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Abstract: Floods are a natural disaster of significant concern because of their considerable damages
to people’s livelihood. To this extent, there is a critical need to enhance flood management techniques
by establishing proper infrastructure, such as detention basins. Although intelligent models may be
adopted for flood management by detention basins, there is a literature gap on the optimum design of
such structures while facing flood risks. The presented study filled this research gap by introducing a
methodology to obtain the optimum design of detention basins using a stochastic conflict resolution
optimization model considering inflow hydrographs uncertainties. This optimization model was
developed by minimizing the conditional value-at-risk (CvaR) of flood overtopping, downstream
flood damage, and deficit risk of water demand, as well as the deviation of flood overtopping and
downstream damage based on non-linear interval number programming (NINP), for four different
outlets types via a robust optimization tool, namely the non-dominated sorting genetic algorithm-III
(NSGA-III). Conflict resolution was performed using the graph model for conflict resolution (GMCR)
technique, enhanced by fuzzy preferences, to comply with the authorities’ priorities. Results indicated
that the proposed framework could effectively design optimum detention basins consistent with the
regional and hydrological standards.

Keywords: flood management; non-dominated sorting genetic algorithm-III (NSGA-III); conditional
value-at-risk (CVaR) method; non-linear interval number programming (NINP); graph model for
conflict resolution (GMCR); fuzzy preferences

1. Introduction

Floods are substantial natural hazards worldwide due to their destructive impacts
on societies and the resulting economic losses [1–4]; flood management is even more
critical for decreasing the disastrous effects [5–10] in real-life problems in developing
countries such as Turkey [11], China [12,13], and Malaysia [14,15], as well as developed
countries such as the USA [16] and Italy [17]. Practical flood management strategies in-
clude upstream adjustments [18–20], flood defense infrastructure [21–24], and downstream
substructures [25–27]. Considering these flood control techniques, establishing detention
basins is more applicable than other approaches, as they can detain excess runoff and
protect downstream structures [28–31]. Recently, some intelligent heuristic techniques,
such as the ant colony algorithm (ACO) [32], particle swarm optimization (PSO) [33], the
genetic algorithm (GA) [34], the simulated annealing algorithm (SA) [35], and the long
short-term memory (LSTM) network model [36], have been adopted for flood control by
detention basins. However, limited studies on the optimum design of such detention basins
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and their sub-structures, using well-known stochastic optimization algorithms, create a
gap in the literature. Therefore, the optimum design of such basins based on stochastic
optimization approaches may be considered a significant achievement in hydrologic and
hydraulic engineering.

Adapting stochastic and deterministic optimization algorithms can successfully and
efficiently design suitable detention basins to minimize the adverse impacts of floods.
These optimization techniques include differential evolution (DE) [37], multi-objective
optimization algorithms [38–40], and artificial intelligence (AI) models such as neural
network (NN), fuzzy, and adaptive neuro-fuzzy inference system (ANFIS) algorithms [41].
Although stochastic models ensure that certain levels of unpredictability and uncertainties
exist in inflow hydrographs that pass through the detention basins, which are significant in
combating the risks of floods [42–45], they have received little attention in the literature.
Moreover, stochastic models are more beneficial for designing detention basins than deter-
ministic models because they supplement uncertainties inherent in natural flood events
since floods are stochastic processes [46–48]. Considering uncertainties inherent in the sys-
tem, a commendable optimization algorithm, the so-called non-dominated sorting genetic
algorithm-III (NSGA-III), can efficiently model complicated hydrological systems such
as detention basins and their sub-structures during floods using efficacious uncertainty
assessment techniques, namely conditional value-at-risk (CVaR) and non-linear interval
number programming (NINP) approaches. In addition, physically-based models have been
successfully used to predict floods due to their considerable capabilities in predicting flood
scenarios [49], such as the numerical prediction models referred to as an advancement in
flood analyses [4,50]. Nevertheless, the hybridization of models has recently undergone
substantial improvements in physically-based models for floods [4,51]. However, there is
no definite study in the literature regarding a successful and effective hybridization of the
risk-based NSGA-III model and conventional numerical models for optimum design of
detention basins. Therefore, applying a well-known numerical technique, the Runge-Kutta
method, within the NSGA-III optimization model, based on the CVaR and NINP methods,
could help achieve a reliable and realistic design for detention basins and their outlets.

The design of optimum detention basins using a hybrid risk-based NSGA-III multi-
objective optimization model and the Runge-Kutta numerical model provides more effec-
tive and robust models capable of learning complex flood events in real-world problems,
which may be substantially enhanced when the influence of regional and local stakeholder
conditions is considered. However, the literature includes only a limited number of studies
on using a robust conflict resolution approach within a hybrid NSGA-III and physical
model for optimal detention basin design during a flood. The graph model for conflict
resolution (GMCR) theory can consider geographical and regional standards within the
stochastic optimization model to obtain compatible optimum solutions [52–54]. Despite the
application of GMCR in previous water resources management and water engineering stud-
ies, to the best of our knowledge, the compatibility of developed optimal detention basins
with regional standards has not been addressed in the literature. As a result, coupling
GMCR with the earlier mentioned hybrid multi-objective optimization model would lead
to a novel stochastic conflict resolution optimization model for the practical, compatible,
and optimum design of detention basins and their outlets.

This paper presented a stochastic conflict resolution optimization model, using NSGA-
III, based on several Runge-Kutta method schemes. Within this framework, hydrological
uncertainties were considered through the CVaR and NINP risk assessment techniques,
involving geographical and regional standards, using the GMCR approach to identify
the optimal compatible characteristics of detention basins and their outlets. This novel
framework attempted to address the shortcomings of previous studies by meeting the
following objectives to provide reliable, realistic, and compatible optimal designs for
detention basins and their outlets in different social and geographical conditions:
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1. Simulating roughly one hundred inflow hydrographs with various peak inflow and
flood durations based on five well-known inflow patterns, namely the triangular,
abrupt wave, flood pulse, broad peak, and double-peak patterns;

2. Assessing the accuracy of 16 schemes of the Runge-Kutta numerical method to solve
flood routing equations;

3. Developing a hybrid stochastic conflict resolution optimization model by applying
all modeled inflow hydrographs and chosen numerical methods within an NSGA-III
optimization model to determine optimal geometrical features of the detention basins
and their outlets with minimum risk of overtopping failure, minimum risk of flood
damage, and minimum outlet dimensions;

4. Minimizing the risk of overtopping failure and flood damage in worst-case scenar-
ios, among modeled inflow hydrographs, by minimizing the relevant CvaR and
uncertainty variations based on the NINP approach;

5. Achieving compatible geometrical features for detention basins and their outlets,
among optimal ones, utilizing the theory of GMCR enhanced by fuzzy preferences.

