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A B S T R A C T

This study proposes a swarm optimizer with a modified feasible-based mechanism approach for finding an
optimum design for steel frames. The proposed optimization approach addresses the problem of stagnation
possibility in the traditional particle swarm optimization in which none of the particles tries to explore a
position better than the previous best position for multiple numbers of iterations. This method is based on
accelerated particle swarm optimization and big bang–big crunch optimization algorithms. In addition, a
modified feasible-based mechanism is used to correct the particle’s position. The new method’s performance
is evaluated by solving two structural problems to minimize the weight of steel frames. The results show
that the optimized designs obtained by the proposed algorithm are better than those found by the competing
algorithms from the literature.
. Introduction

The main aim of structural optimization is to reduce the weight
f the structures and at the same time have a safe design. To this
nd, researchers present plenty of methods to optimize the structures.
hese methods are categorized into two groups: deterministic and
robabilistic methods, which are based on mathematical programming
nd stochastic ideas, respectively. Many engineering design problems
re too complex to be handled with mathematical programming meth-
ds. Therefore, for such cases, nature-inspired or meta-heuristic search
ethods can be useful. Nature-inspired methods are those in which

‘the computational algorithms model natural phenomena’’ [1]. Unlike
athematical optimization, meta-heuristic search methods do not re-

uire the data as in the conventional mathematical programming and
hey have better global search abilities than the classical optimization
lgorithms [2–4].

In the past few decades, many meta-heuristic methods have been
eveloped [5–13] and applied for the optimum design of structures.
ezeshk et al. [14] performed the optimal design of plane steel frames
sing the genetic algorithms (GA) and later in the other studies, it has
een utilized to design steel frame structures [15–17]. Kameshki and
aka [18] found optimum designs of plane steel frames with semi-rigid
onnections using a GA-based method and a geometrically nonlinear
nalysis. Moreover, Saka [19] used a harmony search (HS) algorithm in
rder to design the sway frames. Camp et al. [20] and Kaveh et al. [21]
sed the ant colony optimization (ACO) for the optimum design of steel
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frame structures. Kaveh and Talatahari presented different optimization
methods to optimize the skeletal structures [22–25]. In these stud-
ies, an improved ACO (IACO) [22], imperialist competitive algorithm
(ICA) [23], hybrid big bang–big crunch (HBB–BC) [24], and charge
system search (CSS) algorithm [25] were presented and validated. In
the other two studies, Aydoğdu et al. [26,27] found optimum designs of
space steel frames with a firefly-based algorithm (FA) and artificial bee
colony (ABC) algorithm. Degertekin [28] utilized the HS algorithm for
the optimum design of steel frames. Furthermore, Toğan [29] utilized
the teaching–learning-based optimization (TLBO) to design planner
steel frames. In the other study, Kaveh and Talatahari [30] presented
the hybrid harmony particle swarm ant colony (HPSACO) methodology
to find an optimum design for different types of structures. In addition,
Kaveh and Zakian [31] utilized CSS and HS algorithms for the design
of steel frames. In the other study, Talatahari et al. [32] combined
the eagle strategy algorithm with differential evolution (ES-DE) for
optimum design of the frame structures. A more comprehensive review
of meta-heuristic methods in frame design optimization can be found
at [33,34].

Finding optimum design of structures, especially large-scale ones,
is one of challenging problems in the field of engineering. The reason
is due to large-number of variables which results a large-scale search
space in on hand and difficulty of analyzing and controlling the high
number of nonlinear constraints on the other hand. To fulfill handle
this problem, one way is to introduce more efficient methods to reduce
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the required computational cost. There are limited works that address
this challenging problem, such as [35–37]. This aim is covered in
this paper by presenting Developed Swarm Optimizer (DSO) [10] and
Feasible-based mechanism as advanced methods. DSO is based on the
accelerated particle swarm optimizer (APSO) and big bang–big crunch
optimization (BB–BC) optimization algorithm. In this paper, the DSO
method is adapted for solving two frame structures and compared with
other algorithms. Furthermore, a modified feasible-based mechanism
is utilized to correct the particle’s position. The results show that the
proposed method has a better result when compared to those from the
literature.

