: 
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The action space is defined as a space of force which is created by the actuator. The 

range of the force is from -4000 N to +4000 N, with an increasement of 500 N. 

Therefore, the whole space consists of 15 elements of force. 

3. Sample time and learning period definition 

Sample time is defined as sT = 0.01s and learning period is defined as fT  = 10s 

 

Figure 4-6 Reinforcement Learning Frame Structure 

4. Critic network (neural network) definition 

 Critic Network Remarks 

1 Sequence Input Layer 3 observation input 

2 Fully Connected Layer 24 nodes 

3 ReLu Layer  

4 Fully Connected Layer 48 nodes 

5 ReLu Layer  

6 Fully Connected Layer 1 action output 

 

5. Other parameters 

Learning rate is 0.001 

Gradient threshold is 1 

Discount factor is 0.9 
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Greedy exploration epsilon is 0.99 

Maximum episode is 2500 

4.6 System test with sinusoidal signal 

In the first-round test, a sinusoidal signal has been implemented in the test to work as a road 

roughness input. The sinusoidal signal has been defined of having an amplitude of 0.025m and 

a frequency of 10 rad/sec, the diagram of the signal is showed in below Figure 4-7. 

 

Figure 4-7 Road Excitation in Sinusoidal Signal Form 

After connecting the sinusoidal signal to the suspension system, the dynamic of the system can 

be expressed in a way of focusing on two key elements, which are the acceleration of the 

vehicle body and the displacement of the suspension system. The result has been illustrated in 

below Figure 4-8 and Figure 4-9. 

Next step is to plug in the reinforcement learning algorithm to the whole system and then start 

training the agent according to the parameters that have been defined previously. The total 

training period contains 2500 episode, and each episode contains 1000 steps. Training result 

has been illustrated in Figure 4-10, from the learning result, it can be concluded that the reward 
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starts to become stable after 500 episodes, and there is no significant improvement from 

episode 500 to the end of learning. 

 

 

Figure 4-8 Acceleration of Car Body in Sinusoidal Input 

 

Figure 4-9 Displacement of Suspension in Sinusoidal Input 
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Figure 4-10 Training Result with Sinusoidal Input 

After the actuating force was controlled via the reinforcement learning agent, the result shows 

a positive optimization. The acceleration has been improved significantly. The peak-to-peak 

amplitude has been decreased 57.8% from 6.804 2/m s to 2.871 2/m s . And the Root Mean 

Square of the signal has been decreased 81.4% from 2.181 to 0.404. The result is showed in 

below Figure 4-11. 

 

Figure 4-11 Acceleration of Car Body after Control 
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The displacement of suspension also has a small improvement. The peak to peak amplitude has 

been decreased 1.8% from 0.07814 m to 0.07675 m. And the Root Mean Square of the signal 

has been decreased 27.2% from 0.02346 to 0.01844. The result is showed in below Figure 4-12. 

 

Figure 4-12 Displacement of Suspension after Control 

The current test is only based on a sinusoidal input signal to work as road excitation, a further 

investigation will be carried out once a better road roughness simulation is ready.  
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  Road excitation signal generation 

Road pavement model plays a critical part in vehicle design industry, especially in suspension 

design. Therefore, it is vital to guarantee the quality of the signal. The accuracy of the pavement 

simulation can have a significant influence in suspension analysis or in other general vehicle 

level investigations [62] [63]. Currently, one tool that is widely used to simulate stationary road 

roughness is called power spectral density (PSD) [34]. When a vehicle is running on the road 

with a constant velocity, the road pavement is able to be considered as a space domain 

stochastic process. It is normally represented as a  Gaussian probability distribution [31]. 

Therefore, PSD is an advanced solution to deliver the distribution of roughness energy 

especially within space domain [32] [33] [64]. In a vehicle vibration system simulation, it is 

also essential to consider the speed of the vehicle because it impacts greatly to the dynamic of 

the whole system.  

5.1 Modeling 

PSD of road disturbance input can be presented by [33, 65] 

 0
0

( ) ( )
w

q q

n
G n G n

n


 

  
 

 (33) 

where  is spatial frequency in 𝑚ିଵ . is the reciprocal of  which is wavelength,  is 

reference of spatial frequency in 𝑚ିଵ. Normally,  = 0.1 𝑚ିଵ.  is the power spectral 

density of road roughness when  = . It is also known as road roughness coefficient in . 

It represents different grades of road.  is frequency index, it indicates the frequency structure 

of the road roughness, in most cases, = 2. 
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Table 5-1 Road Roughness Value Classified by ISO [33] 

degree of roughness 0( )qG n  in 6 310 m  where 0 0.1/n m  

Road class Lower limit Geometric mean Upper limit 

A (very good) 

B (good) 

C (average) 

D (poor) 

E (very poor) 

- 

32 

128 

512 

2048 

16 

64 

256 

1024 

4096 

32 

128 

512 

2048 

8192 

 

 

Define angular spatial frequency  : 

 2 n  (34) 

Define reference angular spatial frequency 0 : 

 0 02 n   (35) 

So equation  (33)  can be rewritten as: 

 0
0

( ) ( )
w

q qG G


 
     

 (36) 

where is spatial angular frequency in rad/𝑚ିଵ.  is reference of spatial angular frequency, 

normally  = 1 rad/𝑚ିଵ.  is the power spectral density of road roughness when  

= .  is frequency index, it indicates the frequency structure of the road roughness, in most 

cases, = 2. 

 

 

 

 0

0 0( )qG  

0 w
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Table 5-2 Road Roughness Value with Angular spatial frequency unit [33] 

degree of roughness 0( )qG n  in 6 310 m  where 0 1 /rad m   

Road class Lower limit Geometric mean Upper limit 

A (very good) 

B (good) 

C (average) 

D (poor) 

E (very poor) 

- 

2 

8 

32 

128 

1 

4 

16 

64 

256 

2 

8 

32 

128 

512 

 

Both equation (33) and equation (36) can be used to express the power spectral density of road 

roughness. When a vehicle is driving at a constant speed u and passing by a road with a spatial 

frequency n, the time frequency f can be presented with following equation 

 f u n   (37) 

Meanwhile the relationship between PSD in time frequency and spatial frequency can be 

explained as  

 
1

( ) ( )q qG f G n
u

  (38) 

Then another general form of power spectral density of road roughness can be derived from a 

combination of equation (37), equation (38) and equation (33). 

 
2
0

0 2
( ) ( )q q

n u
G f G n

f
  (39) 

Considering the relationship between time angular frequency  and time frequency f 

 

 2 f   (40) 

Combining equation (40) and equation (34), below equation can be deducted. 



47 
 

 
2

2

f f
u

n n

 


  


 (41) 

Therefore  

 u    (42) 

Then the relationship between PSD in time angular frequency and spatial angular frequency 

can be explained as 

 
1

( ) ( )q qG G
u

    (43) 

From the same way, ( )qG  can be explained as  

 
2
0

0 2
( ) ( )q q

u
G G




   (44) 

Consider equation (44), when 0, ( )qG   , therefore, it is necessary to involve 0

which is a lower cut-off time angular frequency [66]. 0 0 02 2f un    . Based on this, 

equation (44) can be improved to  

 
2
0

0 2 2
0

( ) ( )q q

u
G G

 


 


 (45) 

Equation (45) can be noticed as a response from a linear first order system with an excitation 

from white noise. According to the stochastic vibration theory, the following formula is able 

to be granted. 

 
2

( ) ( ) ( )q wG H S    (46) 

where ( )H   is the transfer function, ( )wS   is power spectral density of white noise ( )W t and 

normally, it is equal to 1. 

From equation (45) and equation (46), ( )H   can be granted as below: 

 
0 0

0

( )
( )

qG u
H

j


 

 



 (47) 
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According to Laplace Transform, above equation can be rewritten as: 

 
0 0

0

( )
( )

qG u
H s

s

 



 (48) 

According to this, it is easy to deduct that 0 0 0( )( ) ( )qH s s G u    , furthermore, 

0 0 0( ) ( ) ( )qsH s H s G u    can be worked out, therefore, considering the Laplace 

Transform,  

 0 0 0( ) ( ) ( ) ( )r r qX t X t G uw t  


 (49) 

0 0 0 02 , 2un n     , equation (49) can be rewritten to  

 0 0 0( ) 2 ( ) 2 ( ) ( )r r qX t un X t n G uw t   


 (50) 

where ( )rX t  is road excitation, u  is vehicle velocity, 0n  is reference of spatial frequency in 

1m  . Normally, 0n  = 0.1 1m  , 0( )qG   is the power spectral density of road roughness when 

  = 0 , ( )w t  is Gauss white noise with 0 mean value. 

Therefore, by using derivative equation (50), the relationship can be established from white 

noise ( )w t to road excitation ( )rX t .  

5.2 Simulation and analysis 

The model is built in Matlab/Simulink, above relationship can be carried out with simulation 

showed in below Figure 5-1. 