2. Materials and Methods

The presented framework included four substantial steps for the optimal compatible
design of detention basins using the NSGA-III optimization algorithm, based on the Runge-
Kutta method, considering the CVaR and NINP methods for uncertainty assessments and
GMCR compatibility, to verify the approach, as illustrated in Figure 1.

In the first step of this framework, inflow hydrographs were produced, considering
five main inflow patterns: triangular, flood pulse, abrupt wave, broad peak, and double-
peak inflow patterns, covering almost all of the inflow hydrograph types in simplified forms.
These inflow hydrographs are synthetic since the proposed methodology was applied to a
series of artificial detention basins. Next, roughly one hundred inflow hydrographs were
constructed by selecting different peak inflows and flood durations.

In the second step, superior schemes of the Runge-Kutta method were selected by
evaluating the accuracy of 16 Runge-Kutta technique variants for solving the flood routing
equations.

In the third step, an interval-stochastic optimization framework was developed, using
hundreds of flood scenarios as the input. First, the outlet type was specified as an orifice
or a triangular, rectangular, or proportional weir. Then, the following objectives for this
multi-objective optimization algorithm were determined for the worst-case flood scenarios
using a hybrid interval–stochastic approach: Minimize the risk of flood overtopping,
downstream flood damage, the deficit risk of downstream water demand, and the deviation
of hydrologic uncertainties influencing flood overtopping and downstream flood damage,
as well as outlet characteristics.

Finally, compatible geometrical features of the detention basins among the optimal so-
lutions were identified using GMCR theory by incorporating fuzzy preferences. As a result,
optimal and compatible designs of detention basins and their outlets were determined. The
steps mentioned above are discussed thoroughly in the following subsections.
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Figure 1. The general framework of the presented stochastic conflict resolution optimization model
to determine the optimal, compatible design of detention basins.

2.1. Scenarios of Inflow Hydrographs

In real-world problems, there are five simplified inflow hydrograph patterns: trian-
gular, abrupt wave, flood pulse, broad peak, and double-peak hydrograph [55]. In more
detail, four general hydrograph patterns, namely triangular, abrupt wave, flood pulse, and
broad peak, were adopted based on a published thesis [56], in which the triangular pattern
has a more straightforward shape, with a linear rise and recession [57], the abrupt wave is
followed by a linear recession, the flood pulse hydrograph is a rectangular pulse, and the
broad peak hygrograph is a more general trapezoid, including a broad peak with a linear
rise and recession. Furthermore, to include almost all flood inflows in simplified general
forms, a double-peak flood inflow is also considered the most generalized pattern adopted
from [58].

In this study, one hundred inflow hydrographs, 20 of each type, were generated by
variations in peak inflows and flood durations to improve the model’s reliability in field
conditions (Figure 2). First, the base inflow peaks and flood durations for these inflow
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hydrographs were adopted from a study by Paik (2008) [59]. Then, the developed inflow
hydrographs were used as inputs in the hybrid interval-stochastic optimization model.
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Figure 2. The developed synthetic inflow hydrograph scenarios for five general inflow patterns.

2.2. Solutions of Flood Routing Formulas

The numerical solutions for flood routing equations were determined by applying
16 variants of the Runge-Kutta schemes [60–62]. The accuracy of these numerical analyses
was assessed by comparing them to the analytical solutions provided by Paik (2008) and
Nematollahi et al. (2021) as benchmark solutions [55,59]. Detailed explanations for the
utilized analytical solutions were provided in [55]. For this purpose, two conventional
statistical indices, namely the root mean square error (RMSE) and mean absolute relative
error (MARE), were used (Equations (1) and (2)). These statistical assessments indicated
that 6 of the 16 Runge-Kutta methods produced reliable values for flood heights and
outflows from the flood routing equations considering the five types of inflow hydrographs
(Supplementary Materials, Section S1). As mentioned above, the numerical solutions
using six desired variants of Runge-Kutta schemes were simultaneously applied within the
optimization framework to mitigate deviations.

RMSE =

√√√√ 1
N

N

∑
i=1

(R∗ i − Ri)
2 (1)

MARE =
1
N

N

∑
i=1

∣∣∣∣R∗ i − Ri
R∗ i

∣∣∣∣× 100 (2)
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where R∗ i denotes the results of the analytical solutions [55], Ri denotes the results of the
numerical solutions, N denotes the total number of data points, and i denotes the number
of data.

2.3. Stochastic Optimization Framework
2.3.1. Outlet Characterization

Four different standard outlet types, including an orifice and a proportional, rectangu-
lar, and triangular weir, were examined in this study. The orifice outlet is a simple discharge
vessel typically used when the backwater effect is not considerable. The proportional weir
is a beneficial outlet type that maintains a reasonable discharge exiting the detention basins
even during inflow fluctuations. The rectangular weir is a standard form of a weir, gen-
erally ideal for detaining floods. Finally, the triangular weir is well suited for computing
discharge for small flows with a significant accuracy [63]. For this purpose, reasonable
cross-sectional areas of the basins were initially taken from Paik (2008), while assuming
they were empty under normal conditions [59]. Then, the optimal outlets’ characteristics
were determined through the stochastic optimization model based on solutions of the flood
routing equations using the equations in Figure 3 for the outflows.
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Figure 3. The schematic view and outflow equations for the four selected outlet types: (a) Orifice;
(b) Proportional weir; (c) Rectangular weir; (d) Triangular weir. Qout, outflow from the outlets/weirs;
h, hydraulic head of stored water; λ, formula error correction factor; C, outlet coefficient; a, total
cross-sectional area of the orifice outlet; b, weir constants; S, weir base distance; x(y), weir width at
water surface; y, water depth; L, weir width; θ, weir tip angle; g, gravitational acceleration constant.

The proposed stochastic optimization model aimed to acquire optimal geometrical
properties of these outlet controls. For the orifice, the characteristics to be optimized were
the orifice correction factor, λ, its discharge coefficient, C, and its cross-sectional area, a.
For the proportional weir, the stochastic optimization model’s decision variables were
the proportionality constant, C, and the base height, S. For the rectangular weir, the
optimization model’s decision variables were the outlet’s discharge coefficient, C, and
length, L. Finally, for the triangular weir, the outlet’s characterization to be optimized were
its discharge coefficient, C, and its tip angle, θ.

The above parameters were chosen as decision variables corresponding to the opti-
mum solutions. They were outlet parameters that could be changed during construction.
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On the other hand, geometrical parameters for each outlet type were also optimized. These
parameters were the cross-sectional area, a, for the orifice, the base height, S, for the pro-
portional weir, the weir length, L, for the rectangular weir, and the weir’s tip angle, θ, for
the triangular weir. Minimizing these parameters was chosen as optimization models’ ob-
jectives customized to different outlet types. They directly affected the outlets’ construction
costs. In more detail, optimizing the outlets’ geometrical features resulted in cost-efficient
designs while preventing flood overtopping, downstream flood damage, and meeting
water demand requirements. Therefore, one may conclude that outlets’ geometrical charac-
teristics were chosen as objective functions to limit their construction cost, which conflicted
with other objectives to provide cost-effective, practical designs for the orifice and the
proportional, rectangular, and triangular weirs.