2. Formulation of optimum design of steel frames according to
AISC-LRFD

The purpose of size optimization of frame structures is to minimize
the weight of the structure, W, through finding the optimal sections
of members, in which all constraints exerted on the problem must be
satisfied, simultaneously. Thus, the optimal design of frame structures
can be formulated as:

Find:

𝑋 =
[

𝑥1, 𝑥2, 𝑥3,… , 𝑥𝑛
]

(1)

To minimize:

𝑊 (𝑋) =
𝑛𝑚
∑

𝑖=1
Y𝑖.𝑥𝑖.𝐿𝑖 (2)

where 𝑥𝑖, L𝑖 and 𝐿𝑖 are the area, material density and length of the steel
section selected for member group i, respectively. Here, the objective
of finding the minimum weight structure is subjected to several design
constraints, including strength and serviceability requirements [38], as:

Displacement constraint:

𝜐𝑑𝑖 =
|

|

|

|

|

𝛿𝑖
𝛿𝑖

|

|

|

|

|

− 1 ≤ 0 𝑖 = 1, 2,… , 𝑛𝑛 (3)

hear constraint, for both major and minor axis:

𝑠
𝑖 =

𝑉𝑢
𝜙𝑣𝑉𝑛

− 1 ≤ 0 𝑖 = 1, 2,… , 𝑛𝑚 (4)

Constraints corresponding to the interaction of flexure and axial force
are as follows:

𝜐𝐼𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝑢
𝜙𝑐𝑃𝑛

+ 8
9

(

𝑀𝑢𝑥
𝜙𝑏𝑀𝑛𝑥

+
𝑀𝑢𝑦

𝜙𝑏𝑀𝑛𝑦

)

− 1 ≤ 0 𝑓𝑜𝑟
𝑃𝑢𝐽
𝜙𝑐𝑃𝑛

≥ 0.2

𝑃𝑢
2𝜙𝑐𝑃𝑛

+
(

𝑀𝑢𝑥
𝜙𝑏𝑀𝑛𝑥

+
𝑀𝑢𝑦

𝜙𝑏𝑀𝑛𝑦

)

− 1 ≤ 0 𝑓𝑜𝑟
𝑃𝑢𝐽
𝜙𝑐𝑃𝑛

< 0.2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(5)

= 1, 2,… , 𝑛𝑚

here nn is the number of nodes; 𝛿𝑖, 𝛿𝑖 are the displacement of the
joints and the allowable displacement, respectively; nm is the number
of members; 𝑉𝑢 is the required shear strength; 𝑉𝑛 is the nominal shear
strength which is defined by the equations in Chapter G of the LRFD
Specification [38]; 𝜙𝑣 is the shear resistance factor 𝜙𝑣 = 0.9; 𝑃𝑢 is
the required strength (tension or compression); 𝑃𝑛 is the nominal axial
strength (tension or compression); 𝜙𝑐 is the resistance factor (𝜙𝑐 = 0.9
for tension, 𝜙𝑐 = 0.85 for compression); 𝑀𝑢 is the required flexural
strength; i.e., the moment due to the total factored load (Subscript x
or y denotes the axis about which bending occurs.); 𝑀𝑛 is the nominal
flexural strength determined in accordance with the appropriate equa-
tions in Chapter F of the LRFD Specification [38] and 𝜙𝑏 is the flexural
resistance reduction factor (𝜙𝑏 = 0.9) according to AISC-LRFD [38].