Assuming a vehicle drives in 30 km/h on a grade C road, input these parameters into the 

Simulink block, after that define the white noise power to 10 and sample time to 0.001 second, 

then a road roughness excitation can be granted and is showed in Figure 5-2. 
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Figure 5-1 Simulink Block of Road Roughness 

 

 

Figure 5-2 Road Roughness Excitation with vehicle speed of 30 km/h on Grade C Road 

 

One of the commonly implemented method to illustrate the stationary road vibration is power 

spectral density which is also known as PSD. When a car goes on a road with a constant 

velocity, the road pavement can be considered as a stochastic process in space domain which 

abbey to Gaussian probability distribution. In this case, PSD is an ideal method to describe the 

distribution of roughness energy in space domain. 

In this study, a parameters-optimized Welch’s method is applied in which a relationship 

between the parameters and the accuracy of the result has been uncovered in Figure 5-3.  
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Figure 5-3 Power Spectral Density with Different Overlap Rate 

Based on these diagrams, the parameters of Welch’s Method can be decided. 

Also, a detailed comparison toward standard has been conducted which contributes to the 

reliability of the simulation. The result has been shown in below diagram.  

 

Figure 5-4 PSD of Road Roughness with Different Noise Power 
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Figure 5-5 Classification of Roads according ISO8648 

By analyzing and studying the relationship between the spatial frequency and time frequency 

power spectral density of the road surface, with the help of filtering white noise generation 

method, combined with Matlab software, a practical road surface generation simulation model 

is established. By comparing the simulation result with ISO 8608, it has been discovered that 

some parameters pose a significant influence on the performance of the simulation. Based on 

this, a study on parameters optimization has been conducted and a group of values have been 

finalized which enables the simulation to better match to the standard. Therefore, the signal 

that is generated through above method is reliable and accurate enough to perform as a road 

excitation input for vehicle control research [67]. 
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  System Assembly and Simulation 

6.1 DQN algorithm application 

As demonstrated, the top assembly of system which contains a suspension model, a 

reinforcement learning frame and a signal source of road excitation has been successfully 

established. A deep Q learning network algorithm is selected to perform the task. Currently, 

together with the development of a diversity of core algorithms [68] [69] [70] [48] [71], there 

are lot of different application with deep learning[49] [50] [51] [52] [53] and some other 

applications are closely related with vehicle dynamic control [72] [73] [74].  

Major work in current stage is to test the performance of this system and to find out the key 

elements that have a significant impact towards the reinforcement learning progress and the 

final result. To initiate the study, the very first step is to define the pavement, an input signal 

of Class C road in the vehicle speed of 60 km/h has been chosen to represent a scenario where 

a car drives at a moderate speed on an intermediate roughness road. It makes sense to start the 

simulation by using a normal case and late on expanding to other circumstances.  

Next, the focus should be landing on defining the parameters of training in reinforcement 

learning algorithm. Because there are not a lot of current literatures that have revealed the 

relationship between RL parameters and the performance of suspension system control, it is 

necessary to make assumptions based on the application of reinforcement learning in other 

areas. 

To be able to respond the requirement, a group of impact factors have been selected to be tested 

in the system under such an anticipation that parameters like neural network structure, learning 

rate, greedy rate, sample rate, and size of action space shall pose a significant impact on either 

the efficiency of learning progress or the performance of the final result. Those factors have 

been decided to form an Impact Factors Group 1 and Impact Factors Group 2 that have 

been illustrated in below Table 6-1. 
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Each impact factor will be defined in different values and then an individual learning process 

will be conducted correspondingly. Later on, by comparing the performance under different 

cases, the influence from impact factor will emerge. After the best practices of all parameters 

in Group 1 and Group 2 can be defined, there is a possibility to involve more impact factors 

that are assumed to be less contributive for the test. Maybe some of them can eventually be 

confirmed to be important towards the performance of the whole system. 

Table 6-1 List of Impact Factors 

Group 1 

Impact Factors Number of Sample Tested 

Neural Network Structure with Single Layer 

Neural Network Structure with Double Layer 

Neural Network Structure with Triple Layer  

5 

4 

4 

 

Group 2 

Impact Factors Number of Sample Tested 

Learning Rate 

Greedy Rate 

Sample Rate 

Action Space Size  

6 

5 

5 

5 
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6.1.1 Impact analysis of different neural network structure 

Neural network works as a general function approximator that imitates any input and output 

relationship and is expected to be one of the most key factors in this study. Intuitively, a more 

complex input output relation requires a more complex neural network structure, therefore, it 

is important to find out how networks with different nodes and structures can pose a different 

influence to the learning process and final result. 

In this study, the structure of neural network has been divided into three big categories. They 

are, one hidden layer network, two hidden layer network and three hidden layer network. In 

each category, different samples have different structures together with different number of 

neurons. Detailed information about each category has been summarized from Table 6-2 to 

Table 6-4, the type of network is decided to be fully connected only at this stage. More different 

and complicated network type can be considered in application towards further studies. 

6.1.1.1 Single layer neural network structure 

The study will start with an investigation in a single layer structure network as illustrated in 

Table 6-2. There are totally five samples with different quantity of nodes in the layer to be 

tested. 

Table 6-2 Neural Network Structure Category 1 

Category 1: One-layer structure 

Samples Hidden Layer Nodes NN-Architecture Schematics 

1 

2 

3 

4 

5  

12 

24 

48 

96 

192  
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It can be seen from Figure 6-1 that a typical learning curve contains five different phases. They 

have been defined as Attempt phase, Return phase, Rapid learning phase, Slow 

improvement phase, and Fatigue phase. An explanation towards each phase has been 

discussed below. 

 Attempt phase (Approx. from Episode_0 to Episode_5): the agent begins to interact 

with environment and try to establish a method in collecting reward. In this phase, an 

increasement of reward can be observed however, the system performance is lower than 

no control. 

 Return phase (Approx. from Episode_5 to Episode_15): the agent is trying to explore 

the whole action space and filling the Q table. In this phase, it seems to be more 

exploration than exploitation, therefore a return is demonstrated regarding to the reward 

collection. 

 Rapid learning phase (Approx. from Episode_15 to Episode_50): the agent has 

explored sufficiently in action space and found the correct direction in gradient decent. 

Therefore, in this phase, a significant improvement in reward can be seen. 

 Slow improvement phase (Approx. from Episode_50 to Episode_200): the agent has 

explored most of the action space and Q table is under fine tuning. The system is still 

improving in performance however, it takes much longer in learning. 

 Fatigue phase (Approx. from Episode_200 to Episode_750): there is no further 

improvement can be observed, the system has touched the limit of performance. This 

phase can be reduced to improve the efficiency of learning process. 
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Figure 6-1 Learning Curve Single Layer Network 

When comparing the learning performance of single layer neural network structure with 

different nodes from Figure 6-1 and Figure 6-2, there are some conclusions that can be 

summarized. 

1. The more nodes network contains the earlier the system can start rapid learning phase 

and the shorter the Slow improvement phase lasts. 

2. The Rapid learning phase takes around 35 Episodes, there is no big improvement by 

using more nodes in shortening this period.  

3. The network with only 12 nodes has a much lower performance than other structures. 

4. The overall improvement from 96 nodes to 192 nodes is not significant, which 

indicates that the increasement of reward in system has reached a certain level of limit. 
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Figure 6-2 Learning Curve Comparison with Different Nodes Episode 0-200 

 

 

Figure 6-3 Acceleration Comparison for Single Layer Network 
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The major job of the task is to reduce the acceleration of the vehicle body to achieve the target 

of riding comfort. From Figure 6-3,Error! Reference source not found. it can be observed 

that the acceleration has been reduced from maximum 24 /m s  in the condition of no control 

to 22 /m s  with 24 and 48 nodes fully connected network, and is further improved to around 

21 /m s  with 96 and 192 nodes network. The network structure that contains only 12 nodes is 

not able to demonstrate any improvement. 

The diagram in Figure 6-4 provides a picture of how different networks can deliver a diverse 

performance, however, it does demonstrate the result in such a way that acceleration signal 

created by each network can be quantified and have a more accurate comparison. Therefore, in 

this paper, it is decided to use the method of RMSE which is root mean square error to analyze 

each signal and then illustrate the result of different network together with training elapsed 

time.  

 

Figure 6-4 RMSE of Acceleration VS Elapse Time Single Layer Network 

As shown in Figure 6-4, it can be synthesized that considering the network with just one hidden 

layer, the more nodes a network contains, the better the performance is in RMSE of 

acceleration, however the longer time it takes to finish the training.  
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6.1.1.2 Double layer neural network structure 

Next, it is necessary to change the network structure from single layer to double layer and apply 

the same learning process, after that makes an analysis towards the result. The samples that 

contain different nodes in each layer have been summarized in Table 6-3. 