2.3.2. Uncertainty Assessments by Conditional Value-at-Risk (CVaR) Approach

The CVaR risk assessment technique has been explained thoroughly [64,65]. It has
obtained a high status of being used in water and environmental regulations. Furthermore,
this technique is widely utilized in optimization modeling since it has superior features in
many respects, expressed by a minimization formula. These formulations incorporate deci-
sion variables designed to minimize risk within bounds for the optimization problems [66].
Therefore, such important shortcuts are obtained while preserving the crucial problem
properties.

To consider hydrological uncertainties in the stochastic optimization algorithm, flash
flood scenarios were generated by applying a hundred inflow hydrographs using the
verified six flood routing numerical solutions, resulting in flash flood scenarios. These
scenarios were input to the stochastic optimization model through computing objective
functions for all scenarios considering each set of decision variables. In more detail, the
objective functions for this stochastic optimization model were calculated for the earlier
mentioned 600 flash flood scenarios through the conditional value-at-risk (CVaR) approach
(Supplementary Materials, Section S2), which is a reputable coherent risk measurement
tool [67,68].

2.3.3. Analyses of Uncertainty Deviations by Non-Linear Interval Number Programming
(NINP) Method

The influence of hydrological uncertainties on the stochastic optimization model’s
objective functions may be significantly mitigated by minimizing the deviations of objective
values among different flash flood scenarios. To this extent, the deviations of objective
values were determined using non-linear interval number programming (NINP) and infor-
mation theory. The NINP technique effectively tackles non-linear optimization problems.
In this technique, an order relation for interval numbers is utilized to convert the uncertain
optimization problem into a deterministic optimization problem, considering a radius and
a midpoint for the uncertain objective. The general form of non-linear interval number
programming was defined by Jiang et al. (2008) as [69]:

min obj(D, U) (3)

UL ≤ U ≤ UU (4)

In the realm of non-linear interval programming, the objective function, obj, was
minimized using defined decision variables, D, based on an assumed uncertain vector, U.
Equation (4) shows that the uncertain vector is limited to an interval number’s lower and
upper bounds. This theory can be practically applied by converting the general equation to
a two-objective problem (Equation (5)) based on order relations [69].

min[Mean( f (D, U)), Dev( f (D, U))] (5)

Mean( f (D, U)) =
1
2

(
f max(D) + f min(D)

)
(6)
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Dev( f (D, U)) =
1
2

(
f max(D)− f min(D)

)
(7)

where: Mean( f (D, U)), mean of the uncertainty interval; Dev( f (D, U)), radius of the
uncertainty interval; f max(D), maximum value (upper bound) of the uncertainty interval;
f min(D), minimum value (lower bound) of the uncertainty interval.

2.3.4. Non-Dominated Sorting Genetic Algorithm-III (NSGA-III)

NSGA-III algorithm initiates an initial population size of N randomly with a distri-
bution M− dim considering hyper reference points H on the plane using a normal vector
covering the entire region, RM

+ [70,71]. In this algorithm, the whole population, Pt, converts
in the same manner as in the non-dominated sorting genetic algorithm-II (NSGA-II). Then,
Pt creates a new offspring population, Qt, using mutations and recombination operations.
After that, a combined population, Rt = Pt ∪Qt is developed, and a non-dominated solu-
tion, Pt+1, is created where all solutions are not from the entire fronts. Then, each member
is associated with a particular reference point after obtaining FL by performing niching and
normalized mechanism based on the shortest perpendicular distance of each population
element. Finally, the FL member related to the minimum reference point in the Pt+1 is
selected using the niching mechanism to find a population member associated with each
reference point near the Pareto-optimal front using crossover, mutation, and recombination
operations. Therefore, the application of the NSGA-III algorithm leads to a well-distributed
reference point resulting in a well-spread trade-off point [72].

The advantage of using NSGA-III is that no additional parameter is required than the
traditional version, non-dominated sorting genetic algorithm- II (NSGA-II). Furthermore,
applying NSGA-III to an optimization problem leads to better coverage of Pareto solutions
using a reference point mechanism. Moreover, NSGA-III utilizes the pre-allocate reference
set mechanism to select appropriate diverse solutions concerning the population size in
free space. Therefore, the NSGA-III algorithm can generate the first solution quickly and
solve multi-objective optimization problems, mainly when the number of objectives is more
than four [70–72].

2.3.5. Objectives and Constraints of the Stochastic Optimization Model

The stochastic optimization model developed in this study served to determine opti-
mal detention basins and their outlet features with minimized risk of flood overtopping,
risk of downstream flood damage, deficit risk of downstream water demand, and devia-
tion of hydrologic uncertainties influencing the flood overtopping and downstream flood
damage, and outlet characteristics. Minimizing the deviation of hydrologic uncertainties
reduced the variation ranges of objective values, achieving more robust results. This opti-
mization framework reduced the identified risks by minimizing their corresponding CVaRs
(Equations (8)–(10)). In addition, the variations were minimized by implementing the
deterministic form of the NINP method and information theory [73], as follows:

Z1 = min(CVaRα
H) (8)

Z2 = min(CVaRα
Out) (9)

Z3 = min(CVaRα
De f ) (10)

Z4 = min(DevH) (11)

Z5 = min(Devout) (12)

Z6 = min(Olet) (13)

where, Equations (14)–(17) are used to determine the risk of flood overtopping.

CVaRα
H = VaRα

H +
1

1− α

Ns

∑
sc=1

[
Hloss

sc −VaRα
H

]+
× psc (14)
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Subjected to:[
Hloss

sc −VaRα
H

]+
=

{
Hloss

sc −VaRα
H i f Hloss

sc > VaRα
H

0 else
(15)

where: sc, the flooding scenario and as a combination of developed inflow hydrographs
and selected flood routing equations; Ns, radius of the uncertainty interval; f max(D), the
total number of flooding scenarios.

Furthermore, CVaRα
H represented CVaR of the hydraulic water head at the confidence

level of α, which was derived as the weighted average of losses beyond the corresponding
value-at-risk (VaRα

H) cutoff point, where psc is the probability of flood overtopping under
the scth flooding scenario. In Equation (16), Hloss

sc refers to the hazardous water hydraulic
head in the scth flooding scenario, which is defined by maximizing the hsc

n (hydraulic water
head at the nth flood routing time-step of the scth flooding scenario):

Hloss
sc = maxn(hsc

n ) (16)

where hsc
n is a function of the flood routing time-step (tn), the flood inflow at the nth flood

routing time-step obtained from inflow hydrograph w (INw(tn)), and the selected type of
outlet/weir (Otype):

hsc
n = f 1

method(INw(tn), tn, Otype) (17)

Then, the risk of downstream flood damage was determined by Equations (18)–(21).
In more detail, CVaR of the downstream flood outflow at a confidence level of α (CVaRα

out,
Equation (18)) is similarly determined as a function of VaRα

out (value-at-risk (VaR) of the
downstream flood at a confidence level of α).