2.1. Nominal strengths

Based on AISC-LRFD [38] specification, the nominal tensile strength
of a member, based on yielding in the gross section, is equal to:
𝑃𝑢 = 𝐹𝑦𝐴𝑔 (6)

2

where 𝐹𝑦 is the member’s specified yield stress and 𝐴𝑔 is the gross
section of the member. The nominal compressive strength of a member
is the smallest value obtained from the limit states of flexural buck-
ling, torsional buckling, and flexural–torsional buckling. For members
with compact and/or non-compact elements, the nominal compressive
strength of the member for the limit state of flexural buckling is as
follows:

𝑃𝑛 = 𝐹𝑐𝑟𝐴𝑔 (7)

where 𝐹𝑐𝑟 is the critical stress based on flexural buckling of the member,
calculated as:

𝑓𝑜𝑟 𝜆𝑐 =
𝐾𝑙
𝑟𝜋

√

𝐹𝑦

𝐸
≤ 1.5 𝐹𝑐𝑟 =

(

0.658𝜆
2
𝑐
)

𝐹𝑦 (8)

𝑜𝑟 𝜆𝑐 =
𝐾𝑙
𝑟𝜋

√

𝐹𝑦

𝐸
> 1.5 𝐹𝑐𝑟 =

[

0.877
𝜆2𝑐

]

𝐹𝑦 (9)

here l is the laterally unbraced length of the member, K is the effective
ength factor, r is the governing radius of gyration about the axis of
uckling and E is the modulus of elasticity.

2.2. Effective length factor k

In order to calculate the nominal compressive strength, the effective
length factor, K, should be determined for each member. This factor
can be computed using the frame buckling monograph [38]. For sway
frames, the effective length factor for columns is computed as follows:

𝛼2𝐺𝑖𝐺𝑗 − 36
6(𝐺𝑖 + 𝐺𝑗 )

= 𝛼
tan 𝛼

(10)

𝐺𝑖 =
∑

𝐼𝑐𝑖∕𝑙𝑐𝑖
∑

𝐼𝑏𝑖∕𝑙𝑏𝑖
, 𝐺𝑗 =

∑

𝐼𝑐𝑗∕𝑙𝑐𝑗
∑

𝐼𝑏𝑗∕𝑙𝑏𝑗
(11)

where 𝛼=𝜋 ∕𝐾, i and j subscripts correspond to end-i and end-j of the
compression member, and subscripts c and b, in building structures,
refer to columns and beams connecting to the joint under consideration,
respectively. Parameters I and l in the above equations, represent the
moment of inertia and unbraced length of the member, respectively.

3. A review of optimization algorithms

Since the utilized algorithm is based on the PSO and BB–BC al-
gorithms, here a brief review of these algorithms is described in the
following subsections and then in the next section, the DSO algorithm
will be presented.

3.1. Particle swarm optimization

The PSO is based on a metaphor of social interaction, such as
bird flocking and fish schooling, and is developed by Eberhart and
Kennedy [8]. The PSO simulates a commonly observed social behavior,
where members (particles) of a group (swarm) tend to follow the lead
of the best of the group. In other words, the particles fly through the
search space and their positions are updated based on the best positions
of individual particles denoted by 𝑷 𝑘

𝑖 and the best position among all
particles in the search space represented by 𝑷 𝑘

𝑔 .
The procedure of the PSO is reviewed below:

• Step 1: Initialization. An array of particles and their associated
velocities are initialized with random positions.

• Step 2: Local and global best creation. The initial particles are
considered the first local best and the best of them corresponding
to the minimum objective function will be the first global best.



B. Nouhi, Y. Jahani, S. Talatahari et al. Decision Analytics Journal 5 (2022) 100129
• Step 3: Solution construction. The velocity and location of each
particle are changed to the new position using the following
equations:

𝑿𝑘+1
𝑖 = 𝑿𝑘

𝑖 + 𝑽 𝑘+1
𝑖 (12)

𝑽 𝑘+1
𝑖 = 𝜔𝑽 𝑘

𝑖 + 𝑐1𝑟1 ⊗
(

𝑷 𝑘
𝑖 −𝑿𝑘

𝑖
)

+ 𝑐2𝑟2 ⊗
(

𝑷 𝑘
𝑔 −𝑿𝑘

𝑖

)

(13)

where, 𝑿𝑘
𝑖 and 𝑽 𝑘

𝑖 are the position and velocity for the 𝑖th particle
at iteration k; 𝜔 is an inertia weight to control the influence of the
previous velocity; 𝑟1, and 𝑟2 are two random numbers uniformly
distributed in the range of (0, 1); 𝑐1 and 𝑐2 are two acceleration
constants; 𝑷 𝑘

𝑖 is the best position of the 𝑖th particle up to iteration
k; 𝑷 𝑘

𝑔 is the best position among all particles in the swarm
up to iteration k and the sign ‘‘⊗’’ denotes element-by-element
multiplication.