Table 6-3 Neural Network Structure Category 2 

Category 2: Two-layer structure 

Samples Hidden Layer Nodes 
1st Layer       2nd Layer NN-Architecture Schematics 

1 

2 

3 

4 

12                12 

24                24 

48                48 

96                96  

 

When comparing the learning performance of double layer neural network structure with 

different nodes from Figure 6-5, there are also some regulations that can be synthesized. 

1. Just like single layer network, the more nodes network contains the earlier the system 

can start rapid learning phase and the shorter the Slow improvement phase lasts. 

2. The overall improvement from 48+48 nodes network to 96+96 nodes network is not 

significant, which indicates that the increasement of reward in system has reached a 

certain level of limit. 

3. Unlike the other networks, learning phase of a 96+96 network is unique. It has not a 

significant return phase and the rapid learning phase starts very early. Thus, the 

learning phase can almost be divided into just three major phases. 

4. The fatigue phase of network with 48+48 nodes and 96+96 nodes start around 

Episode_150 which indicates a possibility of a potential reduction in current 750 

episodes in total. 
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Figure 6-5 Learning Curve Double Layer Network 

From Figure 6-6 it can be observed that the acceleration has been reduced significantly 

compared to the condition of no control. However only the network with 96+96 nodes 

illustrated the result that acceleration has been controlled basically under  21 /m s . The 

acceleration values from other networks still sometimes go up to  22 /m s or even 23 /m s . Just 

like single layer network, the result from double layer network also suggests a propensity that 

a network structure with more nodes can generally provide a more stable and reliable 

performance. 
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Figure 6-6 Acceleration Comparison for Double Layer Network 

 

Figure 6-7 RMSE of Acceleration VS Elapse Time Double Layer Network 

Figure 6-7 has presented some very different facts compare to Figure 6-4. First, the difference 

in RMSE of acceleration across networks with different nodes is not as big as that from single 

layer network. However, the network with maximum nodes is still taking a lead in performance. 

Second, the training elapsed time shows a completely opposite tendency comparing with single 

network. The more nodes the network contains, the less time the system need to finish training. 
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This result is inspiring, because it means that the layer number of the neural network structure 

actually poses an impact on the training efficiency. Even with the same node number, a double 

layer network is more superior than a single layer network considering the time that network 

training requests. An assumption can be raised that a multi-layer network takes less time to 

find out a solution considering the complexity of the current environment. Combining with the 

conclusions from the learning curve study, it seems obvious that two layers network definitely 

has more potential in dealing with the task. 

6.1.1.3 Triple layer neural network structure 

Additional layer has been added to the network to increase the complexity of the universal 

function approximator. Based on the improvement performance from one-layer network to 

two-layers network, it is interesting to see the result from a three layers network. The detailed 

structure and nodes arrangement are listed in Table 6-4. 

Table 6-4 Neural Network Structure Category 3 

Category 3: Three-layer structure 

Samples Hidden Layer Nodes 
1st Layer    2nd Layer    3rd Layer NN-Architecture Schematics 

1 

2 

3 

4 

12           12           12 

24           24           24 

48           48           48 

96           96           96  

 

From Figure 6-8, similar phenomenon can be observed compared to those from double layer 

networks. A summary of conclusion is listed below. 

1. Just like single layer and double layer network, the more nodes network contains the 

earlier the system can start rapid learning phase and the shorter the Slow improvement 

phase lasts. 
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2. The overall difference of all four learning curves is not significant, which indicates that 

the three-layer network system is not very sensitive towards the number of neurons 

regarding to the learning process. 

3. Just like a 96+96 network, the network that contains 96+96+96 nodes has not a return 

phase at all. The curve of rapid learning phase is very smooth and rapid learning starts 

almost from Episode_1, which confirms a very efficient learning progress. 

4. The fatigue phase of network with 96+96+96 nodes start even earlier comparing with 

the best one from a double layer network. The fatigue actually begins around 

Episode_80. 

 

Figure 6-8 Learning Curve Triple Layer Network 

As summarized from above statement, the learning curve of a triple network with 96+96+96 

nodes is very smooth that illustrates a certain level of advantage in learning efficiency.  
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Figure 6-9 Acceleration Comparison for Triple Layer Network 

 

Figure 6-10 RMSE of Acceleration VS Elapse Time Triple Layer Network 

Similar to the result of double layer network, it can be observed from Figure 6-9 that the 

accelerations of triple layer agent have been reduced noticeably compared with passive control. 

However only the network with 96+96+96 nodes illustrated the result that acceleration has 

been reduced to around  21 /m s . The acceleration values from other networks still sometimes 

go up to  22 /m s or even 23 /m s  which is similar to the cases from those double layer networks. 
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This seems to tell us that keeping adding an extra layer of nodes is not able to provide a 

continuous improvement on the acceleration, the major advantage of a multi-layer network is 

that it actually created a better learning curve to enhance the learning efficiency. 

As can be summarized from Figure 6-10, the difference in RMSE of acceleration across triple 

layer networks with different nodes is not significant which is similar to the result from a double 

layer system. Training elapsed time also demonstrates a similar tendency that proves more 

nodes the network contains, the less time the system needs to finish training. 

 

Figure 6-11 RMSE of Acceleration VS Elapse Time with All Three Network Structure 

Trying to summarize and compare the performances across all three different types of networks, 

Figure 6-11 has actually provided a good vision of result. Single layer networks with nodes 

quantity under 50 in Area A took less time in training the agent, however the improvement of 

acceleration was far from satisfactory. Agents that are located in Area B can provide a relatively 

better performance compared with those from Area A, but took a long time in training the 

algorithm. The networks in Area C have reached a good balance in considering both 

acceleration and training elapsed time, therefore, have a higher priority to be implemented in 
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the further research. Also, it can be observed that the overall performance of a triple layer 

system has not gone beyond that from a double layer system.  

6.1.2 Impact analysis of hyper-parameters of reinforcement learning 

The following study will be focused on Learning Rate, Greedy Rate, Sample Rate and Action 

Space Size. These are also important hyper-parameters that pose a significant impact on the 

converge of the learning, process stability and final performance.  

6.1.2.1 Learning Rate Analysis 

Stochastic gradient descent algorithm is an algorithm of optimization that uses batch examples 

from training database to estimate the error gradient for the current observation from the 

environment. It utilizes back propagation of errors to improve and update the weights of the 

model, which is used to train deep neural networks. 

In the training process, the quantity of the weights that has been updated in the training process 

is defined as “Learning Rate”. In reinforcement learning, the learning rate is a configurable 

hyperparameter which is normally a scaler in the rage of 0 to 1. 

Intuitively, smaller learning rate will end up with more training episodes given a smaller change 

is applied to the weight of the network in each step, whereas bigger learning rate pose a bigger 

change in the weight and requires less episode. 

It is very important and at the same time very difficult to define a proper learning rate. A rate 

that is too large may cause the neural network to converge very quickly however, it may land 

on a second optimal position. However, a very small learning rate may lead the learning get 

stuck in some place and make the whole process go divergent.  

From Figure 6-12 it can be observed that all learning curves are able to be convergent, however 

the small the learning rate is the more oscillating the curve contains. When the learning is 

finished, the average reward the collected by large learning rate agent is much less than the 

small learning rate agent which suggests they might be getting stuck in somewhere in control.  
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Figure 6-12 Learning Curve with Different Learning Rate 

 

Figure 6-13 Acceleration Comparison with Different Learning Rate 

By looking into Figure 6-13, it actually tells us that learning rate 1e-06 and 1e-07 can hardly 

provide any improvement in acceleration while learning rate 1e-02 and 1e-05 are 

demonstrating an observable improvement. Learning rate 1e-03 and 1e-04 seems to provide a 

very satisfactory result, a more detailed and quantitative comparison is showed in the following 

graph. 
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Figure 6-14 RMSE of Acceleration VS Elapse Time with Different Learning Rate 

It is very clear that learning rate 1e-06 and 1e-07 are far from an accepting result by looking 

into Figure 6-14 even if learning rate 1e-07 shows a surprisingly low training time. Learning 

rate 1-02 and 1e-05 are both able to provide an improvement in RMSE of acceleration however, 

1e-03 and 1e-04 are the best agent among all test samples.  

Through the study of learning rate in the simulation, it is revealed the importance of this hyper 

parameter, it is directly related to the final performance of the control system, therefore it is 

worthwhile to have a calibration in the tuning process especially when the performance is going 

divergent. 

6.1.2.2 Greedy Rate Analysis 

To better understand the greedy rate in reinforcement learning, it is necessary to first know 

about the concept of exploration and exploitation. In RL, the agent is trying to interact with the 

environment however is not knowing anything about the environment. A model free algorithm 

is actually relying on trial and error. During the trials, the size of action space decides the 

number of actions that an agent can apply. Sometimes, the actions are not actually taken when 

interacting with the environment, however the algorithms can still update and estimate the 
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values from those actions. Hence, the agent is able to explore and benefit from actions that 

actually had never happened in the learning phase. 