CVaRα
out = VaRα

out +
1

1− α

Ns

∑
sc=1

[
Outloss

sc −VaRα
out

]+
× p′sc (18)

Subjected to:[
Outloss

sc −VaRα
out

]+
=

{
Outloss

sc −VaRα
out i f Outloss

sc > VaRα
out

0 else
(19)

where p′sc represents the probability of downstream flood damage under the scth flooding
scenario and Outloss

sc is the maximum of the calculated flood outflows at the nth flood routing
time-step of the scth flooding scenario (Outsc

n ) over the total time-steps (Equation (20)).

Outloss
sc = maxn(Outsc

n ); n = 1, 2, . . . ., NTS, tot (20)

where NTS, tot is equal to the total number of flood routing time-steps. Then, Outsc
n (flood

outflow) is calculated using another iterative equation as follows:

Outsc
n = f 2

method(INw(tn), tn, Otype) (21)

Simultaneously, the risk of downstream deficient demand is calculated using the
following equations:

CVaRα
De f = VaRα

de f +
1

1− α

Ns

∑
sc=1

[
De f loss

sc −VaRα
de f

]+
× p′′sc (22)

[
De f loss

sc −VaRα
de f

]+
=

{
De f loss

sc −VaRα
de f i f De f loss

sc > VaRα
de f

0 else
(23)



Water 2022, 14, 774 11 of 26

De f loss
sc =

DOall −
Ttot
∑

n=0
Outsc

n

DOall
(24)

where: CVaRα
De f , the CVaR of downstream deficit demand at a confidence level of α;

VaRα
de f , the VaR of the downstream deficit demand at a confidence level of α; De f loss

sc , the

relative downstream deficit demand in the scth flooding scenario; p′′sc, the probability of
downstream deficit demand under the scth flooding scenario; DOall , the total water demand
during the flood incident; Outsc

n , the flood outflow at the nth flood routing time-step of the
scth flooding scenario.

Subsequently, the variations of corresponding uncertainties were determined as fol-
lows, based on Equation (7):

DevH =
maxsc[maxn(hsc

n )]−minsc[minn(hsc
n )]

2
(25)

Devout =
maxsc[maxn(Outsc

n )]−minsc[minn(Outsc
n )]

2
(26)

where DevH is the deviation of water hydraulic head uncertainty and Devout represents
the deviation of flood outflow uncertainty.

Finally, the outlet characteristics (Olet) were obtained from the developed stochastic
optimization framework.

2.4. Compatible Design by Fuzzy Graph Model for Conflict Resolution (GMCR)

After obtaining the Pareto fronts, the desired solution should be selected among
optimal ones considering the regional conflicts (Figure 4). The Pareto fronts were the
Pareto-optimal solutions obtained from the optimization model containing different op-
timal values for detention basins designs. To select the best appropriate Pareto-optimal
solution, the decision-makers involved in the problem and their priorities were identified
first. Then, all possible states were obtained based on the decision-makers’ options to
determine the feasible states. After that, preference statements were defined based on the
potential movements between the states and the decision-makers. The fuzzy and truth
score values were introduced in the next step based on a rational selection for different
preference statements to find the fuzzy and crisp scores and fuzzy preference values. Fuzzy
preference values were quantitative values representing both certain and uncertain prefer-
ences between two states. These values were utilized to rank the feasible states concerning
three specific thresholds. Then, suitable fuzzy stabilities and equilibrium results were
achieved by applying four schemes of graph model for conflict resolution (GMCR) method
to obtain the appropriate states. Finally, the best Pareto-optimal solutions were acquired,
which meet the requirements for the obtained superior states.

The GMCR methodology formulated by Fang et al. (1993) is a valuable tool to resolve
disputes/conflicts in various fields of interest [74]. The GMCR method has the capability
to model both common and irreversible moves through a flexible framework for adopting
different stability concepts, with the benefit of being easy to apply in real-world problems.
General graph models for conflict resolutions include the following steps for modeling
and analysis: (i) specify the decision-makers/stakeholders; (ii) identify their relative action
options; (iii) determine feasible states of the disputes; (iv) Assign possible movements
among states; and (v) Assess the stability of states employing four stability definitions,
namely Nash stability or rationality (R), general meta-rationality (GMR), symmetric meta-
rationality (SMR), and sequential stability (SEQ) [75–78]. The stability indicators R, GMR,
SMR, and SEQ were used to account for decision style diversities and determine stable
states resulting from an equilibrium state, which all decision-makers prefer not to move
away from. Adopting these stability analysis indicators, each state can be evaluated for not
only how it is preferred for an individual decision-maker, but also how appropriate it is for
the decision-maker as a possible coalition member. In addition, the GMCR can be enhanced
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and applied successfully by using fuzzy preference relations to incorporate the decision-
makers’ uncertainties [79]. The fuzzy stability analyses are used to establish a natural
description for human behavior as the decision-makers in the face of high uncertainty
levels to reach a fuzzy equilibrium among different states.

The fuzzy option prioritization was substituted for the crisp form by calculating the
fuzzy truth values of preference statements at feasible states. The fuzzy truth values of the
considered preference statements were in the range of 0 to 1, where the truth degree of 1
indicates a TRUE preference statement (entirely desirable), while a truth degree of 0 implies
a FALSE statement (obvious undesirability). After identifying the fuzzy truth values of
preference statements for each state, the fuzzy preference values can be calculated using
Equation (27) [80]:

r(si, sj) =


1
2 + 1

2

∨
Ψ(si)−

∨
Ψ(sj)

max
[
|Ψ(si)−Ψ(sj)|,

∣∣∣∣∨Ψ(si)−
∨
Ψ(sj)

∣∣∣∣] i f
∨
Ψ(si) 6=

∨
Ψ(sj)

1
2 else

(27)

where r(si, sj) is a matrix of S× S denoting the fuzzy preference relation of states i and j
(i.e., the desirability of the state i comparing the state of j) over the set of feasible states, s.