• Step 4: Local and global best updating. The objective function of
the particles is evaluated and thus 𝑷 𝑘

𝑖 and 𝑷 𝑘
𝑔 are updated if the

new positions are better than the previous one.
• Step 5: Terminating criterion control. Steps 3 and 4 are repeated

until a terminating criterion is satisfied.

The accelerated PSO (APSO) [39] is an improved variant of the stan-
dard PSO in which the velocity vector is updated as:

𝑽 𝑘+1
𝑗 = 𝑽 𝑘

𝑗 + 𝑐1 × 𝒓𝒏𝑘𝑗 + 𝑐2 ×
(

𝑷 𝑘
𝑔 −𝑿𝑘

𝑗

)

(14)

where, 𝒓𝒏𝑘𝑗 is a random vector whose elements are normally distributed
with zero mean and a unit standard deviation. Therefore, the new
position vector in the APSO is written as:

𝑿𝑘+1
𝑗 = (1 − 𝑐2) ×𝑿𝑘

𝑗 + 𝑐1 × 𝒓𝒏𝑘𝑗 + 𝑐2 × 𝑷 𝑘
𝑔 (15)

3.2. Big bang–big crunch algorithm

The BB–BC method developed by Erol and Eksin [9] consists of
two phases: a big bang phase, and a big crunch phase. During the big
bang phase, new solution candidates are randomly generated around a
‘‘center of mass’’, which is later calculated in the big crunch phase with
respect to their fitness values. After the big bang phase, a contraction
operation is applied during the big crunch. In this case, the contraction
operator takes the current positions of each candidate solution in the
population and its associated fitness function value and computes a
center of mass.

The procedure of the BB–BC is reviewed below:

• Step 1: Initialization. Initial generation of candidates in a random
manner in the search space (the first big bang).

• Step 2: Individual best creation. Calculate the fitness function
values for all of the candidate solutions. The initial candidates
are considered as the first individual best value to minimize the
objective function.

• Step 3: Finding the center of mass. The center of mass is calculated
by Eq. (16), (the big crunch phase):

𝑿𝑘
𝑐 =

∑𝑁
𝑗=1

1
𝑓𝑘
𝑗
𝑿𝑘

𝑗

∑𝑁
𝑗=1

1
𝑓𝑘
𝑗

(16)

where 𝑿𝑗 is the position of 𝑗th solution, 𝑓𝑘
𝑗 is a fitness function

value of this point at the kth iteration, and N is the population
size.

• Step 4: Solution construction. Calculate the new candidate fitness
values around the center of mass and update the center of mass
using Eq. (17), (second big bang):

𝑿𝑛𝑒𝑤
𝑗 = 𝑿𝑘

𝑐 + 𝒓𝒏𝑘𝑗 ⊗
𝛼
(

𝑿max −𝑿min)

𝑘 + 1
(17)

where 𝑿𝑛𝑒𝑤
𝑗 is the new position of the 𝑗th candidate solution,

Xmin and Xmax are the lower and upper bounds of the design
3

variables, respectively; 𝒓𝒏𝑘𝑗 is a random vector from a standard
normal distribution, and 𝛼 is a parameter for limiting the size of
the search space.

• Step 5: Terminating criterion control. Steps 2–4 are repeated until
a terminating criterion is satisfied.

4. Developed swarm optimizer

The developed swarm optimizer (DSO) was recently developed by
Sheikholeslami and Talatahari [10] to solve water network systems.
Based on the fact that one of the important disadvantages of the PSO
is its higher speed of convergence with a higher possibility of diversity
loss which leads to an undesirable premature convergence, the DSO was
proposed [9] in which the process of escaping from a local optimum is
dealt with. In this algorithm, the modification in the PSO is conducted
in which the previously defined center of mass in the BB–BC method is
inserted in the position updating process of the PSO. The procedure of
the DSO is summarized in the following steps:

• Step 1: Initialization. Initialize an array of particles with random
positions.