In the beginning of the training, the agent initially has very limited information from the 

environment, in that case, an agent can choose to explore the environment by selecting a 

stochastic action which brings back an unpredictable outcome so that it gets to know more 

about the environment. alternatively, it can choose to exploit and pickup an action with the 

highest value based on its previous experience in interacting with an environment in the 

purpose of getting an optimal reward. 

The movement of exploring the result via a random action versus exploiting the best solution 

in action space regarding to the current knowledge is called the exploration and exploitation 

trade off. On one hand, an agent can potentially collect a higher reward through exploration 

application therefore benefit the final performance in the long run. On the other hand, if an 

agent starts exploiting, it immediately gets more reward, however, might get trapped in a sub-

optimal behavior.  

When the training has started, the agent has little knowledge of the outcomes of the possible 

actions, in this stage, sufficient initial exploration is necessary. As time goes by and more 

experiences have been collected in the replay buffer, exploitation shall take the lead and start 

improving the process. However, it is also very dangerous if the algorithm is only doing 

exploiting, a greedy agent can get easily stuck in a sub-optimal state if the environment is 

changed with the time pass. In this consideration, a balance between exploration and 

exploitation is vital and should be carefully considered in the reinforcement learning. 

In Q Learning, Epsilon or  is used to represent the greedy rate, and by applying that rate, the 

agent is able to utilize both exploitations to improve performance from its prior knowledge and 

exploration to find potential high reward areas. 
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Figure 6-15 Learning Curve with Different Greedy Rate 

 

Figure 6-16 Acceleration Comparison with Different Greedy Rate 

In this study, Epsilon is defined as a probability threshold to either select an action 

stochastically or select the action with a maximize state-action value. The bigger the Epsilon 

is, the more likely the agent is conducting a random movement. Below graph illustrates the 

relationship between Epsilon and exploitation-exploration trade off. 
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Figure 6-17 Epsilon and Exploration-Exploitation 

 

 

Figure 6-18 RMSE of Acceleration VS Elapse Time with Different Greedy Rate 

In actual application, there is another parameter which is called Epsilon_Decay that is also get 

involved. This decay is to change the greedy rate in the learning process to imply a gradually 

reduced exploration and a gradually increased exploitation. This is very in line with an actual 
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human learning procedure, that is as the time goes by, more experiences are accumulated and 

therefore, exploitation can bring back more benefit comparing with a random approach. In the 

algorithm, in the end of each training time step, if Epsilon is greater than a preset threshold 

Epsilon_Min, then it is updated using the following formula. 

    1 _Epsilon Epsilon Epsilon Decay    (51) 

It can be summarized from Figure 6-15, Figure 6-16, and Figure 6-18, in the current setup, 

Epsilon does not impose a significant impact into the learning process and control process due 

to the existence of the Epsilon_Decay. 

6.1.2.3 Sample Rate Analysis 

Sample rate in this study is defined as the number of forces that has been conducted from the 

suspension actuator in one second. Intuitively, the more forces that can be generated in a time 

unit, the better the performance is. However, the training time is also need to be considered. 

 

Figure 6-19 Learning Curve with Different Sample Rate 

From Figure 6-19, it is demonstrated that the smaller the sample rate is the less the rewards can 

be collected by the agent. This is because that when the sample rate reduces, the number of 

actions is actually increasing, more actuator actions are conducted in a unit time, therefore, 
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creating more opportunities to receive rewards (in this design, they are normally negative 

scalars). So, when the sample rate is changing, by only looking into the learning curve may not 

able to give us the correct information about how good the agent is performing. 

 

Figure 6-20 Acceleration Comparison with Different Sample Rate 

 

Figure 6-21 RMSE of Acceleration VS Elapse Time with Different Sample Rate 

By looking into the Figure 6-20 and Figure 6-21, it can be summarized that the lower the sample 

rate is the less training time the agent takes. When the sample rate is reduced to 0.0001s, the 

training time is dramatically increased to more than 100 hours which is not practical. Plus, 



74 
 

0.0001 s sample rate means that the actuator will need to produce 10,000 forces per second, it 

is very difficult to find such an actuator in the real world, therefore the study is only for theory 

analysis and boundary check. The good news is that the performance of the acceleration has 

not been optimized with the decrease of sample rate, which illustrated that the it is not a linear 

change. When the sample rate reaches 0.001 s, the performance of acceleration is also reaching 

a peak. The actuator with a 0.001 s responding time does exist in the world therefore provides 

an opportunity to transfer the theory study to an actual application in physical world. 

6.1.2.4 Action Space Size Analysis 

Due to the fact that DQN is not able to work with a continuous action space, therefore a discrete 

action space is needed to be compatible with the algorithm. Action space size in this research 

is defined as the number of forces that can be controlled by the actuator. Intuitively, the more 

different forces the actuator can control, the better the control result is. However, it is still 

worthwhile to check how the change of the action space size can impact the learning process 

and final acceleration performance. 

It can be easily summarized from Figure 6-22 that when the number of the action force 

increases, the average reward is that is collected by the agent also improves. The trajectory of 

each learning curve is quite similar to each other. 

Through Figure 6-23, it can be seen that the acceleration has already been improved from 

approximately 2 m/s to 1.5 m/s with an action space that contains only 7 forces. When the 

forces are increased into 17 forces, the acceleration is improved to 1 m/s. And a continuous 

improvement can be observed with the expand of the action space. 
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Figure 6-22 Learning Curve with Different Action Space Size 

 

Figure 6-23 Acceleration Comparison with Different Action Space 

From Figure 6-24, a big improvement in RMSE of acceleration can be seen when the action 

space is increased from 9 forces to 17 forces. And when the space is expanded to 33 forces, 

there is also a noticeable change in RMSE. However, then the action space is continuously 

increased to 65 and 129 forces, the improvement is able to be observed however is not that 

significant. The interesting thing is that size of the action space seems not to be impacting the 
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training time. The elapsed time from each agent doesn’t provide a significant difference which 

reveals a potential improvement direction by using an algorithm which contains a continuous 

action space.  

 

Figure 6-24 RMSE of Acceleration VS Elapse Time with Different Action Space Size 

6.2 DDPG Algorithm Application 

6.2.1 Introduction 

Deep Deterministic Policy Gradient (DDPG) is an algorithm that learns a Q-function and a 

policy at the same time. The policy is learned from Q function, and Q function is learned from 

Bellman equation and off policy data.  

DDPG is basically an upgrade from Deep Q Net (DQN), they both have the same motivation 

in Q learning. If the optimal action-value function *( , )Q s a  is worked out, then the optimal 

action *( )a s can be solved in any given state. 

 * *( ) arg max ( , )
a

a s Q s a  (52) 

The biggest improvement of DDPG comparing with DQN is that it can cope with a continuous 

action space [69] which is interacting with the environment. This is related to how the algorithm 
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is computing the max over actions. The max works out perfectly when the action space is 

consisted of a finite number of discrete actions because each Q value from an action can be 

calculated and compared individually. However, when the action space become continuous, it 

is impossible to work out the max Q in the same way. A simple approach is to discretize the 

action space. But this may lead to a lot of problems, one of those is called the curse of 

dimensionality which means that the number of actions expand exponentially with the number 

of degrees of freedom increasing. Such huge action space is not only hard to explore, but also 

blocks the way of solving optimization problem. Therefore, using a normal optimization 

algorithm would make it impossible from calculating *max ( , )a Q s a  considering that fact that 

it needs to be run in every step when agent is taking an action to interact with the environment. 

Regarding to the fact that action space is continuous, so the function *( , )Q s a  is considered to 

be differentiable which provides a chance to utilize a gradient-based learning rule for a policy 

( )s . In this case, instead of applying a huge workload to work out max ( , )a Q s a , it is more 

practical to create an estimation on it which can be described with a new equation 

max ( , ) ( , ( ))a Q s a Q s s   . This approach is based on a DPG algorithm [48].  

The DPG algorithm deterministically maps states to a specific action through an actor function 

( )s    which specifies the current policy. A chain rule is applied to update the actor from 

the start distribution J to receive expected return. 
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
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 (53) 

In [48], it has been proved that this is a policy gradient. When applying a general function 

approximator such as a neural network in Q learning might pose a negative impact on its 

convergence due to non-linear characteristics. But it is necessary to do so considering a large 
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state space situation. A mini batch concept is developed in DDPG is in the same level of DPG. 

The major contribution here is creating a modified version of DPG together with the approach 

in DQN which integrates a neural network function approximator to learn in a big state and 

action space online.  

DDPG manages four neural networks at the same time, the actor, critic target-actor, and target-

critic. A target network enables the agent to learn from those experiences in a steady policy, 

which is merely a lagged version of a current agent network. Network structure of a DDPG 

Algorithm is illustrated in Figure 6-25. 

 

 

Figure 6-25 DDPG Network Structure 
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6.2.2 DDPG Algorithm  

DDPG algorithm 

Randomly initialize critic network ( , )QQ s a   and actor ( )s    and  . 