The required values of
∨
Ψ(s) and Ψ(s) can be calculated as follows:

∨
Ψ(s) =

q

∑
t=1

∨
Ψt(s) (28)

Ψ(s) =
q

∑
t=1

Ψt(s) (29)

∨
Ψt(s) =

1
2t σt(s) (30)

Ψt(s) =
{ 1

2t i f Ωt(s) = T
0 i f Ωt(s) = F

(31)

where
∨
Ψ(s) represents the fuzzy score of a state s ∈ S, which is a function of

∨
Ψt(s), the

fuzzy incremental score of state s. The fuzzy incremental score combines the fuzzy truth
value of a preference statement Ωt(s) at a given state s ∈ S and the preference statement
order of priority. On the other hand, Ψ(s) is a function of Ψt(s), the crisp incremental score,
in which Ωt(s) can be identified as TRUE or FALSE only. Finally, a matrix of R : S× S
was developed for all decision-makers to rank the states considering their relative order of
preferences under existing uncertainties.

Then, appropriate fuzzy stabilities for the fuzzy graph model, including fuzzy Nash,
fuzzy GMR, fuzzy SMR, and fuzzy SEQ were utilized to determine stable states via analysis.
To define the fuzzy stabilities, the fuzzy preference relation (values between 0 and 1)
was first converted into a fuzzy relative certainty of preference, α

(
si, sj

)
, which varied

between −1 and 1. Then, the fuzzy satisfying threshold of decision-makers was specified
by describing their criteria to consider the states’ desirability. The fuzzy satisfying threshold,
γ, is a number that determines the level of the fuzzy relative certainty of preference, α

(
si, sj

)
.

Therefore, stability analysis in a graph model with fuzzy preference depends on the fuzzy
satisfying threshold adopted by the decision-makers.



Water 2022, 14, 774 13 of 26

Water 2022, 14, x FOR PEER REVIEW 13 of 26 
 

 

1( ) ( )
2t tts sσ

∨
Ψ =  (30)

1 ( )
( ) 2

0 ( )

tt
t

t

if s T
s

if s F

 Ω =Ψ = 
 Ω =

 (31)

where ( )s
∨
Ψ  represents the fuzzy score of a state s S∈ , which is a function of ( )t s

∨
Ψ , the 

fuzzy incremental score of state s. The fuzzy incremental score combines the fuzzy truth 
value of a preference statement ( )t sΩ  at a given state s S∈  and the preference statement 
order of priority. On the other hand, ( )sΨ  is a function of ( )t sΨ , the crisp incremental 
score, in which ( )t sΩ  can be identified as TRUE or FALSE only. Finally, a matrix of 

:R S S×  was developed for all decision-makers to rank the states considering their rela-
tive order of preferences under existing uncertainties. 

Then, appropriate fuzzy stabilities for the fuzzy graph model, including fuzzy Nash, 
fuzzy GMR, fuzzy SMR, and fuzzy SEQ were utilized to determine stable states via anal-
ysis. To define the fuzzy stabilities, the fuzzy preference relation (values between 0 and 1) 
was first converted into a fuzzy relative certainty of preference, ( ),i js sα , which varied 
between −1 and 1. Then, the fuzzy satisfying threshold of decision-makers was specified 
by describing their criteria to consider the states' desirability. The fuzzy satisfying thresh-
old, γ , is a number that determines the level of the fuzzy relative certainty of preference, 

( ),i js sα . Therefore, stability analysis in a graph model with fuzzy preference depends on 
the fuzzy satisfying threshold adopted by the decision-makers. 

 
Figure 4. The general framework of the conflict resolution model to define compatible designs of 
detention basins. 

Figure 4. The general framework of the conflict resolution model to define compatible designs of
detention basins.

3. Results

The presented novel framework can determine the optimal compatible geometrical
features of detention basins and four outlets, including an orifice and proportional, rectan-
gular, and triangular weirs, based on five inflow hydrographs: triangular, abrupt wave,
flood pulse, broad peak, and double-peak patterns. Through this framework, a stochastic
conflict resolution optimization model was developed using an NSGA-III multi-objective
optimization algorithm, which attempted to reduce the risk of flood overtopping, risk of
downstream flood damage, and deficit risk of downstream water demand. Simultaneously
the model aimed to minimize the deviation of hydrologic uncertainties influencing the
flood overtopping and downstream flood damage and the outlet characteristics while
resolving conflicts between different stakeholders.

3.1. Optimal Geometrical Features for Detention Basins

The proposed stochastic optimization model was utilized to determine optimal geomet-
rical features for the detention basins with varying outlet types by assessing 600 different
flooding scenarios. As a result, 12 Pareto-front solutions were determined for all out-
let types produced by NSGA-III for a population size of 50 after reaching the specified
maximum number of generations (400), as shown in Figure 5.
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3.2. Conflict Resolution to Select the Superior Optimal Solution

To obtain compatible solutions for the optimum basins designs, the existing dispute
between Ministry of Energy involved in the construction of detention basins, National
Disaster Management Organization responsible for managing disasters such as flash floods,
and Department of Environment interested in satisfying the environmental downstream
water rights, should be investigated. These authorities may follow one of the options
illustrated in Table 1 to accomplish their principal objectives.

Table 1. Options for the dispute resolution among Ministry of Energy, National Disaster Management
Organization, and Department of Environment.

Authority Options

Ministry of Energy

(1) Insist on constructing the detention basins with a
limited budget (Low budget).

(2) Increase acceptable construction budget to alleviate the
safety concerns (Safe budget).

(3) Come up with the most conservative design
emphasizing safety factors (Conservative).

National Disaster Management
Organization

(1) Force Ministry of Energy to provide downstream safety
following the regulations of the National Disaster
Management Organization (Enforce).

Department of Environment

(1) Agree to provide up to 40% of downstream water rights
(deficit more than 60%) (Agree).

(2) Insist on securing at least 80% of downstream water
rights (deficit less than 20%) (Insist).

The disputes mentioned above were investigated by modeling the options within the
GMCR+ decision support system. First, GMCR+ was used to select the most appropriate
compromise solution by examining the strategic conflicts among the ministries. Then,
different states were obtained to choose or refuse any option. For this purpose, the decision-
makers’ options and preferences were first modeled to obtain the viable options for the
multi-ministry conflict over reservoir pollution control (Table 1). Then, from these 64 states,
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47 unfeasible conditions were eliminated (Table S5, Supplementary Materials, Section S4),
and 17 states remained feasible for further analyses (Table 2).

Table 2. Feasible states for the disputes among the Ministry of Energy, the National Disaster Manage-
ment Organization, and the Department of Environment.

Authority Options
State Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ministry of
Energy

Low budget Y N N N N N Y N N N N N Y N N N N
Safe budget N Y N N Y N N Y N N Y N N Y N Y N

Conservative N N Y Y N Y N N Y Y N Y N N Y N Y

National
Disaster

Management
Organization

Enforce N N N N Y Y N N N N Y Y N N N Y Y

Department of
Environment

Agree N N N N N N Y Y N Y Y Y N N N N N
Insist N N N N N N N N N N N N Y Y Y Y Y

Y: Yes, N: No.