• Step 2: Local best, global best and center of mass creation. Calculate
the fitness function values for all of the candidate solutions. Local
best, global best and center of mass are determined.

• Step 3: Solution construction. This step contains two phases:
Step 3.1: Global searching. Global searching of the DSO method is
performed by adding the big crunch phase of the BB–BC algorithm
into the APSO according to Eq. (18):

𝑿𝑘+1
𝑗 = (1−𝑐2)×𝑿𝑘

𝑗+𝑐1×𝒓𝒏
𝑘
𝑗+𝑐2×

{

𝒓𝑘1𝑗 ⊗ 𝑷 𝑘
𝑔 + (1 − 𝒓𝑘1𝑗 )⊗𝑿𝑘

𝑐

}

(18)

where, 𝒓𝑘1𝑗 is a random vector uniformly distributed in the range
of [0, 1]. Eq. (18) contains three parts: (i) part one represents the
influence of the previous position towards the current position,
(ii) part two makes the algorithm explore the whole search space
effectively, and (iii) part three represents the cooperation among
the particles in finding the global optimal solution.
Step 3.2: Local searching. In the local searching step, each particle
generates a solution (𝒁𝑘

𝑗 ) around the global best-center of mass
points which can be calculated using a normal distribution:

𝒁𝑘
𝑗 = 𝑁

((

𝒓𝑘1𝑗 ⊗ 𝑷 𝑘
𝑔 + (1 − 𝒓𝑘1𝑗 )⊗𝑿𝑘

𝑐

)

, 𝜎
)

(19)

In order to account for the information received over time that
reduces uncertainty about the global best position, 𝜎 in the kth iteration
is modeled using a non-increasing function as:

𝜎 = 𝒓𝒏𝑘𝑗 ⊗
𝛼
(

𝑿max −𝑿min)

𝑘 + 1
(20)

where 𝒓𝒏𝑘𝑗 is a random vector from a standard normal distribution, and
𝛼 is a parameter for limiting the size of the search space.

• Step 4: Constraint handling methods and fitness finding: This step is
performed in two phases, as:
Step 4.1: Position correction. For both solutions generated in
global and local steps, if they move out of the search space, their
positions are corrected using the harmony memory (HM) concept
of the HS method.
Step 4.2: Problem-specified constraint handling. The modified
feasible-based mechanism is performed as described in the next
subsection.

• Step 5: Update global best and center of mass positions. The new
best global and center of mass are updated and stored.

• Step 6: Terminating criterion control. Steps 2–5 are repeated until
a terminating criterion is satisfied.

The flowchart of the DSO is shown in Fig. 1.
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p

Fig. 1. Flow-chart of DSO algorithm.

.1. A modified feasible-based mechanism added to the DSO

In the proposed DSO algorithm, a modified feasible-based mech-
nism (FBM) is also used to handle the problem-specific constraints.
n the original FBM, also known as constraint tournament selection,
air-wise solutions are compared using the following rules:

• Rule 1: Any feasible solution is preferred to any infeasible solu-
tion.

• Rule 2: Between two feasible solutions, the one having a better
objective function value is preferred.

• Rule 3: Between two infeasible solutions, the one having a
smaller sum of constraint violation is preferred. This sum is
calculated by:

𝑉 𝑖𝑜𝑙 =
𝑛𝑔
∑

𝑗=1
max

(

0, 𝑔𝑖(𝑿)
)

(21)

where 𝑔𝑗 is the 𝑗th inequality constraint, X is the set of decision
variables, and 𝑛 is the total number of inequality constraints.
𝑔

4

By using the first and third rules, the search tends to the feasible
region rather than the infeasible region, and the second rule persuades
the search to remain in the feasible region with good solutions. In order
to overcome to maintain diversity population problem, in the proposed
DSO, an additional rule is added and defined as follows [10]:

• Rule 4: Infeasible solutions containing slight violations of the
constraints (from 0.01 in the first iteration to 0.001 in the last
iteration) are considered as feasible solutions.