Initialize target network Qand with weight ,Q Q         

Initialize replay buffer R  

for episode = 1, M do 

    Initialize a random process  for action exploration 

    Receive initial observation state 1s  

    for t = 1, T do 

        Select action ( )t ta s    t according to the current policy and exploration noise 

        Execute action ta and observe reward tr and observe new state 1tS   

        Store transition 1( , , , )t t t ts a r s  in R  

        Sample a random minibatch of N transitions 1( , , , )t t t ts a r s  from R  

        Set 1 1( , ( ) )Q
i i i iy r Q s s     

     

        Update critic by minimizing the loss: 21
( ( , ))Q
i i i iL y Q s a

N
   

        Update the actor policy using the sampled policy gradient: 

                                         , ( )

1
( , ) ( )

i i

Q
a s s a s si

i

J Q s a s
N

 


 

        

        Update the target networks: 

                                  
(1 )

(1 )

Q Q Q

  

   

   

 

 

  

  
 

    end for 

end for 

6.2.3 Simulation and comparison 

In this part a comparison has been conducted between DQN and DDPG to analyze whether a 

continuous action space is a key item which impacts to the performance. To guarantee a fair 

comparison, the neural network architecture is set to be identical with a triple layer fully 
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connected structure which contains 96 neurons in each layer. This structure is proved to be a 

best balance between performance and training time which is based on the research result from 

in Section 6.1. Similarly, the state space, reward signal, input pavement signal, learning rate 

and other RL parameters are set to be the same. The action space is obviously different where 

DQN uses a discrete space and DDPG applies a continuous space. However, in this test, the 

limits of the action space are defined to be the same which is from -4000N to +4000N. Both 

DQN and DDPG are trained over 1 million steps. One episode contains 4000 steps to guarantee 

sufficient pavement features are included in the signal for controllers to learn. The learning rate 

is set to be 1e-3, greedy rate is set to be 0.99, sample time is set to be 0.001s, mini batch size 

is set to be 64 and discount factor is set to be 0.9. 

 

Figure 6-26 Learning Curve DQN Vs DDPG 

The training curve is shown in Figure 6-26. From the graph, both two algorithms are converged 

while DDPG has demonstrated a higher reward value than that from DQN. From Figure 6-27 

and Figure 6-28, it can be observed that the acceleration performance from a DDPG algorithm 

is much better than that from a DQN controller. Both DQN and DDPG are able to reduce the 

peak value from over 10 m/s2 to around 5 m/s2 where DDPG can provide less peaks in quantity 

and overall delivers a smoother oscillation in acceleration. Figure 6-29 demonstrates another 
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value which is the displacement of suspension, it can be seen that the displacement is increased 

in an active control situation however this might not be a big issue due to the vehicle running 

in a normal speed. Overall, it can be concluded that a PPDG algorithm is better than a DQN 

controller in the simulation which proves that a continuous action space has a better 

performance than a discrete action space regarding to an actuator control in a dynamic 

environment. 

 

 

Figure 6-27 Acceleration Comparison DQN Vs DDPG 

       

Figure 6-28 Acceleration Comparison DQN Vs DDPG Clipped 
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Figure 6-29 Displacement Comparison DQN Vs DDPG 

 

6.3 TD3 Algorithm Application 

6.3.1 Introduction 

Twin Delayed Deep Deterministic Policy Gradients (TD3) [68] has been considered as one of 

the most powerful and cutting edge algorithms in reinforcement learning. TD3 is basically the 

next generation of Deep Deterministic Policy Gradient (DDPG) which up to now, has been one 

of the most widely used algorithms with continues action space. However, like a lot of other 

RL algorithms, DDPG can sometimes become unstable and hard to find a solution to converge. 

This is due to an over estimation to the Q values from the critic network, which can be piling 

up over time and eventually cause the agent falling on a local optimum or experience 

catastrophic forgetting. Trying to improve those drawbacks that have been mentioned above, 

TD3 has applied some changes. First, instead of using just one critic network like DDPG, it 

uses a dual structure critic network. Second, the actor network is updated less frequently than 

the critic network, which is called a delayed update. And the last but not least, a regularization 

technique is applied for adding noise. 
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6.3.1.1 Twin Critic Networks 

The first improvement comparing with DDPG is the implementation of a twin critic network. 

The idea is coming from a method which uses a separated target value function for Q value 

estimation to reduce the bias [70]. Unfortunately, the attempt is not very much in line with an 

actor and critic structure due to the reason that the networks are updated so slow that they look 

similar to each other.   

However, in TD3, for the sake of a stable converge from deep function approximators, the 2 

target networks have been retained. At the same time, two sets of twin critic networks have 

been applied to estimate the Q value, and the one with the smaller value is set to be used to 

update two critic networks. Under this design, there are totally six neural networks that need to 

be maintained in the TD3 RL frame. The twin critic network strategy also created a bias of low 

Q value preference. However, being different from an overestimated value which may be 

spread through the algorithm, an underestimation bias stays where it is, therefore, provides a 

generally more stable performance. Network structure of a TD3 Algorithm is demonstrated in 

Figure 6-30. 

6.3.1.2 Delayed Updates 

The interaction between actor and critic network is also a major concern when talking about 

learning process convergence. Since the deep Q network is constantly updated, when a bad 

policy is applied and overestimated, in some cases, it might cause a blind iteration from actor 

and then lead to a continuous deterioration in learning. To be more precisely, when the actor 

network is updated, it may reach the highest Q value according to the current moment, however 

in the next step, it is found not to be the optimal one. In this case, the result can sometimes be 

trapped at a second highest point. 

In order to provide a solution towards this issue, the idea of delayed policy updates is 

implemented to adjust the updates of critic network more frequently than the actor network. 
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By doing this,  a policy with less frequent updates use a value estimate in lower variance will 

result in higher quality policy updates [68], thus the critic network is able to provide a more 

stable result which can be used to update the actor network. 

 

Figure 6-30 TD3 Network Structure 

6.3.1.3 Noise Regularization 

A problem that can be found in deterministic policies is over fitting to spikes in value 

estimation. Learning process using deep deterministic policies is easily impacted by function 

approximation errors when updating the critic, which increasing the variance of the objective. 

To resolve this problem, TD3 demonstrates a regularization technique that is known as target 

policy smoothing. The idea assumes that similar actions shall deliver similar value. TD3 adds 
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a small amount of random noise to the target policy and average them in mini batches. Trying 

to keep the target policy in an acceptable region, the added noise is clipped. Though above 

process, a higher value is returned from target to make the policy more stable and more robust 

to noise and interference.  

6.3.2 TD3 Algorithm 

TD3 algorithm 

Initialize critic network 
1 2
,Q Q   and actor network  . 

With random parameters 1 2, ,    

Initialize target networks 1 1 2 2, ,           

Initialize replay buffer   

for t = 1 to T do 

Select action with exploration noise ( )a s  ,  

  (0, )  and observe reward r  and new state s  

Store transition tuple ( , , , )s a r s  in   

Sample mini-batch of N transitions ( , , , )s a r s  from   

( ) , (a s clip   


  (0, ), , )c c 


 

~

1,2min ( , )
iiy r Q s a     

Update critics 
21min ( ( , ))

i ii N y Q s a     

    if t mod d then 

        Update   by the deterministic policy gradient:  

        
1

1
( )( ) ( , ) ( )a a sJ N Q s a s

     
     

        Update the target networks: 

        
(1 )

(1 )
i i i   
   
   
   

 

    end if 

end for 
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6.3.3 Simulation and Comparison 

6.3.3.1 System Simulation Setup 

To illustrate the optimal and reliable performance of TD3 algorithm in vehicle suspension 

control, it is necessary to compare it with other reinforcement learning controllers. A Deep Q 

Learning algorithm and a DDPG algorithm are selected as benchmarks. To guarantee a fair 

comparison, the neural network architecture is constructed to be identical across all these three 

controllers. Based on the same concept, the action space, state space, reward signal and input 

road pavement signal are set to be the same. 