Then, feasible states were ranked considering the decision-makers’ fuzzy relative
preferences since the results of the GMCR model were significantly affected by the provided
preferences, which may arise considerable uncertainties. To this extent, the fuzzy preference
framework was utilized to include both certain and uncertain information [79]. In the fuzzy
framework, the state’s fuzzy and crisp scores (Tables S7 and S8, Supplementary Materials,
Section S4) and fuzzy preferences (Table S9, Supplementary Materials, Section S4) were
calculated to determine the fuzzy stable states, preference statements (Table 3), and values
of fuzzy and crisp truth values (Table 4 and Table S6, Supplementary Materials, Section S4).

Table 3. The preference statements in their order of priority of the dispute between Ministry of
Energy, National Disaster Management Organization, and Department of Environment.

Authority Preference Statement Explanation

Ministry of
Energy (ME)

Y-Low budget The ME preferred to construct the
detention basin with a limited budget.

N-Enforce
The ME preferred no mandatory from

NDMO to pay for providing the
downstream safety.

Y-Insist IF N-Conservative The ME did not accept the water rights
limits in the case of conservative design.

National
Disaster

Management Organization (NDMO)

Y-Conservative The NDMO preferred a conservative
design for detention basins.

Y-Enforce IF Y-Low budget
The NDMO enforced ME to provide

downstream safety if they insisted on
Low budget design.

N-Enforce The NDMO was against the drastic
changes in downstream conditions.

Y-Insist The NDMO preferred the downstream
water rights to be provided.

Department of Environment (DE)

Y-Insist The DE preferred the downstream water
rights to be provided.

Y-Agree IF Y-Conservative
The DE agreed by low amounts of

released water only if a conservative
design is accepted.
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Table 4. Fuzzy truth values for the preference statements of the dispute among Ministry of Energy,
National Disaster Management Organization, and Department of Environment.

Authority
Preference
Statement

State Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ministry of
Energy

Y-Low budget 1 0.8 0.1 0.7 0 0 1 0.6 0.1 0.7 0 0 1 0.8 0 0 0

N-Enforce 1 1 1 0.1 0 0 1 1 1 0.1 0 0 1 1 1 0 0

Y-Insist IF
N-Conservative 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0

National
Disaster

Management
Organization

Y-Conservative 0 0 1 0 0.3 1 0 0 1 0 0.3 1 0 0 1 0.3 1

Y-Enforce IF
Y-Low budget 0 0.2 0.5 1 1 1 0 0.2 0.5 1 1 1 0 0.2 0.5 1 1

N-Enforce 0 0 0.3 0 0 0.3 0 0 0.1 0 0 0.1 1 1 1 1 1

Y-Insist 0.6 1 1 0 0 0 0.6 1 1 0 0 0 0.6 1 1 0 0

Department of
Environment

Y-Insist 0 0 0.2 0 0 0.2 0 0 0 0 0 0 0.8 1 1 1 1

Y-Agree IF
Y-Conservative 0.8 1 1 0.8 1 1 0 0 1 0 0 1 0.9 1 1 1 1

Finally, the impact level of the fuzzy relative certainty of preferences and the state
rankings on the given feasible states were assessed considering three fuzzy satisfying
threshold sets of γME = 0.8, γNDMO = 0.6, γDE = 0.6, γME = 0.6, γNDMO = 0.6, γDE = 0.6,
and γME = 0.6, γNDMO = 0.6, γDE = 0.4. Tables 5 and 6, as well as Figure 6, presented the
determined state rankings, unilateral improvements, and stable states of the fuzzy GMCR
models, respectively. As shown in Table 6, Table S10, and S11 (Supplementary Materials,
Section S4), state numbers 4, 13, and 16 were chosen as stable states.

Table 5. The feasible states’ fuzzy rankings, considering the fuzzy satisfying thresholds.

Authority Fuzzy Satisfying Threshold State Ranking

Ministry of Energy
γME = 0.8, γNDMO = 0.6, γDE = 0.6 1 2 7 13 14 4 8 3 9 10 15 5 6 11 12 16 17
γME = 0.6, γNDMO = 0.6, γDE = 0.6 1 2 7 8 13 14 3 4 9 10 5 6 11 12 15 16 17
γME = 0.6, γNDMO = 0.6, γDE = 0.4 1 2 7 8 13 14 3 4 9 10 5 6 11 12 15 16 17

National Disaster Management
Organization

γME = 0.8, γNDMO = 0.6, γDE = 0.6 6 12 17 3 9 15 5 11 16 4 10 2 8 14 1 7 13
γME = 0.6, γNDMO = 0.6, γDE = 0.6 6 12 17 3 9 15 5 11 16 4 10 2 8 14 1 7 13
γME = 0.6, γNDMO = 0.6, γDE = 0.4 6 12 17 3 9 15 5 11 16 4 10 2 8 14 1 7 13

Department of Environment
γME = 0.8, γNDMO = 0.6, γDE = 0.6 3 13 14 15 16 17 2 5 6 12 1 4 9 7 8 10 11
γME = 0.6, γNDMO = 0.6, γDE = 0.6 3 13 14 15 16 17 2 5 6 12 1 4 9 7 8 10 11
γME = 0.6, γNDMO = 0.6, γDE = 0.4 14 15 16 17 13 3 6 2 5 12 1 4 9 7 8 10 11

Note: Underlined states are equal in ranking.
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Table 6. Fuzzy stability analysis and equilibrium results for the fuzzy satisfying threshold of γME = 0.8, γNDMO = 0.6, γDE = 0.6.

Authority
Fuzzy Graph

Indicator
State Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ministry of Energy
(ME)

FR 4 4 4 4 4 4 4 4

FGM 4 4 4 4 4 4 4 4 4 4 4 4

FSM 4 4 4 4 4 4 4 4 4 4 4 4

FSQ 4 4 4 4 4 4 4 4 4 4 4

National Disaster
Management

Organization (NDMO)

FR 4 4 4 4 4 4 4 4

FGM 4 4 4 4 4 4 4 4 4 4 4

FSM 4 4 4 4 4 4 4 4 4 4 4

FSQ 4 4 4 4 4 4 4 4 4 4 4

Department of
Environment (DE)

FR 4 4 4 4 4 4 4 4 4 4 4

FGM 4 4 4 4 4 4 4 4 4 4 4 4 4

FSM 4 4 4 4 4 4 4 4 4 4 4 4 4

FSQ 4 4 4 4 4 4 4 4 4 4 4 4 4

Equilibrium

FR N N N Y N N N N N N N N Y N N Y N
FGM N N Y Y N N N N Y N N N Y N N Y N
FSM N N Y Y N N N N Y N N N Y N N Y N
FSQ N N N Y N N N N Y N N N Y N N Y N

Y, Yes; N, No. FR, fuzzy Nash; FGM, fuzzy general meta-rationality; FSM, fuzzy symmetric meta-rationality; FSQ, fuzzy sequential stability.
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3.3. Regional Compatible Optimal Design

In Figure 7, the optimal solutions for the basin with a rectangular weir as an example
were categorized based on the identified dispute options (Table 1).
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GMCR model.