By applying Rule 4, the particles can approach the boundaries and
can move towards the global minimum with a high probability. Fig. 2
shows the flowchart of the modified feasible-based mechanism.

5. Numerical examples

In this section, the performance of the DSO algorithm is investigated
by solving two real-size frame structures, containing:

• 135-member, 3-story, 3D frame
• 1026-member, 10-story, 3D frame

For these examples, the simple DSO [40], UBB–BC [41], UMBB–
BC [41], UEBB–BC [41], UPSO [42], CSS [43] and ISA [44] were
utilized before. In the DSO method, the BB–BC algorithm was combined
with an accelerated PSO algorithm to improve the searching ability of
the agents in the search space, therefore, the new method can find
the minimum structural weight. Optimal results were compared with
the literature to demonstrate the validity of the proposed approach.
The optimization algorithms were coded in MATLAB while structural
analysis was performed with the SAP2000 software. In this study, the
total number of parameters is the same as its original variant of DSO.
As a result, since the parameters of the original DSO was evaluated in
Ref. [10], we here utilized the same values. It is worth to note that one
may reach better performance for the presented method by tunning the
parameters for these problems, however we aim to evaluate the abilities
of the method without such time-consuming process. The details of
the numerical examples and optimum results are summarized in the
following subsections.

5.1. Example 1: design of a 135-member 3-story steel frame

This example contains 135 elements including 66 beams, 45
columns and 24 bracing members as indicated in Fig. 3. The geometry,
load combination and other details of the example are taken from [43].
The material properties for this example are modulus of elasticity,
𝐸 = 200 GPa, yield stress, 𝐹𝑦 = 248.2 MPa, and unit weight of the
steel, 𝜌 = 7.85 ton/m3. The stability of the structure is provided through
moment-resisting connections as well as bracing systems (inverse V -
type) along the x directions. The 135-member frame is placed into 10
member groups. The columns are grouped into four sizing variables in
a plan level as corner, inner, side 𝑥–𝑧 and side 𝑦–𝑧 columns, and they
are assumed to have the same cross-section over the three stories of the
frame. The columns grouping in the plan level is illustrated in Fig. 4.
All of the beams in each story are grouped into one sizing variable,
resulting in three beam-sizing design variables for the frame. Similarly,
all the bracings in each story are grouped into one sizing variable,
resulting in three bracing-sizing design variables for the frame. The
beam elements are continuously braced along their lengths by the floor
system, and columns and bracings are assumed to be unbraced along
their lengths. The effective length factor, K, is taken as 1 for all beams
and bracings. The K factor is conservatively taken as 1.0 for buckling
of columns about their minor (weak) direction, and for buckling of
columns about their major direction, the K factor has been calculated
from Section 2.2.

Optimization results obtained by the new method and the BB–BC-
based ones as well as UPSO reported in the literature are summarized
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Fig. 2. Flow-chart of FBM.
Table 1
Optimum designs obtained for 135-member 3-story steel frame.

Element group Optimal W-shape sections

UPSO [42] UBB–BC [41] UMBB–BC [1] UEBB–BC [41] Current work

CG1a W8X28 W10X39 W30X90 W21X62 W16X40
CG2 W33X118 W27X84 W14X48 W14X48 W27X84
CG3 W40X167 W40X149 W40X215 W36X150 W24X76
CG4 W14X53 W18X65 W27X84 W21X68 W21X62
B1a W14X30 W21X44 W14X34 W18X40 W16X36
B2 W24X55 W16X40 W12X35 W18X35 W21X44
B3 W16X26 W10X22 W18X35 W16X26 W14X22
BR1a W14X30 W27X84 W21X44 W8X24 W6X25
BR2 W14X149 W16X26 W10X22 W16X26 W6X20
BR3 W27X84 W21X44 W6X15 W6X15 W6X15