All three algorithms are trained over 1 million steps, which is about 250 episodes. One episode 

contains 4000 steps to guarantee sufficient pavement features are included in the signal for the 

controller to learn. The learning rate is set to be 1e-3, greedy rate is set to be 0.99, sample time 

is set to be 0.001s, mini batch size is set to be 64, and discount factor is set to be 0.9 

6.3.3.2 Class B Pavement Signal Test 

The training curve under a Class B pavement input signal has been illustrated in Figure 6-31 

where each line shows the average reward. Both DQN and TD3 are able to converge while 

DDPG is failed to do so. As explained in the TD3 introduction, this is probably due to the 

unstable nature from PPDG algorithm where an overestimated Q value error can be 

accumulated throughout the whole learning progress and misleading the result towards a local 

peak. By comparing the curve between TD3 and DQN, it is easy to conclude that they both 

converge quickly and then move stably until then end of learning, however, TD3 can achieve 

a higher average value in comparing the reward.  
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Figure 6-31 B Class Road Learning Curve DQN Vs DDPG Vs TD3 

By looking into the body acceleration performance which is illustrated in Figure 6-32, PID 

controlling can provide a certain level of improvement but is still far from satisfactory, while 

Skyhook control method can reduce the oscillation of acceleration but create sharp steps from 

time to time. Among machine learning control algorithms, TD3 has outperformed other 

algorithms. It brings down the acceleration from maximum  in 22 /m s  passive control to 

around 20.5 /m s and keeps it smooth and stable, while DQN and DDPG are landing on a local 

optimal which is about  21 /m s . The diagram has been clipped to show only the interesting 

area. Figure 6-33 illustrated the comparison results of unspring mass acceleration, as can be 

seen from the graph, there is no significant difference between each of the controlling method 

and the passive control. 
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Figure 6-32 B Class Road Body Acceleration Comparison Clipped 

 

Figure 6-33 B Class Road Unsprung Acceleration Comparison Clipped 

Figure 6-34 demonstrates the comparison of another judgment value, i.e. suspension 

displacement. As can be seen from the diagram, all controllers increase displacement a bit 

compared with the performance from a passive suspension. This is due to the nature of an active 

control phenomenon where the actuator poses an extra force to the spring and damper system. 

This might slightly influence the vehicle grip performance, which may be neglected 
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considering the fact that this study is based on a normal Class C vehicle in an urban and rural 

environment.   

 

 

Figure 6-34 B Class Road Suspension Displacement Comparison Clipped 

Figure 6-35 provides the controller force comparison among different algorithms. PID and 

Skyhook are not able to provide very accurate control force and the force range is between 

+1000 N and -1000 N. DQN may improve the accuracy but the performance is still not 

satisfying due to the nature of only output discrete actions. Both DDPG and TD3 algorithms 

are delivering a better performance with very accurate controlling force, while the force curve 

from TD3 is smoother which demonstrates its superiority comparing to other methods. Figure 

6-36 illustrates the tyre dynamic load comparison result, from which it is clear that the TD3 

algorithm is outperformed significantly all other controllers. 
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Figure 6-35 B Class Road Controller Force Comparison Clipped 

 

 

Figure 6-36 B Class Road Tyre Dynamic Load Comparison Clipped 
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6.3.3.3 Class D Pavement Signal Test 

The training curve under a Class D pavement input signal is shown in Figure 6-37. From the 

graph, all three algorithms are able to converge while DDPG and TD3 demonstrate a similar 

level of average reward. DQN on the other hand provides a less value which indicates limited 

capability in dealing with a road pavement signal environment. 

 

Figure 6-37 D Class Road Learning Curve DQN Vs DDPG Vs TD3 

Figure 6-38 to Figure 6-42 illustrate a fairly similar phenomenon in a Class B pavement. A 

TD3 algorithm is dominating the best performance among all the other controlling method in 

a bumpy pavement condition which confirms its superiority in active suspension application. 
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Figure 6-38 D Class Road Acceleration Comparison Clipped 

 

Figure 6-39 D Class Road Unsprung Acceleration Comparison Clipped 
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Figure 6-40 D Class Road Displacement Comparison Clipped 

 

Figure 6-41 D Class Road Controller Force Comparison Clipped 
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Figure 6-42 D Class Road Tyre Dynamic Load Comparison Clipped 
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 Conclusions and future work 

7.1 Summary 

In this paper, a combination of suspension model, a road pavement signal source and a 

reinforcement learning control system has been established and researched. Comparing with 

other research in this area, this paper significantly takes the quality of the pavement signal into 

account, trying to bridge the gap as much as possible between a real road scenario and a 

simulation circumstance. Also discussed the impact from a variance in neural network 

architecture and other hyper-parameters towards the performance of the system. Eventually, 

through the analysis across different state of the art algorithms, it is concluded that a TD3 

algorithm has shown is superiority in suspension control under either a smooth or bumpy road 

condition. 

The research also provides a review of the current research status regarding to the active 

suspension system control. It then looks into a group of the traditional controlling method and 

latest control method with A.I, followed by a comparison towards their performance. Through 

these studies, it actually reveals the reason why a machine learning can provide a better 

controlling result considering its self-learning capability. The review also illustrated that still, 

there quite some problems that have not been solved yet. For instance, in road pavement 

simulation, how to guarantee the simulation signal is in line with the current standard. In 

reinforcement learning, how will the hyper-parameters change the final learning performance 

when controlling system. How to properly choose a neural network that best fit into the current 

assembly.  

In this study, a dynamic system analysis and modeling establishment towards a suspension 

system, through state space method, the dynamic property is able to be derived and simulated 

in Simulink. At the same time, two interfaces have also been created for the input signal from 
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road pavement and controlling algorithm. It can also be concluded from the study that a 

reinforcement learning frame is suitable in a suspension control scenario, by referring to 

multiple current applications inside or outside automotive industry. The study also presented a 

method in creating an accurate road pavement signal in regarding to the industrialized standard. 

Therefore, in training the learning algorithm, different levels of roads can be tested to classify 

the performance of each type of algorithm.  

Eventually, a deep study has been done by evaluating the structure of the whole assembly. It 

starts by analyzing the performance of the learning progress when applying different neural 

networks followed by a comparison of their controlling result. After that, a group of hyper-

parameters is researched to evaluate their impact towards the stability and performance of the 

system. From there, the key impact factors are revealed and recorded to benefit the further 

research of the project. Then, three state-of-art algorithms are applied and tested to find out the 

optimized solution in regarding to a changing environment of road pavement.  

7.2 Prospective of future work 

Through the simulation work from this study, it has been proved that a reinforcement learning 

controlling unit has an optimal performance regarding to its self-study capability in dealing 

with a changing environment. Of course, there are some works need to be carried out for a 

further study.  

In regarding to the current project, a quarter car model is utilized to represent a suspension 

model. The next step can be to replace that quarter car model with a half car or full car model 

to demonstrate a better simulation result regarding to the reality. Also, model parameters 

uncertainty [75] can be involved when designing the suspension model to check stability and 

robust performance of a machine learning controlling unit.  
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Considering the active suspension design, the current method is using an actuator to create an 

additional force to intervene the vibrating process of the system. Also, it can be considered as 

a solution to utilize a damper with adjustable damping coefficient. In that case, the damping 

force is controllable in reacting to the different amplitude of oscillation. Or even a combination 

of both method in comparing with only one method applied. It is definitely possible for a 

reinforcement learning agent to deal with that situation by adding one more action space in the 

frame.  

Hardware validation needs to be carried out, in which sample frequency is a key parameter that 

impacts the final performance of the suspension system. According to the simulation result, a 

1000 Hz frequency is needed to guarantee a smooth control of the acceleration. This 

requirement applies to both the acceleration sensor and the actuator of a spring damper system. 

By looking into the current industrialized product, there are couple of types of parts that can 

meet this requirement, therefore clears the roadblocks on the job of a hardware in loop setup.                          

Also, by dealing with a hardware in loop system, time delay is also a significant area to be 

considered to guarantee the efficiency of the whole system. Once the test and verification work 

are done, the system can be ready for a real vehicle test afterwards. 

 

 

 

 

 

 

 

 



98 
 

Reference 

[1] F. D. A. F. P. Fael, "Software for Simulation of Vehicle-Road Interaction," in New Advances in 
Information Systems and Technologies, vol. 1: Springer, 2016, pp. 681-690. 

[2] G. J. Stein, R. Zahoranský, T. P. Gunston, L. Burström, and L. Meyer, "Modelling and 
simulation of a fore-and-aft driver's seat suspension system with road excitation," 
International Journal of Industrial Ergonomics, vol. 38, no. 5-6, pp. 396-409, 2008, doi: 
10.1016/j.ergon.2007.10.016. 

[3] B. Chander, "Modelling and Analysis of Half Car Model Using Fuzzy Logic Control," Research 
Gate, 2009. 

[4] S. L. Rajesh Kattiboina, "Neuro PID Speed Controller for Motor," 2015. 
[5] Q. Tong et al., "Combining Machine Learning Potential and Structure Prediction for 

Accelerated Materials Design and Discovery," J Phys Chem Lett, vol. 11, no. 20, pp. 8710-
8720, Oct 15 2020, doi: 10.1021/acs.jpclett.0c02357. 

[6] E. A. Gustafsson, 
"Comparison_of_Design_Automation_and_Machine_Learning_algorithms_for_creation_of_
easily_modifiable_sp," 2020. 

[7] M. A. Bessa and S. Pellegrino, "Design of ultra-thin shell structures in the stochastic post-
buckling range using Bayesian machine learning and optimization," International Journal of 
Solids and Structures, vol. 139-140, pp. 174-188, 2018, doi: 10.1016/j.ijsolstr.2018.01.035. 