Then, Tables 7 and 8 illustrated the optimal compatible design for the detention basins
with all studied outlets. Finally, the information and calculations of other outlet types were
provided in Supplementary Materials, Sections S3 and S4.

Table 7. Compatible optimal geometric features for the detention basins.

Outlet/Weir Type Water Hydraulic Head
behind the Dam (m) Outlet/Weir Characteristics

Orifice outlet 11.4 orifice area: 8.04 m2

Rectangular weir 4.80 weir width: 2.60 m
Triangular weir 7.32 weir angle: 133◦

Proportional weir 20.8 weir coefficient: 0.60

Table 8. The optimum discharge coefficients and correction factor for the detention basins.

Outlet/Weir Type Coefficient

Orifice outlet Correction factor: 0.61
Discharge coefficient: 0.73

Rectangular weir Discharge coefficient: 0.96

Triangular weir Discharge coefficient: 0.21

Proportional weir Discharge coefficient: 0.6

4. Discussion
4.1. Optimal Detention Basins Designs

Figure 5 illustrated the obtained values for flood outflow, downstream water demand,
and hydraulic water head behind the dam. Clear inverse relationships can be observed
between the downstream flood and hydraulic water head and between the downstream
flood and downstream deficit demand. Moreover, the deviation of hydrologic uncertainties
influencing the flood overtopping and downstream flood damage were minimized through
the optimization process, while the model sought to reach the minimal outlet characteris-
tics. Tables S1–S4 in Supplementary Materials provided the corresponding values of the
hydraulic water head, flood outflow variations, and characteristics of the outlet and weirs.

The optimization model results showed various downstream demand deficits. In more
detail, the water demand deficit was in the range of 14.4% to 75.8% for the rectangular
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weir, 17.2% to 40.5% for the orifice, 64.4% to 95.8% for the proportional weir, and 0.31%
to 0.87% for the triangular weir. Taking this into account, different outlet types may be
selected based on their water demand deficits. In other words, the triangular weir was
the best outlet, meeting almost all water demand requirements, while the orifice outlet
was the worst outlet type in terms of fulfilling water demands. The other two outlet types
(the proportional and rectangular weirs) were moderate, considering downstream water
demands. Therefore, one may conclude that the triangular weir was appropriate when
downstream water demand requirements were the primary concern.

In addition, the optimization model indicated that flood outflows released from
different outlet types were different. In particular, flood outflows ranged from 50.1 m3/s
to 85.9 m3/s, 37 m3/s to 53.5 m3/s, 3.12 m3/s to 36.4 m3/s, and 61.8 m3/s to 84 m3/s for
the rectangular weir, orifice outlet, proportional weir, and triangular weir, respectively.
This showed that the triangular weir was the riskiest outlet in terms of downstream flood
damage, while the proportional weir was the safest one, and the other two remaining
types, the rectangular weir and the orifice were moderate concerning downstream flood
damage risks.

Finally, the proposed optimization model showed that the hydraulic water head in the
detention basins would be different using different outlet types. In particular, the hydraulic
water head in the detention basin was 1.9 m to 18.6 m for the rectangular weir, 11.4 m to
18.3 m for the orifice outlet, 20.8 m to 30.7 m for the proportional weir, and 4.29 m to 17.4 m
for the triangular weir. This illustrated that the rectangular and triangular weirs could
flexibly detain water so that the hydraulic water heads in the detention basins varied over
a wide range. However, the orifice and the proportional weir typically detain more water
than other outlets during the flood, and may be considered more reliable flood regulators.

4.2. Conflict Resolution Model

As demonstrated in Table 1, the main interest of Ministry of Energy was to achieve the
most profitable design features, and, accordingly, the most cost-efficient detention basin
construction project. However, National Disaster Management Organization reserved
the right to review the proposed design specifications and may force Ministry of Energy
to provide downstream safety by strict regulations. However, these extra charges were
undesirable for Ministry of Energy, and forced them to provide more conservative plans
to eliminate further downstream investigations. Moreover, Department of Environment
desired to take advantage of the flood outflow and secure the downstream water rights in
negotiations with the Ministry of Energy. Therefore, Ministry of Energy selected only one
option from “Low budget”, “Safe budget”, and “Conservative”. National Disaster Man-
agement Organization had the only option of “Enforce”, and Department of Environment
chose an option from “Agree” or “Insist”. As a result, the total number of states would be
26 = 64 states.

After that, 47 unfeasible states were removed from 64 states, which resulted in 17 fea-
sible states, shown in Table 2. This table indicated how three ministries’ options might be
selected based on the existing regulations and rules. For instance, the first feasible state
happened when Ministry of Energy (ME) accepted the “Low budget” option, meaning that
the detention basins would be built with a limited budget. Consequently, the “Enforce”
alternative was not chosen by National Disaster Management Organization (NDMO), since
the downstream safety was not provided. Therefore, Department of Environment (DE)
selected neither “Agree” nor “Insist” options since the downstream water demands were
not met even at 40% of their requirement. The same descriptions can be defined for other
feasible states to obtain their rationale.

Then, the preference statements considering three ministries’ priorities were defined
in Table 3. In this Table, the rational resolutions when the earlier mentioned ministries
conflicted were determined. Besides the fuzzy network formulations, these preference
statements were used to obtain the fuzzy and crisp truth values, fuzzy and crisp scores,
and fuzzy preferences for the disputes among ministries. For instance, for the first feasible
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state in which ME selected the “Low budget” option, the crisp truth values for the “Y-Low
budget”, “N-Enforce”, and “Y-Insist IF N-Conservative” preference statements for ME,
“Y-Insist” preference statement for NDMO, and “Y-Agree IF Y-Conservative” preference
statement for DE were one, while the crisp values for other preference statements related
to three ministries are zero. In other words, when ME adopted the “Low budget” policy,
NDMO did not select the “Enforce” option, and DE did not choose neither “Agree” nor
“Insist” options. Therefore, ME constructed the detention basin with a low budget (“Y-
Low budget”) without any obligation from NDMO (“N-Enforce”) to accept water right
limits in the case of conservative design (“Y-Insist IF N-Conservative”), NDMO insisted
on providing downstream water rights (“Y-Insist”), and DE agreed with low amounts of
released water in the case of conservative design (“Y-Agree IF Y-Conservative”). The same
procedure may be followed to define the crisp truth values of other feasible states. These
crisp truth values and Fuzzy truth values were calculated for the feasible states, as shown
in Table 4.