Weight (ton) 55.66 47.3 45.67 38.91 38.18

aCG denotes column group with respect to Fig. 4, B: beams, BR: bracings.
n Table 1. This work found the best design overall corresponding to
structural weight of 38.18 tons. Optimized weights reported in the

iterature were heavier than the present study and equal to 55.66, 47.3,
5.67 and 38.91 tons for UPSO, UBB–BC, UMBB–BC and UEBB–BC,
espectively. The DSO algorithm needs 1000 analyses to complete the
ptimization process which is almost equal to those of the UBB–BC,
MBB–BC and UEBB–BC i.e., 880, 1794 and 1235, respectively. It is
lear the proposed DSO algorithm has a good performance compared
o those other improved BB–BC-based algorithms.

.2. Example 2: design of a 1026-member 10-story steel frame

The 10-story steel frame indicated in Fig. 5 is selected as the second
xample. The geometry, load combination and other details of the
xample are taken from [41]. The frame consists of 1026 structural
embers, including 580 beams, 350 columns and 96 bracing elements.
he stability of the structure is provided through moment-resisting
onnections as well as bracing systems (X - type) along the x directions.

For optimizing purposes, the 1026 members of the frame are placed
under 32 member groups. The member grouping is considered in both
plan and elevation levels. At elevation level, the structural members

are grouped in every three stories except the first story. At the plan

5

level, columns are considered in 5 different column groups as depicted
in Fig. 6; beams are divided into outer and inner beams, and bracings
are assumed to be in one group. Therefore, based on both elevation
and plan level groupings, there are a total of 20 column groups, 8
beam groups, 4 bracing groups, and a total of 32 design variables.
The unbraced lengths of all beam elements are set to one-fifth of their
lengths and columns and bracings are assumed to be unbraced along
their lengths. The effective length factor, K, for buckling of columns
about their minor direction as well as beams and bracings is taken as
1, and for buckling of columns about their major direction, the K factor
has been calculated from Section 2.2. The cross-sections of the elements
are selected from 267 W-shape sections in the optimization processes.

The optimization results of the proposed method are compared with
the ones reported in the literature in Table 2. The DSO found the
optimum structural weight of 544.14 tons. Optimized weights reported
in literature equal to 557.95, 634.12, 612.05, 584.93, 559.32 and
549.17 tons for the simple DSO [40], UBB–BC [41], UMBB–BC [41],
UEBB–BC [41], CSS [43] and ISA [44], respectively. The DSO algorithm
needs 21,000 analyses to complete the optimization process which
equals the simple DSO [40]. It is clear the proposed DSO algorithm

can find better results than those other algorithms in the literature. The
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Fig. 3. 3D view of the 135-Member 3-story steel frame.
Fig. 4. Columns grouping of 135-member 3-story steel frame in plan level, [41].
convergence history of the proposed method for this example is shown
in Fig. 7.

5.3. Statistical analysis

The statistical results of the optimum design procedure for the DSO
and the proposed method based on 30 independent optimization runs
are presented in Table 3. It is concluded that the proposed method
6

is able to provide better results than the standard DSO method by
considering the mean and standard deviation results.

6. Conclusions

This paper presents a developed swarm-based algorithm (DSO) with
a modified feasible-based mechanism for the optimum design of the
frame structures. The proposed DSO method is based on accelerated
PSO and BB–BC optimization algorithms. For evaluating the robustness
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Fig. 5. 3-D view of the 1026-Member 10-story steel frame.

Fig. 6. Columns grouping of 1026-member 10-story steel frame in plan level, [41].

7



B. Nouhi, Y. Jahani, S. Talatahari et al. Decision Analytics Journal 5 (2022) 100129
Table 2
Optimum designs obtained for 1026-member 10-story steel frame.