[8] Y. Mao, "Designing complex architectured materials with generative adversarial networks," 
2020. 

[9] C. Lin, "Modeling 3D Shapes by Reinforcement Learning," 2020. 
[10] V. Colla, S. Cateni, A. Maddaloni, and A. Vignali, "A Modular Machine-Learning-Based 

Approach to Improve Tensile Properties Uniformity Along Hot Dip Galvanized Steel Strips for 
Automotive Applications," Metals, vol. 10, no. 7, 2020, doi: 10.3390/met10070923. 

[11] F. Danglade, J.-P. Pernot, and P. Véron, "On the use of Machine Learning to Defeature CAD 
Models for Simulation," Computer-Aided Design and Applications, vol. 11, no. 3, pp. 358-368, 
2013, doi: 10.1080/16864360.2013.863510. 

[12] K. Hayashi and M. Ohsaki, "Reinforcement learning for optimum design of a plane frame 
under static loads," Engineering with Computers, 2020, doi: 10.1007/s00366-019-00926-7. 

[13] H. Jung, J. Jeon, D. Choi, and J.-Y. Park, "Application of Machine Learning Techniques in 
Injection Molding Quality Prediction: Implications on Sustainable Manufacturing Industry," 
Sustainability, vol. 13, no. 8, 2021, doi: 10.3390/su13084120. 

[14] S. Lee, Y. Cho, and Y. H. Lee, "Injection Mold Production Sustainable Scheduling Using Deep 
Reinforcement Learning," Sustainability, vol. 12, no. 20, 2020, doi: 10.3390/su12208718. 

[15] C.-T. Chen and G. X. Gu, "Machine learning for composite materials," MRS Communications, 
vol. 9, no. 2, pp. 556-566, 2019, doi: 10.1557/mrc.2019.32. 

[16] S. T. H.Akcay, "Aspects of achievable performance ofr quarter-car active suspensions," 
Journal of Sound and Vibration, vol. 322:15-28, 2008. 

[17] S. T. H.Akcay, "Influence of tire damping on mixed H2-H∞ synthesis of half-car active 
suspensions," Journal of Sound and Vibration, vol. 322:15-28, 2009. 

[18] Z. Qiang, Y. Jiaxing, and L. Decai, "Intelligent Compound Control of Vehicle Active Suspension 
Based on RBF Neural Network," presented at the 2011 Third International Conference on 
Measuring Technology and Mechatronics Automation, 2011. 

[19] Y. H. N.Yagiz, "Back stepping countrol of a vehicle with active suspensions," Control 
Engineering Practce, vol. 16: 1457-1467, 2008. 

[20] S.-J. Kim, "Vibration Control of a Vehicle Active Suspension System Using a DDPG Algorithm," 
2018. 

[21] J. S. M. Witters, "Black-box model identification for a continuously variable, electro-hydraulic 
semi-active damper," Mechanical Systems and  Signal Processing, vol. 24: 4-18, 2010. 



99 
 

[22] L. Ming, L. Yibin, R. Xuewen, Z. Shuaishuai, and Y. Yanfang, "Semi-Active Suspension Control 
Based on Deep Reinforcement Learning," IEEE Access, vol. 8, pp. 9978-9986, 2020, doi: 
10.1109/access.2020.2964116. 

[23] S. S. A. M.M. Fateh, "Impedance control of an active suspension system," Mechatronics, vol. 
19:134-140, 2009. 

[24] J. Liu, "Advanced PID control and its Matlab Simulation," 2007. Beijing Publishing House of 
Electronics Industry. 

[25] Y. Z. A. Aziz Sezgin, "Analysis of the vertical vibration effects on ride comfort of vehicle 
driver," 2012. 

[26] M. Palermo, "Effects of a large unsprung mass on the ride comfort of a lightweight fuel-cell 
urban vehicle," 2009. 

[27] H. P. Heping Wang, "Study of Passenger Comfort Relating to Vehicle Vibration," 2009. 
[28] T. Z. Chuanyin Tang, "A Study of Vehicle Vibrating Comfort Evaluation," 2008. 
[29] P. W. Shilei Zhou, Yang Tian*, Nong Zhang, "Study on the energy economy and vibration 

characteristics of an in-wheel drive electric hydraulic hybrid vehicle." 
[30] W. Schiehlen, "White noise excitation of road vehicle structures," Sadhana, vol. 31, 4, pp. 

487-503, 2006. 
[31] S. C. Fan Lu, "Modelling and Simulation of Road and surface excitation on vehicle in time 

domain," qiche gongcheng, vol. 5, no. 37, 2015 2015. 
[32] F. T. a. Y.-F. Hong, "Generation of Random Road Profiles," Collections of the 24th National 

Academic Symposium of Chinese Mechanical Engineering Society, vol. B04-0001, 2008. 
[33] I. 8608, "Mehanical Vibrations-Road Surface Profiles-Reported Of Measured Data, ISO 8608," 

International Organization For Standardization, 1995. 
[34] B. J. Goenaga, L. G. Fuentes Pumarejo, and O. A. Mora Lerma, "Evaluation of the 

methodologies used to generate random pavement profiles based on the power spectral 
density: An approach based on the International Roughness Index," Ingeniería e 
Investigación, vol. 37, no. 1, 2017, doi: 10.15446/ing.investig.v37n1.57277. 

[35] Y. Zhang, "Non-stationary_Random_Vibration_Analysis_of_Vehicle," 13th National 
Conference on Mechanisms and Machines, vol. NaCoMM-2007-77, 2008. 

[36] K. B. Singh and S. Taheri, "Estimation of tire–road friction coefficient and its application in 
chassis control systems," Systems Science & Control Engineering, vol. 3, no. 1, pp. 39-61, 
2014, doi: 10.1080/21642583.2014.985804. 

[37] Y. Wang et al., "Tire Road Friction Coefficient Estimation: Review and Research 
Perspectives," Chinese Journal of Mechanical Engineering, vol. 35, no. 1, 2022, doi: 
10.1186/s10033-021-00675-z. 

[38] C. Bragança et al., "Calibration and validation of a freight wagon dynamic model in operating 
conditions based on limited experimental data," Vehicle System Dynamics, pp. 1-27, 2021, 
doi: 10.1080/00423114.2021.1933091. 

[39] F. Cunto and F. F. Saccomanno, "Calibration and validation of simulated vehicle safety 
performance at signalized intersections," Accid Anal Prev, vol. 40, no. 3, pp. 1171-9, May 
2008, doi: 10.1016/j.aap.2008.01.003. 

[40] N. A. Seegmiller, "Dynamic Model Formulation and Calibration for Wheeled Mobile Robots," 
Doctor of Philosophy, The Robotics Institute, Carnegie Mellon University, 2014.  

[41] D. Ribeiro, R. Calçada, R. Delgado, M. Brehm, and V. Zabel, "Finite-element model calibration 
of a railway vehicle based on experimental modal parameters," Vehicle System Dynamics, 
vol. 51, no. 6, pp. 821-856, 2013, doi: 10.1080/00423114.2013.778416. 

[42] J. Fender, F. Duddeck, and M. Zimmermann, "On the calibration of simplified vehicle crash 
models," Structural and Multidisciplinary Optimization, vol. 49, no. 3, pp. 455-469, 2013, doi: 
10.1007/s00158-013-0977-7. 



100 
 

[43] C. G. Bonin G., Loprencipe G., Sbrolli M., "RIDE QUALITY EVALUATION 8 DOF VEHICLE MODEL 
CALIBRATION," presented at the 4th INTERNATIONAL SIIV CONGRESS, PALERMO (ITALY), 
2007. 

[44] B. Zhao, T. Nagayama, M. Toyoda, N. Makihata, M. Takahashi, and M. Ieiri, "Vehicle Model 
Calibration in the Frequency Domain and its Application to Large-Scale IRI Estimation," 
Journal of Disaster Research, vol. 12, no. 3, pp. 446-455, 2017, doi: 
10.20965/jdr.2017.p0446. 

[45] A. Fares and A. Bani Younes, "Online Reinforcement Learning-Based Control of an Active 
Suspension System Using the Actor Critic Approach," Applied Sciences, vol. 10, no. 22, 2020, 
doi: 10.3390/app10228060. 

[46] W. Wang, K. Tian, and J. Zhang, "Dynamic Modelling and Adaptive Control of Automobile 
Active Suspension System," Journal Européen des Systèmes Automatisés, vol. 53, no. 2, pp. 
297-303, 2020, doi: 10.18280/jesa.530218. 

[47] P. Zheng and J. W. Gao, "Damping force and energy recovery analysis of regenerative 
hydraulic electric suspension system under road excitation: modelling and numerical 
simulation," Math Biosci Eng, vol. 16, no. 6, pp. 6298-6318, Jul 8 2019, doi: 
10.3934/mbe.2019314. 

[48] G. L. David Silver, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller, 
"Deterministic Policy Gradient Algorithms," presented at the 31st International Conference 
on Machine Learning, 2014. 