After that, the states were ranked based on three satisfying fuzzy thresholds. Table 5
indicated the feasible states fuzzy ranking using Table 4 and satisfying fuzzy thresholds.
For instance, in the case of γME = 0.8, γNDMO = 0.6, γDE = 0.6, the states of 1, 2, 7, 13, and
14 were equal in ranking for ME, since the fuzzy truth values of all preference statements for
these feasible states were more than 0.8. The same procedure was followed to rank all other
states. Finally, Table 6 was dedicated to stability analysis of the states using four GMCR
methods as fuzzy Nash (FR), fuzzy general meta-rationality (FGM), fuzzy symmetric
meta-rationality (FSM), and fuzzy sequential stability (FSQ) for all sets of thresholds.
These analyses revealed that for all threshold series, γME = 0.8, γNDMO = 0.6, γDE = 0.6,
γME = 0.6, γNDMO = 0.6, γDE = 0.6 and γME = 0.6, γNDMO = 0.6, γDE = 0.4 the states
of 4, 13, and 16 were stable states among all 17 feasible states.

4.3. Regional Compatible Optimum Design

As shown in Figure 7, Pareto-front solution #4 (Table S1, Supplementary Materials,
Section S3) was taken as the compromise solution for the rectangular weir. The rationale
for this selection was that the Pareto-optimal solution #4 for the rectangular weir met the re-
quirement for state #4, in which Ministry of Energy should accept to provide a conservative
design while National Disaster Management Organization would request no downstream
investments. In addition, this design specification offered about 24% of downstream wa-
ter rights. Therefore, the compatible solutions for the orifice outlet, triangular weir, and
proportional weir were Pareto-front solution #1, #5, and #1, respectively.

In addition, Tables 7 and 8 showed the optimal compatible design for the detention
basins for all outlet types. These tables illustrated that the water demand deficits in the
superior optimum designs were about 24%, 17%, 64%, and 0.53% for the rectangular weir,
orifice, triangular weir, and proportional weir, respectively. Furthermore, the outflow
discharges for the compromised solutions were 77.7 m3/s for the rectangular weir, 53 m3/s
for the orifice, 36 m3/s for the proportional weir, and 78 m3/s for the triangular weir.

5. Conclusions

This study presented a novel stochastic conflict resolution optimization model to
determine the optimal compatible features for detention basins with four outlet/weir types
as orifice and proportional, rectangular, and triangular weirs by minimizing the risk of
overtopping failure, the risk of flood damage, the deficit risk of downstream water demand,
the deviation of hydrologic uncertainties related to overtopping and flood damage, and
minimum outlet dimensions, while resolving conflicts between substantial stakeholders.
The developed framework may be used as a reliable guide by local/regional water re-
sources managers to determine the characteristics of detention basins based on specific
environmental conditions. Pertinently, this framework addressed hydrologic uncertainties
by simulating roughly one hundred inflow hydrographs with various peak inflows and
flood durations based on five well-known inflow patterns, namely triangular, abrupt wave,
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flood pulse, broad peak, and double-peak hydrographs. Besides, flood routing equations
were solved within this optimization framework by assessing the accuracy of 16 schemes
of the Runge-Kutta numerical method. A series of Pareto-optimal solutions were obtained
by applying all the modeled inflow hydrographs and chosen numerical methods within
the non-dominated sorting genetic algorithm- III (NSGA-III) optimization model based
on conditional value-at-risk (CVaR) and non-linear interval number programming (NINP)
methods. Finally, the superior optimal compatible features for the detention basins and
their outlets were chosen among Pareto-optimal solutions generated by the stochastic opti-
mization model utilizing graph theory for conflict resolution (GMCR) enhanced by fuzzy
preferences. The application of fuzzy GMCR in this study led to resolving existing disputes
among three foremost authorities: Ministry of Energy, National Disaster Management
Organization, and Department of Environment. These conflict resolutions led to finding
the best appropriate state among different feasible states based on the earlier-mentioned
options within the disputes and their related movements. Finally, the Pareto-optimal solu-
tions associated with the best applicable state were chosen to obtain the final compatible
optimal design for the detention basins and their outlets. Results showed that the optimum
compatible design for the detention basin (once the conflict among three involving min-
istries is resolved) is an 8.04 m2 cross-sectional area for the orifice, a 2.6 m weir width for
the rectangular weir, a 133◦ tip angle for the triangular weir, and a 0.6 for the proportional
weir coefficient while preserving the hydraulic water head behind the dam at 11.4 m, 4.8 m,
7.32 m, and 20.8 m for the orifice, rectangular weir, triangular weir, and proportional weir,
respectively. The results of the selected compatible geometric features indicated that the
rectangular weir provided the shortest water head. In contrast, the proportional weir ham-
pered up to 20 m of water behind the detention basin. Furthermore, results depicted that
the presented framework can efficiently and successfully provide compatible, reliable, and
optimum designs of other detention basins complying with the regional standards while
meeting the water demands. Therefore, the presented framework may be applied to other
case studies for future studies using non-prismatic detention basins with different outlet
types. Furthermore, since the flood management in the detention basins is a multi-criterion
decision-making (MCDM) problem, robust MCDM tools based on different weight systems
can be coupled with several optimization models such as multi-objective particle swarm
optimization (MOPSO) to obtain the superior optimum designs for the detention basins
while meeting the downstream water demands.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14050774/s1, Section S1: Different variants of Runge-Kutta
schemes, Section S2: Conditional value-at-risk (CVaR), Section S3: Optimal geometrical features
of detention basins, Table S1: Corresponding values of the Pareto-optimal solutions for the rectan-
gular weir, Table S2: Corresponding values of the Pareto-optimal solutions for the orifice outlet,
Table S3: Corresponding values of the Pareto-optimal solutions for the proportional weir, Table S4:
Corresponding values of the Pareto-optimal solutions for the triangular weir, Section S4: Conflict
resolution to select the superior optimal solution, Table S5: The unfeasible states of the dispute
between Ministry of Energy, National Disaster Management Organization, and Department of Envi-
ronment, Table S6: Crisp truth values of the preference statements of the dispute between Ministry
of Energy, National Disaster Management Organization, and Department of Environment, Table S7.
The fuzzy score of the states of the dispute between Ministry of Energy, National Disaster Manage-
ment Organization, and Department of Environment, Table S8: The crisp score of the states of the
dispute between the Ministry of Energy, the National Disaster Management Organization, and the
Department of Environment, Table S9: Fuzzy relative certainty of preference for the dispute between
Ministry of Energy, National Disaster Management Organization, and Department of Environment,
Table S10. Fuzzy stability analysis and equilibrium results for the fuzzy satisfying threshold of
γME = 0.6, γNDMO = 0.6, γDE = 0.4.
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