Stories Groups Optimal W-shape sections

UBB–BC [41] UMBB–BC [41] UEBB–BC [41] CSS [43] DSO(40) ISA [44] Current work

1

CG1a W27X258 W24X492 W33X201 W27X368 W40X211 W40X277 W36X194
CG2 W27X161 W27X146 W24X146 W40X183 W12X96 W21X182 W33X141
CG3 W27X102 W21X101 W24X104 W27X146 W33X201 W27X161 W21X147
CG4 W27X146 W27X161 W40X174 W40X149 W21X122 W33X201 W27X194
CG5 W27X146 W27X258 W40X321 W12X152 W21X182 W12X120 W36X160
IBa W27X84 W21X44 W27X84 W10X33 W18X46 W16X26 W18X46
OBa W27X84 W27X84 W27X84 W16X40 W21X62 W24X76 W6X25
BRa W27X94 W30X90 W18X76 W12X30 W14X99 W8X21 W10X54

2–4

CG1 W27X258 W21X201 W36X328 W40X297 W33X263 W44X230 W36X170
CG2 W27X146 W24X162 W36X245 W30X148 W14X176 W24X131 W21X166
CG3 W27X84 W24X131 W36X135 W40X149 W33X241 W33X118 W40X174
CG4 W27X102 W40X174 W33X118 W24X146 W36X135 W33X118 W24X104
CG5 W27X114 W27X102 W44X262 W10X100 W21X111 W21X111 W30X132
IB W27X84 W27X84 W16X26 W27X102 W14X34 W24X76 W16X26
OB W27X84 W30X90 W36X135 W24X68 W33X141 W24X62 W40X167
BR W27X84 W40X149 W21X62 W10X60 W10X54 W12X72 W16X67

5–7

CG1 W27X161 W40X235 W27X258 W27X129 W36X135 W30X173 W24X192
CG2 W27X114 W24X131 W18X106 W14X159 W24X117 W36X170 W14X120
CG3 W27X84 W30X90 W33X130 W30X108 W21X93 W14X109 W24X104
CG4 W27X84 W18X86 W27X94 W14X120 W27X94 W33X221 W24X146
CG5 W30X99 W14X90 W24X192 W21X93 W14X82 W14X145 W16X67
IB W27X84 W21X44 W21X44 W21X73 W21X57 W30X99 W24X55
OB W27X84 W30X108 W21X73 W24X68 W24X84 W24X55 W21X83
BR W27X94 W33X118 W30X90 W10X49 W12X65 W16X31 W12X53

8–10

CG1 W27X84 W36X194 W18X86 W21X44 W10X22 W12X26 W18X55
CG2 W27X146 W27X146 W21X50 W14X109 W14X132 W14X132 W33X130
CG3 W27X84 W40X174 W36X135 W10X68 W16X100 W33X141 W18X65
CG4 W27X84 W21X62 W33X201 W27X146 W30X191 W12X79 W14X109
CG5 W27X84 W24X76 W30X108 W40X215 W27X146 W16X50 W14X311
IB W27X84 W14X30 W21X57 W16X45 W16X31 W14X26 W18X40
OB W27X84 W16X31 W16X26 W16X36 W16X67 W24X55 W21X62
BR W27X84 W33X118 W18X76 W8X31 W8X40 W14X43 W10X49

Weight (ton) 634.12 612.05 584.93 559.32 557.95 549.17 544.14

aCG denotes column group with respect to Fig. 6, IB: inner beams, OB: outer beams, BR: bracings.
Fig. 7. Convergence history of the proposed method for 1026-member 10-story steel frame.
of the proposed method, two real-size structures were optimized and
compared with other metaheuristic algorithms in the literature. The
optimization algorithm was implemented by interfacing MATLAB with
the SAP2000 structural analysis code. The results indicated that the
proposed method had better result when compared to those algo-
rithms in the literature and led to a lighter structure. As future works,
8

more complicated structures can be considered as the optimization
problem. In this way, the number of constraint and complexity of
search space will increase and the requirement of advanced algorithms
become clearer. Also, improving the present method to handle the
structural problems with less computational cost is always interesting
research.
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Table 3
Statistical results for the DSO and the proposed methods based on 30
independent runs.

Algorithm Example Best Mean Std.

DSO 3-Story 42.35 50.65 5.29
10-Story 557.95 621.21 58.17

Current work 3-Story 38.18 43.95 3.26
10-Story 544.14 582.35 35.36
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