[49] J. Zhang, F. Chen, Z. Cui, Y. Guo, and Y. Zhu, "Deep Learning Architecture for Short-Term 
Passenger Flow Forecasting in Urban Rail Transit," IEEE Transactions on Intelligent 
Transportation Systems, vol. 22, no. 11, pp. 7004-7014, 2021, doi: 
10.1109/tits.2020.3000761. 

[50] H. Zheng, F. Lin, X. Feng, and Y. Chen, "A Hybrid Deep Learning Model With Attention-Based 
Conv-LSTM Networks for Short-Term Traffic Flow Prediction," IEEE Transactions on 
Intelligent Transportation Systems, vol. 22, no. 11, pp. 6910-6920, 2021, doi: 
10.1109/tits.2020.2997352. 

[51] T. Chu, J. Wang, L. Codeca, and Z. Li, "Multi-Agent Deep Reinforcement Learning for Large-
Scale Traffic Signal Control," IEEE Transactions on Intelligent Transportation Systems, vol. 21, 
no. 3, pp. 1086-1095, 2020, doi: 10.1109/tits.2019.2901791. 

[52] J. J. Q. Yu, W. Yu, and J. Gu, "Online Vehicle Routing With Neural Combinatorial Optimization 
and Deep Reinforcement Learning," IEEE Transactions on Intelligent Transportation Systems, 
vol. 20, no. 10, pp. 3806-3817, 2019, doi: 10.1109/tits.2019.2909109. 

[53] G. Krummenacher, C. S. Ong, S. Koller, S. Kobayashi, and J. M. Buhmann, "Wheel Defect 
Detection With Machine Learning," IEEE Transactions on Intelligent Transportation Systems, 
vol. 19, no. 4, pp. 1176-1187, 2018, doi: 10.1109/tits.2017.2720721. 

[54] O. G. Bowen Baker, Nikhil Naik, Ramesh Raskar, "DESIGNING NEURAL NETWORK 
ARCHITECTURES USING REINFORCEMENT LEARNING," presented at the ICLR 2017, 
Cambridge MA, USA, 2017. 

[55] C. Urrea, F. Garrido, and J. Kern, "Design and Implementation of Intelligent Agent Training 
Systems for Virtual Vehicles," Sensors (Basel), vol. 21, no. 2, Jan 12 2021, doi: 
10.3390/s21020492. 

[56] G. B. M.Y Rafig, D.J Easterbrook, "Neural network design for engineering applications," 
Computers & Structures, vol. 79, no. 17, pp. 1541-1552, 2001. ELSEVIER. 

[57] W. S. Kyuyeon Hwang, "Fixed-point feedforward deep neural network design using weights 
+1, 0, and −1," presented at the 2014 IEEE Workshop on Signal Processing Systems (SiPS), 
Belfast, UK, 20-22 Oct. 2014, 2014. 

[58] C. Lo, Y.-Y. Su, C.-Y. Lee, and S.-C. Chang, "A Dynamic Deep Neural Network Design for 
Efficient Workload Allocation in Edge Computing," presented at the 2017 IEEE International 
Conference on Computer Design (ICCD), 2017. 



101 
 

[59] T. N. S. O. V. A. S. H. Sak, "Convolutional, Long Short-Term Memory, fully connected Deep 
Neural Networks," presented at the 2015 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 2015. 

[60] J. Zhao, F. Deng, Y. Cai, and J. Chen, "Long short-term memory - Fully connected (LSTM-FC) 
neural network for PM2.5 concentration prediction," Chemosphere, vol. 220, pp. 486-492, 
Apr 2019, doi: 10.1016/j.chemosphere.2018.12.128. 

[61] M. Kohler and S. Langer, "On the rate of convergence of fully connected deep neural 
network regression estimates," The Annals of Statistics, vol. 49, no. 4, pp. 2231–2249, 2021, 
doi: 10.1214/20-aos2034. 

[62] Z. Yonglin and Z. Jiafan, "Numerical simulation of stochastic road process using white noise 
filtration," Mechanical Systems and Signal Processing, vol. 20, no. 2, pp. 363-372, 2006, doi: 
10.1016/j.ymssp.2005.01.009. 

[63] L. Sun, "Computer simulation and field measurementof dynamic pavement loading," 
Mathematics and Computers in Simulation, vol. 56, no. 3, pp. 297-313, 2001. ELSEVIER. 

[64] L. Sun, "Simulation of pavement roughness and IRI based on powerspectral density," 
Mathematics and Computers in Simulation, vol. 61, no. 2, pp. 77-88, 2003. ELSEVIER. 

[65] S. C. Hongbin Ren, "Model-of-Excitation-of-Random-Road-Profile-in-Time-Domain-for-a-
Vehicle-with-Four-Wheels," 2011. 

[66] J. Chen, "Modeling and Simulation on Stochastic Road Surface Irregularity Based onMatlab / 
Simulink," Transactions of the Chinese Society for Agriculture Machinery, 2010, Art no. 1000-
1298( 2010) 03-0011-05. China Academic Journal Electronic Publishing House. 

[67] P. W. Daoyu Shen, Shilei Zhou, Nong Zhang, 
"Signal_Simulation_of_Stochastic_Road_Excitation," presented at the The 19th Asia Pacific 
Vibration Conference, October 2021, 2021, Conference Paper. 

[68] S. Fujimoto, H. Hoof, and D. Meger, "Addressing Function Approximation Error in Actor-Critic 
Methods," presented at the Proceedings of the 35th International Conference on Machine 
Learning, Proceedings of Machine Learning Research, 2018. [Online]. Available: 
https://proceedings.mlr.press/v80/fujimoto18a.html. 

[69] T. P. Lillicrap∗, J. J. H. , A. P. , Nicolas Heess,, and Y. T. Tom Erez, David Silver & Daan 
Wierstra, "CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING," presented at 
the ICLR 2016, 2016. 

[70] A. G. Hado van Hasselt, David Silver, "Deep Reinforcement Learning with Double Q-
Learning," presented at the Proceedings of the AAAI Conference on Artificial Intelligence, 
2016. 

[71] Y. Hou, "The Study of Combining Deep Reinforcement Learning with Prioritized Experience 
Replay," 2017. 

[72] H. Wei et al., "Deep reinforcement learning based direct torque control strategy for 
distributed drive electric vehicles considering active safety and energy saving performance," 
Energy, vol. 238, 2022, doi: 10.1016/j.energy.2021.121725. 

[73] A. G. Xi Chen, John Folkesson, M°arten Bj¨orkman and Patric Jensfelt, 
"Deep_Reinforcement_Learning_to_Acquire_Navigation_Skills_for_Wheel-
Legged_Robots_in_Complex_Environments," presented at the IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018. 

[74] M. R. Roland Hafner, 
"Neural_Reinforcement_Learning_Controllers_for_a_Real_Robot_Application," presented at 
the IEEE International Conference on Robotics and Automation, Roma, Italy, 2007. 

[75] W. Gao, N. Zhang, and J. Dai, "A stochastic quarter-car model for dynamic analysis of 
vehicles with uncertain parameters," Vehicle System Dynamics, vol. 46, no. 12, pp. 1159-
1169, 2008, doi: 10.1080/00423110701884575. 

 


	Title Page
	Certificate of Original Authorship
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Abstract
	Contents
	Chapter 1. Introduction
	1.1 Background
	1.2 Research significance
	1.3 Thesis Outline

	Chapter 2. Literature review
	2.1 Type of suspension system
	2.2 RBF (Radial basis function network) neural network control
	2.3 Active suspension control based on deep reinforcement learning
	2.4 Vibration control using DDPG
	2.5 Stochastic road excitation
	2.6 Summary and conclusion

	Chapter 3. Suspension system modeling
	3.1 Theoretical modelling and parameters definition
	3.2 Systematic force analysis
	3.3 State space form of quarter car model
	3.4 Simulation of the suspension model

	Chapter 4. Reinforcement learning frame definition
	4.1 Introduction of reinforcement learning
	4.2 Establishment of environment, observation space and action space
	4.3 Reward function definition and simulation
	4.4 Policy and neural network definition
	4.5 Reinforcement learning frame assembly
	4.6 System test with sinusoidal signal

	Chapter 5. Road excitation signal generation
	5.1 Modeling
	5.2 Simulation and analysis

	Chapter 6. System Assembly and Simulation
	6.1 DQN algorithm application
	6.1.1 Impact analysis of different neural network structure
	6.1.2 Impact analysis of hyper-parameters of reinforcement learning

	6.2 DDPG Algorithm Application
	6.2.1 Introduction
	6.2.2 DDPG Algorithm
	6.2.3 Simulation and comparison

	6.3 TD3 Algorithm Application
	6.3.1 Introduction
	6.3.2 TD3 Algorithm
	6.3.3 Simulation and Comparison


	Chapter 7. Conclusions and future work
	7.1 Summary
	7.2 Prospective of future work

	Reference



